
ID: pone.0316376 — 2025/3/4 — page 1 — #1

PLOS ONE

OPEN ACCESS

Citation: Farooq U, Abbas W, Chaudhry F,
Azeem M, Almohsen B (2025) Exploring metric
dimension of nanosheets, nanotubes, and
nanotori of SiO2. PLoS ONE 20(3): e0316376.
https://doi.org/10.1371/journal.pone.0316376

Editor: Tahir Muhmood, International Iberian
Nanotechnology Laboratory, PORTUGAL

Received: August 6, 2024

Accepted: December 10, 2024

Published: March 4, 2025

Copyright: © 2025 Farooq et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.

Data availability statement: All data generated
or analyzed during this study are included in the
manuscript. There is no additional data related
to this study. No external datasets were used in
this study.

Funding: The research is supported by
Researchers Supporting Project number
(RSP2025R158), King Saud University, Riyadh,
Saudi Arabia.

Competing interests: No conflict of interest is
available.

RESEARCH ARTICLE

Exploring metric dimension of nanosheets,
nanotubes, and nanotori of SiO2

Umar Farooq
 

 

1☯, Wasim Abbas1☯, Faryal Chaudhry1,
Muhammad Azeem

 

 

2,3∗, Bandar Almohsen
 

 

4∗

1 Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan, 2 Department of
Mathematics, Riphah International University, Lahore, Pakistan, 3 Department of Solids and Structures,
School of Engineering, The University of Manchester, Manchester, United Kingdom, 4 Department of
Mathematics, College of Science, King Saud University, Riyadh, Saudi Arabia

☯ These authors contributed equally to this work.
∗ azeemali7009@gmail.com

Abstract
This work investigates the metric dimension (MD) and edge metric dimension (EMD)
of SiO2 nanostructures, specifically nanosheets, nanotubes, and nanotorii. The metric
dimension describes the minimum number of vertices required to uniquely identify every
other point in a graph. In contrast, the edge metric dimension is the minimum number of
vertices needed to distinguish each edge. Understanding these dimensions is essential
for characterizing the geometric and structural properties of nanoparticles. Using graph
theory techniques, we compute the MD and EMD of various SiO2 nanostructures to elu-
cidate their unique geometries and configurations. Our findings offer precise formulas
for these dimensions, critical for designing and optimizing SiO2-based materials with
targeted properties. This study provides valuable insights for applications in chemistry,
materials science, and nanotechnology, where knowledge of structural characteristics at
the nanoscale is crucial.

Introduction
Chemical graph theory is a branch in graph theory with the mathematics and its specialty.
Thus, the main objective of chemical graph theory is to look at various structures of chem-
icals by representing it graphically. The use of direct analysis might be restricted especially
when the chemical structures are large and complex in nature. This is made easier by chemical
graph theory, since the just described structures are accounted for as molecular graphs having
the atoms as the vertices and the bonds between the atoms as the edges.

This framework employs a mathematical model that tends to facilitate the analysis of the
physical properties of the chemical structure by determining every atom out of it to be a ver-
tex. For identifying the complete vertex set it is required to choose a subset of atoms (vertices)
and for each of them a definite position regarding chosen vertices is defined [1]. This concept
is known as the metric basis for the graph theory and as resolving set (metric generator) in the
applied graph theory [2]. Hernando et al. [3] proposed fault tolerance in metric generators to
decrease the chance of system failure should a part of the generator fail.
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Furthermore, bonds are not limited to uniquely distinguishing atomic locations; they can
also be utilized to characterize the structure. To this end, Kelenc et al. introduced the EMD, a
variant of the MD that focuses on uniquely identifying the graph’s edges in non-trivial con-
nected graphs [4]. Similar to resolving sets, Liu et al. introduced the idea of fault tolerance in
edge resolving sets [5].

The practical applications of MD have been beneficial to many fields, such as robotic navi-
gation [6], geographic routing protocols [7], connected joints in networks and chemistry [8],
telecommunications [9], combinatorial optimization [10], and network discovery and veri-
fication [9]. The NP-hardness and computational complexity of resolvability parameters are
investigated in a number of works [11,12].

The MD has been extensively studied for a variety of chemical structures because to its
numerous applications in the chemical sciences. Reference [13] discusses the vertex resolv-
ability of H-Naphthalenic nanotubes and VC5C7. [14] contains the least resolving sets of sil-
icates star networks, and [15] provides upper bounds on the fewest resolving sets of cellu-
lose networks. The MD of the 2D lattice of boron nanotubes (Alpha) is examined in [16].
Additionally, a number of different MD variants, such the EMD, FTMD, and FTEMD (fault-
tolerant edge metric dimension), have been investigated for a range of graph families and
chemical structures.

A great deal of chemistry is based on graph theory, including quantitative structure-
activity relationships, biological activity forecasting, topological analysis of chemical com-
pounds, quantum chemistry, isomer counting, spectroscopy, graph polynomials for structural
analysis, nuclear spin statistics, NMR spectroscopy, and toxicity prediction techniques. The
study of structure-property interactions in mesoporous materials, fullerenes, and nanomate-
rials [17–33] might also benefit from its use.

Graph theory has numerous applications in chemistry, such as in the characterization of
chemical structures, prediction of biological activities, and the study of nanomaterials. Quan-
titative structure-activity and property relationships (QSAR/QSPR) utilize the molecular
connectivity of chemical compounds and their properties, forming the basis for computer-
aided drug discovery and predictive toxicology. Successful applications of QSAR/QSPR have
led to the development of various topological descriptors for molecules, periodic structures,
fullerenes, lattices, proteomes, and
nanomaterials.

Fundamental mathematical methods such as graph reductions, iterative techniques, recur-
sive procedures, and tree-pruning algorithms have been employed to derive a range of topo-
logical properties. These characteristics include distance polynomials, matching polynomials,
and spectral polynomials of complex lattices, fullerenes, organic polymers, and nanotubes
[34,35]. The degree and distance parameters significantly influence intermolecular interac-
tions, which in turn affect various physicochemical properties of compounds. These proper-
ties include boiling points, melting points, vapor pressures, dermal penetration, octanol par-
tition coefficients, chromatographic retention indices, and 2D-gel electrophoresis patterns of
proteomes [36].

The computational ease of topological approaches makes them commonly employed, even
if more sophisticated quantum chemical and bio-descriptors and quantum molecular dynam-
ics simulations are required for accurate predictions of chemical and biological properties.

SiO2, or silicon dioxide, is an essential substance used in many fields, including biology
and the semiconductor industry. In medications, it serves as an inactive filler, absorbent,
and anti-caking agent. The customizable particle size and specific surface area of silica-based
nanomaterials, their abundance of Si-OH bonds for functionalization [52], their chemical and
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thermal stability, their high drug loading capacity, and their sustained drug release—all of
which increase drug bioavailability—have all attracted attention in recent years [37–41].

Importance of metric dimension in various fields
TheMD is indeed important in graph theory and proves to be very helpful in understanding
the features and functionality of various systems represented graphically. More precisely, it
indicates the smallest number of vertices by which it is possible to describe all the other ver-
tices in that graph. This idea is used in many fields and areas in engineering and computing,
artificial intelligence, root management, town planning, and building development[42,43].

Engineering applications
In the field of engineering, this concept of MD plays a key role, especially in the design and
the optimization of numerous networks including the sensor networks, the communication
systems, as well as the transportation infrastructures. For instance, in sensor network identifi-
cation, the MD enables one to know the best place to fix sensors to get good coverage without
having to fix more sensors than needed in the same region. Being accurate also contributes to
the savings of cash as well as improving the rate of tracking and gathering data. Likewise, in
transportation networks, the awareness of the MD enhances the route and schedule assign-
ment since all the points on the network can be uniquely distinguished and connected, which
enhances the overall performance of the logistics and transportation systems [44,45].

Applications in artificial intelligence and machine learning
Within the fields of machine learning and artificial intelligence, the MD is an important con-
cept that improves the efficiency of such algorithms taken place on the graph. As many AI
applications are based on the social network analysis, pattern recognition, or recommenda-
tion systems, the graph concepts are widely used to describe relations between nodes. In par-
ticular, based on the MD, it is possible to enhance the performance of algorithms that need
the identification of nodes or edges within a graph. For instance, in social network analysis,
the MD can assist in defining a priority target – a single person or a group of persons – thus,
the information or the marketing strategy could be targeted directly to the [46,47].

Relevance in computing and network design
TheMD is also used in computing, especially in the development of communication networks
and structures; and in the analysis of algorithms. In the process of designing a network, there
is such a concept as the MD of networks which is important while creating routing protocols
and defining means of error detection. For example, in distributed computing environments
each node has to be uniquely identifiable and for that purpose, MD is used which is a crucial
factor in realizing the concept of fault tolerance and accidental data transfer. Moreover, in the
efficiency of constructing data structures, the MD can enhance search strategies, and decrease
the time and computational cost for identifying certain objects in great databases.

Application in root management systems
In RMS especially in agricultural and environmental sciences, there is much benefit
of the MD where it brings out structure stability of root system and distribution of the
resources. Applying the ideas of the MD to root systems represented as the graphs allows
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the researchers to investigate the resource distribution and changes in the plants depend-
ing on the conditions. It is essential for maximizing yield, enhancing the quality of soil, and
enhancing mechanisms for sustainable use of the soil resources in crop production. Further-
more, the knowledge of the MD of root networks plays an important role in the development
of stronger and more considerable images of ecosystems that can be more protected from
external conditions such as drought or erodibility of the soil [50,51] .

Impact on town planning and urban development
In town planning the MD plays a critical role in the determination of efficient mechanisms of
the urban structures that are hardy. As applied to transport, utility, and communication net-
works, problems of planning can be solved using graph theory; in doing so, the MD can be
used to guarantee unique identification and accessibility of critical nodes of intersection or
service points. This helps in the development of urban structures that are complex and inte-
grated with networks that are easy to follow and can accommodate the newfound population.
Moreover, the MD helps in preparing the strategies for the management of disasters and it
is used to determine which components of infrastructures need to be safeguarded or even
reinforced [52,53].

Application in building development and architecture
Regarding the MD in building development and architecture, it refers to the design of build-
ings and their ways of construction in the most efficient manner possible. In this case, the
MD will help the architect or engineers who have graph modeled a building to identify the
unique parts of the structure’s elements such as the beams, columns, and load-bearing walls,
and place them most efficiently and effectively. This results in the improvement of safety, sta-
bility, and functionality of the building in question. Also, the MD can be used in building
smart solutions where environmental indicators, air and energy controls, surveillance, and
other related aspects are implemented in buildings[54].

The work with the given notion of the MD became possible after leaving the abstraction
sphere, which allowed for applying it to various fields and receiving significant advantages. By
providing a quantitative way to identify elements within the systems the MD helps to solve
problems of organization and optimization in engineering, artificial intelligence, comput-
ing, root management, town planning, and building development. Thus the MD knowledge
and theories will be essential as systems in these fields advance into higher orders to boost
innovation and the structure of essential infrastructures and technologies [55].

in this paper, we look at the MD of Nanosheets, Nanotubes, and Nanotori of SiO2

Previous work on SiO2 nanosheets, nanotubes, and nanotori
Silicon dioxide (SiO2) nanostructures, including nanosheets, nanotubes, and nanotorii,
have been extensively studied due to their unique structural and functional properties. SiO2

nanosheets, for instance, have garnered attention for their high surface area, stability, and
reactivity, which make them ideal for applications in catalysis, drug delivery, and electronic
devices [37,38]. The layered structure of SiO2 nanosheets also facilitates the attachment of
functional groups, which has further expanded their applications in biochemical and elec-
tronic fields [39,40]. Nanotubes of SiO2, on the other hand, offer a hollow core that has proven
beneficial in areas such as drug delivery and nanofluidics, where controlled release and selec-
tive adsorption are required [41,42]. SiO2 nanotori, though less commonly studied, have
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shown promise for applications in optical materials and photothermal drug delivery, benefit-
ing from their unique toroidal structure and potential for plasmonic resonance [43,44].

Recent research has focused on understanding the topological and geometrical properties
of these SiO2 nanostructures to optimize their functionality. For example, studies on the elec-
tronic properties of SiO2 nanosheets and nanotubes have shown that their structure affects
band gap and charge transport properties, which are crucial for applications in sensors and
transistors [45,46]. In the same way, the mechanical properties of SiO2 nanotori have been
determined to check their resilience and suitability for applications in stressed environments
[47]. Topological indices and graph-theoretic methods have been previously applied to check
the structural symmetry of these nanostructures, but studies did not address their metric
dimension comprehensively.

Metric dimension and edge metric dimension in SiO2 nanostructures
This research has not been conducted previously as it investigates for the first time themetric
dimension (MD) and edge metric dimension (EMD) of SiO2 nanosheets, nanotubes and nan-
otorii. The MD is the smallest set of vertices such that each vertex of the graph apart from this
set can be uniquely identified knowing the location of the vertices in this set. In the case of the
EMD, edges are the attributes of the vertices and it can be extended to edges like vertex iden-
tification. In this way, the SiO2 structures listed above are characterized topologically by the
concepts of MD and EMD enabling the determination of the resolution and their structural
arrangement. Previously only topological indices were computed, which were rather ‘prim-
itive’ in the academic language of indices. In contrast, this work provides MD and EMD –
which are essential for the robust characterization of SiO2 nanostructures.

A profound difference between our work from previous studies seems to be the focus on
metric dimensions - the aspect that enables putting nanostructure vertices and edges into
unique concepts while realizing SiO2 materials. With this approach, optimization of various
SiO2 materials for specific designs becomes reliable as distinct features of structural elements
can be easier to identify. SiO2 materials for network design, sensor design, or other structural
forms requiring sound synthesis are some areas of progressive research this focus will enable.

Novelty of the present work
This study is practically the first that analyzes and calculates the metric and edge metric
dimensions of nanosheets, nanotubes, and nanotorii of SiO2 in detail. With the use of graph
theory, we derive the formulas to understand the structural dependence of these SiO2 nanos-
tructures. Our results are not only improving scientific knowledge of these configurations
but also leveraging the development of SiO2 materials with required properties. This study
addresses a significant gap in the already existing studies reporting the vertices and edges in
SiO2 nanoscopic structures. Our methodology is peculiar in that it also provides the metric
dimension of these nanostructures and such knowledge may assist the progress in chemistry,
materials science, and nanotechnology for the design of new materials as well as the materials
with enhanced performance.

SiO2 nanostructures
SiO2, or silicon dioxide, exhibits a covalent network structure, where each silicon atom is
bonded to four oxygen atoms, and each oxygen atom bonds to two silicon atoms. This con-
nectivity creates a robust lattice structure with an overall oxygen-to-silicon atom ratio of 2:1,
resulting in the molecular formula SiO2. Moreover, the structure shown in the Fig 1.
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Fig 1. A silicon dioxide network illustrating covalent bonds between silicon and oxygen atoms.

https://doi.org/10.1371/journal.pone.0316376.g001

SiO2 nanosheets
Themolecules in SiO2 nanosheets are organized in octagonal configurations, which, when
joined together, form an extensive layered structure. This arrangement is depicted in Fig 2. To
facilitate the analysis of topological properties, an isomorphic representation of the SiO2 layer
structure is also shown in Fig 2, which simplifies the computation of topological indices. In
this configuration, the length and width of the nanosheet can be represented by the parame-
ters p and q, denoting the number of rows and columns, respectively. Moreover, the structure
shown in the Fig 2.

Prior studies have calculated various degree-based topological indices for SiO2 nanosheets
[56–59]. In the present work, we focus on computing distance-based topological indices for
different classes of SiO2 nanostructures, including nanosheets, which offer insights into their

Fig 2. (a) Original form of SiO2 layer structure; (b) Brick form of SiO2 layer structure.

https://doi.org/10.1371/journal.pone.0316376.g002
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structural properties and potential applications [60]. For further readings, we suggest to see
[61–63].

SiO2 nanotubes
SiO2 nanotubes are tubular structures formed by curving the SiO2 nanosheets. These nan-
otubes possess a hollow core, which provides a unique internal space suitable for applica-
tions in drug delivery, nanofluidics, and adsorption-based processes. The distinctive tubu-
lar form of SiO2 nanotubes allows them to support functionalities that are challenging for
other nanostructures. Additionally, the curvature of the structure affects certain topological
indices, which can be analyzed through graph-theoretic methods to better understand their
mechanical and electronic properties.

SiO2 nanotori
SiO2 nanotori are less frequently known nanostructure of silicon dioxide which however
is based on bending synthesised SiO2 nanotubes into a toroidal (bungalow-like) form. The
structure has recently been noticed due to its applicability in the optical and photothermal
correct, such as plasmonic resonance and targeted drug delivery application. The structure
of SiO2 nanotori has a circular topology that also affects the topological properties for the
intended applications in photonic and catalysis applications.

Topological indices and metric dimension analysis
The topological indices have been previously employed in other analyses where the struc-
tural characteristics of SiO2 nanosheets, nanotubes, and nanotori were assessed based on the
figures of symmetry/ connectivity [48]. In this work, we extend our analysis by also consider-
ing the metric dimension (MD) and edge metric dimension (EMD) of these nanostructures.
The MD gives the exact number of vertices required to identify other vertices in the network
besides getting the EMD to ascertain the identification of edges. The present work also seeks
to improve the knowledge of the kind of SiO2 nanostructures by calculating these indices that
will facilitate the development of materials with desired characteristics for certain applications
shown in nanotechnology, material science, and chemistry [49].

Theorem 1. Let Gi,m denote the graph of an i×m two-dimensional SiO2 (i,m) layer structure
of Original form. The MD of an i × m SiO2 (i,m) layer structure of the Original form is found to
be 2.

Proof : In this context, i andm represent the number of rows and columns, respectively.
Consider the set of vertices:

{p𝜉(1,1), p𝜉(1,2), p𝜉(1,3),… , p𝜉(1,m), p𝜉(2,1), p𝜉(2,2), p𝜉(2,3),

… , p𝜉(2,m),… , p𝜉(i,1), p𝜉(i,2), p𝜉(i,3),… , p𝜉(i,m)}

Let T = {p𝜉(1,1), p𝜉(1,2n+1)}. We will demonstrate that the set T serves as a resolving set. Depic-
tion shown in the Fig 3.

Here let b=i +m.
Firstly, we consider the case whenm is odd.

Ifm is odd
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Fig 3. SiO2(i, m)layer structure for n= 2.

https://doi.org/10.1371/journal.pone.0316376.g003

First row

r(p𝜉(i,m)|T) = {(b – 2, 2n + i –m) for all vertices (1)

Second row

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b – 2, 2n + i –m) for all vertices except the last one
(b – 2, 2i – 3) for the last vertex

(2)

Third row

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b – 1, 2n + i –m – 1) for all vertices except the last two
(b – 1, 2i – 3) for the last two vertices

(3)

Fourth row

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b, 2n + i –m – 2) for all vertices except the last three
(b, 2i – 3) for the last three vertices

(4)

Fifth row

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b + 1, 2n + i –m – 3) for all vertices except the last four
(b + 1, 2i – 3) for the last four vertices

(5)
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Sixth row

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b + 2, 2n + i –m – 4) for all vertices except the last five
(b + 2, 2i – 3) for the last five vertices

(6)

The MD of the SiO2 (i×m) ayer structure is shown to be 2. This is demonstrated by ana-
lyzing the resolving set T = {p𝜉(1,1), p𝜉(1,2n+1)} and observing the distances between vertices.
For oddm, the calculations reveal a distinctive pattern in the MDs: as we progress from the
first row to subsequent rows, there is a systematic increase in one term of the distance mea-
sures, specifically b, while the other term, 2n+ i–m, decreases by 1 with each additional
row. This pattern reflects a gradual shift in the resolving power of the chosen vertices in the
set T, highlighting how the MD is maintained despite variations in row configurations. The
increasing series of b and the decreasing series of 2n+ i–m ensure that each vertex remains
distinguishable within the structure, reinforcing the conclusion that two vertices are indeed
sufficient to resolve all others in this specific SiO2 layer structure.

Next, we consider the case whenm is even.

Ifm is even

First row

r(p𝜉(i,m)|T) = {(b – 2, 2n + i –m) for all vertices (7)

Second row

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b – 2, 2n + i –m) for all vertices except the last one
(b – 2, 2i – 2) for the last two vertices

(8)

Third row

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b – 1, 2n + i –m – 1) for all vertices except the last two
(b – 1, 2i – 2) for the last three vertices

(9)

Fourth row

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b, 2n + i –m – 2) for all vertices except the last three
(b, 2i – 2) for the last four vertices

(10)

Fifth row

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b + 1, 2n + i –m – 3) for all vertices except the last four
(b + 1, 2i – 2) for the last five vertices

(11)

Sixth row

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b + 2, 2n + i –m – 4) for all vertices except the last five
(b + 2, 2i – 2) for the last six vertices

(12)

The observed pattern of distance measures suggests that the term b increases had a con-
comitant decrease in the value of 2n+i–m from the first row to subsequent rows. In particular,
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the term b is increased by 1 with each grown row, while term 2n + i – m is also decreased by 1
in all the vertices except for the last one at the end of the row. The fact that this pattern con-
cerns rows of the resolving set T suggests that the execution of this set for many rows becomes
more effective in distinguishing vertices. As the number of new rows increases with the value
of b growing while 2n + i – m fades, each new row facilitates the identification of more ver-
tices, proving the ability of the resolving set to remain useful across different configurations of
the SiO2 layer structure. The observed series also guarantees that if a resolving set of the car-
dinality of two can unambiguously identify the vertices in the SiO2 layer structure, it can also
identify the base layers and other higher dimensions of the structure efficiently and with equal
determinacy. Hence we have shown that the MD is indeed 2 and T to be a resolving set for the
graph of a SiO2 (i,m) layer structure. The first row to the subsequent rows. Specifically, the
term b increases by 1 with each row, while 2n + i – m decreases by 1 for all vertices except
those at the end of the row. This pattern indicates that the resolving set T becomes increas-
ingly effective in distinguishing vertices as the number of rows increases. Each additional
row allows for more vertices to be uniquely identified due to the increasing value of b and the
decreasing value of 2n+ i–m, demonstrating how the resolving set maintains its efficacy across
different configurations of the SiO2 layer structure. The observed series ensures that a resolv-
ing set of cardinality 2 is sufficient to uniquely identify all vertices in the SiO2 layer structure,
highlighting the efficiency and consistency of the resolving set across varying dimensions of
the structure.

Consequently, we have demonstrated that the MD is in fact 2 and that T is a resolving set
for the graph of a SiO2 (i,m) layer structure. ◻

Theorem 2. Let Gi,m denote the graph of an i×m two-dimensional SiO2 (i,m) layer structure
of bricks form. The MD of an i ×m SiO2 (i,m) layer structure of bricks form is 4.

Proof : In this context, i andm represent the number of rows and columns, respectively.
Consider the set of vertices:

{j𝜉(1,1), j𝜉(1,2), j𝜉(1,3),… , j𝜉(1,m), j𝜉(2,1), j𝜉(2,2), j𝜉(2,3),

… , j𝜉(2,m),… , j𝜉(i,1), j𝜉(i,2), j𝜉(i,3),… , j𝜉(i,m)}

Let T = {j𝜉(2,1), j𝜉(2,2n+3), j𝜉(n+1,1), j𝜉(n+1,2n+3)}. We will demonstrate that the set T serves as a
resolving set. Depiction shown in the Fig 4.

First row

r(j𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(2m, 2n + (i – 1) – 2(m – 1), 2n – (i – 1)
+2m, 5n – (i – 1) – 2m) for all

(13)

Other rows

r(j𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(2m + (i – 3), 2n + (i – 1) – 2(m – 1), 2n – (i – 1)
+2m, 5n – (i – 1) – 2m) for all

(14)

Therefore, the MD is 4. ◻

Theorem 3. Let Gi,m denote the graph of an i×m two-dimensional SiO2 (i,m) layer structure
of original form. The MD of an i ×m SiO2 (i,m) layer structure of bricks form is not less than 4.
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Fig 4. SiO2(i, m) layer structure of Bricks form for n = 3.

https://doi.org/10.1371/journal.pone.0316376.g004

Proof : In this context, i andm represent the number of rows and columns, respectively.
Consider the set of vertices:

{j𝜉(1,1), j𝜉(1,2), j𝜉(1,3),… , j𝜉(1,m), j𝜉(2,1), j𝜉(2,2), j𝜉(2,3),

… , j𝜉(2,m),… , j𝜉(i,1), j𝜉(i,2), j𝜉(i,3),… , j𝜉(i,m)}

Assume T = {j𝜉(2,1), j𝜉(2,2n+3)} is a resolving set. We will demonstrate that if the resolving
set has cardinality 2, it leads to contradictions.

Case Vertices Vertices
1: n = 2 r(j𝜉(1,1)|T) = r(j𝜉(3,1)|T) r(j𝜉(1,3)|T) = r(j𝜉(3,3)|T)
2: n = 3 r(j𝜉(1,1)|T) = r(j𝜉(3,1)|T) r(j𝜉(1,4)|T) = r(j𝜉(3,4)|T)
3: n = 4 r(j𝜉(1,1)|T) = r(j𝜉(3,1)|T) r(j𝜉(1,5)|T) = r(j𝜉(3,5)|T)

Generalizing these cases, we have:

r(j𝜉(1,1)|T) = r(j𝜉(3,1)|T),
r(j𝜉(1,n+1)|T) = r(j𝜉(3,n+1)|T).

These equalities indicate that a resolving set of cardinality 2 is not sufficient, as it leads to
identical representations for different vertices, which is a contradiction.

Next, assume that the resolving set has cardinality 3. Let T = {j𝜉(2,1), j𝜉(2,2n+3), j𝜉(n+1,1)}.
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Case Vertices Vertices
1: n = 2 r(j𝜉(6,1)|T) = r(j𝜉(7,1)|T) r(j𝜉(6,7)|T) = r(j𝜉(7,3)|T)
2: n = 3 r(j𝜉(8,1)|T) = r(j𝜉(9,1)|T) r(j𝜉(8,9)|T) = r(j𝜉(9,9)|T)
3: n = 4 r(j𝜉(10,1)|T) = r(j𝜉(11,1)|T) r(j𝜉(10,11)|T) = r(j𝜉(13,5)|T)

Generalizing these cases, we have:

r(j𝜉(2n+2,1)|T) = r(j𝜉(2n+3,1)|T),
r(j𝜉(2n+2,2n+3)|T) = r(j𝜉(2n+3,n+1)|T).

These equalities indicate that a resolving set of cardinality 3 is also not sufficient, as it leads
to identical representations for different vertices, which is a contradiction.

Therefore, the MD of the SiO2 layer structure of bricks form is not less than 4. ◻

Metric dimension of the C8 layer structure
We create an octagonal mesh as shown in Fig 5, and name this new structure the C8 layer
structure of dimension (i,m) by eliminating the pendent vertices and their corresponding
edges from the SiO2 layer structure of the same dimension. This configuration has |V(G)| =
3im + 2(i +m) + 1 as many vertices and |E(G)| = 4im + 2(i +m) as many edges. After that, the
C8 layer structure’s MD is examined and calculated as shown below [60,64].

Theorem 4. Let Gi,m denote the graph of an i × m two-dimensional C8 layer structure of the
original form. The MD of an i ×m C8 layer structure of the original form is found to be 2.

Proof : In this context, i andm represent the number of rows and columns, respectively.
Consider the set of vertices:

{p𝜉(1,1), p𝜉(1,2), p𝜉(1,3),… , p𝜉(1,m), p𝜉(2,1), p𝜉(2,2), p𝜉(2,3),

… , p𝜉(2,m),… , p𝜉(i,1), p𝜉(i,2), p𝜉(i,3),… , p𝜉(i,m)}

Let T = {p𝜉(1,1), p𝜉(1,2n+1)}. We will demonstrate that the set T serves as a resolving set. Depic-
tion shown in the Figs 5 and 6.

Here let b=i +m.
First, we consider the case when i is odd:

r(p𝜉(i,m)|T) = {(b – 2, 2n + i –m) for all vertices (15)

If i is even:
For the second row, the distance representation of vertices p𝜉(i,m) with respect to the set T

follows a specific pattern based on the value ofm. This pattern can be described as:

r(p𝜉(i,m)|T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b – 2, 2n + i –m) whenm = 1,
(b – 1, 2n + i –m – 1) whenm = 2,
(b, 2n + i –m – 2) whenm = 3,
(b + 1, 2n + i –m – 3) whenm = 4,
(b + 2, 2n + i –m – 4) whenm = 5,
(b + 3, 2n + i –m – 5) whenm = 6.

(16)
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Fig 5. C8 Layer Structure.

https://doi.org/10.1371/journal.pone.0316376.g005

Fig 6. C8 Layer Structure for n=2.

https://doi.org/10.1371/journal.pone.0316376.g006
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In general, for anym, the series follows the pattern where the first component of the dis-
tance representation increments by 1 for each increase inm, starting from b–2. Simultane-
ously, the second component decrements by 1 for each increase inm, starting from 2n+i–m.

Thus, we have shown that T is a resolving set for the graph of an C8 )i × m )layer structure
and the MD is indeed 2. ◻

Metric dimension of SiO2 nanotube
Silica nanotubes have a hollow inner space that can be utilized for various functional pur-
poses. Additionally, the mesoporous silica surface is hydrophilic, biocompatible, and suit-
able for functionalization, making it applicable in bioseparation, biocatalysis, biosensing,
drug/gene delivery systems, adsorption, selective sequestration, drug delivery, and controlled
release. Depiction shown in the Fig 7.

This section finds the MD of a SiO2 nanotube structure based on the known configurations
of SiO2 sheets. To put it in graph-theoretic terms, we create a SiO2 nanotube of dimension
(p, q) by combining all pendant vertices along the left and right sides of a SiO2 layer structure
of dimension (p, q–1). This structure is shaped like a tubular structure, as shown in Fig. 7, and
has |V(G)| = q(3p + 4) and |E(G)| = 4q(p + 1) [60].

Theorem 5. Let Gi,m denote the graph of an i × m two-dimensional SiO2 nanotube. The MD
of an i ×m SiO2 nanotube is found to be 2.

Proof : In this context, i andm represent the number of rows and columns, respectively.
Consider the set of vertices:

{p𝜉(1,1), p𝜉(1,2), p𝜉(1,3),… , p𝜉(1,m), p𝜉(2,1), p𝜉(2,2), p𝜉(2,3),

… , p𝜉(2,m),… , p𝜉(i,1), p𝜉(i,2), p𝜉(i,3),… , p𝜉(i,m)}

Fig 7. SiO2 nanotube (i,m).

https://doi.org/10.1371/journal.pone.0316376.g007
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Let T = {p𝜉(1,1), p𝜉(1,2n+2)}. We will demonstrate that the set T serves as a resolving set.
Here let b=i +m.
First, we consider the case when i is odd:

r(p𝜉(i,m)|T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b – 2, 2n + i – 2m) form = 1
(b – 1, 2n + i – 2m) form = 2
(b, 2n + i – 2m) form = 3
(b + 1, 2n + i – 2m) form = 4
(b + 2, 2n + i – 2m) form = 5

(17)

The provided series represents a case where i is odd. It describes the function r(p𝜉(i,m)|T),
which produces different coordinate pairs depending on the value ofm. Each value ofm from
1 to 5 modifies the first coordinate b by an increment or decrement of 1 or 2. Simultaneously,
the second coordinate is adjusted by subtracting 2m from 2n+i. This pattern indicates a sys-
tematic change in the coordinates based on the given value ofm, illustrating a structured
approach to defining the relationship between i andm in the context of the function r. The
series can be extended by continuing this pattern for higher values ofm. Depiction shown in
the Fig 8.

If i is even:

Fig 8. SiO2 nanotube (i,m) for n=2.

https://doi.org/10.1371/journal.pone.0316376.g008
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For the first row,

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(m – 1, 2n + i –m) form = 1
(b – 3, 2n + i –m) for all

(18)

For other rows,

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b – 1, 2n + i –m) form = 1
(b – 3, 2n + i –m) for all

(19)

Therefore, the MD of the SiO2 nanotube is indeed 2. ◻

Metric dimension of SiO2 nanotori
Although the precise chemical structures of nanotori are currently unknown, these structures
have been patented. Additionally, colloidal plasmonic gold nanotori and nanorings have been
observed in pulsed laser photophysical studies. These observations are driven by the poten-
tial applications of such nanostructures, particularly inefficient photothermal drug delivery
systems. When a SiO2 nanotube with dimensions (i – 1,m) is bent into a ring, it forms a
doughnut-shaped structure that we refer to as SiO2 nanotori with dimensions (i,m), as illus-
trated in Figure. For this structure, the vertex count |V(G)| is 3im, and the edge count |E(G)|
is 4im. We now proceed to calculate the topological indices of SiO2 nanotori [60]. Depiction
shown in the Fig 9.

Theorem 6. Let Gi,m denote the graph of an i × m two-dimensional SiO2 nanotorus. The MD
of an i ×m SiO2 nanotorus is found to be 3.

Fig 9. SiO2 nanotori (i,m).

https://doi.org/10.1371/journal.pone.0316376.g009
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Proof : In this context, i andm represent the number of rows and columns, respectively.
Consider the set of vertices:

{p𝜉(1,1), p𝜉(1,2), p𝜉(1,3),… , p𝜉(1,m), p𝜉(2,1), p𝜉(2,2), p𝜉(2,3),

… , p𝜉(2,m),… , p𝜉(i,1), p𝜉(i,2), p𝜉(i,3),… , p𝜉(i,m)}

Let T = {p𝜉(1,1), p𝜉(1,2m+2), p𝜉(2m+2,1)}. We will demonstrate that the set T serves as a resolving
set. b=i +m First, we consider the case when i is odd:

For the first row,

r(p𝜉(i,m)|T) = {(2m, 3m – i – 2m, 3m – i – 3 + 2m) for all (20)

For other rows, depiction shown in the Fig 10.

r(p𝜉(i,m)|T) = {(b – 2, 2m + i – 2m, 3m – i – 3 + 2m) for all (21)

If i is even:
For the first row,

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b – 3, 2m + 2i – 2m, 2m + 2i – 2m) form = 1
(b – 3, 2m + i –m, 2m +m – 1) for all

(22)

Fig 10. SiO2 nanotori (i,m) form=2.

https://doi.org/10.1371/journal.pone.0316376.g010
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For other rows,

r(p𝜉(i,m)|T) =
⎧⎪⎪⎨⎪⎪⎩

(b – 1, 2m + i –m, 2m +m – 1) form = 1
(b – 3, 2m + i –m, 2m +m – 1) for all

(23)

Therefore, the MD of the SiO2 nanotori is indeed 3. ◻

The theorem asserts that the MD of a SiO2 nanotorus is 3, implying that any vertex within
this structure can be uniquely identified by its distances to just three other specific vertices.
This result is significant as it simplifies the complexity of the structure’s topology, allowing
for easier analysis and potentially more efficient computational modeling. The proof demon-
strates this by systematically showing that a set of three vertices can serve as a resolving set for
any vertex configuration within the nanotorus. This property is particularly useful in applica-
tions such as network design, In this case, optimizing designs and functions can result from
knowing the minimum number of vertices needed for unique identification.

Theorem 7. Let Gi,m denote the graph of an i × m two-dimensional SiO2 nanotorus. The MD
of an i ×m SiO2 nanotorus is at least 3.

Proof : In this context, i andm represent the number of rows and columns, respectively.
Consider the set of vertices:

{p𝜉(1,1), p𝜉(1,2), p𝜉(1,3),… , p𝜉(1,m), p𝜉(2,1), p𝜉(2,2), p𝜉(2,3),

… , p𝜉(2,m),… , p𝜉(i,1), p𝜉(i,2), p𝜉(i,3),… , p𝜉(i,m)}

Assume T = {p𝜉(1,1), p𝜉(2,n+2)} is a resolving set of cardinality 2. We will show that this
assumption leads to contradictions.

Case Vertex Pair Vertex Pair
1: n = 2 r(p𝜉(1,1)|T) = r(p𝜉(3,1)|T) r(p𝜉(1,3)|T) = r(p𝜉(3,3)|T)
2: n = 3 r(p𝜉(1,1)|T) = r(p𝜉(3,1)|T) r(p𝜉(1,4)|T) = r(p𝜉(3,4)|T)
3: n = 4 r(p𝜉(1,1)|T) = r(p𝜉(3,1)|T) r(p𝜉(1,5)|T) = r(p𝜉(3,5)|T)

Generalizing these cases, we have:

r(p𝜉(1,1)|T) = r(p𝜉(3,1)|T),
r(p𝜉(1,n+1)|T) = r(p𝜉(3,n+1)|T).

These equalities indicate that a resolving set of cardinality 2 is not sufficient because differ-
ent vertices have identical representations, which is a contradiction.

Therefore, the MD of the SiO2 nanotori is at least 3. ◻

Importance of this work
Analysis of MD and EMD in SiO2 nanosheets, nanotubes, and nanotorii is a breakthrough for
the chemistry of nanomaterials. The exact determination of these dimensions is not only cru-
cial for revealing the specific topological characteristics of these nanostructures but also pro-
vides important insights into the design of materials and their applications in other sciences
including chemistry, materials science, and nanotechnology.

This is the reason why we found it necessary to provide clear data about the MD and EMD
of SiO2 materials in this study to meet the goals set in this study. For instance, characteriz-
ing structural elements mathematically within these nanostructures is useful knowledge that
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can be used to engineer or design materials with certain pre-specified traits or properties.
This is especially critical as SiO2 is an indispensable component in a variety of technological
applications ranging from electronics to catalysis, and biosensing. Such identification would
enable us to fine-tune the structural elements of these materials to specific requirements of
these fields particularly in terms of the conductivity, stability, or reactivity of the SiO2 based
materials.

In addition, the results obtained from this study can be generalized beyond considering
the electronic properties of the SiO2 nanosheets, nanotubes, and nanotorii. The presented
methodologies and theoretical frameworks derived from this research could serve as a start-
ing platform for other research on other different types of nanostructures. In this work, we
draw the relationship between structural configurations of nanomaterial and metric dimen-
sions, which enable a systematic examination of topological characteristics of corresponding
nanomaterial. This is significant for the development of material science where the control
of the nanostructure properties is the focal point in engineering the futuristic material. From
enhancing the functions of semiconductor devices, optimizing the performance of catalysts,
and developing a better understanding of nanomedicine, the information from this research
will be all-encompassing and highly influential in many different fields.

Altogether, this work augments the existing databases of knowledge of the properties of
nanostructured materials and offers a preliminary model for the enhancement and design of
SiO2 materials for distinct purposes. The facility to correlate the geometric organization of
nanostructures with their metric parameters opens a new attractive prospect in nanotechnol-
ogy and material science developments.

Conclusion
This study has provided an in-depth analysis of the metric and edge metric dimensions (MD
and EMD) of SiO2 nanosheets, nanotubes, and nanotorii, offering new insights into their
structural and topological characteristics. The findings reveal that the MD of SiO2 nanosheets
is 2 in its original form, while it increases to 4 in the brick form, highlighting how structural
alterations can significantly influence the metric dimensions. Additionally, the analysis of the
C8 layer structure further enhanced our understanding of the complex topological properties
of SiO2, offering a more nuanced view of its structural behavior.

These results have significant implications for practical applications in several fields,
including chemistry, materials science, and nanotechnology. For instance, understanding the
impact of structural changes on the MD and EMD of SiO2 opens up new possibilities for tai-
loring its properties in nanodevices, enhancing the design of advanced materials, and opti-
mizing the synthesis processes of SiO2-based products. Moreover, the methodologies used in
this research pave the way for similar studies on other nanostructures, offering a standardized
approach to the characterization of material properties at the nanoscale.

Ultimately, the insights gained from this research contribute not only to theoretical
advancements in material science but also to the practical development of SiO2 materials with
optimized properties. By establishing a strong foundation for the future study of nanostruc-
tures, this work represents a key step in the progression of nanotechnology, providing valu-
able tools and frameworks for a wide range of applications in both fundamental and applied
science.

Author contributions
Conceptualization:Wasim Abbas.

PLOS ONE https://doi.org/10.1371/journal.pone.0316376 March 4, 2025 19/ 22

https://doi.org/10.1371/journal.pone.0316376


ID: pone.0316376 — 2025/3/4 — page 20 — #20

PLOS ONE Exploring metric dimension of nanosheets

Formal analysis:Muhammad Azeem.

Funding acquisition: Bandar Almohsen.

Investigation:Muhammad Azeem.

Project administration: Faryal Chaudhry.

Resources: Umar Farooq.

Supervision: Bandar Almohsen.

Writing – original draft: Umar Farooq.

Writing – review & editing: Bandar Almohsen.

References
1. Slater PJ. Leaves of trees. Congr. Numer. 1975;14:549–59.
2. Harary F, Melter RA. On the metric dimension of a graph. Ars Comb. 1976;2:191–5.
3. Hernando C, Mora M, Slater PJ, Wood DR. Fault-tolerant metric dimension of graphs. In:

Proceedings of the International Conference on Convexity in Discrete Structures, Ramanujan
Mathematical Society Lecture Notes; 2008. p. 81–5.

4. Mashkaria S, Ódor G, Thiran P. On the robustness of the metric dimension of grid graphs to adding
a single edge. Discrete Appl Math. 2022;316:1–27. https://doi.org/10.1016/j.dam.2022.02.014

5. Liu X, Ahsan M, Zahid Z, Ren S. Fault-tolerant edge metric dimension of certain families of graphs.
AIMS Mathematics. 2021;6(2):1140–52. https://doi.org/10.3934/math.2021069

6. Walter JL, Essmann L, König SU, König P. Finding landmarks - An investigation of viewing behavior
during spatial navigation in VR using a graph-theoretical analysis approach. PLoS Comput Biol.
2022;18(6):e1009485. https://doi.org/10.1371/journal.pcbi.1009485 PMID: 35666726

7. Xu J, Dutta S, He W, Moortgat J, Shen H-W. Geometry-driven detection, tracking and visual
analysis of viscous and gravitational fingers. IEEE Trans Vis Comput Graph. 2022;28(3):1514–28.
https://doi.org/10.1109/TVCG.2020.3017568 PMID: 32809940

8. Aversano G, Parrilla H, Bandstra M, Folsom M, Hellfeld D, Vavrek J. Data-driven event selection in
pixelated cadmium zinc telluride (CZT) detectors for improved gamma-ray spectrometry. Proc.
INMM Annu. Mtg. 2023.

9. Ke Z, Liu B, Xiong W, Celikyilmaz A, Li H. Sub-network discovery and soft-masking for continual
learning of mixed tasks. arXiv preprint. 2023.

10. Thompson R. Training and evaluating graph generative models. Doctoral dissertation. 2023.
11. Choudhary P, Bhargava L, Suhag AK. Designing of energy-efficient approximate multiplier circuit for

processing unit of IoT devices. SN Comput Sci. 2023;4(5):506.
https://doi.org/10.1007/s42979-023-01864-4

12. Kampf R, Nicolaidou I. Using social impact games to overcome intractable conflicts: the case of
Fact Finders and PeaceMaker. Inf Commun Soc. 2024; 1–16.

13. , Chana I, Goyal R. Computation offloading techniques in edge computing: a systematic review
based on energy, QoS and authentication. Concurr Comput Pract Exp. 2024;36(13):e8050.

14. Simonraj F, George A. On the metric dimension of silicate stars. ARPN J Eng Appl Sci.
2015;5:2187–92.

15. Siddiqui MK, Imran M. Computing the metric and partition dimension of H-Naphtalenic and VC5C7
nanotubes. J Optoelectron Adv Mater. 2015;17:790–4.

16. Hussain Z, Munir M, Chaudhary M, Kang SM. Computing metric dimension and metric basis of 2D
lattice of Alpha-Boron nanotubes. Symmetry. 2018;10(8):300. https://doi.org/10.3390/sym10080300

17. Narducci D, Cerofolini G, Romano E. Nanotori of semiconductor material for use in diagnostics and
in the anti-tumor therapy and process for the production thereof.

18. Balaban AT. Applications of graph theory in chemistry. J Chem Inf Comput Sci. 1985;25(3):334–43.
19. Balaban AT, Motoc I, Bonchev D, Mekenyan O. Topological indices for structure-activity

correlations. Top Curr Chem. 1983;114:21–55.
20. Balasubramanian K. A method for nuclear spin statistics in molecular spectroscopy. J Chem Phys.

1981;74(12):6824–9.
21. Balasubramanian K. Operator and algebraic methods for NMR spectroscopy. I. Generation of NMR

spin species. J Chem Phys. 1983;78(11):6358–68.

PLOS ONE https://doi.org/10.1371/journal.pone.0316376 March 4, 2025 20/ 22

https://doi.org/10.1016/j.dam.2022.02.014
https://doi.org/10.3934/math.2021069
https://doi.org/10.1371/journal.pcbi.1009485
http://www.ncbi.nlm.nih.gov/pubmed/35666726
https://doi.org/10.1109/TVCG.2020.3017568
http://www.ncbi.nlm.nih.gov/pubmed/32809940
https://doi.org/10.1007/s42979-023-01864-4
https://doi.org/10.3390/sym10080300
https://doi.org/10.1371/journal.pone.0316376


ID: pone.0316376 — 2025/3/4 — page 21 — #21

PLOS ONE Exploring metric dimension of nanosheets

22. Balasubramanian K. Applications of combinatorics and graph theory to spectroscopy and quantum
chemistry. Chem Rev. 1985;85(6):599–618.

23. Balasubramanian K. Characteristic polynomials of organic polymers and periodic structure. J
Comput Chem. 1985;6(6):656–61.

24. Balasubramanian K. Nuclear-spin statistics of C60, C60H60 and C60D60. Chem Phys Lett.
1991;183(3-4):292–6.

25. Balasubramanian K. Exhaustive generation and analytical expressions of matching polynomials of
fullerenes C20–C50. J Chem Inf Comput Sci. 1994;34(2):421–7.

26. Balasubramanian K. Matching polynomials of fullerene clusters. Chem Phys Lett.
1994;201(1-4):306–14.

27. Balasubramanian K, Khokhani K, Basak SC. Complex graph matrix representations and
characterizations of proteomic maps and chemically induced changes to proteomes. J Proteome
Res. 2006;5(5):1133–42. https://doi.org/10.1021/pr050445s PMID: 16674102

28. Balasubramanian K, Randić M. The characteristic polynomials of structures with pending bonds.
Theoret Chim Acta. 1982;61(4):307–23. https://doi.org/10.1007/bf00550410

29. Basak SC, Grunwald GD, Gute BD, Balasubramanian K, Opitz D. Use of statistical and neural net
approaches in predicting toxicity of chemicals. J Chem Inf Comput Sci. 2000;40(4):885–90.
https://doi.org/10.1021/ci9901136 PMID: 10955514

30. Basak SC, Mills D, Mumtaz MM, Balasubramanian K. Use of topological indices in predicting aryl
hydrocarbon receptor binding potency of dibenzofurans: a hierarchical QSAR approach. Ind J
Chem. 2003;42A(6):1385–91.

31. Manoharan M, Balakrishnarajan M, Venuvanalingam P, Balasubramanian K. Topological resonance
energy predictions of the stability of fullerene clusters. Chem Phys Lett. 1994;222(1–2):95–100.

32. Parsons-Moss T, Schwaiger LK, Hubaud A, Hu YJ, Tuysuz H, Yang P, et al.
Phosphonate-functionalized mesoporous silica. In: 241th ACS National Meeting. 2011.

33. Ramaraj R, Balasubramanian K. Computer generation of matching polynomials of chemical graphs
and lattices. J Comput Chem. 1985;6(2):122–41.

34. Balasubramanian K. Spectra of chemical trees. Int J Quant Chem. 1982;21(3):581–90.
https://doi.org/10.1002/qua.560210306

35. Balasubramanian K. Tree pruning and lattice statistics on Bethe lattices. J Math Chem.
1988;2(1):69–82.

36. Balasubramanian K, Khokhani K, Basak SC. Complex graph matrix representations and
characterizations of proteomic maps and chemically induced changes to proteomes. J Proteome
Res. 2006;5(5):1133–42. https://doi.org/10.1021/pr050445s PMID: 16674102

37. Chen X, Klingeler R, Kath M, El Gendy AA, Cendrowski K, Kalenczuk RJ, et al. Magnetic silica
nanotubes: synthesis, drug release, and feasibility for magnetic hyperthermia. ACS Appl Mater
Interfaces. 2012;4(4):2303–9. https://doi.org/10.1021/am300469r PMID: 22486255

38. Horcajada P, Rámila A, Pérez-Pariente J, Vallet-Regí M. Influence of pore size of MCM-41 matrices
on drug delivery rate. Microporous Mesoporous Mater. 2004;68(1–3):105–9.
https://doi.org/10.1016/j.micromeso.2003.12.012

39. Munoz B, Rmila A, Prez Pariente J, Diaz I, Vallet-Regi M. MCM-41 organic modification as drug
delivery rate regulator. Chem Mater. 2003;15(2):500–3.

40. Vallet-Regi M, Rmila A, del Real RP, Prez Pariente J. A new property of MCM-41: drug delivery
system. Chem Mater. 2001;13(2):308–11.

41. Zhu Y, Shi J, Shen W, Dong X, Feng J, Ruan M, et al. Stimuli-responsive controlled drug release
from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem
Int Ed Engl. 2005;44(32):5083–7. https://doi.org/10.1002/anie.200501500 PMID: 16015668

42. Azeem M, Nadeem MF. Metric-based resolvability of polycyclic aromatic hydrocarbons. Eur Phys J
Plus. 2021;136(4):. https://doi.org/10.1140/epjp/s13360-021-01399-8

43. Nadeem MF, Azeem M, Khalil A. The locating number of hexagonal Mobius ladder network. J Appl
Math Comput. 2021;66:149–65.

44. Abbas W, Chudhary F, Farooq U, Azeem M, Shang Y. Investigating metric dimension and edge
metric dimension of hexagonal boron nitride and carbon nanotubes. Eur J Pure Appl Math.
2024;17(3):2055–72. https://doi.org/10.29020/nybg.ejpam.v17i3.5295

45. Azeem M, Jamil MK, Javed A, Ahmad A. Verification of some topological indices of Y-junction based
nanostructures by M-polynomials. J Math. 2022;2022(1):8238651.

46. Deng B, Nadeem MF, Azeem M. On the edge metric dimension of different families of Mbius
networks. Math Probl Eng. 2021;2021(1):6623208.

47. Zuo X, Nadeem MF, Siddiqui MK, Azeem M. Edge weight based entropy of different topologies of
carbon nanotubes. IEEE Access. 2021;9:102019–29. https://doi.org/10.1109/access.2021.3097905

PLOS ONE https://doi.org/10.1371/journal.pone.0316376 March 4, 2025 21/ 22

https://doi.org/10.1021/pr050445s
http://www.ncbi.nlm.nih.gov/pubmed/16674102
https://doi.org/10.1007/bf00550410
https://doi.org/10.1021/ci9901136
http://www.ncbi.nlm.nih.gov/pubmed/10955514
https://doi.org/10.1002/qua.560210306
https://doi.org/10.1021/pr050445s
http://www.ncbi.nlm.nih.gov/pubmed/16674102
https://doi.org/10.1021/am300469r
http://www.ncbi.nlm.nih.gov/pubmed/22486255
https://doi.org/10.1016/j.micromeso.2003.12.012
https://doi.org/10.1002/anie.200501500
http://www.ncbi.nlm.nih.gov/pubmed/16015668
https://doi.org/10.1140/epjp/s13360-021-01399-8
https://doi.org/10.29020/nybg.ejpam.v17i3.5295
https://doi.org/10.1109/access.2021.3097905
https://doi.org/10.1371/journal.pone.0316376


ID: pone.0316376 — 2025/3/4 — page 22 — #22

PLOS ONE Exploring metric dimension of nanosheets

48. Ahmad A-NA-H, Ahmad A, Azeem M. Computation of edge- and vertex-degree-based topological
indices for tetrahedral sheets of clay minerals. Main Group Metal Chem. 2022;45(1):26–34.
https://doi.org/10.1515/mgmc-2022-0007

49. Shanmukha MC, Lee S, Usha A, Shilpa KC, Azeem M. Degree-based entropy descriptors of
graphenylene using topological indices. Comput Model Eng Sci. 2023;2023:1–25.

50. Wang Z, Ma B-L, Gao J, Sun J. Effects of different management systems on root distribution of
maize. Can J Plant Sci. 2015;95(1):21–8. https://doi.org/10.4141/cjps-2014-026

51. Lampurlans J, Cantero Martnez C. Soil bulk density and penetration resistance under different
tillage and crop management systems and their relationship with barley root growth. Agron J.
2003;95(3):526–36.

52. Pham HM, Yamaguchi Y, Bui TQ. A case study on the relation between city planning and urban
growth using remote sensing and spatial metrics. Landsc Urban Plan. 2011;100(3):223–30.
https://doi.org/10.1016/j.landurbplan.2010.12.009

53. Mohd I, Ahmad F, Norazriyati Wan Abd Aziz W. Exploiting town planning factors in land
development. J Facilities Manag. 2009;7(4):307–18. https://doi.org/10.1108/14725960910990053

54. Brown A, Johnston S, Kelly K. Using service-oriented architecture and component-based
development to build web service applications. Rational Softw Corp. 2002;6:1–16.

55. Stecher P. Building business and application systems with the Retail Application Architecture. IBM
Syst J. 1993;32(2):278–306. https://doi.org/10.1147/sj.322.0278

56. Bharali A, Bora R. Computation of some degree based topological indices of silicates (SiO2) layer.
APAM. 2018;16(2):287–93. https://doi.org/10.22457/apam.v16n2a4

57. Farrukh F, Hafi S, Farooq R, Farahani MR. Calculating some topological indices of SiO2 layer
structure. J Inform Math Sci. 2016;8(3):181–7.

58. Farrukh F, Farooq R, Farahani MR. On the atom-bond connectivity and geometric arithmetic indices
of SiO2 layer structure. Mor J Chem. 2017;5(2):384–90.

59. Gao W, Wang W, Dimitrov D, Wang Y. Nano properties analysis via fourth multiplicative ABC
indicator calculating. Arab J Chem. 2018;11(6):793–801.
https://doi.org/10.1016/j.arabjc.2017.12.024

60. Arockiaraj M, et al. Distance-based topological indices of nanosheets, nanotubes and nanotori of
SiO2. J Math Chem. 2019;57:343–69.

61. Chen W, Li Y, Liu C, Kang Y, Qin D, Chen S, et al. In situ engineering of tumor-associated
macrophages via a Nanodrug-Delivering-Drug (𝛽-Elemene@Stanene) strategy for enhanced cancer
chemo-immunotherapy. Angew Chem Int Ed Engl. 2023;62(41):e202308413.
https://doi.org/10.1002/anie.202308413 PMID: 37380606

62. Hao X, Jiang B, Wu J, Xiang D, Xiong Z, Li C, et al. Nanomaterials for bone metastasis. J Control
Release. 2024;373:640–51. https://doi.org/10.1016/j.jconrel.2024.07.067 PMID: 39084467

63. Long X, Chong K, Su Y, Du L, Zhang G. Connecting the macroscopic and mesoscopic properties of
sintered silver nanoparticles by crystal plasticity finite element method. Eng Fract Mech.
2023;281:109137. https://doi.org/10.1016/j.engfracmech.2023.109137

64. Ahmad A, Koam A, Azeem M. Reverse-degree-based topological indices of fullerene cage
networks. Mol Phys. 2023;121(14):e2212533.

PLOS ONE https://doi.org/10.1371/journal.pone.0316376 March 4, 2025 22/ 22

https://doi.org/10.1515/mgmc-2022-0007
https://doi.org/10.4141/cjps-2014-026
https://doi.org/10.1016/j.landurbplan.2010.12.009
https://doi.org/10.1108/14725960910990053
https://doi.org/10.1147/sj.322.0278
https://doi.org/10.22457/apam.v16n2a4
https://doi.org/10.1016/j.arabjc.2017.12.024
https://doi.org/10.1002/anie.202308413
http://www.ncbi.nlm.nih.gov/pubmed/37380606
https://doi.org/10.1016/j.jconrel.2024.07.067
http://www.ncbi.nlm.nih.gov/pubmed/39084467
https://doi.org/10.1016/j.engfracmech.2023.109137
https://doi.org/10.1371/journal.pone.0316376

	Exploring metric dimension of nanosheets, nanotubes, and nanotori of SiO2
	References


