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Abstract
The signi�cant in�uence of urban development on land surface temperature (LST) was always evident. Here, a
study of the temperature increases in Hisar city from 1991 to 2022 was conducted using Landsat data. The
extent of thermal comfort in Hisar based on the urban thermal �eld variance index (UTFVI) was also evaluated. A
land-use change map was used to calculate land-cover change, the NDVI was used to calculate vegetation
coverage, and the NDBI was used to assess building cover. Over time, the UHI effect over Hisar city has
signi�cantly increased. It was found that built-up areas greatly affected the LST, especially at greater built-up
densities. From 1991 to 2022, the minimum LST increased from 17.02°C to 37.40°C. Additionally, the highest
temperature in 2022 increased to 47.24°C from 30.00°C in 1991. An inverse correlation was found between the
LST and NDVI, which indicates that greenery has a debilitating effect on urban temperatures. However, the NDBI
and LST, are positively correlated, indicating that urbanization intensi�es the LST and causes the creation of
urban heat islands (UHIs). The level of comfort for urban residents decreased during 1991–2022. Thus, urban
heat management and sustainable city development require proper heat action plans.

1. Introduction
The environmental impacts of urban development are severe and complex [1–4]. In 2050, 68.4% of the global
population will live in urban areas. Due to rapid urbanization, the number of people living in urban areas will
increase to approximately 6.7 billion by 2050 [5]. A changing climate and diverse impacts on biodiversity are
common in urban areas [6]. As one of the most signi�cant urban environmental problems associated with
urbanization, the urban heat island (UHI) effect is de�ned as the difference between the temperature in urban
areas and that in surrounding rural areas [7–8]. Urbanization has substantially altered the composition of the
near-surface atmosphere, as well as the balance of the Earth's surface radiation and energy [9–10]. Changes in
building materials and colours, human-induced heat emissions [11], and climate change [12], all contribute to
UHIs. A large increase in urbanization is expected in India as well, with urban dwellers accounting for 35%
(493 million) of the population in 2021 and reaching 877 million by 2050; this would account for the majority of
the urban area by that time [5–13]. Due to increasing urbanization, it is important to understand why
environmental change occurs differently in rural and urban areas across India [14].

Land-use change can be observed and measured globally, regionally, and locally as a result of socioeconomic
processes such as population growth, economic development, trade, and migration [15–17]. The land surface
temperature has always been signi�cantly affected by urban development and this effect can also be observed
in small urban patches with population less than 10,000 [18]. Historically, Luke Howard was the �rst to present
evidence that the air temperature in cities is higher than the air temperature in the countryside [19–20]; however,
this idea was later validated [21–22]. In this context, land surface temperature (LST) is considered to be one of
the key parameters [23]. Several studies have shown that industrialization, in addition to other anthropogenic
factors, increase the LST around urban centre worldwide [17, 24–26]. In urban areas, there are higher
temperatures than in the natural environments surrounding them; this phenomenon is known as the urban heat
island [27]. Among the factors, solar insolation, plant life, extent of urbanisation, density of built-up areas,
topography, meteorological aspects, urban geometry, anthropogenic heat and water content determine urban
heat island intensity over a period of time [28–31]. LULC patterns that are naturally or anthropogenically
changed can signi�cantly increase surface and atmospheric temperatures compared with those in undeveloped
areas [32–34].
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The global urban population has signi�cantly increased from 30% (751 million) in 1950 to 55% (4.2 billion) in
2018 and is expected to reach 60% (5.2 billion) by 2030 and 68% (6.7 billion) by 2050 [5]. Moreover, rapid urban
growth is being witnessed in South Asia, Latin America and Sub-Saharan Africa [35–37]. Urban heat island
studies in South Asian megacities such as Hyderabad, Chennai, Dhaka, Chattogram, Khulna, Kolkata, and
Chennai have increased signi�cantly in recent years, and major concerns have been raised about the potential
impact of these islands on the developing world [38]. Over the last few decades, India has also experienced rapid
urbanization, which is expected to continue in the future [39]. The Smart City Program for 100 Cities was recently
announced by the Indian government and will result in rapid urban infrastructure and population growth as well,
resulting in further extreme temperatures, additional public health problems, increased energy usage for cooling
homes, and increased the intensity of urban heat islands [14, 40]. Hotter and more frequent climate swings have
contributed to increased heat stress and mortality in India, and future heatwaves are likely to intensify further [14,
22].

By introducing geospatial techniques for urban heat island effect estimation, the spatiotemporal distribution of
land surface temperature can be easily retrieved [41]. In the present era of space technology, various sensors
including Advanced Space-borne Thermal Emission and Re�ection (ASTER), National Oceanic and Atmospheric
Administration-Advanced Very High-Resolution Radiometer (NOAA -AVHRR), Moderate Resolution Imaging
Spectroradiometer (MODIS), and Landsat TM/ETM+, which have different spectral and spatial resolutions are
available for urban heat island studies [29, 42–45]. According to existing studies urban heat islands have been
found in urban areas worldwide, particularly in developing countries such as Delhi and Mumbai [46]; Chandigarh,
India [47]; Ludhiana and Mansa in Punjab [48–49]; Narayanganj, Bangladesh [17]; Tianjin city, China [50];
Penang city, Malaysia [51]; and developed countries such as Braganca, Portugal [52]. Most urban heat island
studies have focused on estimating land surface temperature. Several urban heat island indicators including the
NDVI, NDBI, land use/landcover change [53] and percent impervious area [49], have been studied to estimate
their impact on urban heat islands.

Findings of these studies suggest that cities and towns undergoing rapid urbanization should be explored for
UHI investigations, and Hisar city represents a suitable case. Using proper land use management measures, such
as analysing trends in land surface temperature and other relevant parameters can minimize land use change
related risks arising from urban heat island effects [54]. It is known as the 'Steel City' of Haryana and is one of
the most important cities in western Haryana. It has achieved excellent prominence in the urban development
�eld over the past few decades. In Hisar city, commercial and industrial development is already underway, and
the road network is improving. It is a potential industrial and commercial hub in western Haryana. In Hisar
District, we study the spatiotemporal patterns and the evolution of the "thermal landscape" during rapid
urbanization, as well as the potential drivers and high-risk areas.

To analyse these parameters, this study examined the changes in the coe�cients of LULC, LST, NDBI, and NDVI
in Hisar city during 1991, 2001, 2011 and 2022 to assess the urban heat island intensity. Urban planners and
policymakers can use the �ndings of this study to plan a sustainable urban environment for Hisar and other
cities in developing countries.

2. Materials and Methods

2.1 Study area
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For the present research, the boundary of Hisar city was demarcated from Google Earth referencing the property
listing map of Haryana [55]. Hisar city is situated in western Haryana in northwestern India. The longitudinal and
latitudinal extents of the study area are 750 40’14.425” E to 750 52’15.298” E and 290 06’3.177” N to 290

12’9.617” N latitude. The study area covers an area of 109.31 square kilometres, as calculated by GIS software. It
is located in the Great Plains of India. Because of its dry climate, Hisar city receive little rainfall.

The summers are very hot, and the winters are relatively cool. During the summer, temperatures can reach 40 to
46 degrees Celsius while they range from 1.5°C to 4°C during winter. The southwest monsoon season occurs
between mid-June and mid-September. From October to June, the weather is almost dry while sometimes,
western disturbances cause 10 to 15% of the rainfall during this period. From June to September, only 75 to 80%
of the annual rainfall occurs in the study area. The city has good rail and road networks connecting it to its
surrounding areas [56]. Figure 1 shows the location map of the study area.

2.2 Data procurement
To determine the land surface temperature characteristics, Landsat series data from Landsat 5, 7, and 9 for the
month of March for the years 1991, 2001, 2011 and 2022 were processed from the USGS Earth Explorer
(Table 1). Cloudy pixels are not present in all the downloaded satellite data. The software ArcGIS 10.2 was used
to perform the relevant tasks for land surface temperature computation on all the images.

Table 1
Details of the Landsat Satellite Data

Satellite/Sensor Path/Row Date Pixel Cell Size

Landsat 5 / TM 147/40 05/03/1991 30

Landsat 7 / ETM+ 147/40 08/03/2001 30

Landsat 5 / TM 147/40 12/03/2011 30

Landsat 9 / (OLI&TIRS) 147/40 18/03/2022 30

2.3 Procedure for Land Surface Temperature Calculations
Different methods (Fig. 2) were used for calculating the land surface temperature from thermal band 6 of
Landsat 5 and 7, while the average of thermal bands 10 and 11 of Landsat 9 were used for land surface
temperature calculations [57–58].

2.3.1 Conversion of Digital Number into Radiance and TOA
To convert Digital Numbers (DNs) into spectral radiance values, the equation below was used for thermal band 6
of Landsat 5 and 7 (Eq. 1) [57, 59]. The digital numbers of thermal bands 10 and 11 in the Landsat 9 data were
converted into top-of-atmosphere re�ectance (TOA) values (Eq. 2) [60].

1

L (λ) = ∗ (QCALMAX − QCALMIN) + LMINλ
(LMAXλ − LMINλ)

(QCALMAX − QCALMIN)
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For Landsat 5

For Landsat 7

(Here: L (λ)- is the radiance of Sensor; LMAXλ- is the band 6 maximum radiance; and LMINλ- is the band 6
Minimum radiance; QCALMAX- quantize cell maximum value; QCALMIN-quantize cell minimum value- available
in MTL �le of Landsat 5 and 7)

for Landsat 9

2

(Here

L(λ)- TOA spectral radiance; -Band speci�c multiplicative scaling factor; -Band speci�c additive factor; -Quantize
and calibrated standard cell value- in MTL �le)

2.3.2 Conversion to temperature
After converting the cell value to radiance and TOA, the land surface area was calculated by using Eq. (3).

3

For Landsat 5 For Landsat 7

For Landsat 9 (Band 10) For Landsat 9 (Band 11)

L (λ) = ∗ (Band6 − 1) + 1.238
(15.303 − 1.238)

(255 − 1)

L (λ) = ∗ (Band6 − 1) + 0.000
(17.040 − 0.000)

(255 − 1)

L (λ) = MLQCAL + AL

L (λ) = 0.0003342 ∗ Band10 + 0.1;L (λ) = 0.0003342 ∗ Band11 + 0.1

T =
⎛
⎜
⎝

⎞
⎟
⎠

− 273.15
K2

ln ( + 1)K1
L

T =
⎛
⎜
⎝

⎞
⎟
⎠

− 273.15T =
⎛
⎜
⎝

⎞
⎟
⎠

− 273.15
1260.56

ln ( + 1)607.76
L

1282.71

ln ( + 1)666.09
L
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(Here: T-Effective at satellite temperature in Kelvin; K2-Calibration Constant 2; K1-

Calibration Constant 1 (Available in MTL �le); L-Spectral Radiance of Bands 6, 10, and 11)

After calculating the T of bands 10 and 11 of Landsat 9, the average value of both bands was calculated by the
Cell Statistics Tool in Data Management Tools of ArcGIS software.

For Landsat 4 and 5, land surface temperature data were collected. However, for the Landsat 9 data, equations 3,
<link rid="eqn5">4</link> and 5 are used to calculate the land surface temperature:

3

4

5

2.4 NDVI calculation
Globally, normalized difference vegetation index (NDVI) is widely used to measure vegetation cover. Using
satellite images of Landsat 5, 7 and 9, the index is calculated using differences in the near-infrared and red
re�ectance bands. An area that is densely vegetated has a positive NDVI value, while an area that is not
vegetated has a negative value. It ranges from − 1.0 to + 1.0. the NDVI of Hisar city was calculated by Eq. 6 [61–
62].

6

T =
⎛
⎜
⎝

⎞
⎟
⎠

− 273.15T =
⎛
⎜
⎝

⎞
⎟
⎠

− 273.15
1321.08

ln ( + 1)774.89

L

1201.14

ln ( + 1)480.89

L

LSE = 0.004 ∗ Pv + 0.986

Pv = (NDV I − NDV Imin/NDV Imax − NDV Imin)
2

Pv = (NDV I − (−0.00358388)/0.500043 − (−0.00358388))2

LST =
BT

1 + W ∗ ( ) ∗ ln (e)BT
p

LST =
BT (Band10)

1 + W (Band10) ∗ ( ) ∗ ln (LSE)BT−Band10

14380

NDV I =
NearInfraredBand − RedBand

NearInfraredBand + RedBand
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(the band Combination for NDVIs of Landsat 5 and 7 are Band 4 = Infrared Band, and Band 3 = Red Band, while
those for Landsat 9 are Band 5 = Infrared Band, and Band 4 = Red Band).

2.5 NDBI calculation
Building density is commonly measured using the normalized difference built-up index (NDBI). Shortwave
infrared (SWIR) and near-infrared (NIR) re�ections from built-up parts and bare soil were calculating based on
Landsat 5, 7 and 9 satellite images. The NDBI value ranges from − 1 to + 1 and can be calculated by using Eq. 7
[61].

7

(the band combination for NDVIs of Landsat 5 and 7 are Band 5 = SWIR Band, and Band 4 = Infrared Band; while
those for Landsat 9 are Band 6 = SWIR Band, and Band 5 = Infrared Band).

2.6 Urban heat islands
In this research, using the average temperature during the day, the UHI effect was calculated. In urban areas, heat
islands are caused by a higher average temperature in the surroundings areas. The LST was Calculated using
Eq. 8 to compare the variations in UHIs from 1991 to 2022 [63].

8

2.7 Calculation of the Relative Land Surface Temperature
Different areas contribute differently to the thermal environment, so analyzing the relative value of land surface
temperature (RLST) can help clarify this phenomenon [11, 64]. The RLST was calculated by using Eq. 9.

(RLST)t
i= LST ti – Ave LSTi (9)

(Here: t represents each of the ten years, LSTi represents the satellite sensed pixel’s LST in year i, and Ave LSTi

represents the average LST of the study area).

In this research, following a previous study [65], a high-temperature zone was de�ned as an area where the RLST
exceeded two degrees Celsius (°C), this zone is called a regional heat island (RHI) in Hisar city, and the whole
area was classi�ed into �ve classes ( below 0, 0–3, 3–6, 6–9 and above 9).

2.8 Urban Thermal Field Variance Index
To describe the distribution of heat and health within an urban area, the UTFVI, the extent of urban thermal
comfort, was calculated using Eq. 10. There are six different ecological evaluation indices for Hisar city based on
thermal comfort level [66–67].

NDBI =
SWIR − NearInfraredBand

SWIR + NearInfraredBand

UrbanHeatIsland =
LandSurfaceTemperature − MeanLandSurfaceTemperature

StandardDeviation



Page 8/30

10

2.9 Unsupervised Image Classi�cation
The study area was classi�ed via unsupervised image classi�cation via iso-cluster unsupervised classi�cation
with the help of LANDSAT series data [68]. The Hisar city has been classi�ed into four categories as built-up
area, barren land, vegetation and waterbody.

2.10 UHI trend and spatiotemporal distribution analysis
The traditional standard deviation ellipse (SDE) method is used to analyse the overall pattern and trend of LSTs
in the study area. The standard deviation of the x and y coordinates was calculated using the average centre of
the image, and the ellipse axis was determined based on the standard deviation by using equations 11 and 12
[65, 69].

11

12

Using time series, the SDE was used to represent landscape element distribution trends [65, 70] in the study area
from 1991 to 2022.

2.11 Accuracy Assessment
It is necessary to use statistical techniques to test LULC classi�cation for accuracy because this approach
generates some errors. For this purpose, error matrix approaches are widely used. The kappa coe�cient, user
accuracy, producer accuracy, and overall accuracy cannot be assessed without an error matrix [71–72]. For
ground truthing, 100 points were used to validate the output. Google Earth's historical data were used for
accuracy assessment. The accuracy of the models was calculated by using equations 13–16 (Table 8).

User Accuracy=  (13)

Producer Accuracy=  (14)

Overall Accuracy=  (15)

UrbanThermalFieldV arianceIndex =
LSTofPixel (∘C) − MeanLST

LSTofPixel (∘C)

(SDE) � =
√∑t

n=1 (x� − meanX)
2

n

(SDE) � =
√∑t

n=1 (y� − meanY )
2

n

x100
Correctedpixelforeachclass

Sumofclassifiedpixel(RowTotal)

x100
Correctedpixelofeachclassifiedcategory

Refrencepixelinthatcategory(ColoumnTotal)

x100
Correctedclassifiedpixel(Digonal)

totalnoofreferncepixel
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Kappa Coe�cient=  (16)

3 Results and Discussion
Based on the above methods and methodology, the acquired results are given and analysed below:

3.1 LULC and LST
LST increases as a result of LULC change. The LULC in Hisar city changed signi�cantly during the 31 years
between 1991 and 2022 because of rapid urbanization. A 1991 study revealed that the areas under the
categories "water bodies", "vegetation", "built-up areas" and "barren land" were 1.99 (1.8%), 61.73 (56.49%), 18.76
(17.17%), and 26.83 (24.54%) km2 respectively. There were 1.75 (1.6%), 36.44 (33.33%), 41.72 (38.17%) and
29.40 (26.90%) km2 under the "water body", "vegetation", "built-up area" and "barren land" classes, respectively, in
2001 (Fig. 6). "Water bodies", "vegetation", "built-up areas", and "barren land" accounted for 4.43 (4.05%), 34.90
(31.94%), 53.66 (49.09%), and 16.31 (14.92%) km2 respectively, of the total area in 2011. Water bodies,
vegetation, built-up areas, and barren land made up 3.36 (3.07%), 30.05 (27.49%), 64.14 (58.69%), and 11.76
(10.75%) km2 of the total area in 2022, respectively. Only 18.76 km2 of the city area was developed in 1991, but
64.14 km2 has been developed in 2022, representing almost 58.69% of the total city area (Table 2). In this period
of 31 years, the built-up area of Hisar city increased by nearly 41.51%, resulting in a 41.51% reduction in other
land use. The area under the “vegetation” and “barren land” classes decreased by -46.75% from 1991 to 2020
and were converted to built-up areas and waterbodies (Fig. 4, Fig. 5; Table 3). As a result of these changes in
LULC, the LST in Hisar city was signi�cantly affected. The areas with higher temperatures can be observed in
(Fig. 3), which shows mostly built-up areas. In total, approximately ten spots with the highest temperatures were
taken from the LST of 2022 for ground truthing. Industrial, commercial, agricultural and residential
establishments are most likely to be hot spots with the highest temperatures. During the period 1991–2022, the
minimum LST reached 37.40°C, up from 17.02°C in 1991. Moreover, the highest temperature in 2022 has risen
upward from 30.00°C in 1991 to 47.24°C (Table 4).

In the period 1991–2022, the lowest and highest temperatures in the city increased by almost 20.38°C and
17.24°C, respectively. Meteorological department o�cials said that maximum temperature rose �ve notches in
Hisar city, and a hot summer occurred in Haryana, where Hisar has experienced 48°C temperatures on its hottest
day in 2022 [73]. The maximum temperature in this study was 47.24°C in 2022, which matches the recorded data
from meteorological departments. There is a 0.76°C variation here. It is evident from this that the study is
relatively accurate and shows a reasonable degree of agreement. The relative values (RLSTs) from 1991 to 2022
are shown in Fig. 7. In Table 5, the minimum, maximum, and average LST values for 1991–2022 are shown.
LSTs reached their highest point in 2022 (42.3°C), while they reached their lowest point in 1991 (23.51°C). For
Hisar, the reported air temperature for the corresponding date was not signi�cantly greater than 0.76 degrees
Celsius, which con�rms the accuracy of the LST data. The low resolution of Landsat images may limit the ability
to compare different years due to limitations in image capture. A regional heat island (RHI) was de�ned as an
area with an RLST > 3°C. There has been a signi�cant increase in RHI connectivity since 1991, especially in the
central, western, southeastern, and northeastern parts of Hisar. In the past few years, several isolated patches
have gradually merged. This may be due to the rapid economic development and urbanization that has taken

x100

TotalSample∗Totalcorrectedsample−rowtotalandcoloumntoal

(multipicationofeachrowandcoloumn)

Squareoftotalsample−Columntotal−Rowtotal
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place in Hisar, which has led to the expansion of built-up land. In Hisar's central, western, southeastern, and
northeastern regions, the RHI increased from 1991 to 2022, but in its northwestern (lower land area) regions, the
RHI decreased signi�cantly, especially where the RLST was low.

Table 2
Calculation of Temporal LULC area and (%) of Hisar

LULC

Class

1991 2001 2011 2022

(Area) (Area) (Area) (Area)

(km2) (%) (km2) (%) (km2) (%) (km2) (%)

Water Body 1.99 1.80 1.75 1.6 4.43 4.05 3.36 3.07

Vegetation 61.73 56.49 36.44 33.33 34.90 31.94 30.05 27.49

Built-up Area 18.76 17.17 41.72 38.17 53.66 49.09 64.14 58.69

Barren Land 26.83 24.54 29.40 26.9 16.31 14.92 11.76 10.75

Table 3
Temporal change in LULC from 1991 to 2022

Sr. No. Class to Class Change Area (km) Sr. No. Class to Class Change Area (km)

1. Barren Land - Built-up Area 19.75 9. Vegetation - Built-up Area 29.86

2. Barren Land - Vegetation 3.84 10. Vegetation - Vegetation 22.22

3. Barren Land - Barren Land 2.95 11. Vegetation - Barren Land 7.38

4. Barren Land - Water Body 0.29 12. Vegetation - Water Body 2.20

5. Water Body - Built-up Area 0.96 13. Built-up Area - Built-up Area 13.55

6. Water Body - Vegetation 0.37 14. Built-up Area - Vegetation 3.58

7. Water Body - Barren Land 0.10 15. Built-up Area - Barren Land 1.32

8. Water Body - Water Body 0.55 16 Built-up Area - Water Body 0.32

Table 4
Area (km) under different temporal LST ranges in Hisar city

Year LST Range

0–19.7 19.7–23.2 23.2–27.5 27.5–37.4 37.4–40.5 40.5–42.9 42.9–47.3

1991 20.18 62.12 25.36 1.65 - - -

2001 2.66 15.11 31.68 59.86 - - -

2011 - 16.64 57.61 35.06 - - -

2022 - - - - 14.43 46.90 47.24
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Table 5
Statistics of Temporal LST of Hisar

Years LST

Minimum Maximum Mean Std. Deviation

1991 17.02 30.00 23.51 ± 1.98

2001 18.15 36.38 27.26 ± 3.20

2011 19.72 34.86 27.29 ± 2.50

2022 37.40 47.2 42.3 ± 1.43

The RHI of the standard deviation ellipse (SDE) results are presented in Fig. 8. In 1991 and 2022, the SDE ranges
were mostly located in the central region and gradually shifted to the southwest, southeastern, north-eastern, and
eastern regions. Furthermore, Table 6 demonstrates a decrease in rotation from 73.20 in 1991 to 69.26 in 2022,
indicating a change in the spatial pattern of RHI from the centre to the east, west, and south with rapid
urbanization in Hisar.

Table 6
Temporal analysis of SDEs

Years Minor Axis (km) Major Axis (km) SD_X SD_Y Rotation

1991 18.2 78.45 4.21 7.58 73.20

2001 17.1 79.23 4.35 8.21 71.24

2011 18.4 82.32 4.22 7.91 70.36

2022 17.3 82.56 4.33 6.84 69.26

3.2 Correlation between the NDBI and NDVI and between the
LST
The LST of any surface area is strongly correlated with the NDVI and NDBI. The vegetation cover is greatest and
the LST is lowest. The NDVI values ranged from (-0.3125 to 0.7183), which indicated that most of the area had
more vegetation cover than did a built-up area, water body, or barren land (Fig. 9).

It is evident that there was an increase in "built-up areas" and a decrease in vegetated areas in 2001, judging by
the NDVI values ranging from − 0.5 to 0.4767 and negative values increasing over this time period. In 2011, the
NDVI values ranged from (-0.5 to 0.4767) and the decreases were more pronounced than those in 2001's
decreases, indicating that urban areas have grown more while vegetated areas have decreased more. Over 70%
of the area has negative NDVI values in 2022, with 58.69% of the land under the built-up category. Figure 4,
shows that most of the areas in the “vegetation” and “barren land” classes from 1991 to 2022 were converted
into the “built-up” class. A simple linear regression model demonstrated a signi�cant relationship between LST,
and NDVI, and between LST and the NDBI (Fig. 10; Fig. 11). According to this relationship, the change in land use
contributes to rising temperatures. The NDVI and NDBI variables were selected as independent variables for a
simple linear regression model. When the vegetation density is high, the temperature decreases, while when the
vegetation density is low, it increases (Fig. 9). As shown in Fig. 9, the NDVI exhibited an inverse relationship with
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the LST with R2 values of 0.50, 0.38, 0.20 and 0.31 for 1991, 2001, 2011 and 2022. On the other hand, the NDBI
and LST are strongly correlated, as indicated by the R2 values for 1991 to 2022 respectively (Fig. 10). There is a
clear relationship between the built-up area and temperature, such that the higher the area is, the greater the
temperature. The LST and NDVI have a negative correlation, which suggests that green space can reduce UHIs.

3.3 Urban heat island (UHI), comfort level of urban thermal
load(CLUT) and UTFVI
Based on the results, the UHI effect increases in all directions from the inward to the outward direction of the city.
There was a notable increase in UHIs from in 1991 to 2022 in parts of the city that had built-up and lost
vegetation, particularly in the southwestern, central, southern, and southeastern areas of Hisar city. The results
showed that the temperature increased from 20.18°C in 1991 to 47.24°C in 2022. The UHI effect has increased
over the past 31 years (Fig. 12). Based on these results, the maximum UHI over Hisar city were 28°C in 1991,
30°C in 2001, 37°C in 2011, and 47°C in 2022. The minimum UHIs value (18°C) occurred in 1991, whereas the
minimum UHI value (37°C) increased in 2022. To determine the urban thermal comfort level and discomfort zone
for human life, the UTFVI is classi�ed into six classes based on the UHI effect. As a result, 57.01 km2 (52.15%),
65.46 km2 (59.87%), 59.01 km2 (53.94%), and 39.72 km2 (36.3%) have excellent-normal comfort for human life
while 51.23 km2 (47.35%), 43.85 km2 (40.13%), 50.30 km2 (46.06%) and 69.59 km2 (63.7%) have the strongest-
strongest UHIs in 1991, 2001, 2011 and 2022, respectively categorized as the worst-worst zones for human life
due to heat and warming (Table 7). The ecological status of the Hushi city was determined by the UTFVI and UHI
values.

Figure 12: UHI and CLUT maps (A, A1; B1, B2; C1, C2; C1,C2 for 1991;2001;2011;2022)

Table 7
Measurement of UHI and CLUT based on the UTFVI

UTFVI Phenomenon

of UHI

Comfort
level of
urban
thermal
(CLUT)

HUI/CLUT HUI/CLUT HUI/CLUT HUI/CLUT

Area (1991) Area (2001) Area (2011) Area (2022)

sq.
km

(%) sq.
km

(%) sq.
km

(%) sq.
km

(%)

< 0 None Excellent 11.96 10.95 19.63 17.95 13.85 12.67 6.04 5.5

0–
0.005

Weak Good 24.34 22.26 16.97 15.52 35.52 32.45 18.82 17.21

0.005–
0.01

Middle Normal 20.71 18.94 28.86 26.4 9.64 8.82 14.86 13.59

0.01–
0.015

Strong Bad 34.57 31.62 19.79 18.1 23.28 21.34 38.23 34.91

0.015–
0.02

Stronger Worse 13.20 12.07 8.73 7.98 18.18 16.63 10.58 9.67

> 0.02 Strongest Worst 4.53 4.16 15.33 14.05 8.84 8.09 20.78 19.12
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Table 8
Accuracy assessment analysis

LULC

Class

User Accuracy (%) Producer Accuracy (%)

1991 2001 2011 2022 1991 2001 2011 2022

Water Body 89.0 90.0 92.1 95.0 86.6 93.5 90.2 95.0

Vegetation 88.0 90.0 93.0 95.0 84.1 91.2 93.1 95.0

Built-up Area 89.0 90.0 94.0 95.0 86.0 93.1 95.0 95.0

Barren Land 83.0 90.0 90.0 95.0 80.2 86.5 90.3 95.0

  Overall Accuracy (%) Kappa Coe�cient (%)

1991 2001 2011 2022 1991 2001 2011 2022

Water Body 86.6 93.0 92.0 95.0 80.0 80.8 81.6 84.1

Vegetation 85.0 92.0 92.0 95.0 80.0 81.0 81.6 84.1

Built-up Area 86.2 93.0 92.0 95.0 80.0 81.0 81.6 84.1

Barren Land 82.0 86.0 92.0 95.0 80.0 80.8 81.6 84.1

Discussion
According to the present study, there were clear correlation between UHI, biodiversity loss, and ecosystem
degradation and LULC around cities. Impacts, such as the decline in vegetation coverage, the increase in
minimum and maximum temperatures, which directly affect the urban thermal environment, have been
identi�ed. Biodiversity and natural ecosystems are adversely affected by rapid urbanization [74]. With the
exponential growth of Hisar city’s population, and with its massive industrial and commercial expansion, its land
use has changed signi�cantly. Prior to 1991, the land in Hisar city was mainly agricultural, barren land, and
covered with vegetation and these areas were converted into industries and residential areas after 1991. Its rapid
population growth coupled with residential industrial, and commercial expansion had major impact on its solar
radiance and longwave radiation (LST). In the built-up areas, the temperature increased signi�cantly between
1991 and 2022. There are several densely developed commercial and residential areas in the city, including the
Jindal industrial area, automobile market, Mil Gate, Azad Nagar, bus stand, airport, court complex, and old Hisar
area. Due to the low amount of vegetation and water bodies in this area, heat islands and higher LST values are
now predominant here. The above places had the highest heat island spots, while agricultural university and city
boundary had the lowest LST values. As this study revealed, the average temperature in Hisar city increased with
increasing minimum temperatures.

LULC types and LSTs have been found to be directly related to UHI trends. The NDVI and LST in the study area
were inversely related for all types of LULC. Compared to other areas, industrial, residential and commercial areas
had the highest LSTs and the greater in�uence on the NDVI. Increasing vegetation cover in Hisar city is therefore
the best way to reduce temperature. The study area's urban heat characteristics can be improved by increasing
vegetation cover in built-up areas, particularly industrial, commercial and nearby residential areas. Based on the
NDVI analysis of 1991, the city in 2022 could not be accurately represented, because there was a decrease in
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vegetation in most of the locations. As a result of infrastructure construction projects encroaching into existing
vegetation, trees are being cut down, contributing to a higher LST. In addition, this results in pollution that
worsens Hisar’s situation. As an industrial city, Hisar should prioritize low carbon emissions. It is important for
local governments to take precautions to encourage industries to reduce emissions and implement green
initiatives. Youths in Hisar city should be made aware of extreme heat risks through a pilot campaign. Through
the creation of short videos with messages in the local language, the campaign focused on the risks of heat and
the ways to reduce them. Youths and policymakers were able to engage through this platform [75]. As a means
of raising awareness, local governments could take this type of initiative. It is important the local governments to
promote early warning or robust forecast systems to reduce the effects of LSTs and UHIs, even though their
resources and budget are limited. They can also create spray parks for cooling, urban forests, cooling centres for
communities, elimination of smoke-emitting vehicles, and paint roofs to cool them. A heat action plan should
also be prepared by the national government and the local government because different regions have different
drivers and intensities of heat. By doing so, we will be able to identify city hotspots and take action to reduce the
effects of UHIs.

Conclusion
Almost every country in the world has been affected by urban heat islands for more than a century. As
urbanization increases in developing countries, UHI assessment is becoming an essential tool for urban growth
management. Urbanization and environmental change are directly responsible for increase in surface
temperatures in urban areas. A landscape of concrete and asphalt replaces vegetation and water bodies, while
agricultural lands are converted into barren lands, which absorb solar radiation rather than re�ecting it. This
increases both the surface and ambient temperatures.

By using geospatial techniques, this study was conducted to determine the urban heat island effect in Hisar city
from 1991 to 2022. Landsat and ETM data were used to assess LULC, NDVI, and NDBI and how they impact LST.
There has been a signi�cant increase in the overall surface temperature of the city as a result of the built-up area,
with the bus stop, Mile Gate, airport, court complex, old city, railway station, Jindal Industrial Park, etc., of Hisar
city experiencing the greatest increase in LST. Compared to those in 1991, 2001, and 2011, the 2022 temperature
was lower in terms of vegetation and agriculture but was consistently higher that in 1991, 2001, and 2011. The
presence of vegetation and water bodies appeared to be signi�cant factors in lowering the surface temperature.
During the past 31 years, the vegetation cover has decreased signi�cantly, resulting in increased temperatures. In
some areas, the restoration of waterbodies and the planting of trees have helped to reduce surface temperatures
in addition to the overall delineation of agricultural land, water bodies and habitats. Despite of the low resolution
of satellite images such as those from Landsat 5, 7 and 9, the analyses of LULC change, NDVI, NDBI, and LST
are not precise at the microlevel, however, the macrolevel results can be very useful for urban and environmental
planners to formulate policies and strategies. It is necessary to obtain satellite images with higher resolution and
ground truthing to make more accurate assessments at the microscopic level. This study has limitations due to
the lack of cloud-free data, di�culties in collecting humidity data, and the absence of weather data. The �ndings
of this study will be useful to other researchers, Hisar city, and local authorities for taking steps to reduce urban
heat island effects and LSTs in Hisar.
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Figures

Figure 1

Location map of Hisar city
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Figure 2

Overall methodology used for research
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Figure 3

LULC and LST of the Hisar district in 1991, 2001, 2011 and 2022
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Figure 4

Change detection from 1991 to 2022
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Figure 5

Class-to-class changes from 1991 to 2022

Figure 6

Percentage variation in LULC from 1991 to 2022
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Figure 7

RLST of Hisar
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Figure 8

SDE zone above 3˚C for Hisar
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Figure 9

(a1, a2, a3; b1, b2, b3; c1, c2, c3; and d1, d2, d3, d4 show the NDVI, LST and NDVI from 1991, 2001, 2011 and
2022 respectively)
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Figure 10

Correlations between LST and NDVI in 1991 (A), 2001(B), 2011(C) and 2022 (D)
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Figure 11

Correlations between LST and NDDI in1991 (A), 2001(B), 2011(C) and- 2022 (D)
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Figure 12

UHI and CLUT maps (A, A1; B1, B2; C1, C2; C1,C2 for 1991;2001;2011;2022)


