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Soil erosion susceptibility maps and 
raster dataset for the hydrological 
basins of North Africa
Adil Salhi   1 ✉, Sara Benabdelouahab2 & Essam Heggy3,4

Soil erosion in North Africa modulates agricultural and urban developments as well as the impacts of 
flash floods. Existing investigations and associated datasets are mainly performed in localized urban 
areas, often representing a limited part of a watershed. The above compromises the implementation 
of mitigation measures for this vast area under accentuating extremes and continuous hydroclimatic 
fluctuations. To address this deficiency, we use the Revised Universal Soil Loss Equation to map 
surface erosion, providing the first insight into the decadal impacts of land degradation, which are 
largely unconstrained on North Africa’s continental scale. We generate soil erosion maps for the major 
hydrological basins of North Africa using Google Earth Engine and multiple hydroclimatic and land use 
datasets, covering 5.8 million square kilometers. The generated geospatial dataset integrates land use, 
soil erodibility, slope, vegetation cover, and land practices. The resulting product is an expansive and 
publicly available Soil erosion susceptibility maps and rasters dataset (SESMAR). This dataset is a crucial 
step toward understanding the drivers of soil erosion in this vast, poorly characterized area as well as 
its potential to be used for future soil conservation campaigns for both agricultural and urban planning. 
We validate SESMAR using the Global Rainfall Erosivity Database (GloREDa) and the European Soil 
Data Centre (ESDAC) datasets as well as published peer-reviewed reports across 20 watersheds, 
demonstrating a robust agreement in assessing the average annual soil loss values and soil erosion 
classes in local areas covered by independent study teams. Our continental maps show commendable 
accuracy, supporting scientists, practitioners, and policymakers in their efforts for more resilient land 
management practices across North Africa to mitigate rising hydroclimatic extremes.

Background & Summary
Soil erosion in North Africa modulates agricultural and urban developments as well as the turbidity of flows 
arising from flash floods and, hence, their destructive power. Physical investigations and associated datasets 
often focus on localized urban areas, typically in the outflow of a watershed overlooking the upstream charac-
teristics. This has resulted in several damages to urban structures and loss of human lives associated with the 
increase in extreme events and coastal storminess (Normand and Heggy1). Furthermore, there is no unified 
dataset that can compare the physical characteristics of soil erosion of the main watersheds in North Africa 
which results in a limited understanding of the role of land degradation in modulating the impacts of hydrocli-
matic extremes. This deficiency hampers effective assessment of hydroclimatic risks, agricultural developments, 
policymaking, and targeted mitigation of erosion impacts. Moreover, the region grapples with additional com-
plexities stemming from large-scale hydroclimatic shifts, which exacerbate soil erosion rates and pose significant 
environmental threats2,3. The absence of reliable large-scale maps compromises the sustainability and resilience 
of this vast area under rising extreme events and continuous climatic fluctuations.

High-resolution soil erosion maps and datasets are critical for supporting sustainable land management and 
mitigating the impacts of hydroclimatic hazards4. The importance of comprehensive datasets to understand 
soil erosion patterns on a larger scale cannot be overstated. Additional complexities stemming from large-scale 
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hydroclimatic shifts exacerbate soil erosion rates and pose significant environmental threats5. The absence of 
reliable large-scale maps compromises the sustainability and resilience of vast areas under rising extreme events 
and continuous climatic fluctuations6.

As a result of these limitations in mitigating soil erosion across densely urbanized areas of North Africa, 
outflow migrations towards the northern shores of the Mediterranean basin are increasingly observed in part 
due to the rising impacts of hydroclimatic fluctuations combined with inefficient mitigation strategies7,8. These 
migration patterns, in which the population would abandon agricultural and urban areas, further aggravate 
the footprint of soil erosion. This emphasizes the urgent need for sustainable land management practices based 
on accurate datasets to address and alleviate the strains induced by population displacement9. Moreover, the 
readiness to tackle these impacts associated with large-scale soil erosion is compounded by persistent insta-
bilities across multiple locations in North Africa10. Political unrest, socio-economic disparities, and environ-
mental vulnerabilities intertwine to create a complex landscape where the consequences of soil erosion are 
magnified. Consequently, addressing these challenges necessitates a multifaceted approach based on physical 
geospatial products and datasets that can support environmental conservation efforts to provide data-driven 
decision-making.

To address the above limitations in soil erosion data availability, this investigation generates comprehensive 
continental maps and datasets of soil erosion, providing a first insight into the impacts of land degradation 
across North Africa. Based on the Revised Universal Soil Loss Equation (RUSLE) model11, we use Google Earth 
Engine code over 5.8 million square kilometers (19% of Africa’s total land area), encompassing five southern 
Mediterranean countries of the continent, i.e., Morocco, Algeria, Tunisia, Libya, and Egypt, with a total popula-
tion above 210 million inhabitants.

Unlike localized studies at the city scale, our dataset covers the entire hydrological basins of North Africa, 
creating a spatial coverage comparable to other existing global datasets4, which operate at different geographic 
and temporal resolutions. In contrast, our dataset enables finer and localized insights into soil erosion patterns. 
Indeed, global-scale assessment, while invaluable for understanding broad trends, may not capture the specific 
environmental variations and localized factors influencing soil erosion in the watersheds of North Africa. Our 
dataset addresses this gap by integrating high-resolution hydroclimatic and land use data tailored to the region’s 
unique geophysical conditions. This regional focus is essential for effective soil conservation and land manage-
ment practices, offering detailed, actionable insights that global datasets might overlook. Moreover, our dataset’s 
validation using peer-reviewed reports across 20 watersheds demonstrates its accuracy and applicability for 
regional soil conservation efforts. This validation process, which compares our data products with the physical 
outcomes of published studies using similar methodologies, ensures the reliability of our process in assessing 
average annual soil loss and erosion classes in local areas.

The analysis of land use reflects the diversity of the regional characteristics (Fig. 1a). Agricultural activities 
dominate the Delta and the banks of the Nile, the Moroccan Atlantic plains, and the Mediterranean coastal 
plains from Tangier (Morocco) to Sfax (Tunisia). Limited coastal areas in Tripoli and Benghazi (Libya) also 
feature agricultural land use. The Rif and Atlas Mountains belts are primarily covered by forests and grasslands, 
serving as essential habitats for biodiversity. Along the coasts, major urban centers and built-up areas are con-
centrated, with cities like Cairo (Egypt), Marrakech, and Fes (Morocco) standing out as notable interior urban 
hubs. In contrast, large parts of North Africa are characterized by shrublands, the expansive Sahara Desert, and 
vast stretches of bare ground, reflecting arid and sparsely populated areas.

The soil texture exhibits considerable variability across North Africa (Fig. 1b). Coarser-textured sandy soils 
dominate the desert regions, particularly in the Sahara, where fine soils such as clay are less prevalent due to 
wind erosion and limited vegetation cover. In contrast, finer-textured soils like loam, clay loam, and silty clay 
loam are found along the coastal plains, especially in agricultural zones such as the Nile Delta and parts of 
the Moroccan and Tunisian Mediterranean coastlines. These finer soils contribute to higher water retention 
capacities, which is critical for agricultural productivity in these regions. The presence of clay-rich soils in the 
northern areas indicates past alluvial processes and sediment deposition, further influencing land use suitability 
and vegetation patterns.

Elevations datasets show distinct patterns and features, characterized by topographical variations and 
divergent gradients (Fig. 1c). In the western part, the high mountain belts of the Atlas Mountains and the Rif 
Mountains act as natural barriers, separating the narrow Mediterranean plains from the relatively larger Atlantic 
plains. These mountain ranges contribute to rugged terrains and significant elevation variations. Moving toward 
the central and southern areas, the landscape is dominated by the desertic highlands of the Hoggar mountain 
range, characterized by vast arid terrains. In contrast, the eastern part consists of more extensive plains, except 
for the Eastern Desert belt and the Sinai Desert in Egypt. Steep slopes are primarily associated with the moun-
tain belts, making them prominently present in the western part and along the Mediterranean coast of Morocco, 
Algeria, and Tunisia (Fig. 1d).

North Africa has witnessed several geological processes and tectonic events in the Pleistocene and Holocene, 
resulting in a varied and complex geological setting (Fig. 1e). The presence of multiple terrains ranging in age 
from Archean to Quaternary contributes to the geological complexity12. Three major tectonostratigraphic 
domains can be identified: the Precambrian province, the Variscan (Paleozoic) fold belt, and the Atlas-Alpine 
(Mesozoic-Cenozoic) system13. The northern coastline, stretching from Morocco to Egypt, is characterized by 
folded and faulted sedimentary rocks, with the Atlas Mountains acting as a prominent feature influencing the 
geology, lithology, climatology, and soil properties of the surrounding areas3,13. The Sahara Desert is known for 
its extensive aeolian landforms, including sand dunes, sand sheets, and gravel plains. Prevailing wind patterns 
and local topography influence these landforms. Beneath the Sahara Desert lies the Saharan Platform, which 
encompasses the central and eastern parts of the investigated area, including various sedimentary basins such as 
the Taoudeni Basin and the Murzuk Basin14–16.
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The Normalized Difference Vegetation Index (NDVI) correlates well with the observed land use patterns 
(Fig. 1f), indicating variations in vegetation density and distribution. Areas with intensive agricultural activities, 
such as the Nile Delta and banks, the Moroccan Atlantic plains, and the Mediterranean coastal plains between 
Tangier and Sfax, exhibit high NDVI values. These areas display vibrant and dense vegetation cover due to 
irrigation practices and/or favorable climatic conditions for crop growth. The Rif and Atlas Mountains belts, 
known for their forests and grasslands, also show relatively high NDVI values, indicating healthier vegetation 
due to better precipitation and cooler temperatures. On the other hand, areas dominated by shrubs, the Sahara 
Desert, and bare ground generally have low NDVI values, indicating limited photosynthetic activity and sparse 
vegetation cover.

The significance of photosynthetic activity in specific areas of North Africa is linked to the abundance of 
precipitation (Fig. 1g). The 42-year (1981–2023) average of annual precipitation (calculated from the Climate 
Hazards Group InfraRed Precipitation with Station data (CHIRPS) rainfall dataset) shows the most substantial 
downpours in the Atlas Mountains belt and the northern coastal regions, including Tripoli and Benghazi. The 
Atlas belt acts as a conduit, directing moisture-laden masses toward the northern areas of North Africa, result-
ing in drier conditions in the southern and eastern parts of the region3. Consequently, the Atlas Mountain belt 
and the surrounding northern areas exhibit increased greenness and vegetation growth due to the availability 

Fig. 1  Main physical and hydroclimatic characteristics of North Africa (a). Land use/land cover in 2022 
(Sentinel), (b) Soil texture at 0 cm depth (OpenLandMap Soil Texture Class)40, (c) Digital elevation 
model obtained from Shuttle Radar Topography Mission (in meters), (d) slope (in degree), (e) Simplified 
classification of lithological units by age12, (f) The average Normalized Difference Vegetation Index (MODIS/
MCD43A4_006_NDVI) in 2022 (without unit), (g) The average annual precipitation during the last 43 years 
(1981–2023) (calculated from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) 
rainfall dataset), (h) The precipitation cumulative annual anomaly during the last 24 years (2000–2023) 
compared to the reference period (1950–1999) (calculated from the ERA5-Land Monthly Aggregated dataset).
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of moisture. In the case of the Nile Delta, its remarkable greenness is attributed to two significant contributors: 
the Nile River and groundwater resources in Egypt which play crucial roles in sustaining high levels of photo-
synthetic activity17–19.

Furthermore, anomalies in precipitation are observed in the wettest areas over the past 23 years (2001–2023). 
North Africa has experienced a precipitation deficit of more than 10%, leading to drier conditions (Fig. 1h). This 
reduction in rainfall poses significant concerns for the ecological balance and agricultural productivity in these 
regions. Decreased precipitation levels result in water stress, decreased crop yields, and potential ecological 
impacts on wildlife habitats and overall ecosystem resilience20,21.

Methods
The Revised Universal Soil Loss Equation (RUSLE) is used to assess soil erosion. It was developed by the USDA 
Natural Resources Conservation Service (NRCS) based on five factors: rainfall erosivity (R), soil erodibility (K), 
slope length and gradient (LS), cover and management (C), and support practices (P)11. It calculates the average 
annual soil loss (A) (t/ha/year) according to Eq. 111. Different datasets were rescaled to a spatial resolution of 500 
meters to obtain data for each factor.

· · · ·A R K LS C P (1)=

The five factors R, K, LS, C, and P are calculated for each year of the investigation period (2001–2023). 
Afterward, they are crossed according to Eq. 1 to generate an annual soil erosion image for each corresponding 
year. Subsequently, the mean factorial maps and the mean soil erosion map for the entire investigation period are 
computed by averaging the annual images. Finally, the resulting mean images were mapped, and the pixel-based 
factorial values and annual soil loss values (in t/ha/y) were calculated.

The rainfall erosivity (R-factor) is the susceptibility of precipitation and runoff to cause erosion, potentially 
uprooting small soil particles. It depends on the dynamic energy of precipitation, its frequency, and its dura-
tion. Traditionally, the R-factor is calculated using detailed rainfall intensity data, including storm energy and 
maximum 30-minute intensity (I30)11. However, such high-resolution temporal data may not be consistently 
available across all regions, especially in data-scarce environments like North Africa. To address this limitation, 
we employ a widely used alternative approach based on the annual precipitation (P) and the maximum precip-
itation in 24 hours of the considered year (Pi)22, which are more commonly available from the CHIRPS Daily 
dataset (Eq. 2). Despite the data resolution challenges, our analysis remains robust and reliable as detailed in 
data validation section below. Notably, this modified equation has been validated and applied in similar research 
contexts where high-frequency rainfall data is scarce23–29. CHIRPS Daily dataset are processed to obtain the 
precipitation values for each year.

R 143 log(P P 10 ) 89 7 (2)i
2 6= + .−· · ·

For the K-Factor, soil texture data is retrieved from the Open Land Map Soil Texture dataset. Given the 
absence of a comprehensive dataset with the required spatial and temporal resolution covering all of North 
Africa, soil types are assigned specific K-factor values based on generalized estimates derived from published 
literature30 (Table 1). These estimates provide a basis to approximate regional variations in soil erodibility within 
the twelve identified soil texture classes.

For LS-Factor, Digital Elevation Model (DEM) data from the NASA SRTM (Shuttle Radar Topography 
Mission) dataset are utilized. Slope values are derived and converted to percentages. The LS factor was computed 
using an adapted equation tailored to our study’s spatial and data resolution requirements27–29. Specifically, we 
utilize Eq. 3 (where L is the slope length and S is the percent slope). This equation integrates empirical coeffi-
cients adjusted to reflect regional land and topographic characteristics, enhancing the accuracy of erosion risk 
assessments. Variations in LS factor equations, including adjustments in coefficients are discussed in soil erosion 

Soil Texture K-factor

Sand 0.05

Loamy Sand 0.07

Sandy Loam 0.23

Silt 0.35

Loam 0.25

Sandy Clayey Loam 0.18

Silty Loam 0.30

Clay 0.20

Silty Clay 0.19

Sandy Clay 0.09

Clayey Loam 0.22

Silty Clayey Loam 0.28

Table 1.  K-factor value according to soil texture38.
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modeling literature31,32, reflecting the need to tailor erosion models to specific environmental conditions and 
data availabilities.

L S SLS
100

(0 76 0 53 0 076 )
(3)

2= . + . + .· · ·

For C-Factor, the Normalized Difference Vegetation Index (NDVI) data from the MODIS/MCD43A4_006_
NDVI dataset are used based on Eq. 433,34 (where α and β are dimensionless parameters that, according to sev-
eral studies, have been determined to be α = 2 and β = 1 for achieving optimal results35,36).

·eC (4)
NDVI

NDVI= β


−∝

−


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For the P-factor, the land cover data from the MCD12Q1.006 MODIS Land Cover Type Yearly Global data-
set were employed. The Annual International Geosphere-Biosphere Program (IGBP) classification band (LC_
Type1) is used to assign P-factor values37 to each land use/land cover class of the corresponding year at the pixel 
scale.

Our investigation utilizes a Google Earth Engine (GEE) code to assess soil erosion in all the basins of conti-
nental North Africa over the period from January 1, 2001, to December 31, 2023. The code loads a basin dataset 
from the hydro-basin dataset (WWF/HydroSHEDS/v1/Basins/hybas) and filters it to obtain a specific basin 
(Area of Interest) identified by the HYBAS_ID. The latter is a mapping product that provides hydrographic 
information for regional and global-scale applications at various scales38. The basins range from level 1 (coarse) 
to level 12 (detailed), using HYBAS_ID codes. Hence, considering the diverse range of basin sizes in North 
Africa, we strategically utilize various hierarchical levels to precisely identify and characterize the desired basin. 
It is crucial to acknowledge that, in this context, several basins incorporate sub-basins, thereby introducing a 
level of intricacy to the delineation process. For the convenience of prospective users, it’s noteworthy that the 
resultant raster datasets cover extensive basins, which can be further partitioned into smaller or medium-sized 
sub-basins as necessary.

After meticulously iterating through the code across North African basins, a distinct pattern emerged. Basins 
within the Sahara Desert exhibited predominantly low to very low erosion susceptibility, indicating minimal 
spatial variation. On the contrary, basins in the northern mountainous ranges, whether partially or entirely 
located there, demonstrates significant erosion rates and spatial disparities. These variations are closely tied 
to factors such as precipitation abundance, steep terrain, and friable lithology. Consequently, the focus was 
directed toward creating soil erosion susceptibility maps and corresponding rasters specifically for the northern 
mountainous range basins. For a detailed overview, refer to Table 2, which provides HYBAS_ID and descriptive 
information.

For each selected basin, the code begins by creating a list of years within the specified temporal range and 
subsequently initiates the creation of an Image-Collection dedicated to annual soil erosion images (Fig. 2). This 
iterative process traverses each year within the defined time range. The Revised Universal Soil Loss Equation 
(RUSLE) calculation involves several steps. The computation of the R-Factor involves leveraging precipitation 
data from the CHIRPS dataset39. For the K-Factor, the Soil Erodibility factor is derived based on soil type data 
obtained from the ‘Open Land Map Soil Texture Class (USDA System)’ dataset40. In the LS-Factor Calculation 
step, the code encompasses the computation of the Length-Slope factor using the SRTM dataset41. Determining 
the C-Factor involves utilizing NDVI data available in the MOD13A2.061 Terra Vegetation Indices dataset42. 
The P-Factor is calculated as part of the Support Practice factor, combining land cover and slope information. 
The land cover is retrieved from the MCD12Q1.006 MODIS Land Cover Type Yearly Global43 and the slope 
information is computed based on the SRTM41. The final step, RUSLE Calculation, involves multiplying the 
calculated factors (R, K, LS, C, P) to obtain an annual soil erosion image11.

Subsequently, the code computes the average annual soil loss over the entire period and clips the result to the 
area of interest. The code further computes average soil loss statistics for each class of soil erosion. To facilitate 
the visualization of soil loss patterns, an image with pixel areas is created, including an additional band for the 
soil loss classification. This image is then reduced to calculate the sum of pixel areas for each soil loss class. The 
subsequent retrieval of group information contains class numbers and corresponding areas. The code efficiently 
extracts these details, converting the areas to square kilometers. It is noteworthy that all datasets underwent res-
caling to a uniform spatial resolution of 500 meters. This harmonization ensures consistency and comparability 
across the diverse datasets utilized in the analysis.

Data Records
The resulting extensive maps and dataset are publicly available in a scientific open-access repository (https://
doi.org/10.5281/zenodo.10478966), offering the first continental soil erosion susceptibility maps and associated 
raster data products44.

The soil erosion susceptibility maps and raster dataset for all the continental basins of North Africa are 
entitled SESMAR. This dataset offers maps and readily classified TIFF raster images that enhance usability for 
researchers and practitioners alike (see example in Fig. 3). The dataset is divided into 22 compressed-format 
rasters, each with a single band, which characterizes soil loss susceptibility across distinct classes. These classes, 
ranging from ‘Very low’ to ‘Very High’, provide nuanced insights into annual soil loss rates per hectare.

The comprehensive classification system embedded in the SESMAR dataset facilitates a detailed understand-
ing of soil loss susceptibility across various geographical locations. This resource can be employed for envi-
ronmental and agricultural planning, aiding stakeholders in identifying and prioritizing areas for targeted soil 
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conservation measures. Regular updates are planned to maintain data accuracy, ensuring the dataset’s reliability 
and relevance over time.

The utility of our dataset derives from its continental coverage, high resolution, and comprehensive integra-
tion of specific regional environmental factors. Unlike broader global datasets, ours provides targeted insights 
into the North African context, filling a critical gap in the literature. This specificity not only enhances the data-
set’s relevance for local soil conservation efforts but also contributes to the global understanding of soil erosion 
dynamics for arid and semi-arid areas. By providing detailed soil erosion susceptibility maps and raster data for 
the hydrological basins of North Africa, our work aligns with global trends while offering unique, region-specific 
insights. This balance between regional focus and global relevance underscores the significance of our contribu-
tion to the field of soil erosion assessment.

The regional soil loss map (Fig. 3) reveals that the Sahara Desert and Egypt experience very low soil loss 
rates, comprising 61% of the area, while low rates, ~14%, are found around the Atlas Belt and the Libyan coast. 
In contrast, high soil loss rates of ~22% are observed in the Atlas Mountains range and the steep Mediterranean 
coastal mountains between Morocco and Tunisia, particularly in the Rif and Atlas regions. The Nile banks and 
Delta, along with other productive areas, also experience higher soil loss rates. This poses significant risks to 
vegetative productivity, especially in these climatically sensitive regions, making environmental stress from land 
degradation more hazardous10. Prolonged intra-annual droughts (Heggy et al.19) exacerbate susceptibility to soil 
degradation, which is amplified by intense localized rainstorms, leading to severe turbiditic floods. In upstream 
mountainous areas, this cumulative effect results in poor soil quality and reduced vegetation productivity45.

Basin* Main cities Basin HYBAS_ID HydroSHEDS level Basin area (km2)

Tarfaya Tarfaya, Morocco
El Ouatia, Morocco 1050030450 5 44,493

Draa Ouarzazate, Morocco
Zagoura, Morocco 1040028960 4 95,887

Souss-Tensift Marrakech, Morocco
Agadir, Morocco 1040028970 4 74,062

Oum Er Rabie Beni Mellal, Morocco
Khenifra, Morocco 1040029430 4 38,047

Casablanca Casablanca, Morocco
Rabat, Morocco 1040029440 4 20,099

Sebou Fes, Morocco
Kenitra, Morocco 1040029700 4 37,812

Loukkos Tangier, Morocco
Larache, Morocco 1040029710 4 7,415

Mediterranean Morocco Tetouan, Morocco
Nador, Morocco 1050029810 5 12,942

Moulouya Berkane, Morocco
Guercif, Morocco 1040028970 4 54,237

Oujda Oujda, Morocco
Oran, Algeria 1050030230 5 30,253

Mecheria Tendrara, Morocco
Mecheria, Algeria 1040040740 4 48,908

Bouarfa Bouarfa, Morocco
Bechar, Algeria 1040040300 4 120,044

Ghardaia Ghardaia, Algeria
Hassi Fehal, Algeria 1040040740 4 146,406

Chlef Chlef, Algeria
Tiaret, Algeria 1050030460 5 44,493

North Mediterranean Algiers, Algeria
Bizerte, Tunisia 1050030460 5 66,781

Jendouba Jendouba, Tunisia
Tebessa, Algeria 1050031290 5 23,171

Tunis Tunis, Tunisia
Hammamet, Tunisia 1050031300 5 7,103

Kairouan Kairouan, Tunisia
Kasserine, Tunisia 1050031570 5 15,262

Sfax Sfax, Tunisia
Sousse, Tunisia 1050031570 5 21,685

Zarzis Zarzis, Tunisia
Medinine, Tunisia 1050031860 5 7,405

Tripoli Tripoli, Libya
Misrata, Libya 1050032180 5 17,628

Benghazi Benghazi, Libya
Marsa Matruh, Egypt 1050032680 5 85,853

Table 2.  Description of the studied basins. *The basin name in this study may include several hydrologic basins 
and it was obtained from the main river or city.
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The dataset is provided in a compressed format to characterize soil loss susceptibility, categorizing each map 
and raster into six distinct classes, as exemplified in Fig. 3. The classification is based on the estimated annual soil 
loss rates per hectare46, with associated values as follows:

- 0: No Data. This category designates areas where soil loss susceptibility information is unavailable, serving as a 
placeholder for missing or inaccessible data.
- 1: Very Low (<5 t/ha/year). Raster cells in this class represent areas with very low susceptibility to soil loss, 
indicating an annual rate of less than 5 tons per hectare.
- 2: Low (5 to 15 t/ha/year). This class characterizes areas with low susceptibility, where the annual soil loss rate 
falls within the range of 5 to 15 tons per hectare.
- 3: Medium (15 to 50 t/ha/year). Raster cells categorized as medium susceptibility denote moderate levels of soil 
loss, with an annual rate ranging from 15 to 50 tons per hectare.
- 4: High (50 to 80 t/ha/year). This class identifies areas with high susceptibility to soil loss, where the annual rate 
ranges from 50 to 80 tons per hectare.
- 5: Very High (>80 t/ha/year). Raster cells in this category indicate the highest susceptibility to soil loss, with an 
annual rate exceeding 80 tons per hectare.

Our analysis also quantifies and discusses the yearly variation of soil erosion over time (Fig. 4), examining 
its relationship with variations in input drivers such as precipitation and land cover. The cumulative anomaly of 
soil loss from 2001 to 2023 reveals significant insights into erosion patterns across North Africa. In Morocco, 
notable positive anomalies are observed in the Northern basins and Atlantic areas, indicating increased erosion 
rates. Similar patterns are found in the region between Algiers and Annaba in Mediterranean Algeria, as well as 
in coastal areas of Tunisia and Libya, including Tunis, Kairouan, Benghazi, and Derna.

A temporal examination highlights a consistent upward trend in soil loss. The proportion of areas at medium 
to high risk of soil erosion has increased from 7% in 2002 to approximately 15% in recent years. These areas are 

Fig. 2  Flow chart for the generation of the SESMAR data products.
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often urban and located in critical zones, such as watershed outlets, which are particularly prone to flash floods47. 
This has resulted in an increase in the population highly vulnerable to these hazards from around 22,000 in 
2002 to about 29,000 currently21. The intensification of semi-informal urban settings, along with increased rain 
aggressiveness and storminess, are primary drivers of this trend48,49.

Moreover, soil degradation impacts both upstream and downstream areas of watersheds. Upstream, there 
is a noticeable loss of fertility, degradation of water reservoir storage capacities, and impairment of critical 
infrastructures. Downstream, particularly in conjunction with flash floods, there is an escalating risk to human 
assets. According to prevailing hydroclimatic forecasts, this trend is expected to intensify, making hundreds of 
settlements downstream more susceptible to higher impacts50,51.

Technical Validation
To validate the robustness of our dataset, a thorough assessment was conducted by juxtaposing our outcomes 
against those derived from published articles employing a comparable methodology for soil erosion estimation 
in North Africa. Unfortunately, a pixel-based correlation wasn’t feasible due to the unavailability of granular data 
from these articles. Consequently, our comparison focused on the average annual soil loss (measured in t/ha/y)  

Fig. 3  Map of the estimated average long-term (2001–2023) annual soil erosion risk in (a) North Africa.  
The figure includes three sample maps representing (b) the basins of Draa (Morocco), (c) Tunis (Tunisia),  
and (d) Coastal Mediterranean basins (Libya and Egypt). These sample maps are selected from a set of  
22 available basin maps and provide detailed visualizations of the soil erosion risk within these specific regions.

Fig. 4  Analysis of long-term (2001–2023) soil loss in North Africa (excluding the Sahara). (a) The cumulative 
anomaly of soil loss with a focus on areas of high and moderate anomalies. (b) The annual soil loss anomaly 
chart: (1) the anomaly curve, (2) the moving 5-year average of anomalies, and (3) the average of anomalies.
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and involved a meticulous visual inspection of the generated maps. In our scrutiny, 20 watersheds from diverse 
North African countries and characteristics were selected, ensuring a comprehensive representation of cli-
matic, topographic, and land use conditions. Leveraging the extensive HydroBASINS database, which furnishes 
a global repository of drainage basins across various scales, we meticulously curated watershed information 
(Table 3).

This in-depth analysis suggests a resemblance in terms of average annual soil loss values, coupled with a 
concordance with soil erosion classes as defined in previous studies46. The visual scrutiny at the watershed level 
underscored an alignment in the distribution of different soil erosion classes, attesting to a high degree of con-
cordance between our model and the referenced studies.

While some minor discrepancies emerged in the average annual soil loss values, these can be attributed to 
variations in datasets, spatial and temporal scales, and pixel resolutions used by different teams. However, our 
dataset demonstrates strong accuracy across a diverse range of watersheds, each with unique dimensions, mor-
phologies, and local conditions. These minor differences remain within the same erosion classes, underscoring 
the robustness of our findings for strategic decision-making. Notably, our dataset demonstrates strong accuracy 
across all watersheds (22), with only two exceptions. We also recognize the potential for further refinement in 
future studies through methodological enhancements and using higher-quality data to improve fine-scale (local) 
results.

To further validate the soil erosion susceptibility model, we incorporate global lower-resolution data sources, 
specifically using the ESDAC-based K-factor (1 km resolution)4,52 and comparing results to the GloREDa 
R-factor dataset53,54. This adjustment aims at evaluating the consistency and accuracy of the SESMAR model 
(500 m resolution) against a different modeling approach and data resolution. The ESDAC-based model was 
adapted to match the spatial extent and hydrological basins used in the SESMAR approach, enabling side-by-side 
comparison of the predicted soil erosion susceptibility across different watersheds in North Africa.

The two models are compared according to pixel-based and quantitative inspections. Figure 5 illustrates 
the differences in soil erosion susceptibility mapping derived from the SESMAR model (panels a, c, e, g) and 
the ESDAC-based model (panels b, d, f, h). Notably, the ESDAC model’s lower spatial resolution resulted in a 
broader classification of areas as ‘high’ or ‘very high’ susceptibility, particularly in regions with more complex 
topography, while the SESMAR model showed more detailed patterns of erosion risk. Additionally, data gaps are 
observed in the ESDAC-based maps, underscoring the limitations of using lower-resolution datasets.

The comparative analysis of the SESMAR and ESDAC-based models reveals a distinct spatial distribution of 
erosion risk classes across various watersheds (Table 3). This highlights the models’ respective abilities to capture 
local variations in erosion susceptibility. Indeed, both models showed consistency in identifying areas with very 
low and low erosion risk across many watersheds. For instance, in the Djelfa basin (Saharan Atlas, Algeria), 
both models classified the watershed as “Very Low” erosion, with SESMAR reflecting finer resolution variations 

Basin information HydroBASINS38 Reported paper Soil erosion (t/ha/y) Soil erosion class46

Name Country
Watershed 
code

Watershed 
area (km²) Reference

Watershed 
area (km²) Referenced

ESDAC 
based 
Model Modeled Referenced

ESDAC 
based 
Model Modeled

Soummam Algeria 1060030840 9,125 57 9,108 6.8 11.5 8.5 Low Low Low

Oued Arab Algeria 1100091790 348 58 567 11.9 14.2 12.9 Low Low Low

Djelfa (Saharan Atlas) Algeria 1060043340 4,610 59 3,828 2.3 0.3 0.1 Very Low Very Low Very Low

Tlemcen Algeria 1060030310 7811 60 Not indicated 1.5 to 6.8 3.5 2.7 Very Low Very Low Very Low

Maleh Algeria 1080087230 886 61 933 2.9 1.4 4.8 Very Low Very Low Very Low

Naghamish Egypt 1100033970 112 62 90 1.4 1.7 1.9 Very Low Very Low Very Low

Northwestern coast Egypt 1060033680 7,123 63 9,182 2.1 0.8 <4.0 Very Low Very Low Very Low

Ras El-Hekma 
(Matrouh) Egypt 1120034020 372 64 Not indicated 6.7 1.4 7.5 Low Very Low Low

Derna Lybia 1090033270 574 65 570 Not referenced 3.5 5.2 Not studied Very Low Low

Nekor Morocco 1070030070 911 27 916 37.8 21.2 23.4 Medium Medium Medium

Bouregreg Morocco 1070029670 9,894 66 10,000 20.0 26.0 16.6 Medium Medium Medium

Upper Sebou Morocco 1060099860 7392 67 5,495 6.5 14.7 14.4 Low Low Low

Melloussa Morocco 1100029820 123 20 121 11.6 27.8 26.5 Low Medium Medium

Tangier Morocco 1090029800 269 29 254 24.2 18.1 21.6 Medium Medium Medium

Ghis Morocco 1080030050 831 28 845 30.1 48.3 39.0 Medium Medium Medium

Tensift Morocco 1060029350 20,344 68 20,450 44.0 18.2 25.0 Medium Medium Medium

Ikkour Morocco 1100115610 198 69 55 0.7 17.3 11.4 Very Low Medium Low

N’fis Morocco 1070129680 2,928 70 1,704 25.8 37.4 52.6 Medium Medium High

Koutine Tunisia 1100031990 396 71 279 1.0 0.6 0.2 Very Low Very Low Very Low

Chiba Tunisia 1100031520 206 72 204 11.8 1.8 3.6 Low Very Low Very Low

Table 3.  Comparative analysis of the modeled soil erosion in North African watershed with data from 
published articles.
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despite similar overall class assignments. Similarly, in the Naghamish basin in Egypt, both models classified 
erosion susceptibility as “Very Low,” indicating minimal discrepancies in areas with inherently low erosion risks.

However, the models diverged considerably regarding watersheds exhibiting medium or higher erosion 
risks. In the Melloussa watershed (Morocco), for example, the SESMAR model classified the area as “Medium” 
susceptibility, while the ESDAC-based model categorized it as “Low” because of SESMAR’s capacity to detect 
more localized erosion risks, likely due to its higher resolution (500 m vs. 1 km). A similar pattern was observed 
in the N’fis watershed, where SESMAR assigned a “High” erosion class compared to the “Medium” classifi-
cation by ESDAC, underscoring SESMAR’s sensitivity to high-risk erosion zones. In watersheds with a range 
of erosion risks, SESMAR’s classification demonstrated a more detailed identification of areas transitioning 
from low to medium erosion classes. For example, in the Nekor and Bouregreg basins (Morocco), the SESMAR 
model classified these areas as “Medium” erosion, aligning more closely with published studies than the ESDAC 
model, which tended to generalize larger portions as “Medium” without capturing finer spatial distinctions. The 
SESMAR model’s higher resolution allowed for better mapping of medium-risk zones, reflecting the natural 
heterogeneity of erosion susceptibility across the watershed. In regions with frequent spatial variations, such 
as the Ghis watershed (Morocco), the SESMAR model’s spatial classification differed from ESDAC’s broader 
categorization of similar susceptibility, suggesting SESMAR’s better performance in pinpointing high-risk zones, 
which is crucial for prioritizing erosion control measures.

The differences in soil erosion class predictions between the SESMAR and ESDAC models have significant 
implications for erosion management strategies. The SESMAR model’s more detailed classification of medium 
to high erosion-risk areas allows for more precise targeting of erosion control measures, particularly in high-risk 
watersheds. The model’s capacity to detect variations within these classes can guide the allocation of resources 
to the most vulnerable zones. Also, the comparison underscores the limitations of lower-resolution data in 
capturing detailed spatial patterns of erosion susceptibility. The ESDAC model’s broader classification of larger 

Fig. 5  Comparison of soil erosion susceptibility maps using different data sources and modeling approaches. 
Panels (a1, a2, a3, a4) present results from the first approach (SESMAR), while panels (b1, b2, b3, b4) show 
outcomes based on the second approach (ESDAC-based model).
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areas into single erosion classes may overlook important localized differences, which could lead to inefficient 
mitigation planning.

Consequently, while both models can provide useful information for regional soil erosion assessment, the 
SESMAR model’s higher resolution and finer classification of erosion risks make it better suited for applications 
requiring detailed erosion management strategies, namely in North Africa.

Additionally, a pixel-based analysis was employed to assess the spatial variations of erosion factors (R, K, LS, 
P, and C) and their correlation with soil loss rates (Fig. 6). Firstly, a positive linear correlation appears between 
soil loss and the R-factor (rainfall aggressivity), accompanied by a positive linear correlation with the LS-factor 
(length-slope). Both correlations imply that as the R-factor and LS-factor increase, soil loss intensifies, under-
scoring the direct impact of slope characteristics and rainfall intensity on erosion rates. Significantly, a posi-
tive linear correlation emerges between the LS-factor and the R-factor, indicating that the combined effect of 
length, slope, and rainfall intensity contribute to heightened soil loss. Conversely, a negative linear correlation is 
observed between soil loss and the K-factor (soil erodibility), emphasizing the influence of soil characteristics, 
particularly granulometry, on erosion dynamics.

For C-factor (cover management) and P-factor (support practices), weak positive linear correlations and 
negative correlations, respectively, hint at potential relationships with soil loss, although their significance is 
less pronounced compared to other factors. These findings suggest that as the C-factor increases (or P-factor 
decreases), there might be a slight uptick in soil loss, but the relationship is not as robust as observed with the 
R-factor or LS-factor. It is crucial to note that despite these weak linear correlations, the potential for non-linear 
relationships in the C-factor, P-factor, and soil loss dynamics exists. While these correlations contribute to 
understanding the factors influencing soil loss processes, the complex relationships in the C-factor and P-factor 
do not neatly align with simple linear correlations, emphasizing the necessity for further investigations.

Our pixel-based extensive analysis furnishes valuable insights into broader patterns and trends shaping soil 
loss dynamics in North Africa. However, acknowledging resolution limitations is essential, as they may lead to 
the underrepresentation of small-scale cover management and support practices. To address this limitation, 
local case studies are encouraged to explore the complex dynamics of these factors at a finer scale.

The interplay of adverse climatic and environmental conditions, marked by prolonged droughts succeeded by 
intense storms, have exacerbated soil loss, contributing to a decline in vegetation cover55,56. Conversely, extended 
wet periods have facilitated the med-term progression of vegetation productivity, diminishing its correlation 
with soil loss. Another contributing factor to the weak correlation is that North Africa exhibits significant vege-
tation cover only in a restricted northern coastal area where high soil loss values were observed, while elsewhere, 
vegetation productivity is very low or soil loss rates are low, rendering its correlation inconclusive. Notably, areas 
north of the Atlas Belt stand out as particularly vulnerable to the risks associated with soil loss.

Fig. 6  Pixel-based correlation between estimated soil loss and soil erosion factors.
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Code availability
The code used in this study is freely available at https://doi.org/10.5281/zenodo.12701613, facilitating 
reproducibility and transparency in the analysis conducted.
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