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Understanding how external stimuli propagate in neural systems is an important challenge in the fields of
neuroscience and nonlinear dynamics. Despite extensive studies over several decades, this problem remains
poorly understood. In this work, we examine a simple “toy model” of an excitable medium, a linear chain of
diffusely coupled FitzHugh-Nagumo neurons, and analyze the transmission of a sinusoidal signal injected into
one of the neurons at the ends of the chain. We measure to what extent the propagation of the wave reaching the
opposite end is affected by the frequency and amplitude of the signal. To quantify these effects, we measure the
cross-correlation between the time-series of the membrane potentials of the end neurons. This measure allows,
for instance, to detect threshold values of the parameters, delimiting regimes where wave propagation occurs or
not.
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I. INTRODUCTION

Neuronal models are crucial in the exploration and under-
standing of oscillation modes of neural systems[1, 2], serv-
ing as foundational tools to investigate both, normal and
pathological neuronal states. The FitzHugh-Nagumo (FHN)
model [3, 4] has been extensively employed to study neu-
ronal excitability and the dynamic behavior of single neurons
and neuronal ensembles. Its ability to capture essential fea-
tures of neuronal firing, while remaining computationally effi-
cient, makes it an ideal model for examining large-scale neural
dynamics, including synchronization, wave propagation, and
pattern formation [5, 6].

The coupling of FHN neurons through diffusive interac-
tions has been a subject of intense study, providing insights
into how local interactions can lead to complex global be-
haviors such as synchronization and desynchronization [7, 8].
Diffusive coupling, which mimics the electrical interactions
between adjacent neurons, is fundamental in coordinating
neuronal activity. A coordination which is critical in various
brain functions, such as sensory processing, motor control,
and cognitive tasks [9, 10].

External inputs stimulate neuronal dynamics, influencing
both physiological and pathological states. Local stimulation
can induce long-range order [11] and transient coherence [12].
Therefore, it is relevant to study how an external stimulus

propagates and affects the neural dynamics. In this respect,
due to their periodic and elementary shape, sinusoidal sig-
nals have been used to study the response properties of single
neurons and neuronal ensembles [13–19]. These studies re-
veal that neuronal systems can exhibit resonance phenomena,
where certain frequencies of external inputs maximize or op-
timize the system’s response. Studies have also explored how
resonant response to external stimuli might modulate or dis-
rupt pathological synchronization [20, 21]. In addition to neu-
ronal models, networks of biochemical oscillators have also
been used as excitable media where local perturbations can
be enhanced [11, 12]. In such systems, it was found that an
external periodic perturbation of an oscillator produced, for
certain ranges of the stimulation frequency, the appearance of
globally coherent states.

However, how external signals propagate in neural systems
is still far from being understood, and the purpose of the
present work is to analyze signal propagation in a linear chain
of diffusely coupled FHN neurons, considering sinusoidal and
noisy signals. Our study contributes to ongoing efforts to bet-
ter understand how external inputs influence neural behavior
and timing.
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II. MODEL

We analyze the response of a one-dimensional excitable
medium to an applied sinusoidal signal, using a model that
was previously studied in Refs. [17, 22]. The excitable
medium consists of a chain of N diffusively-coupled identical
FHN neurons and the sinusoidal signal is injected into one of
the neurons at the ends of the chain. The governing equations
are

dxi

ϵdt
= xi(a− xi)(xi − 1)− yi + Iext +Di + θi(t)/ϵ,

dyi
ϵdt

= bxi − cyi, (1)

where xi is the membrane potential and yi is the recovery cur-
rent of the ith neuron. Iext is the external stimulus current,
and a, b and c are positive parameters, which we keep fixed
as (a, b, c, Iext) = (0.1, 0.015, 0.015, 0.62). We choose these
parameter values because they place the single neuron dynam-
ics just above the critical threshold, enhancing the sensitivity
of the neurons to excitation inputs. ϵ denotes a time scaling
coefficient, which allows to adjust the resonant frequency of
the neurons. Finally Di are diffusive coupling functions de-
fined with zero-flux boundary conditions:

D1 = Dx(x2 − x1),

Di = Dx(xi+1 − 2xi + xi−1) for i = 2, 3 , . . . N − 1,

DN = Dx(xN−1 − xN ),

with coupling strength Dx. Diffusive coupling means that the
activity of one neuron is influenced by the difference between
its activity and that of its nearest neighbors. We select Dx

to be large enough to produce local excitation but not long-
range order [17]. Throughout our study, we use Dx = 0.04
for networks of size N = 20, and set ϵ = 10, follow-
ing Refs. [17, 22] to allow comparisons. Additionally, the
neurons are subjected to external time-dependent inputs θi(t)
with zero mean. To study the propagation of a single external
input, after a transient time t0, a sinusoidal signal of ampli-
tude A and angular frequency w is added to the first neuron.
Therefore,

θ1(t) = A sin(ωt), ∀t > t0, (2)
θi(t) = 0, ∀t,∀i ̸= 1. (3)

The model equations were simulated using a standard 4th
order Runge-Kutta algorithm with dt = 10−2. A typical
space-time plot obtained for N = 20 neurons, when no ex-
ternal input is applied, is presented in Fig. 1. We can observe
that for the coupling strength considered, the neurons do not
oscillate regularly and are only partially synchronized.

III. QUANTIFYING SIGNAL PROPAGATION

To quantify the wave propagation induced when a signal is
injected, we measure the cross-correlation between the time
series of the first and last neurons in the chain. This is an
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Figure 1. (a) Space-time plot of the membrane potentials, xi(t),
i = 1, . . . N in gray scale, for a chain on N = 20 FHN neurons,
without external input (A = 0.0). (b) Time-series of the membrane
potential of three neurons, x1, x10 and x20. The maximum of the
cross-correlation between x1 and x20, estimated over 100 simula-
tions with random initial conditions is Cmax = 0.61± 0.14.

effective procedure to assess whether the signal injected into
the first neuron reaches the last and to quantify their similarity
as a function of the time lag τ , defined as

C ≡ Cx1xN
(τ) =

⟨(x1(t)− ⟨x1⟩)(xN (t+ τ)− ⟨xN ⟩)⟩
σx1

σxN

,

(4)
where ⟨· · · ⟩ denotes average, which was computed at intervals
∆t = 5dt and σx is the standard deviation of x.

IV. RESULTS

In this section we perform a systematic quantitative study
of the effects of the frequency and amplitude of the sinusoidal
signal added to the first neuron; we also discuss the effects of
additive white noise. In all cases we use the cross-correlation
to detect threshold values of the parameters that define the
regimes where propagation occurs.

A. Effect of the signal’s frequency

In Fig. (2), we plot the space-time diagrams for a typical
network where we injected, from time t0 = 150 up to the end
of the simulation, the signal θ1(t) defined in Eq. (2), consid-
ering different values of the angular frequency w.

For some frequencies the signal resonates with the neurons’
oscillations, reaching the end of the chain, while for other fre-
quencies the signal does not propagate far enough to reach the
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(c)  w =1.5
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(d)  w =1.8
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Figure 2. Space-time plots of the neurons’ oscillations (top panels: xi(t), i = 1, . . . N in gray scale), when the linear chain has N = 20
neurons, for different values of the signal’s angular frequency, ω = 0.4 (a), 0.7 (b), 1.5 (c) and 1.8 (d). The signal’s amplitude is A = 0.3
and the coupling strength is Dx = 0.04. We also present the time evolution of the two end neurons (central panels – x1 in black and xN in
magenta) and the cross-correlation between them vs. the time lag τ (lower panels), measured in the time interval t ∈ [800, 1000]. We observe
that in the time interval considered, when ω = 0.4 and 1.8 the signal does not reach to the end of the chain, while when ω = 0.7 and 1.5 the
signal reaches the end neuron.

opposite end, as already known from Ref. [17]. This can be
noticed more clearly in the central plots where we display the
time series x1(t) (dark black) and x2(t) (light magenta). Sim-
ilar outcomes have been observed when, instead of neurons,
the units in the chain model calcium oscillations [11, 12].

When propagation occurs, the neurons’ dynamics becomes
periodic and the spiking activity of the two neurons at the two
ends of the linear chain is very similar, as it can be seen when

comparing x1 and xN in Figs. 2(b) and 2(c). Furthermore,
larger frequencies allow faster propagation, denoted by the
larger slope of the fronts in the space-time plots (this can be
seen when comparing the space-time plot for ω = 1.5 shown
in Fig. 2(c) with that for ω = 0.7, shown in Fig. 2(b)).

Now, to quantify the degree of propagation and detect pos-
sible thresholds, we use the cross-correlation C between the
membrane potentials of the end neurons, defined in Eq. (4),



4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

w

0

0.2

0.4

0.6

0.8

1
C

m
a

x
(a)  N =20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

w

0

0.2

0.4

0.6

0.8

1

C
m

a
x

(b)  N =100

Figure 3. Maximum value of the cross-correlation between x1 and
xN , vs. the signal’s angular frequency w, for a chain that has (a)
N = 20 neurons (here Dx = 0.04), and (b) N = 100 neurons
(here Dx = 0.1). In both panels the signal’s amplitude is A =
0.3. The cross-correlation is calculated over the time window t ∈
[800, 1000]. Averages (symbols) and standard deviation (bars) over
100 realizations, starting from random initial conditions, are shown.

that we plot as a function of the time lag τ for each value of ω
in Fig. 2.

In the cases where the signal does not propagate (e.g., for
ω = 0.4), the cross-correlation between the first and last neu-
rons is not periodic and its maximum value (Cmax) is less than
0.5. On the other hand, for ω = 0.7, which is close to a reso-
nant value, the signal propagates reaching the end of the chain.
In such case, the correlation between the first and last neurons
is periodic (with period ≃ 2π/ω) and its maximum value is
≈ 1, which characterizes a perfect correlation and means that
the (normalized) perturbed time series x1 propagated without
deformation. Note that, since the membrane potential is not
symmetric, when x1 and xN are in counter-phase the correla-
tion in absolute value is smaller that when they are in phase.

To summarize the outcomes obtained when varying the an-
gular frequency, we plot the maximum value of the cross-
correlation vs. ω in Fig. 3(a) for a network of size N = 20.
As expected, resonance occurs for frequency bands around to
integer multiples of the natural frequency of the limit cycle
which corresponds to ω ≃ 0.75. In Fig. 3(b), we show the
response profile for N = 100. Increasing system size, while
keeping constant the coupling Dx, prevent propagation, then
we adjusted its value to Dx = 0.1, when N = 100. In this
case, the frequency bands that facilitate or prevent propaga-
tion are similar to the case N = 20, although some differences
are observed mainly in the band borders, which may require
a finer adjustment of Dx to achieve higher similarity between
the plots in Fig. 3(a) and Fig. 3(b).

B. Effect of the signal’s amplitude

Space-time plots illustrative of the neurons’ behavior for
two different amplitudes, with w = 0.7 (nearly resonant case)
are presented in Fig. 4. Even if the frequency of the signal is
close to the resonance frequency of the neurons and thus facil-
itates the propagation of the signal, we observe that, for small
amplitude, the signal does not reach the other end. In panel
(b), for larger amplitude, we see that the signal propagates
and reaches the other end.

The maximum cross-correlation Cmax as a function of A,
for ω = 0.7, is shown in Fig. 5(a), where we see that there
is a threshold value of the amplitude below which the signal
does not reach the opposite end (for the parameters consid-
ered here, A ≃ 0.08). For both regimes (i.e., for signal’s am-
plitudes above or below the threshold for signal propagation),
the cross-correlation deteriorates with increasing amplitude.
That is, the network is selectively responsive to excitation in-
puts, acting as a filter that ensures that only significant (but not
too large) inputs spread fast, which may be crucial for main-
taining coherent transmission in neuronal networks.

We also checked the effect of the amplitude when the sig-
nal’s frequency is non-resonant, e.g., w = 0.4, The plot of
Cmax vs. A displayed in Fig. 5(b) reveals that the signal fails
to propagate, because Cmax is small and tends to decrease
with increasing A.

Let us remark that the results obtained in this section are
consistent with the results reported in Refs. [11, 12] that stud-
ied chains of calcium oscillators, also modelled by FHN dif-
fusely coupled units.
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Figure 4. Space-time plots of the neurons’ oscillations, when the
chain has N = 20 neurons. In (a) the signal’s amplitude, A = 0.05,
does not allow the signal to propagate; in (b) the amplitude is larger,
A = 0.1, and allows for signal propagation. Other parameters are
Dx = 0.04 and ω = 0.7.
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(b)  w =0.4

Figure 5. Maximum value of the cross-correlation between x1 and
xN , vs. the signal’s amplitude A in log scale. The signal’s angu-
lar frequency is (a) ω = 0.7, and (b) ω = 0.4. Other parameters
are N = 20 and Dx = 0.04. As in previous figures, the cross-
correlation is calculated over the time window ∈ [800, 1000]. Aver-
ages (symbols) and standard deviation (bars) over 100 realizations,
starting from random initial conditions, are shown.

C. Injecting white noise

Here we study the effect of white-noise added to the sinu-
soidal signal, and also, the effect of injecting solely white-
noise, where all frequencies are present.

Here we generate the white noise via the Box-Muller
method for generating pairs of independent, standard nor-
mally distributed (Gaussian) random numbers, given two in-
dependent uniformly distributed random numbers r1 and r2
in the interval (0, 1), yielding Gaussian distributed numbers
G with zero mean and standard deviation g, through the ex-
pression G = g

√
−2 ln(r1) cos(2πr2).

Space-time plots of signals with A = 0.3 in presence of
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Figure 6. Maximum cross-correlation between x1 and xN , vs. the
signal’s frequency ω, as in Fig. 3(a) with the addition of white noise
with g = 0.3. Averages (symbols) and standard deviation (bars) over
100 realizations, starting from random initial conditions, are shown.

white-noise with g = 0.3 added to the input, as a function of
ω, shown in Fig. 6, do not exhibit significant differences, as
a function of ω, when compared to Fig. 3(a), where noise is
absent. Moreover, for ω = 0.7, we plotted the maximal corre-
lation as a function of g ∈ [0, 2] yielding a very flat profile at a
level Cmax ≃ 0.96 (not shown). These comparisons indicate
that the results are robust enough under the addition of noise.

(a) g = 0.1            (b) g = 0.3            

(c) g = 0.5            (d) g = 1.0            

(e) g = 2.0            (f) g = 5.0            

Figure 7. Spatio-temporal dynamics of the neurons when the input
signal is white noise with different amplitudes of the Gaussian noise,
g ∈ [0, 5]. We see that strong enough noise induces spikes that can
reach the other end of the chain, but the spiking dynamics does not
persist.
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Figure 8. Time series of the membrane potentials of the end neurons,
x1 (black) and xN (magenta), when the input signal injected in the
first neuron is Gaussian white noise with amplitude g = 2.0. Other
parameters are N = 20, Dx = 0.04.

We inspected the effects of white-noise signals injected
alone (without regular oscillations) into the system (with A =
0). We note, in Fig. 7, that even for high amplitudes of the
noise, persistent propagation does not occur. Although all fre-
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quencies are contained in the white-noise, in particular reso-
nant ones, their contribution does not have enough amplitude
for propagation. However, note that, despite not reaching the
end of the chain, the fronts tend to propagate temporarily. In
Fig. 8 we show segments of the time-series of x1 and xN for
which transient propagation has occurred. Also note that the
induced spikes that reach the last neuron have a shape simi-
lar to that of the sinusoidal input with fundamental resonant
frequency, as in Fig. 2(a).

D. Subcritical neurons

Let us finally comment about the propagation in a linear
chain of neurons that have a slightly subcritical external cur-
rent, e.g., Iext = 0.05. In this case, when adding the sinu-
soidal signal to a single (isolated) FHN neuron, after a tran-
sient the neuron evolves in a limit cycle, while without the
sinusoidal signal, the neuron remains in a stable steady state
(a focus) in the absence of external perturbations.

For a chain of 20 subcritcal neurons, with the same coupling
coefficient as before, Dx = 0.04, signals do not propagate,
even those with frequencies equal or close to the resonant fre-
quencies. This motivated us to study the effect of the coupling
coefficient, Dx. In fact, we observe a threshold value of Dx,
above which propagation can indeed occur, as shown in Fig. 9
and Fig. 10 where the space-time plots for Dx just above and
below the threshold are shown. Therefore, with the sinusoidal
input stimulus, neurons that are in an inactive state can be ex-
cited to propagate information, if the coupling strength is high
enough.
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Figure 9. Maximum cross-correlation between x1 and xN , vs. cou-
pling strength, Dx, for a linear chain of N = 20 subcritical neu-
rons with Iext = 0.05. The signal’s parameters are ω = 0.7 and
A = 0.3. As in previous figures, the cross-correlation is calculated
over the time window ∈ [800, 1000]. Averages (symbols) and stan-
dard deviation (bars) over 100 realizations, starting from random ini-
tial conditions, are shown.

V. CONCLUSION AND OUTLOOK

We have studied the propagation of simple sinusoidal sig-
nals (which can also be noisy) in excitable media, using a toy
model that consists of a linear chain of diffusively coupled

(a)  D =0.08

200 400 600 800 1000

 t

5

10

15

20

 i

-0.5

0

0.5

1

(b)  D =0.09

200 400 600 800 1000

 t

5

10

15

20

 i

-0.5

0

0.5

1

Figure 10. Space-time plots of the neurons’ oscillations, when the
chain has N = 20 subcritical neurons and the signal’s parameters
are A = 0.3 and ω = 0.7. The coupling coefficient is (a) Dx = 0.08
and (b) Dx = 0.09.

FHN neurons. We measured and quantified the transmission
efficiency in terms of the cross-correlation coefficient between
the time series of the membrane potential of the neuron that
perceives the signal and the time series of the membrane po-
tential of the neuron at the other end of the chain. We have
shown that the method allows to detect threshold values of the
parameters, delimiting regimes with or without propagation.

Our study offers a basic reference and method of analysis
for the use of linear chains of neurons as excitable media to
study the emergent dynamics and coherence that can be gener-
ated by complex artificial or physiological signals which have
different components and scales, along the line of previous
studies [11, 12, 22]. This is important as these systems could
have a practical application as a tool for pattern recognition,
to detect for instance neurological disorders, which would be
a natural extension to applythe quantifier used in this work.

It would also be interesting to study other neuron models[5,
23–27] that exhibit complex dynamics, such as bursts of
spikes. In addition, it would be worth to study other cou-
pling schemes, such as pulse-based coupling, effects of het-
erogeneities, in the couplings or in the parameters of the neu-
rons, . and to go beyond the simplest near-neighbour cou-
pling considered here, and consider long-range couplings with
distant-dependent delays. Another interesting perspective for
feature work would be to quantify the propagation of the sig-
nal using nonlinear quantifiers, in particular, instead of corre-
lating the whole time series of the membrane potential of the
two neurons at the end of the linear chain, one could corre-
late the timing of the spikes fired by those neurons, by using
spike-based synchronization measures[28].
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