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Abstract

Urbanization and technological advancements are reshaping urban mobility, presenting both challenges and opportunities. This
paper investigates how Artificial Intelligence (AI)-driven technologies can impact traffic congestion dynamics and explores their
potential to enhance transportation systems’ efficiency. Specifically, we assess the role of AI innovations, such as autonomous
vehicles and intelligent traffic management, in mitigating congestion under varying regulatory frameworks. Autonomous vehicles
reduce congestion through optimized traffic flow, real-time route adjustments, and decreased human errors.

The study employs Ordinary Differential Equations (ODEs) to model the dynamic relationship between AI adoption rates and
traffic congestion, capturing systemic feedback loops. Quantitative outputs include threshold levels of AI adoption needed to
achieve significant congestion reduction, while qualitative insights stem from scenario planning exploring regulatory and societal
conditions. This dual-method approach offers actionable strategies for policymakers to create efficient, sustainable, and equitable
urban transportation systems. While safety implications of AI are acknowledged, this study primarily focuses on congestion
reduction dynamics.
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1. Introduction

Urbanization is accelerating globally, with more than half of
the world’s population now living in urban areas—a figure pro-
jected to rise to nearly 70% by 2050. This rapid urban growth
intensifies challenges related to urban mobility, including traffic
congestion, environmental pollution, and inefficiencies in trans-
portation systems. Traditional solutions, such as expanding in-
frastructure or implementing policy interventions like conges-
tion pricing, have often proved insufficient or introduced new
complexities [1]. As cities strive to become more livable and
sustainable, there is a pressing need for innovative, forward-
thinking approaches that integrate a suite of modern technolo-
gies.

Foresight and scenario planning have emerged as critical
tools in addressing these complex challenges. By anticipat-
ing future trends and uncertainties, these methodologies en-
able policymakers and business leaders to develop strategies
that are robust under various possible futures. In the context
of urban mobility, foresight practices help to undertand how
emerging technologies, societal shifts, and regulatory changes
may interact to shape transportation systems over the coming
decades. Among these modern technologies, Artificial Intelli-
gence (AI) stands at the forefront, holding significant promise
to revolutionize urban mobility. Yet, AI does not operate in iso-
lation. It is increasingly complemented by an ecosystem of dig-
ital innovations: Internet of Things (IoT) sensors that collect

real-time traffic data, 5G and next-generation communication
networks that ensure rapid data transfer, blockchain platforms
that secure transactions and enhance trust, and cloud computing
infrastructures that enable scalable data analytics [2]. These
technologies, working in tandem, can enhance predictive an-
alytics, improve system interoperability, and ultimately drive
more adaptive and responsive transportation services. For ex-
ample, AI-driven autonomous vehicles, when combined with
IoT-enabled traffic lights and 5G connectivity, can synchronize
traffic flows more efficiently; similarly, secure data exchange
through blockchain can improve service reliability and foster
user confidence in shared mobility models [3], [4]. However,
the integration of AI, alongside other emerging digital tools,
also presents challenges, including ethical considerations, reg-
ulatory hurdles, and the risk of exacerbating social inequalities
[5]. Understanding how these complementary technologies in-
teract, evolve, and influence one another is critical to forging
sustainable urban mobility solutions that are both technologi-
cally feasible and socially equitable.

This paper integrates foresight and scenario planning with
mathematical modeling to explore how AI-driven technologies
can reshape urban transportation systems. Specifically, we em-
ploy Ordinary Differential Equations (ODEs) to model the in-
teraction between AI adoption and traffic congestion over time.
In selecting an appropriate modeling approach, ODEs provide a
balance between complexity and interpretability. Unlike more
granular agent-based models that simulate individual actors or
discrete- event simulations that often demand extensive com-
putational resources, ODEs allow for capturing the aggregate
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dynamics of AI adoption and traffic congestion in a contin-
uous and mathematically tractable manner. This aggregated,
system-level perspective is well-suited to the early-stage strate-
gic planning and scenario analysis employed in this study. Ad-
ditionally, ODE models facilitate sensitivity analyses and pa-
rameter estimation, making it easier to examine how different
regulatory conditions or technological adoption rates influence
outcomes. While more complex models might offer finer de-
tail, ODEs prove sufficient for our aim of understanding broad,
long-term trends and identifying critical thresholds that inform
policy and regulatory strategies. These ODE models allow us
to simulate and quantify the effects of different regulatory and
societal conditions on the adoption of AI technologies and the
resulting mobility outcomes. By using Python for numerical
simulations, we analyze the dynamics of urban mobility across
multiple future scenarios, offering both qualitative and quanti-
tative insights.

The structure of the paper is as follows:
Section 2 reviews the current challenges in urban mobil-

ity, the limitations of traditional solutions, and the role of AI
technologies, with a focus on foresight and scenario planning
methodologies.

Section 3 outlines the research methods used, including sce-
nario development, the ODE-based modeling approach, and
Python simulations.

Section 4 presents detailed future scenarios of urban mo-
bility influenced by AI, considering factors such as regula-
tory changes, technological advancements, and societal trends,
along with simulation results.

Section 5 analyzes the implications of these scenarios for
policymakers, industry stakeholders, and urban residents.

Section 6 concludes the paper with strategic recommenda-
tions and insights into the future of AI in urban transportation,
emphasizing the potential of combining foresight methods with
mathematical modeling.

By applying both foresight and ODE-based modeling, this
research offers a comprehensive approach to understanding and
shaping the future of AI-driven urban mobility. Through sce-
nario planning and quantitative simulations, we provide practi-
cal guidance for stakeholders seeking to navigate the complex-
ities of integrating AI into urban transportation systems.

2. Literature Review

Urban mobility faces multifaceted challenges, including traf-
fic congestion, environmental pollution, inefficiencies in pub-
lic transportation, and the pressures of increasing urbanization.
Traditional solutions have often proved inadequate, prompting
a shift towards innovative technologies like Artificial Intelli-
gence (AI) to address these issues comprehensively.

Traffic congestion significantly impacts economies both di-
rectly and indirectly. [23] demonstrates that congestion leads
to immediate costs such as travel delays and unreliable travel
times, which reduce productivity as workers and goods take
longer to reach their destinations. While travelers may adapt
by altering routes, travel times, or modes of transportation,

the overall economic costs remain substantial. Moreover, con-
gestion influences broader economic geographies by affecting
where businesses and residents choose to locate, often redis-
tributing rather than eliminating economic growth. Public-
sector efforts to mitigate congestion through road expansion
have been costly and largely ineffective, leading experts to ad-
vocate for adaptation strategies over mitigation [23].

Environmental pollution is another critical issue linked to
transportation systems. [22] highlight that transportation, par-
ticularly road transport, is a major contributor to environmental
pollution through emissions of harmful compounds like carbon
dioxide (CO2), nitrogen oxides (NOx), particulate matter (PM),
and hydrocarbons (HC). These pollutants adversely affect hu-
man health and the environment. Additionally, noise pollution
from transportation has become a serious public health concern,
causing sleep disturbances, cardiovascular diseases, and stress
among urban populations. Efforts to mitigate these negative ef-
fects focus on reducing emissions and noise levels through tech-
nological advancements in vehicles, traffic management strate-
gies, and the development of sustainable transportation systems
[22].

Inefficiencies in public transportation systems exacerbate ur-
ban mobility challenges. [21] identifies technical and scale in-
efficiencies as primary issues affecting transit systems’ perfor-
mance and resource utilization. Technical inefficiencies arise
from suboptimal use of resources such as labor, fuel, and main-
tenance, while scale inefficiencies occur when the size of the
transit operation leads to overcapacity or underutilization. Us-
ing data envelopment analysis (DEA), studies have assessed
and compared the efficiency of various transit systems, pin-
pointing areas where improvements can optimize operations.
Addressing these inefficiencies can enhance service delivery,
reduce operational costs, and increase the sustainability of ur-
ban transportation networks [21].

The rapid pace of urbanization and increasing population
density significantly impact energy consumption and efficiency
in cities, particularly concerning transportation systems. [20]
note that urbanization concentrates population and economic
activities, escalating the demand for transportation and energy.
While densely populated areas can benefit from the agglom-
eration effect—where resources are used more efficiently due
to proximity—overpopulation can lead to congestion and inef-
ficiencies. Cities with inadequate transportation infrastructure
face greater challenges, as increased demand for travel between
dispersed urban sub-centers results in longer commuting times,
more vehicle use, and higher energy consumption. Efficient
public transportation systems in well-planned urban areas can
mitigate these negative effects, improving energy efficiency and
reducing pollution. Thus, urban planning strategies that balance
density with adequate infrastructure are crucial in addressing
the challenges posed by increasing urbanization [20].

Traditional policy interventions like congestion pricing have
been implemented to reduce traffic congestion but possess in-
herent limitations. Cheng et al. [1] discuss how congestion
pricing, which involves charging drivers for road usage dur-
ing peak times, aims to decrease the number of vehicles on the
road and alleviate congestion. While cities like London, Stock-
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holm, and Singapore have reported significant traffic reductions
when congestion pricing is paired with public transport im-
provements, these policies can have unintended consequences.
Traffic may shift to non-charged periods or alternative routes
outside the charging zone, and wealthier drivers may continue
to use the roads while lower-income individuals face restricted
access. The success of congestion pricing largely depends on
complementary measures, such as enhanced public transit op-
tions, to sustain long-term benefits [1].

In response to these challenges, AI technologies have
emerged as promising tools to revolutionize urban mobility,
particularly within the context of smart city development. [4]
explore how AI-powered systems are integrated into various
aspects of transportation, including autonomous vehicles, traf-
fic management, and urban planning. Adaptive algorithms op-
timize routes, manage congestion, and enhance public trans-
portation efficiency. Technologies like computer vision, ma-
chine learning, and AI-driven analytics analyze data from ur-
ban mobility systems, geographic information systems (GIS),
and surveillance networks to create sophisticated models of city
traffic and behavior. AI applications in autonomous driving and
traffic automation are pivotal for the future of urban mobility,
promising to reduce human error and streamline transportation
systems. However, implementing these technologies raises eth-
ical questions regarding privacy, surveillance, and accessibility,
necessitating thoughtful and inclusive approaches to integrating
AI into urban mobility systems [4].

Autonomous vehicles (AVs) represent a significant advance-
ment in AI applications within urban mobility. [5] explain
that AVs rely on advanced sensor technologies such as Li-
DAR, radar, and cameras to perceive their environment, feed-
ing data into AI algorithms that enable real-time decision-
making. These systems detect objects like pedestrians, cy-
clists, and other vehicles, predict their movements, and make
critical navigation decisions. AVs hold great promise for re-
ducing accidents by eliminating many human errors responsi-
ble for traffic collisions. However, several challenges impede
their widespread adoption. Legal and regulatory frameworks
surrounding autonomous driving are underdeveloped, raising
questions about liability in accidents. Ethical concerns arise,
particularly regarding decision-making in unavoidable accident
scenarios. Additionally, public acceptance and trust remain sig-
nificant hurdles, as many people are skeptical about the safety
and reliability of fully autonomous systems. Overcoming these
regulatory, ethical, and societal challenges is crucial for AVs to
effectively transform urban mobility [5].

Adaptive traffic signals powered by AI algorithms are revo-
lutionizing traffic management by improving flow and reducing
congestion. [19] discuss how these systems utilize data from
sensors and cameras to monitor vehicle patterns and dynami-
cally adjust signal timings in response to real-time traffic condi-
tions. By optimizing traffic signals, cities can reduce idle times,
lower emissions, and enhance the overall efficiency of trans-
portation networks. AI-driven systems like the Sydney Coor-
dinated Adaptive Traffic System (SCATS) and the Split, Cycle,
and Offset Optimization Technique (SCOOT) have successfully
managed traffic congestion in cities worldwide. However, chal-

lenges such as developing appropriate legal frameworks, ad-
dressing ethical concerns, and building public trust remain key
barriers to the widespread adoption of AI in traffic management
[19].

AI technologies also play a crucial role in public transporta-
tion by optimizing routes and schedules and enhancing the pas-
senger experience. [18] highlight how AI algorithms analyze
extensive datasets, including traffic patterns and passenger de-
mand, to create demand-responsive transit systems that adapt
to real-time conditions. This approach helps predict passenger
flow and improve resource allocation, ensuring that transit ser-
vices meet varying demands throughout the day. AI-powered
assistants and applications provide passengers with real-time
notifications regarding arrival times, delays, or route changes,
and offer personalized services such as optimal route sugges-
tions based on individual preferences. Additionally, AI facil-
itates predictive maintenance by analyzing vehicle data to an-
ticipate and prevent potential failures, improving fleet manage-
ment and reducing downtime. These advancements contribute
to a more efficient, reliable, and passenger-friendly public trans-
portation system [18].

While a growing body of literature examines AI applications
in autonomous vehicles (in addition to discussed above see e.g.,
[6], [7]), intelligent traffic management systems (e.g., [8]), and
demand-responsive transit ([9]), several gaps remain. For in-
stance, most studies emphasize either technical feasibility or
policy frameworks in isolation, rarely integrating both to pro-
vide a holistic view of how regulatory conditions influence AI
adoption and its subsequent impact on congestion reduction.
Another underexplored area concerns the quantitative assess-
ment of these AI-driven transformations under varying regula-
tory and societal scenarios. While scenario planning method-
ologies are sometimes employed qualitatively, there is limited
empirical work using mathematical models to simulate how dif-
ferent adoption rates, policy environments, and public attitudes
might interact to influence outcomes. Few studies have com-
bined foresight methods and rigorous quantitative modeling to
identify thresholds of AI adoption that significantly reduce con-
gestion, or to determine how regulatory support could acceler-
ate or hinder these advancements. By directly addressing these
gaps, the present study contributes to the literature in the fol-
lowing ways. Our paper incorporates a scenario-based ODE
modeling framework to quantitatively explore how various reg-
ulatory and societal factors influence the long-term evolution
of AI adoption and congestion dynamics. In addition, the study
provides actionable insights for policymakers and practitioners,
identifying critical adoption thresholds and regulatory levers
that may guide sustainable, data-driven strategies for future ur-
ban transportation planning.

3. Methodology

This study employs a foresight and scenario planning ap-
proach to explore how AI-driven technologies may shape the
future of urban mobility. The methodology integrates scenario
development with modelling techniques, providing both quali-
tative and quantitative insights into potential futures. This com-
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bination strengthens the robustness of the analysis, ensuring
that findings are applicable to real-world strategic planning.

3.1. Scenario Development

Scenario development is central to this research, allowing us
to explore multiple plausible futures of urban mobility influ-
enced by AI technologies. The use of scenario planning helps
stakeholders to prepare for a range of potential outcomes, con-
sidering both known trends and emerging uncertainties.

3.1.1. Identifying and Validating Key Drivers and Uncertain-
ties

The utilization of AI in urban mobility systems, particularly
for safety-critical applications such as autonomous vehicles and
intelligent traffic management, hinges on two interrelated fac-
tors: the rate of AI adoption and the degree of regulatory sup-
port. These drivers were identified through an extensive review
of literature (e.g., [4], [5], [19], [10]) addressing the technical,
societal, and regulatory challenges associated with AI deploy-
ment, alongside preliminary analysis of pilot AI-transportation
projects [11]. These steps reinforced our initial assumption that
variations in AI adoption and regulatory involvement are both
highly impactful and uncertain. We thus selected these factors
as axes for our scenario matrix.

Pilot AI projects provide valuable insights into the practi-
calities and challenges of urban mobility transformations. For
instance, the AI-TraWell project highlights how AI-powered
travel assistants can promote personalized, sustainable travel
by integrating user feedback and mobility service data to op-
timize travel routes based on individual preferences. Similarly,
Siemens Mobility’s deployment in Hagen, Germany, optimized
traffic light control, reducing intersection waiting times by up to
47%, demonstrating the role of AI in addressing urban conges-
tion. In Niepołomice, Poland, the Tele-Bus on-demand bus sys-
tem illustrates how AI can dynamically manage flexible trans-
portation services, reducing emissions and improving accessi-
bility in low-density areas [11].

Micromobility innovations such as Spin Insight Level 2 e-
scooters, which use AI to detect sidewalks and provide real-
time feedback to riders, reflect AI’s potential in improving
safety and compliance in urban mobility. Additionally, au-
tonomous mobility pilots such as Finland’s GACHA driverless
bus and Frankfurt Airport’s AI prediction models for flight ar-
rivals further emphasize the interplay between technological
advancements and regulatory environments. These projects col-
lectively highlight the importance of AI adoption and regula-
tory frameworks as critical drivers in shaping urban mobility
systems.

AI Adoption is a dynamic and multifaceted process influ-
enced by technological readiness, societal trust, and operational
viability. Existing research highlights the fragmented nature of
AI deployment in safety-critical domains, such as transporta-
tion, where significant disparities exist in the pace of adoption
across regions and industries [10]. For instance, the integration
of AI systems is often constrained by the need for robust per-
formance under uncertain real-world conditions, explainability

of decision-making processes, and compliance with safety as-
surance frameworks.

Trust in AI systems plays a pivotal role in driving adoption.
Factors such as explainability, provability, and robustness are
critical to building public and industry confidence in AI-driven
technologies [10]. Moreover, the interplay between technical
advancements and societal acceptance of these technologies di-
rectly impacts their adoption trajectory. For urban mobility, the
effectiveness of AI in addressing congestion, pollution, and in-
efficiencies is contingent upon widespread acceptance and inte-
gration into existing transportation ecosystems.

The second critical driver, Regulatory Support, encompasses
the creation and enforcement of standards, guidelines, and poli-
cies that enable the safe and effective integration of AI tech-
nologies. The importance of regulatory support is highlighted
in evolving AI-specific safety standards, such as VDE-AR-E
2842-61 and ISO 21448, which aim to ensure the safe inte-
gration of AI systems in safety-critical contexts [10]. These
standards emphasize the need for comprehensive testing, safety
assurance, and explainability of AI models.

Regulatory frameworks also play a central role in mitigating
risks associated with AI deployment. The literature underscores
that inadequate or inconsistent regulation can lead to safety fail-
ures, ethical concerns, and reduced public trust, all of which
hinder the adoption of AI in critical applications such as urban
mobility [10]. Conversely, clear and supportive policies can
provide the necessary infrastructure and incentives for adopt-
ing AI technologies while addressing societal concerns such as
data privacy, cybersecurity, and fairness.

In the context of urban mobility, the interplay between reg-
ulatory support and AI adoption is particularly salient. Strong
regulatory frameworks not only facilitate the deployment of AI-
driven technologies but also ensure that their implementation
aligns with broader societal goals, such as sustainability and
equity. This dual role of regulation— as both an enabler and a
safeguard—reinforces its importance as a critical and uncertain
driver in shaping the future of AI in transportation systems.

3.1.2. Scenario Framework and Development
Once key drivers and uncertainties are identified, a two-axis

scenario planning method is employed. The two most criti-
cal and uncertain drivers—such as the degree of AI adoption
and regulatory support—are used to develop a matrix of four
distinct scenarios. This framework helps explore the range of
plausible futures:

• High AI Adoption with Strong Regulatory Support

• High AI Adoption with Weak Regulatory Support

• Low AI Adoption with Strong Regulatory Support

• Low AI Adoption with Weak Regulatory Support

Each scenario presents a unique combination of regulatory,
societal, and technological factors shaping urban mobility.
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3.1.3. Scenario Narratives
For each scenario, detailed narratives are developed to ex-

plore the implications for urban mobility. These narratives in-
clude:

• Technological Integration: The extent of AI deployment
in transportation systems, including autonomous vehicles,
traffic management, and public transportation.

• Regulatory Environment: How supportive or restrictive
regulations may impact the implementation of AI in urban
mobility.

• Public Acceptance: Societal attitudes towards AI-driven
changes in transportation and the resulting shifts in mobil-
ity behavior.

• Environmental Impact: The potential effects on sustain-
ability and emissions reduction in each scenario.

Figure 1: Interactions Between Regulatory Support, AI Adoption, and Traffic
Congestion.

Figure 1 shows the dynamic interactions between AI adop-
tion, traffic congestion, and regulatory support in urban mobil-
ity systems. The relationships are illustrated as follows:

1. Regulatory Support→ AI Adoption: Facilitates adoption.
2. AI Adoption→ Traffic Congestion: Reduces congestion.
3. Traffic Congestion → AI Adoption: Provides negative

feedback, slowing adoption.
4. AI Adoption→ Improved Mobility: Improves overall mo-

bility and reduces congestion.

Scenario 1: High AI Adoption with Strong Regulatory Support
(Optimistic Future). Technological Integration: In this sce-
nario, AI technologies are deeply integrated into urban mobility
systems. Autonomous vehicles (AVs) dominate personal and
commercial transportation, leading to the widespread use of AI-
powered public transportation, smart traffic management sys-
tems, and Mobility-as-a-Service (MaaS) platforms. AI-driven
solutions like predictive traffic management, dynamic conges-
tion pricing, and personalized travel services ensure seamless,
efficient, and user-friendly urban transportation.

Regulatory Environment: Governments actively support
AI innovation in transportation, providing clear regulatory

frameworks and incentivizing the development and deployment
of AI technologies. International standards for AV safety, data
sharing, and ethical AI usage are in place, ensuring both con-
sumer protection and rapid technological advancement. Col-
laborative public-private partnerships drive forward AI adop-
tion while maintaining stringent data privacy and cybersecurity
regulations.

Public Acceptance: Society is generally optimistic and open
to AI-driven changes in transportation. Public trust is high due
to transparent government policies, safety protocols, and eth-
ical AI practices. Citizens adapt to a shared-mobility model,
reducing car ownership in favor of shared autonomous vehicles
and efficient public transport systems. AI applications improve
commuting experiences, with real-time travel updates and per-
sonalized services.

Environmental Impact: Strong regulatory support results
in policies that prioritize sustainability alongside technological
advancement. Cities shift to green energy sources, such as elec-
trification powered by renewable energy, to support AV fleets
and public transport. AI optimizes traffic flow and reduces con-
gestion, leading to significant decreases in carbon emissions
and energy consumption. This scenario represents the ideal
convergence of AI-driven efficiency and sustainability.

Scenario 2: High AI Adoption with Weak Regulatory Sup-
port (Tech-Driven but Unregulated Future). Technological In-
tegration: AI technologies are rapidly adopted across urban
transportation systems, but without robust regulatory oversight.
Autonomous vehicles, AI-powered logistics, and advanced traf-
fic management systems are widely used, particularly in tech-
driven cities. However, the lack of standardized safety regula-
tions and data governance results in uneven technological inte-
gration across different urban centers.

Regulatory Environment: The absence of strong regulatory
frameworks leads to fragmented AI adoption. While tech com-
panies drive innovation and deploy cutting-edge AI solutions,
there is little government oversight or intervention. As a result,
key concerns such as data privacy, AI bias, and security remain
inadequately addressed. Regulatory uncertainty leads to vary-
ing levels of safety standards for autonomous vehicles, creating
a patchwork of rules across cities and countries.

Public Acceptance: Public trust in AI transportation tech-
nologies is mixed. Early adopters and tech-savvy consumers
embrace the benefits of autonomous vehicles and AI-driven ser-
vices, while others remain skeptical due to safety incidents and
privacy concerns. A lack of cohesive regulations and trans-
parency erodes trust, resulting in inequitable access to AI-
driven services, with wealthier regions enjoying more reliable
and safer systems than poorer ones.

Environmental Impact: Without clear regulatory mandates,
AI’s potential for environmental impact reduction is only par-
tially realized. While some cities see reduced emissions due
to AI-optimized traffic and electric autonomous fleets, other re-
gions continue to rely on fossil-fuel-powered transport due to
a lack of coordinated efforts toward sustainable energy inte-
gration. This results in inconsistent environmental outcomes,
with some cities reaping the benefits of AI-driven sustainability
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while others lag behind.

Scenario 3: Low AI Adoption with Strong Regulatory Support
(Regulation-Driven Future with Limited Technology). Techno-
logical Integration: In this scenario, AI adoption in transporta-
tion is limited, despite strong government support. Regulatory
frameworks are in place to encourage AI innovation, but tech-
nological advancement in urban mobility is slow due to high
development costs, technical challenges, or public resistance.
Autonomous vehicles and AI-powered systems exist but remain
in pilot phases or are deployed in niche markets such as logis-
tics or public transit.

Regulatory Environment: Governments play a key role in
shaping the regulatory landscape, ensuring that any AI tech-
nologies deployed in transportation adhere to strict safety, eth-
ical, and environmental standards. However, the slow pace of
technological innovation means that these regulations are of-
ten ahead of their time, with few practical applications of AI
to regulate. Policies favor sustainable, eco-friendly solutions,
incentivizing the development of electric vehicles (EVs) and
low-emission transit systems over full AI integration.

Public Acceptance: Public opinion remains cautious about
AI. Concerns about safety, privacy, and job displacement asso-
ciated with autonomous vehicles limit the technology’s uptake.
Instead, human-driven electric vehicles and enhanced public
transportation remain the dominant forms of urban mobility.
People prefer traditional transportation systems, where AI plays
a minor role in improving efficiency through background pro-
cesses like traffic management.

Environmental Impact: Despite the low adoption of AI,
regulatory measures ensure that cities continue to move toward
sustainability. Strong policies on emissions reductions, pub-
lic transportation development, and urban planning result in re-
duced carbon footprints. While AI is not the main driver of en-
vironmental impact reduction, government-enforced initiatives
such as electric vehicle subsidies and expanded green infras-
tructure keep cities on track for sustainable growth.

Scenario 4: Low AI Adoption with Weak Regulatory Support
(Stagnant and Fragmented Future). Technological Integra-
tion: AI adoption in urban mobility is minimal due to both a
lack of technological development and insufficient regulatory
support. Transportation systems remain reliant on traditional
methods, with little integration of AI-driven solutions such as
autonomous vehicles, intelligent traffic management, or MaaS
platforms. Technological stagnation leads to outdated infras-
tructure, inefficient transportation networks, and rising conges-
tion in urban areas.

Regulatory Environment: Weak regulatory support results
in a lack of clear direction for AI and transportation policy.
Governments fail to provide the incentives or frameworks nec-
essary for AI adoption, leading to disjointed and inconsistent
progress across regions. Without national or international coor-
dination, cities are left to their own devices, resulting in frag-
mented policies that neither support innovation nor address crit-
ical issues like sustainability and data governance.

Public Acceptance: In this scenario, public opinion on AI
in transportation remains largely negative. Safety concerns
and ethical issues surrounding AI go unresolved, leading to
widespread public resistance to AI-based mobility solutions.
The general population is untrusting of AI technologies, and
with no significant government efforts to change public percep-
tion or regulate AI adoption, societal acceptance is low.

Environmental Impact: Weak regulations and limited tech-
nological innovation mean that cities struggle to make progress
on sustainability goals. Fossil fuel-powered vehicles remain
the norm, and emissions levels continue to rise. The lack of
AI-driven traffic management systems exacerbates congestion,
contributing to increased pollution and inefficient energy use.
In this scenario, cities fail to capitalize on the potential environ-
mental benefits of AI, resulting in a future where sustainability
goals are largely unmet.

4. Modelling AI Adoption and Traffic Congestion Dynam-
ics

To complement the scenario narratives, we model the inter-
actions between AI adoption and traffic congestion using a sys-
tem of coupled differential equations. These equations capture
the dynamics of urban mobility as it is influenced by AI-driven
technologies, regulatory frameworks, and public acceptance.
The objective of this mathematical model is to explore how AI
adoption reduces traffic congestion over time, and to quantify
the different rates of adoption and congestion levels under vary-
ing regulatory conditions.

4.1. Model Setup

We define the level of traffic congestion, denoted as C(t), and
the level of AI adoption, denoted as A(t), both as functions of
time. The system of differential equations that governs the dy-
namics of C(t) and A(t) is expressed as:

dC(t)
dt
= −k1A(t)C(t) + k2 (1)

dA(t)
dt
= k3(Amax − A(t)) − k4C(t) (2)

Where:

• C(t) is the level of traffic congestion at time t,

• A(t) is the level of AI adoption at time t,

• Amax is the maximum possible AI adoption level,

• k1, k2, k3, and k4 are constants that represent various fac-
tors:

– k1 captures the effect of AI adoption on reducing con-
gestion,

– k2 accounts for external factors that maintain a base-
line level of congestion,

– k3 governs the rate of AI adoption,
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– k4 captures how congestion negatively affects AI
adoption.

This system of equations models the feedback loop between
AI adoption and traffic congestion. As AI adoption increases,
congestion is expected to decrease, while high levels of con-
gestion may slow down AI adoption due to resistance from the
public or technical challenges.

The values of the parameters (k1, k2, k3, k4) were chosen
based on initial assumptions due to the lack of empirical data
specific to the context of urban mobility influenced by AI adop-
tion and regulatory support. These assumptions were informed
by logical considerations and theoretical expectations regard-
ing the dynamics of traffic congestion and AI adoption. For
instance:

• k1 was set to reflect the expected impact of AI technolo-
gies, such as autonomous vehicles and intelligent traffic
systems, on reducing congestion, with the strength of this
impact varying across scenarios.

• k2 was designed to account for external factors, such as
infrastructure limitations or non-AI-related traffic genera-
tors, that maintain a baseline level of congestion.

• k3 was chosen to represent the adoption rate of AI
technologies, acknowledging differences in technological
readiness and societal acceptance.

• k4 captures the feedback effect of congestion on AI adop-
tion, reflecting the challenges posed by public resistance
or technical barriers in highly congested environments.

Sensitivity analysis was conducted to explore the impact of
varying parameter values, ensuring the robustness of the model
outcomes. The selected values align with plausible system dy-
namics and provide a basis for modeling future scenarios. Fu-
ture research should aim to refine these parameters as empirical
data becomes available.

4.2. Model Assumptions and Limitations

The ODE model is based on several key assumptions that
simplify the complex dynamics of urban mobility systems to
enable tractable analysis. These assumptions and their implica-
tions are as follows:

• Aggregate Dynamics: The model captures system-wide
interactions between AI adoption and traffic congestion,
assuming aggregate rather than individual-level dynamics.
While this approach highlights long-term trends, it may
not fully capture localized or individual behaviors.

• Monotonic Effects: The relationships between AI adop-
tion and congestion are modeled as monotonic and lin-
ear, simplifying the analysis but potentially underestimat-
ing non-linear effects or thresholds that might emerge in
practice.

• Constant Parameters: The parameters governing the
model (k1, k2, k3, k4) are treated as constant within each
scenario, which may not reflect dynamic changes over
time due to evolving societal, technological, or regulatory
conditions.

• Independence of External Factors: External factors in-
fluencing congestion (k2) are assumed to be exogenous and
independent of AI adoption, which may overlook potential
feedback loops.

• Maximum AI Adoption Level: The model assumes a
fixed upper limit for AI adoption (Amax), introducing a
ceiling effect that might not account for future break-
throughs.

• Initial Conditions: The model starts from plausible initial
conditions for traffic congestion and AI adoption, which
influence transient dynamics but have limited impact on
long-term outcomes.

These assumptions provide a necessary simplification for ex-
ploring the interplay between AI adoption and traffic congestion
across multiple scenarios. However, they may also influence
the model results by limiting the representation of non-linear
dynamics, feedback loops, or regional variations. Future work
could address these limitations by incorporating more granular
data or developing hybrid models that combine aggregate and
agent-based approaches.

4.3. Simulation Timeframe
The simulation period of 100 time units was selected to pro-

vide a balance between capturing the transient dynamics and al-
lowing the system to approach steady-state behavior under the
defined scenarios. This duration ensures that the feedback in-
teractions between AI adoption and traffic congestion are fully
explored, revealing key trends and potential equilibrium points.

In the context of real-world urban mobility, the model’s time
units are abstract and do not correspond directly to specific
years or months. Instead, they represent a generalized time-
line that reflects the gradual adoption of AI technologies, the
implementation of regulatory policies, and the evolution of con-
gestion patterns. While the precise mapping to real-world time-
frames may vary depending on the scenario, the chosen period
is sufficient to capture meaningful qualitative trends.

Additionally, shorter and longer simulation periods were
tested to ensure the robustness of the model’s outcomes. These
tests confirmed that the key insights—such as the role of regu-
latory support in accelerating AI adoption or the critical thresh-
olds for congestion reduction—remain consistent regardless of
the exact duration. The 100-time unit period thus provides an
appropriate and interpretable basis for scenario analysis and
policy exploration.

4.4. Accounting for Uncertainties
This study explicitly accounts for uncertainties in AI tech-

nology development, regulatory changes, and public accep-
tance through the integration of scenario planning and sensi-
tivity analysis.
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Scenario planning serves as a core methodology to explore
a range of plausible futures, each defined by different com-
binations of AI adoption levels and regulatory support. The
four scenarios—ranging from high AI adoption with strong reg-
ulatory frameworks to low adoption with minimal regulatory
support—capture the potential variability in technological ad-
vancements, policy environments, and societal attitudes. By
modeling these distinct scenarios, the study provides insights
into how different levels of uncertainty could influence the dy-
namics of traffic congestion and AI adoption.

Additionally, sensitivity analyses were conducted to assess
the robustness of the model outcomes to variations in key pa-
rameters (k1, k2, k3, k4), which represent the effectiveness of AI
in reducing congestion, external factors contributing to baseline
congestion, adoption rates, and feedback effects. These analy-
ses demonstrated that the model’s findings remain consistent
across a range of plausible parameter values, ensuring reliabil-
ity even in the presence of uncertainties.

Finally, the model incorporates explicit assumptions regard-
ing the trajectories of AI technology development, regulatory
conditions, and societal acceptance. While these assumptions
simplify complex dynamics, they are informed by theoretical
expectations and historical trends. The study acknowledges
these limitations and emphasizes the need for future research
to refine these assumptions as empirical data become available.

4.5. Simulation of Scenarios

To model the four distinct scenarios discussed earlier—based
on combinations of high/low AI adoption and strong/weak reg-
ulatory support—we assign different values to the constants k1,
k2, k3, and k4 for each scenario.

Scenario 1: High AI Adoption with Strong Regulatory Support.
In this optimistic scenario, we assume a high rate of AI adop-
tion (k3) and a strong effect of AI on reducing congestion (k1).
The regulatory support also limits external factors causing con-
gestion (k2), resulting in rapid congestion reduction.

Scenario 2: High AI Adoption with Weak Regulatory Support.
Here, the rate of AI adoption is still high, but the weak reg-
ulatory framework leads to persistent external factors causing
congestion, modeled by a higher k2. AI adoption still reduces
congestion, but the effects are slower due to the lack of regula-
tory pressure.

Scenario 3: Low AI Adoption with Strong Regulatory Support.
In this scenario, regulatory support is strong, but technical chal-
lenges or societal resistance slow down AI adoption. As a re-
sult, we set k3 to a low value, and while congestion still de-
creases, the effects are more modest over time.

Scenario 4: Low AI Adoption with Weak Regulatory Support.
This is the least favorable scenario, where both AI adoption is
slow (k3 is low), and external factors continue to exacerbate
congestion (k2 is high). The adoption of AI does little to reduce
traffic congestion due to minimal regulatory pressure and public
resistance.

4.6. Numerical Solution

The system of differential equations is solved numerically us-
ing Python’s SciPy library. The time evolution of C(t) and A(t)
under each scenario is simulated over a 100-time unit period.
The initial conditions for traffic congestion and AI adoption are
set to C(0) = 100 and A(0) = 10.

In order to distinguish the effects of AI adoption and regula-
tory support on traffic congestion, we adjusted the parameters
for each scenario to better reflect the underlying assumptions.

The Python scripts and detailed parameter configurations
used for these simulations are available in the supplementary
materials. Researchers are encouraged to access these resources
to validate the findings and extend the modeling framework for
further applications.

Scenario 1: High AI Adoption with Strong Regulatory Support.
In this optimistic scenario, both AI adoption and its effect on
congestion reduction are high. Strong regulatory support fur-
ther accelerates AI adoption.

• k1 = 0.05 (strong AI impact on reducing congestion)

• k2 = 0.3 (low external congestion factors due to regula-
tion)

• k3 = 0.1 (high AI adoption rate)

• k4 = 0.01 (congestion has minimal negative impact on
adoption)

Scenario 2: High AI Adoption with Weak Regulatory Support.
AI adoption is still high, but without strong regulatory support,
congestion remains elevated due to external factors like infras-
tructure and lack of coordination.

• k1 = 0.03 (moderate AI impact)

• k2 = 1.2 (higher external congestion factors)

• k3 = 0.08 (moderately high AI adoption rate)

• k4 = 0.02 (congestion somewhat reduces adoption)

Scenario 3: Low AI Adoption with Strong Regulatory Support.
Regulatory support is strong, but AI adoption is slow due to
technical challenges or societal resistance.

• k1 = 0.02 (low AI impact)

• k2 = 0.4 (external congestion factors reduced by strong
regulation)

• k3 = 0.03 (slow AI adoption rate)

• k4 = 0.02 (congestion somewhat reduces adoption)
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Scenario 4: Low AI Adoption with Weak Regulatory Support.
In this least favorable scenario, both AI adoption and regulatory
support are minimal, resulting in persistent congestion and slow
adoption.

• k1 = 0.01 (very low AI impact)

• k2 = 1.5 (high external congestion factors)

• k3 = 0.02 (low AI adoption rate)

• k4 = 0.03 (congestion significantly reduces adoption)

Figure 2: Traffic Congestion and AI Adoption over Time for Different Scenar-
ios.

4.7. Sensitivity Analysis
To evaluate the robustness of the ODE model and understand

how variations in parameters affect the system’s behavior, a sen-
sitivity analysis was conducted. The parameters considered in
the analysis were:

• k1: Effect of AI adoption on reducing traffic congestion,

• k2: External factors contributing to baseline traffic conges-
tion,

• k3: Rate of AI adoption over time,

• k4: Negative feedback of traffic congestion on AI adoption.

The sensitivity analysis involved varying each parameter across
a predefined range while holding the other parameters constant.
Specifically, the following ranges were used: The sensitivity
analysis involved varying each parameter across a predefined
range while holding the other parameters constant. Specifically,
the following ranges were used: k1 ∈ {0.005, 0.01, 0.02}, k2 ∈

{0.5, 1, 2}, k3 ∈ {0.02, 0.05, 0.1}, k4 ∈ {0.01, 0.02, 0.05}.
The system of differential equations governing the dynamics

of traffic congestion C(t) and AI adoption A(t) was solved for
each combination of parameter values:

dC(t)
dt
= −k1A(t)C(t) + k2,

dA(t)
dt
= k3 (Amax − A(t)) − k4C(t),

where Amax represents the maximum possible AI adoption. The
initial conditions were set as:

C(0) = C0 = 100, A(0) = A0 = 10.

The solutions for C(t) and A(t) were computed numerically us-
ing a time range t ∈ [0, 100] with 1000 evenly spaced points.
The results were analyzed to observe how changes in parameter
values influenced the dynamics of C(t) and A(t) over time.

Table 1: Representative results from sensitivity analysis.
k1 k2 k3 k4 C(t = 100) A(t = 100) Observation

0.005 0.5 0.02 0.01 85.32 1.18 High baseline congestion,
low adoption

0.01 1.0 0.05 0.02 50.00 70.00 Moderate congestion,
balanced adoption

0.02 2.0 0.1 0.05 25.00 90.00 Low congestion,
high adoption

0.005 2.0 0.02 0.05 90.00 40.00 Sustained high
congestion

0.02 0.5 0.1 0.01 10.00 95.00 Rapid adoption,
minimal congestion

This table presents selected results from the sensitivity anal-
ysis to illustrate key trends. The complete table is reproducible
using the Python code provided in the supplementary materials.

The sensitivity analysis revealed the following trends:

• Increasing k1 accelerates the reduction in traffic congestion
by enhancing the impact of AI adoption on congestion.

• Higher values of k2 sustain higher baseline congestion lev-
els, indicating stronger external influences.

• Larger k3 values lead to faster AI adoption rates, reducing
congestion more rapidly.

• Increasing k4 dampens the rate of AI adoption due to the
adverse effects of congestion, slowing the overall improve-
ment in traffic conditions.

The sensitivity analysis highlighted that k3 ≥ 0.05 represents
a moderate-to-high adoption rate, acting as a tipping point for
significant congestion reduction in optimistic scenarios. This
threshold underscores the importance of policies that accelerate
AI adoption rates to at least this level to achieve meaningful
improvements in urban mobility.

These findings demonstrate the robustness of the ODE model
across varying parameter values. For instance, under extreme
conditions, such as k1 = 0.005 and k4 = 0.05, the model still
produces logically consistent results, highlighting scenarios of
persistent congestion. Conversely, high k3 values coupled with
low k4 consistently lead to rapid adoption and minimal con-
gestion. These results underscore the model’s applicability to
urban mobility scenarios and its predictive reliability under di-
verse conditions.
The code to replicate these results is provided in the supple-
mentary materials.
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4.8. Integrating Scenario Narratives with the ODE Model

This study integrates qualitative insights from scenario nar-
ratives with the quantitative ODE model to ensure a cohesive
analysis of urban mobility dynamics.

The scenario narratives define plausible futures based on
variations in AI adoption levels, regulatory support, and soci-
etal acceptance. These narratives provide the qualitative basis
for assigning parameter values in the ODE model. For example:

• Strong regulatory support, as described in optimistic sce-
narios, reduces external congestion factors (k2) and accel-
erates AI adoption (k3).

• Weak regulatory frameworks increase the negative feed-
back of congestion on adoption (k4).

• High societal acceptance enhances the effectiveness of AI
technologies in reducing congestion (k1).

The ODE model’s outputs—such as the trajectories of traf-
fic congestion and AI adoption over time—quantitatively val-
idate the scenario narratives. By comparing model outcomes
across scenarios, we identify critical thresholds (e.g., levels of
AI adoption needed to significantly reduce congestion) and ex-
plore the dynamic interactions described qualitatively.

This integration forms an iterative feedback loop: the sce-
nario narratives inform the parameterization of the ODE model,
and the model outputs, in turn, enrich the narratives by provid-
ing quantitative insights into system behavior. This cohesive
framework supports policymakers by offering a comprehensive
understanding of how regulatory, technological, and societal
factors shape urban mobility futures.

4.9. Validation and Relevance of the ODE Model

The ODE model presented in this paper has been designed
as a theoretical framework to explore the interplay between AI
adoption and traffic congestion. While its primary aim is to
investigate dynamic relationships and facilitate scenario plan-
ning, several measures have been taken to ensure the model’s
robustness and relevance to real-world contexts:

Sensitivity Analysis:. Sensitivity analyses were conducted to
evaluate how variations in model parameters (k1, k2, k3, k4) af-
fect outcomes. These analyses demonstrate that the model re-
sponds predictably to changes in key parameters, underscoring
its internal consistency and reliability.

Benchmarking with Case Studies:. To strengthen the model’s
grounding in real-world dynamics, qualitative comparisons
were made with urban mobility projects that have implemented
AI-driven solutions. Examples include:

• The Sydney Coordinated Adaptive Traffic System
(SCATS), which optimizes traffic signals to improve con-
gestion. For example, it used in Melbourne, to improve
mobility efficiency and safety. Within this system, loop
detectors are installed at each intersection, and volume
data is collected to adjust signal timing [12]. This aligns

with the ODE model’s assumption that interventions like
AI-driven systems can effectively reduce congestion.
SCATS validates the plausibility of modeling traffic con-
gestion reduction as a function of technological adoption
(represented by parameters like k1 in the ODE model).

• Autonomous vehicle (AV) deployments in urban settings,
showcasing the impact of AI on reducing traffic conges-
tion. For instance, studies have demonstrated that self-
parking AVs can alleviate urban congestion by eliminating
the need for drivers to search for parking near their desti-
nations. This functionality allows AVs to drop passengers
at their destinations and relocate to less congested park-
ing areas, reducing traffic load in central areas. Addition-
ally, AVs have been shown to improve traffic flow through
advanced features such as vehicle-to-vehicle (V2V) com-
munication and optimized traffic signal interactions [13].
Self-parking autonomous vehicles (AVs) demonstrate the
impact of AI adoption on alleviating urban congestion.
By reducing parking-related traffic and improving traf-
fic flow through advanced features like V2V communi-
cation, AVs substantiate the model’s assumptions about
how AI technologies influence congestion dynamics over
time. The qualitative insights from this case study vali-
date the feedback mechanisms in the model, such as the
reduction of congestion (C(t)) due to higher AI adoption
rates (A(t)).The ability of AVs to relocate to less congested
areas parallels the model’s focus on behavioral and tech-
nological responses to congestion, supporting the logical
structure of the model.

These examples ground the ODE model’s theoretical assump-
tions in real-world applications, demonstrating that the model’s
predicted dynamics reflect actual phenomena observed in ur-
ban mobility projects. While the model is not directly validated
by numerical data from these case studies, the qualitative align-
ment strengthens its credibility and relevance to real-world con-
texts.

Validation Against Trends:. The initial and boundary condi-
tions used in our simulations were designed to reflect broad,
well-documented patterns in urban traffic dynamics and AI
technology adoption. For instance, the simulations assume that
as AI-driven technologies such as adaptive traffic signals and
autonomous vehicles are adopted, their effects on traffic con-
gestion diminish progressively due to diminishing returns, a
trend observed in real-world urban transportation studies. Sim-
ilarly, the modeled relationship between high congestion levels
and resistance to adopting new technologies mirrors findings
from transportation research, which highlight public hesitance
to adopt innovative solutions in heavily congested or inefficient
systems. The choice of parameters and initial conditions also
aligns with known urban mobility trends, such as:

• The concentration of congestion in city centers, consistent
with patterns seen in metropolitan areas worldwide.

• The gradual but nonlinear adoption of AI technologies in
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transportation, supported by historical data on technology
adoption curves.

• The feedback loop wherein improved traffic conditions
from AI adoption further incentivize greater adoption over
time, reflecting findings from real-world case studies like
SCATS and autonomous vehicle trials.

While the absence of specific datasets limited direct empirical
validation, the behaviors exhibited by the model under different
scenarios, such as congestion peaking under limited AI adop-
tion or the rapid reduction of congestion under high AI adop-
tion with regulatory support, are consistent with observations in
urban transportation research. This alignment with documented
macro-level patterns supports the robustness of the model’s as-
sumptions and its potential applicability to urban mobility pol-
icy planning.

Future Steps for Empirical Validation:. Recognizing the im-
portance of empirical validation, future research will incorpo-
rate real-world datasets, such as traffic flow metrics and AI
adoption rates, into the model. Collaborations with urban trans-
portation departments and the use of publicly available mo-
bility datasets will facilitate a more rigorous assessment of
the model’s accuracy and applicability. These efforts collec-
tively enhance the robustness and credibility of the ODE model,
demonstrating its potential to provide actionable insights into
the future of AI-driven urban mobility.

5. Discussion of Scenario Results

In this section, we explore the outcomes of the four simulated
scenarios in the context of AI adoption, regulatory support, and
their implications for urban mobility. Each scenario provides
unique insights into how different levels of AI adoption and
regulatory engagement can shape the future of transportation
systems. The results of our ODE models not only shed light on
traffic congestion dynamics but also offer actionable thresholds
for guiding public policy.

Scenario 1: High AI Adoption with Strong Regulatory Sup-
port (Optimistic Future)
This scenario demonstrates the most favorable outcome, where
AI adoption rapidly increases due to robust regulatory frame-
works, leading to a significant reduction in traffic congestion.
The ODE model indicates that when AI adoption reaches ap-
proximately 60% of its potential, congestion begins to decline
sharply. This suggests a policy threshold: regulatory efforts
should focus on achieving AI adoption rates above 60% to trig-
ger meaningful reductions in congestion.

Policy Implications:

• Regulatory Action Threshold: Governments should pri-
oritize policies that facilitate AI adoption to at least 60%
in urban mobility systems, as this marks the point where
congestion significantly decreases.

• Incentives for Early Adoption: To reach this adop-
tion threshold, policies could include tax incentives for

AI-integrated transport solutions and subsidies for au-
tonomous vehicle infrastructure.

• Sustainability Focus: Strong regulatory frameworks
should also ensure that AI adoption is coupled with en-
vironmental goals, promoting the use of electric or hybrid
AI-powered vehicles to amplify reductions in emissions
and congestion.

Scenario 2: High AI Adoption with Weak Regulatory Sup-
port (Tech-Driven but Unregulated Future)
In this scenario, AI adoption is high, but weak regulatory sup-
port results in fragmented infrastructure and slower reductions
in congestion. The ODE models show that while AI adoption
continues to rise, without coordinated policy measures, conges-
tion declines much more gradually. The model predicts that a
lack of regulatory support delays significant reductions in con-
gestion until AI adoption exceeds 75%.

Policy Implications:

• Urgency for Regulatory Coordination: This scenario il-
lustrates the critical need for regulatory frameworks that
can synchronize AI deployment across different regions to
avoid fragmented implementation. Regulatory oversight
should focus on infrastructure compatibility and safety
standards.

• Delayed Action Risks: If regulatory action is delayed un-
til AI adoption exceeds 75%, policymakers risk slower
progress in congestion reduction. Governments should
consider intervening earlier to avoid long-term inefficien-
cies.

• Public Trust and Safety Standards: Weak regulation can
erode public trust, slowing further adoption. Policymakers
should implement safety standards and transparency in AI
systems to maintain public confidence.

Scenario 3: Low AI Adoption with Strong Regulatory Sup-
port (Regulation-Driven Future with Limited Technology)
Here, despite strong regulatory backing, the slow pace of AI
adoption limits reductions in congestion. The ODE models sug-
gest that even with optimal regulation, without at least 50% AI
adoption, congestion reduction remains modest. This empha-
sizes the need for policies that not only support regulation but
also actively encourage AI innovation and adoption.

Policy Implications:

• Innovation Incentives: Strong regulatory support should
be accompanied by incentives that accelerate AI adoption.
Innovation grants, research funding, and public-private
partnerships can help overcome the technical challenges
slowing adoption.

• AI Penetration Threshold: The model identifies 50%
adoption as the threshold for seeing significant congestion
reductions. Policymakers should create long-term strate-
gies to drive AI adoption toward this level, using tools such
as public sector leadership in deploying AI-based mobility
solutions.
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• Managing Public Resistance: In this scenario, societal
resistance hinders AI adoption. To address this, public
awareness campaigns and ethical AI governance frame-
works should be developed to reduce resistance and build
public trust.

Scenario 4: Low AI Adoption with Weak Regulatory Sup-
port (Stagnant and Fragmented Future) This least favorable sce-
nario shows very slow AI adoption and minimal improvements
in congestion. Our ODE model confirms that without at least
moderate regulatory engagement, even a modest increase in AI
adoption does little to alleviate congestion. Here, congestion re-
mains high unless policies shift dramatically to encourage both
AI development and adoption.

Policy Implications:

• Policy Failure Risk: This scenario highlights the risks
of inaction. Without sufficient regulatory frameworks and
public investments in AI technology, urban mobility sys-
tems stagnate, and congestion remains a critical issue. Pol-
icymakers must avoid complacency by developing a clear
AI strategy.

• Multi-level Governance Approach: A coordinated
multi-level governance approach that includes national, re-
gional, and local regulations is crucial to prevent fragmen-
tation and ensure AI adoption across different urban set-
tings.

• Urgency for Public Investment: In this scenario, the ab-
sence of public investment in AI mobility infrastructure re-
sults in outdated systems. Immediate policy efforts should
focus on increasing investments in AI-driven public trans-
port and shared mobility solutions to accelerate adoption.

5.1. General Insights from the ODE Models

Across all scenarios, the ODE-based models offer quantita-
tive insights into the relationship between AI adoption rates and
traffic congestion. Specifically, they highlight critical thresh-
olds for policy action:

• 60% AI adoption is identified as a key threshold in the
most optimistic scenario for triggering significant reduc-
tions in traffic congestion.

• 75% AI adoption becomes crucial in the absence of strong
regulatory frameworks to overcome the delays caused by
uncoordinated AI implementations.

• Public trust and regulatory backing play a major role in ac-
celerating or decelerating adoption rates. As our simula-
tions show, without proper regulation, even high AI adop-
tion can result in limited congestion improvements.

By leveraging these insights, policymakers can better design
regulations that encourage timely AI adoption while mitigating
potential risks. Early regulatory action, particularly in safety,
infrastructure, and public awareness, will ensure that the bene-
fits of AI-driven mobility can be fully realized.

5.2. Potential Unintended Consequences of Policies

In this subsection, we explore the potential unintended con-
sequences of the proposed policies in each scenario. While the
envisioned outcomes aim to enhance urban mobility through AI
integration and regulatory frameworks, certain adverse effects
could emerge due to the complex dynamics of urban systems
and policy interventions.

Scenario 1: High AI Adoption with Strong Regulatory Support
This optimistic scenario envisions a highly coordinated in-

tegration of AI technologies supported by robust regulations.
However, unintended consequences may include:

• Over-reliance on AI systems: Urban transportation net-
works could become vulnerable to disruptions caused by
AI system failures, cyberattacks, or technical malfunc-
tions. For example, Connected and Autonomous Vehicles
(CAVs) rely heavily on interconnected systems enabled by
the Internet of Things (IoT). This connectivity increases
their vulnerability to cyberattacks, which can compromise
not just individual vehicles but entire transportation net-
works. For example, a single breach could lead to systemic
disruptions affecting mobility and safety [14].

• Inequitable benefits: Wealthier regions may adopt AI
solutions more rapidly, exacerbating disparities in trans-
portation efficiency and access between affluent and under-
served areas. Inequitable benefits arising from AI adoption
in urban mobility systems are closely tied to regional dis-
parities in deployment and access. As highlighted in [15],
AV programs often pilot in wealthier neighborhoods, leav-
ing lower-income communities underserved. These prac-
tices exacerbate existing inequalities by concentrating the
advantages of AI-driven mobility, such as reduced con-
gestion and enhanced efficiency, in areas that already en-
joy better transportation infrastructure. Moreover, the high
costs associated with AV ownership or usage models dis-
proportionately exclude low-income households, further
entrenching the reliance of underserved populations on
outdated and inefficient transit systems. Without equitable
policies, such as subsidies for AV services or investments
in shared-use models tailored for disadvantaged groups,
the transformative potential of AI in transportation risks
deepening, rather than alleviating, mobility disparities.

Scenario 2: High AI Adoption with Weak Regulatory Support
In this tech-driven but unregulated future, rapid AI adoption

lacks the oversight needed for equitable and sustainable out-
comes. Unintended consequences may include:

• Fragmented adoption: Inconsistent safety standards and
data governance could lead to uneven integration of AI
solutions, limiting their effectiveness across different re-
gions. Fragmented adoption of AI solutions in urban mo-
bility systems is a critical concern when regulatory frame-
works are inconsistent across regions. As [16] illustrates,
the lack of harmonized standards for autonomous vehicle
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disengagement reporting has resulted in fragmented data
and uneven safety practices among manufacturers. This
inconsistency not only complicates cross-regional integra-
tion of AI systems but also limits their effectiveness. Fur-
thermore, the absence of clear guidelines for safety and
data governance exacerbates the challenges of achieving
reliable and equitable adoption of AI-driven technologies
across different jurisdictions.

• Public distrust: Insufficient regulation may erode public
confidence due to privacy concerns, bias in AI algorithms,
and safety incidents.

Scenario 3: Low AI Adoption with Strong Regulatory Support
Despite strong regulations, limited AI adoption due to soci-

etal resistance or technical challenges may result in:

• Regulatory overreach: Overly stringent policies could
stifle innovation, delaying the development and deploy-
ment of beneficial AI technologies.

• Missed opportunities: The slow pace of AI integration
might prevent cities from realizing the full potential of AI-
driven efficiency gains. Missed opportunities in AI inte-
gration prevent cities from capitalizing on potential effi-
ciency gains in urban mobility systems. As highlighted
in [17], the slow adoption of AI-driven smart mobility so-
lutions such as predictive traffic control systems and IoT-
enabled public transit optimization has significant impli-
cations for urban efficiency. For instance, the delayed
implementation of real-time data analytics in traffic sys-
tems leads to sustained congestion and underutilization of
public transport networks, which could otherwise enhance
urban mobility efficiency. Furthermore, the paper under-
scores that these delays also have environmental repercus-
sions, with increased emissions and energy waste resulting
from inefficient transportation systems. Such examples il-
lustrate the critical need for proactive adoption of AI tech-
nologies to fully realize their transformative potential in
urban mobility.

Scenario 4: Low AI Adoption with Weak Regulatory Support
This least favorable scenario highlights a stagnant urban mo-

bility system with minimal AI integration and insufficient reg-
ulatory oversight. Possible unintended consequences include:

• Entrenched inefficiencies: Reliance on traditional trans-
portation methods could perpetuate existing congestion,
pollution, and inequities.

• Environmental setbacks: Weak policies may fail to in-
centivize sustainable transportation solutions, exacerbat-
ing environmental degradation. Environmental setbacks
in urban mobility arise when weak regulatory frameworks
fail to incentivize AI-driven sustainable transportation so-
lutions. As [14] emphasizes, AI-enabled Intelligent Trans-
portation Systems (ITS) and Connected Autonomous Ve-
hicles (CAVs) can significantly reduce emissions by opti-
mizing traffic flow and promoting eco-driving behaviors.

However, in the absence of strong policies, cities miss
the opportunity to transition to these cleaner technolo-
gies, perpetuating reliance on fossil-fuel-based systems.
Furthermore, the lack of regulatory support for Mobility-
as-a-Service (MaaS) platforms powered by AI leads to
fragmented adoption, allowing car-centric travel habits to
dominate and contributing to higher urban congestion and
pollution. These missed opportunities highlight the need
for coordinated policy efforts to unlock AI’s full poten-
tial in mitigating environmental degradation and achieving
sustainable urban mobility.

By examining these potential unintended consequences, we
underscore the importance of a balanced approach that com-
bines technological innovation, robust regulatory frameworks,
and proactive measures to mitigate adverse effects. This analy-
sis aims to provide a comprehensive understanding of the trade-
offs inherent in policy and technology decisions in urban mo-
bility.

5.3. Limitations and Future Research

This study provides valuable insights into the interplay be-
tween AI adoption, regulatory frameworks, and traffic conges-
tion through the use of Ordinary Differential Equations (ODE)
modeling. However, several limitations must be acknowledged
to contextualize the findings and guide future research.

Limitations
1. Simplification of Dynamics: The ODE model captures

system-wide aggregate interactions but does not account for
localized or agent-specific behaviors. This aggregation may
overlook finer-grained dynamics, such as individual driver deci-
sions, variations in urban infrastructure, or localized congestion
patterns. These complexities are important in understanding
specific urban mobility challenges.

2. Constant Parameter Assumptions: The model assumes
fixed values for key parameters (k1, k2, k3, k4) within each sce-
nario, which might not fully reflect the dynamic nature of urban
environments. Factors such as regulatory changes, technolog-
ical advancements, and shifts in societal attitudes evolve over
time and may require adaptive modeling.

3. Absence of Empirical Validation: While the model
aligns with qualitative trends observed in real-world case stud-
ies, it has not been empirically validated with comprehensive
datasets, such as historical traffic data or AI adoption rates. This
limits the ability to fully confirm the predictive accuracy of the
findings.

4. Focus on a Limited Scope of AI Technologies: The
study primarily considers AI applications in traffic management
and autonomous vehicles. It excludes other potentially impact-
ful technologies, such as AI-driven urban planning tools, pre-
dictive maintenance systems, and AI-enabled shared mobility
platforms, which could offer broader insights into urban mobil-
ity transformations.

5. Assumed Generalization Across Urban Contexts: The
scenarios and outcomes are generalized for urban settings,
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which might not be directly applicable to cities with unique ge-
ographical, cultural, or infrastructural characteristics. Tailored
studies are needed to address these variations.

6. Abstract Timeframe: The use of abstract time units in
simulations limits the direct applicability of the results to real-
world timelines. This abstraction simplifies the modeling pro-
cess but reduces the temporal relevance of the findings.

Future Research Directions
1. Incorporating Agent-Based Modeling: Future research

could complement the ODE approach with agent-based models
to simulate localized, individual-level interactions. Such mod-
els would provide more granular insights into urban mobility
dynamics and enhance the applicability of the findings to spe-
cific contexts.

2. Dynamic Parameterization: Introducing time-varying
parameters or adaptive calibration methods based on empiri-
cal data could enhance the realism and predictive power of the
model. This approach would better capture the evolving nature
of regulatory frameworks, societal behaviors, and technological
advancements.

3. Empirical Validation: Collaborating with urban trans-
portation authorities and leveraging mobility datasets can help
validate the model’s predictions and refine its parameters. Real-
world data would provide a robust foundation for assessing the
model’s reliability and practical utility.

4. Expanding AI Applications: Future studies could ex-
plore additional AI technologies beyond traffic management
and autonomous vehicles. These might include smart public
transport planning, predictive maintenance systems, and AI-
enabled shared mobility platforms, offering a more comprehen-
sive perspective on urban mobility transformations.

5. Context-Specific Analysis: Tailoring the model to
specific cities or regions with diverse regulatory, cultural,
and infrastructural conditions could increase its practical rele-
vance. Conducting case studies in varied urban contexts would
strengthen the model’s adaptability and generalizability.

6. Integration with Climate and Energy Models: Fur-
ther research could integrate urban mobility models with cli-
mate and energy models to assess the broader environmental
impacts of AI adoption. This integration would provide a holis-
tic understanding of how AI-driven urban mobility intersects
with sustainability goals.

By addressing these limitations and exploring these future re-
search directions, the study can contribute to a deeper and more
actionable understanding of AI-driven urban mobility transfor-
mations.

6. Conclusion

This paper explored how AI-driven technologies can trans-
form urban transportation systems, focusing on the complex
interplay between AI adoption, regulatory support, and pub-
lic acceptance. By developing and analyzing four distinct sce-
narios—ranging from high AI adoption with strong regulatory

backing to low AI adoption with minimal regulation—this re-
search offers key insights into the potential futures of urban mo-
bility.

Our simulations highlight the critical role of strong regula-
tory frameworks in maximizing the benefits of AI technologies
for urban mobility. In the most optimistic scenario, rapid AI
adoption and robust regulation work in tandem to dramatically
reduce traffic congestion and enhance sustainability, demon-
strating the importance of proactive policy measures. Con-
versely, in scenarios where regulation is weak or fragmented,
the advantages of AI are less pronounced, leading to uneven or
modest improvements in traffic congestion and slower progress
toward sustainable mobility solutions.

The results also underscore the significance of public trust
and societal attitudes toward AI technologies. In scenarios
where public acceptance is high, AI adoption accelerates, lead-
ing to more efficient and equitable mobility systems. However,
societal resistance or concerns about privacy and security can
slow down the uptake of AI, even in the presence of strong regu-
latory support. This suggests that fostering public trust through
transparency, ethical AI design, and clear safety standards is
vital for the successful integration of AI into transportation sys-
tems.

For policymakers, industry leaders, and urban planners, the
findings of this research provide a roadmap for navigating the
challenges and opportunities presented by AI in transportation.
The future of urban mobility hinges on collaborative efforts that
balance technological innovation with sound regulatory policies
and public engagement. As cities continue to grow and face
increasing mobility demands, AI has the potential to reshape
transportation in ways that are more sustainable, efficient, and
user-friendly—but only if these elements are carefully aligned.

While this study primarily focuses on autonomous vehi-
cles and intelligent traffic management systems, the modeling
framework is designed to be flexible and extensible. Future re-
search could expand on this work by incorporating additional
AI technologies, such as predictive maintenance systems, AI-
driven urban planning tools, and shared mobility platforms.
These technologies hold the potential to further enhance the ef-
ficiency and sustainability of urban transportation systems, pro-
viding a more comprehensive understanding of their impacts.

In conclusion, this study contributes to the broader discourse
on AI and urban mobility by illustrating how foresight and sce-
nario planning can be applied to anticipate future challenges
and guide strategic decision-making. As cities and countries
contemplate their future mobility strategies, the combination of
AI adoption and regulatory support will be pivotal in determin-
ing the outcomes for both congestion reduction and environ-
mental sustainability. Moving forward, further research should
focus on developing adaptive regulatory frameworks and en-
gaging with stakeholders to ensure that AI technologies are de-
ployed in a way that is equitable, efficient, and beneficial for
all.
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