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Abstract

Single cell RNA sequencing (scRNA-seq) has revolutionized the study of gene expression in
individual cell types from heterogeneous tissue. To date, scRNA-seq studies have focused
primarily on expression of protein-coding genes, as the functions of these genes are more
broadly understood and more readily linked to phenotype. However, long noncoding RNAs
(lncRNAs) are even more diverse than protein-coding genes, yet remain an underexplored
component of scRNA-seq data. While less is known about lncRNAs, they are widely expressed
and regulate cell development and the progression of diseases including cancer and liver
disease. Dedicated lncRNA annotation databases continue to expand, but most lncRNA genes
are not yet included in reference annotations applied to scRNA-seq analysis. Simply creating a
new annotation containing known protein-coding and lncRNA genes is not sufficient, because
the addition of lncRNA genes that overlap in sense and antisense with protein-coding genes will
affect how reads are counted for both protein-coding and lncRNA genes. Here we introduce
Singletrome, an enhanced human lncRNA genome annotation for scRNA-seq analysis, by
merging protein-coding and lncRNA databases with additional filters for quality control. Using
Singletrome to characterize expression of lncRNAs in human peripheral blood mononuclear cell
(PBMC) and liver scRNA-seq samples, we observed an increase in the number of reads
mapped to exons, detected more lncRNA genes, and observed a decrease in uniquely mapped
transcriptome reads, indicating improved mapping specificity. Moreover, we were able to cluster
cell types based solely on lncRNAs expression, providing evidence of the depth and diversity of
lncRNA reads contained in scRNA-seq data. Our analysis identified lncRNAs differentially
expressed in specific cell types with development of liver fibrosis. Importantly, lncRNAs alone
were able to predict cell types and human disease pathology through the application of machine
learning. This comprehensive annotation will allow mapping of lncRNA expression across cell
types of the human body facilitating the development of an atlas of human lncRNAs in health
and disease.



Introduction

Long noncoding (lncRNAs) comprise a diverse class of transcripts that regulate pathology,
including cancer (Huang et al. 2017), immunity (Kotzin et al. 2016), and liver disease (Mahpour
and Mullen 2021). LncRNA transcripts are at least 200 nucleotides in length, 5’ capped, 3’
polyadenylated, and are not known to code for proteins (Statello et al. 2021). The functions of
individual lncRNAs are diverse, with new activities described as additional lncRNAs are
investigated. For example, Evx1as regulates mesendoderm differentiation through cis regulation
of Even-skipped homeobox 1 (Evx1) (Bell et al. 2016). DIGIT (GSC-DT) interacts with BRD3 to
control definitive endoderm differentiation (Daneshvar et al. 2020), and Morrbid controls the
lifespan of immune cells by regulating the transcription of the apoptotic gene Bcl2l11 through the
enrichment of the PRC2 complex at its promoter (Kotzin et al. 2016).

Many lncRNAs also exhibit cell-type-specific patterns of expression (Liu et al. 2016). For
example, LOC646329 is enriched in single radial glia of the human neocortex (Liu et al. 2016),
and Lnc18q22.2 is induced only in hepatocytes in the setting of nonalcoholic steatohepatitis
(NASH) (Atanasovska et al. 2017). Cell-type-specific expression patterns observed for many
lncRNAs suggest that lncRNA expression could support distinct clustering of cell types in single
cell data.

Despite advances in our understanding of the functions of many lncRNAs and frequent
examples of cell-type-specific expression, lncRNA discovery is still at a preliminary stage, and
there is not yet consensus on the number of lncRNAs in the human genome. GENCODE (v32),
the most widely applied genome annotation for human scRNA-seq analysis, contains 16,849
lncRNA genes (Frankish et al. 2019), but databases such as LncExpDB and Noncode now
report over 100,000 human lncRNA genes (Li et al. 2021; Fang et al. 2018).

Increasing the number of lncRNAs identified in single cell data cannot be achieved by simply
creating new annotations that contain known protein-coding and lncRNA genes, because the
addition of tens of thousands of new genes will affect how gene expression is quantified.
Current pipelines such as Cell Ranger (Zheng et al. 2017) exclude reads mapping to exons that
overlap on the same strand, therefore expanding the number of annotated lncRNA exons may
lead to exclusion of additional reads from an increased number of overlapping exons.
Furthermore, the assignment of reads that align to antisense transcripts is challenging in part
because library preparation artifacts can generate antisense reads at low frequency. For
example, the widely used dUTP protocol for stranded RNA-seq (Parkhomchuk et al. 2009) can
generate spurious antisense reads ranging from 0.6-3% of the sense signal (Zeng and
Mortazavi 2012; Jiang et al. 2011). (Mourão et al. 2019) analyzed 199 strand-specific RNA-seq
datasets and discovered that spurious antisense reads are detected in these experiments at
levels greater than 1% of sense gene expression levels. Additionally, mis-priming of internal
poly-A tracts on RNA or template switching into the poly-T linker have been proposed as
possible sources of intronic and antisense reads in single cell gene expression data (Ding et al.
2020). Ultimately, full-length RNA molecule sequencing will help to define authentic antisense
RNAs. However, reverse transcriptase-based approaches are predominantly used for
sequencing, and special attention needs to be directed towards distinguishing authentic
antisense lncRNAs from experimental artifacts, as lncRNAs tend to be expressed at ~10-fold
lower levels than protein-coding genes (Cabili et al. 2011; Derrien et al. 2012). It is crucial to
develop an approach to minimize the possibility of interpreting the presence of reads antisense
to a protein-coding exon as evidence of lncRNA expression if reads are the product of library
preparation.
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While efforts have been made to analyze lncRNAs in scRNA-seq data for a particular set of
transcripts, cell types, or datasets (Liu et al. 2016; Luo et al. 2021), no systematic efforts have
been made to analyze all annotated lncRNAs in scRNA-seq data. Furthermore, these efforts do
not provide a unified framework to analyze lncRNAs in scRNA-seq data. The most widely used
genome annotation for scRNA-seq analysis is GENCODE, which contains only a fraction of
annotated lncRNAs in the human genome. Here we develop Singletrome, a comprehensive
genome annotation of 110,599 genes consisting of 19,384 protein-coding genes from
GENCODE and 91,215 lncRNA genes from LncExpDB, which takes into account the sense and
antisense relationship between lncRNAs and protein-coding genes and the distribution of reads
across lncRNA transcripts in each dataset. Here we apply Singletrome to analyze single cell
data from PBMCs and for analysis of healthy and diseased liver.

Results

Expanding lncRNA annotations in single cell analysis

In order to enhance the current genome annotation for lncRNAs in single cell analysis, we first
evaluated how the integration of LncExpDB into GENCODE impacts the annotation. We
identified 6309 protein-coding genes (42,868 exons) that overlap on the sense strand with 7531
lncRNA genes (24,357 exons) (Fig 1A & Table 1). We next evaluated lncRNA genes annotated
antisense to protein-coding genes and found 10,492 protein-coding genes (47,057 exons)
overlap on the antisense strand with 14,212 lncRNA genes (44,062 exons) (Fig 1A & Table 1).
This situation is not unique to our new annotation, as 619 protein-coding genes (3514 exons)
overlap on the sense strand with 516 lncRNA genes (2106 exons) and 3590 protein-coding
genes (12,941 exons) overlap on the antisense strand with 3791 lncRNA genes (8809 exons) in
GENCODE (Table 2). We removed the 7531 lncRNA genes from LncExpDB that overlap
protein-coding genes on the sense strand (Fig 1B), as it is challenging to prove these lncRNA
genes are not isoforms of the protein-coding genes or have coding potential. As a result, reads
mapped to the protein-coding exons that overlap on the same strand with these lncRNAs are
included to define Unique Molecular Identifier (UMI) counts for the protein-coding genes. To
distinguish authentic antisense lncRNAs from potential artifacts, we developed a trimmed
lncRNA genome annotation (TLGA) to retain all the non-overlapping lncRNA exonic regions
(Fig. 1C). The approach to only count reads mapped to regions of lncRNAs that are not
antisense to protein-coding genes reduces the risk of incorrectly calling an lncRNA as
expressed based only on antisense reads that might have been generated during library
preparation.

In brief, we trimmed lncRNA exons that overlap with protein-coding exons on the opposite
strand and also removed an additional flanking 100 nucleotides (nt). We retained exons that
were at least 200 nt in length after trimming. Using this strategy, we were able to retain 11,673
of the 14,212 lncRNA genes that contain regions antisense to protein-coding genes. We deleted
2539 lncRNA genes where no exons satisfy the aforementioned criteria. Following these
trimming steps we retained 91,215 of 101,285 lncRNA genes (Fig. 1C & Table 1). We then
created a comprehensive genome annotation of 110,599 genes consisting of 19,384
protein-coding genes from GENCODE and 91,215 lncRNA genes containing regions that do not
overlap with protein-coding genes and refer to this approach as the trimmed lncRNA genome
annotation (TLGA). TLGA increased the wealth of lncRNA exons by 4.93 fold (n=428,298),
transcripts by 6.46 fold (n=258,106), and genes by 5.41 fold (n=74,366) compared to
GENCODE. The inclusion of these additional lncRNA genes may also slightly reduce the total
number of uniquely mapped reads, as some reads uniquely mapped in GENCODE will no
longer be uniquely mapped with TLGA. (Fig 1D).
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Maximizing reads mapped to lncRNAs for downstream analysis

TLGA expands the number of annotated lncRNAs but still excludes regions of 11,673 lncRNAs
that partially overlap antisense exons of protein-coding genes. Once we define an lncRNA as
expressed in a dataset, the antisense reads could provide additional depth to assist in cell
clustering and the definition of genes expressed in specific cell types for follow-up studies. In
addition, lncRNAs are expressed at lower levels than protein-coding genes (Fig 2A-B and
Supplementary Fig 1A-D), and antisense lncRNAs often have functional activity (Faghihi et al.
2010; Yap et al. 2010), so there are benefits to including as much information for these genes as
possible once the thresholds for expression are met.

To assess the impact of trimming, we compared TLGA with an untrimmed lncRNA genome
annotation (ULGA). In ULGA, we deleted lncRNA genes overlapping protein-coding genes on
the sense strand but included all reads for the antisense overlapping lncRNAs. We mapped
PBMCs (pbmc_10k_v3 from 10x Genomics), liver set 1 (GSE115469 (MacParland et al. 2018))
and liver set 2 (GSE136103 (Ramachandran et al. 2019)) scRNA-seq data with ULGA and
TLGA to assess the output from each annotation.

More than 1,000 lncRNA genes in each dataset are expressed in ULGA but have no expression
in TLGA. Of 14,212 antisense overlapping lncRNAs, 1458 lncRNAs in PBMCs are expressed in
ULGA but not TLGA, while 1153 and 1841 lncRNAs are expressed in ULGA but not TLGA in
liver sets 1 and 2, respectively (Supplementary Table 1). Reads mapped to these lncRNA genes
were aligned only to regions antisense to protein-coding exons (+100nt) in ULGA and have the
potential to come only from library preparation artifacts. These lncRNAs were removed from
down-stream analysis.

Of the 14,212 antisense overlapping lncRNAs, 4921 lncRNAs in PBMCs, 4194 in liver set 1, and
6675 in liver set 2 are expressed in both TLGA and ULGA. For these lncRNAs, TLGA excluded
many reads that could support expression of lncRNA genes where there was corroborating
evidence for expression from reads that were not antisense to other genes. The median of
reads mapped to these lncRNAs is reduced from 174 to 142 in PBMCs, 45 to 38 in liver set 1
and 70 to 57 in liver set 2 for TLGA as compared to ULGA, and the same trends are observed in
each cell type (Fig 2C-D and Supplementary Fig 2A-D and Supplementary Table 1). This
analysis suggests that TLGA can be used to identify lncRNAs with the highest confidence in
expression but reduces the reads associated with lncRNAs containing exons antisense to other
genes. On the contrary the ULGA accounts for all the possible reads mapped to lncRNA genes
at the cost of potential library preparation artifacts. To this end, we combined both approaches.
We utilized TLGA to define expressed lncRNAs and ULGA to account for all the reads mapped
to these lncRNAs.

Two pairs of overlapping protein-coding and lncRNAs genes illustrate these scenarios in
PBMCs. SRGAP2-AS1 overlaps SRGAP2C in antisense (Fig 2E). The reads supporting
SRGAP2-AS1 are only within exons antisense to ARGAP2C (blue arrows). SRGAP2-AS1 is
defined as not expressed in TLGA and is excluded from further analysis. HSALNG0137471 is
expressed antisense to DDX3C (Fig 2F). In this example, there are reads supporting expression
of HSALNG0137471 in regions of exons that are not antisense to DDX3X exons (black vertical
arrows). This lncRNA is defined as expressed in TLGA. There are additional reads mapped in
ULGA closer to the 3’ end of HSALNG0137471 that can be included to provide additional
support for expression of this lncRNA.
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Read mapping and detected lncRNAs

We analyzed 8.07 billion reads in three publicly available datasets (26 samples) consisting of
one PBMC dataset and two liver datasets (Table 3). We mapped all samples to GENCODE,
TLGA and ULGA. Genome indices were created using Cell Ranger version 3.1.0 due to its
compatibility with different versions of Cell Ranger count (material and methods). The difference
in the number of reads mapped to various genomic loci between TLGA and ULGA is minimal
(Supplementary Fig 3-4 & Supplementary data 1). However, we observed a significant
difference between the reads mapped to GENCODE compared to both ULGA and TLGA.
Across the 26 samples, we observed an increase in the reads mapped confidently to exonic
regions by 1.46% in ULGA compared to GENCODE, accounting for 118.09 million reads
(Supplementary Fig 3B and Supplementary data 1). These results suggest that a fraction of
reads not mapped to GENCODE can be uniquely mapped to lncRNAs added with TLGA and
ULGA. Furthermore, ULGA captures more lncRNA genes (expressed in at least 10 cells in a
dataset) compared to GENCODE (Supplementary Table 2). GENCODE detected 5064, 4800,
and 8211 lncRNAs in PBMCs, Liver set 1, and Liver set 2 compared to 25,470, 20,813, and
40,375 in ULGA. In contrast, we observed a decrease in the reads mapped confidently to the
genome by 1.19% (96.26 million), intergenic regions by 1.98% (159.93 million), intronic regions
by 0.69% (56 million reads), and transcriptome by 0.15% (12.09 million reads) in ULGA
compared to GENCODE. The reduced reads in these categories suggest that ULGA and TLGA
now captures a small number of reads defined as intergenic or intronic by GENCODE and that a
small fraction of reads uniquely mapped in GENCODE are no longer uniquely mapped with the
expanded annotation and are discarded (Fig 1D).

Quality control of lncRNA mapping

Many lncRNAs in LncExpDB are not experimentally validated, and we next sought to define
additional criteria to support lncRNA gene expression in each dataset. We assessed read
distribution across the transcript body to identify lncRNA genes where 1) mapped reads exhibit
5’ bias in 3’ sequenced scRNA-seq libraries and 2) the majority of reads were mapped to a
single location in the transcript, as both situations could represent library artifacts or mapping
anomalies (Ma and Kingsford 2019). LncRNA genes for which all transcripts met either criteria
in a dataset were excluded from further analysis in that dataset.

To obtain the read distribution across the transcript body we utilized RSeQC (Wang, Wang, and
Li 2012). RSeQC scales all the transcripts to 100 bins and calculates the number of reads
covering each bin position and provides the normalized coverage profile along the gene body.
We modified RSeQC to obtain raw read counts (default is normalized read count to 1) for each
bin (material and methods). The overall read distribution for lncRNA genes was similar to
protein-coding genes in PBMCs (Fig 3A), while liver set 1 and liver set 2 showed more 5’
enrichment than protein-coding genes (Supplementary Fig 5). To assess the read distribution
across the transcripts and avoid transcript length bias, we subdivided lncRNAs and
protein-coding transcripts based on transcript length (Supplementary Table 3). We observed that
lncRNA transcripts from 200-1000 nt in length and greater than 10,000 nt in length have very
similar read distribution to protein-coding transcripts (Supplementary Fig 6-8). In contrast, the
read distribution for lncRNA transcripts of length more than 1000 nt and less than 10,000 nt
exhibit an increase in 5’ enrichment in 3’ sequenced scRNA-seq libraries (Fig 3B-C and
Supplementary Fig 6-8).

https://paperpile.com/c/tqag56/bbdzp
https://paperpile.com/c/tqag56/1UpmA
https://paperpile.com/c/tqag56/1UpmA


We next assessed the variability between gene and transcript lengths and found less correlation
between gene and transcript length for lncRNAs compared to protein-coding genes (Fig 3D-F &
Supplementary Table 4). This finding suggested that the 5’ enrichment observed in bulk analysis
of lncRNA transcripts could be explained by expression of transcripts of more variable length for
a given lncRNA gene, where shorter isoforms could give the appearance of an increased
fraction of 5’ reads for some lncRNA transcripts. We then evaluated 5' bias for each lncRNA
transcript (minimum transcript length 1,000 nt). In total 2445, 3065, and 4486 lncRNA genes
had transcripts that were flagged for 5’ bias in PBMCs, liver set 1, and liver set 2, respectively
(Fig 3G & Supplementary Table 5). Since the observed 5’ bias could be explained by more
abundant shorter isoforms of an lncRNA, we discarded the lncRNA gene only if all the
transcripts were flagged for 5’ bias. Using this criteria we discarded 433 lncRNA genes (5685
transcripts) in PBMCs, 488 lncRNA genes (7372 transcripts) in liver set 1, and 928 lncRNA
genes (9296 transcripts) in liver set 2 (Supplementary Table 5).

Finally, we evaluated read distribution across lncRNA transcripts to identify potential library
artifacts or mapping anomalies. We flagged lncRNA transcripts where reads aligned to one
particular region of the full transcript (minimum transcript length 1,000 nt). If the expression of a
single bin was greater than the expression of the sum of the remaining 99 bins and this single
bin was not in the last 10 bins (denoting the 3’ end of the transcript), the transcript was flagged
(Fig 3H). In total 606, 644, and 1084 lncRNA genes had transcripts that were flagged in the
PBMCs, liver set 1, and liver set 2, respectively. We performed this analysis for all transcripts
and discarded the lncRNA gene if all transcripts for a gene displayed this phenomenon. Using
these criteria we discarded 67 lncRNA genes (1455 transcripts) in PBMCs, 45 lncRNA genes
(1312 transcripts) in liver set 1, and 98 lncRNA genes (2271 transcripts) in liver set 2
(Supplementary Table 5).

After applying these quality control steps, we were able to retain the expression of 23,510,
19,126, and 37,507 high quality lncRNA genes in PBMCs, liver set 1, and liver set 2
(Supplementary Table 5). These lncRNAs were used for all the down-stream analyses.

lncRNAs alone predict most clusters and cell types in single cell data

LncRNA expression can be cell-type-specific (Liu et al. 2016). We applied our new annotation to
determine if we could cluster cell types based on lncRNA expression alone. We returned to
scRNA-seq data for human PBMCs and liver (Table 3). We mapped scRNA-seq data using Cell
Ranger (v6.0.2), and the labels for each cell were retained from the original publications. We
clustered cells using data aligned to GENCODE and to Singletrome (with the
previously-established filters). Despite lower expression of lncRNAs compared to protein-coding
genes (Fig 2A-B & Supplementary Fig 1A-D), we created similar cell clusters based on lncRNAs
alone for both PBMCs (Fig 4A-D) and liver (Supplementary Fig 9A-D & Supplementary Fig
10A-D). Clustering by lncRNAs alone showed similar results to GENCODE for most cell clusters
but did shift relationships between some clusters and cell types. In PBMCs, we observed that
CD4 naive and CD4 memory cells clustered more closely to CD8 naive and CD8 effector cells
with lncRNAs alone compared to data aligned to GENCODE (Fig 4A and 4D). In liver set 1, we
observed that hepatocytes_5 clustered closely with other hepatocytes with lncRNAs alone as
compared to genome annotations containing only protein-coding genes (Supplementary Fig
9A-D). We were not able to separate sub-clusters of hepatocytes (1, 3, 6, and 15) by UMAP
using lncRNAs, and these sub-clusters group closely in the original GENCODE annotation
(Supplementary Fig 9A). In another example, liver sinusoidal endothelial cells (LSECs)_13 are
clustered more closely with LSECs_11 and LSECs_12 with lncRNAs alone (Supplementary Fig
9D) as compared to analysis with protein-coding genes (Supplementary Fig 9A-C). For some
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cell types, lncRNA alone could not separate populations. For example, gamma-delta (gd)T
cells_18, gd T cells_9, alpha-beta (ab) T cells, and natural killer (NK) cells could not be
separated by lncRNA-only annotations (Supplementary Fig 9). It is possible that some cell types
may have less diversity of lncRNA expression or produce lower levels of lncRNAs transcripts,
which could reduce the ability to cluster some cell types by lncRNAs alone.

Since lncRNAs can cluster the majority of cells by cell type, we next aimed to generate an
lncRNA-based cell type marker map. We identified marker genes for each cell type relative to all
other cell types based on lncRNAs and protein-coding genes in PBMCs (Fig 4E-F) and liver
(Supplementary Fig 11-14). While lncRNAs are expressed at lower levels compared to
protein-coding genes in all datasets (Fig 4G, Supplementary Fig 15), we were still able to
identify lncRNA-based cell markers for PBMCs and liver (Supplementary data 2-4).

Clustering algorithms make assumptions about data distribution. We next trained a machine
learner to determine how well lncRNAs can define cell types without the underlying statistical
assumptions that are applied to clustering. In order to establish a baseline for comparing cell
type predictions, we performed cell type prediction using protein-coding genes and Singletrome
(containing all the protein-coding genes and quality filtered lncRNAs). We trained a
gradient-boosted decision tree based classifier XGBoost (Extreme Gradient Boosting) on the
expression data of protein-coding genes, lncRNAs, and the combination of both from
Singletrome (material and methods). Cell type labels were retained from the original
publications for PBMCs (13 cell types), liver set 1 (20 cell types), and liver set 2 (12 cell types).

We found that the overall accuracy for predicting cell types using lncRNAs was comparable to
that of protein-coding genes for PBMCs (96.39% for protein-coding genes and 90.30% for
lncRNAs) and liver set 2 (99.10% for protein-coding genes and 95.43% for lncRNAs) (Fig 4H,
Supplementary Fig 16-17 and Supplementary data 5-6). However, liver set 1 had an accuracy of
75.48% for lncRNAs, which is considerably less than the accuracy of 93.66% for protein-coding
genes (Supplementary Fig 18 Supplementary data 7). Liver set 1 splits single cell type into
multiple clusters based on marker genes from GENCODE, for example it contains six cell
clusters of hepatocytes, three clusters of liver sinusoidal endothelial cells (LSECs) and two cell
clusters of each macrophages and gd T cells. Five out of six sub-clusters of hepatocytes are
closely-associated by UMAP using the original GENCODE annotation (Supplementary Fig 9A),
and two sub-clusters of each macrophages and LSECs also cluster closely using the original
GENCODE annotation (Supplementary Fig 9A).

To assess the accuracy of predicting cell types rather than sub-clusters of cell types, we merged
clusters within the same cell type, retaining 11 cell types in liver set 1. We were able to predict
cell types with an accuracy of 98.16% using protein-coding genes, 90.40% using lncRNAs, and
98.16% using Singletrome (Supplementary Fig 19 and Supplementary data 7). These results
suggest that lncRNA expression can be used to predict cell types with a similar accuracy to
protein-coding genes, even though the original clustering was determined primarily by
protein-coding genes.

Long noncoding RNAs in liver fibrosis

To understand the role of lncRNAs in disease, we next analyzed scRNA-seq data of healthy and
cirrhotic human liver (liver set 2, GSE136103, (Ramachandran et al. 2019). We again used cell
labels from the original study and clustered the cells based on the condition (healthy and
cirrhotic) using Singletrome (Supplementary Fig 20), only protein-coding genes from
Singletrome (Supplementary Fig 21), and only lncRNAs from Singletrome (Fig 5A). Being able
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to produce similar clusters of healthy and diseased liver cell types enabled us to perform
differential expression analysis of lncRNAs in healthy and cirrhotic liver by cell type.
We detected 937 differentially expressed lncRNA genes (495 up-regulated and 442
down-regulated) between healthy and cirrhotic liver (Supplementary data 8) in cell types
including mesenchymal cells, hepatocytes, cholangiocytes, endothelial cells, B cells, plasma B
cells, dendritic cells (DCs), mononuclear phagocyte (MPs), innate lymphoid cells (ILCs) and T
cells (padj < 0.1 and log2FC > 0.25, Supplementary data 8). We were not able to detect
statistically significant differentially regulated lncRNAs in mast cells, and there were not enough
mesothelial cells to perform differential expression analysis (Fig 5B) .

LncRNAs induced with cirrhosis include XIST and H19 (Fig 5C-F, Supplementary data 8), which
have been shown to promote fibrosis (Wu et al. 2022; Xiao et al. 2019). XIST was identified in
the top two induced lncRNAs in cholangiocytes, hepatocytes, and pDCs, while H19 was
identified in top two induced lncRNAs in mesenchymal cells (Fig 5C). Additional lncRNAs that
are not yet well-characterized were also identified as differentially expressed between cell types
in healthy and cirrhotic liver (Fig 5C-F). These results show that there is sufficient read depth to
identify differentially expressed lncRNAs from single cell liver datasets that could have a role in
disease.

lncRNAs alone can cluster and predict cell types (Fig 4D,4H and Supplementary Fig 9D, 10D),
and we were able to observe the differential expression of lncRNAs linked to cirrhosis in
particular cell types. Liver pathology may be influenced by the expression of lncRNAs in affected
cell types. To assess whether liver pathology follows observable rules, we trained a machine
learner on lncRNA expression data of liver set 2 (GSE136103, (Ramachandran et al. 2019)) and
predicted the condition (healthy or cirrhotic) of the affected target cell. Condition (healthy or
cirrhotic) annotation for each cell was retained from liver set 2. We applied the XGBoost
algorithm to classify healthy and cirrhotic cell types of liver using lncRNAs (material and
methods). Based on lncRNA expression alone, the condition of cell types can be predicted with
an accuracy of 93.68%, a precision of 93.56%, and a recall of 93.49% (Fig 5G, Supplementary
data 6). In order to verify lncRNA based predictions, we trained a separate XGBoost model on
the expression data of protein-coding genes, and we were able to predict the condition of the
cells with an accuracy of 98.27%, a precision of 98.24%, and a recall of 98.22% (Supplementary
data 6). Additionally, Singletrome was able to classify healthy and cirrhotic cells with an
accuracy of 98.96%. These results suggest that it is possible for both cell type and disease
pathogenicity in single cell data to be reliably predicted through analysis of lncRNA expression
alone.

Discussion

Analysis of lncRNAs has been performed in scRNA-seq data for particular sets of transcripts
and cell types (Liu et al. 2016; Luo et al. 2021), but more universal lncRNA pipelines are not
available. Previous approaches applied transcriptomic analysis to bulk tissue to expand known
lncRNAs before evaluating expression in single cell data for the same tissue (Liu et al. 2016) or
by pooling single cell data from one cell type to assemble lncRNA transcripts before analyzing
expression of these transcripts at the single cell level (Luo et al. 2021). These studies
demonstrate the feasibility of lncRNA analysis with single cell data and also reveal that single
cell analysis can increase the sensitivity of lncRNA detection in settings where only a small
population of cells express an individual lncRNA (Liu et al. 2016). Here, we sought to develop a
unified analysis framework that could quantify lncRNA expression in any human scRNA-seq
data.
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We developed Singletrome to interrogate lncRNAs in scRNA-seq data using a custom genome
annotation of 110,599 genes consisting of 19,384 protein-coding genes from GENCODE and
91,215 lncRNA genes from LncExpDB (Table 1). We increased the current human lncRNA
annotation by greater than five fold and benchmarked the utility of Singletrome by analyzing
three publicly available 10x scRNA-seq datasets (Table 3). Mapping metrics such as reads
confidently mapped to (i) exonic regions, (ii) genome, (iii) transcriptome, (iv) intronic regions,
and (v) total genes detected depend on the expression of genes in each sample and can
increase (with the expression of additional lncRNAs) or decrease (due to multi-mapping of reads
that were originally confidently-mapped in GENCODE) with the additional lncRNA genes
(Supplementary Fig 3-4 & Supplementary data 1). In most of the samples, we observed an
increase in the total number of genes detected and reads confidently-mapped to exonic regions,
while a decrease in the reads mapped confidently to the genome, transcriptome, intronic
regions, and intergenic regions was observed in TLGA and ULGA compared to GENCODE
(Supplementary Fig 4 & Supplementary data 1). The balance of reads gained by new lncRNA
exons and lost by multi-mapping as a result of these exons can also fluctuate across individual
samples. In the example of reads confidently mapped to exon regions (Supplementary Fig 3B),
all samples show an increase for TLGA and UGLA except liver-13 and liver 25, where the loss
of reads due to multi-mapping outweighs the gain of new exons.

We utilized trimmed lncRNA genome annotation (TLGA) to avoid counting spurious antisense
reads when defining lncRNAs that are expressed in a dataset. We then utilized an untrimmed
lncRNA genome annotation (ULGA) to account for all the reads mapped to lncRNAs that are
defined as expressed by the TLGA (Supplementary Table 1). Using the established quality
control filters, we were able to identify lncRNA genes where 1) mapped reads exhibit 5’ bias in
3’ sequenced scRNA-seq libraries and 2) the majority of reads were mapped to a single location
in the transcript, as both situations could represent library artifacts or mapping anomalies(Ma
and Kingsford 2019) (Fig 3G-H and Supplementary Table 5).

LncRNA expression can be cell-type-specific (Liu et al. 2016), and we found that most cell types
can be clustered by lncRNAs alone (Fig 4A-D and Supplementary Fig 9-10). Clustering by
lncRNAs alone was associated with less separation of clusters compared to GENCODE or
lncRNAs plus protein-coding genes (Singletrome) as evidenced by the closer proximity of some
clusters from the same cell type. These observations may be influenced by lower levels of
lncRNA expression or more similarities in expression at the lncRNA level across similar cell
types. The additional reads mapped with Singletrome did not result in the clear identification of
new clusters within those clusters defined by mapping to GENCODE. However, for these
analyses, cell clusters were assigned based on the originally published GENCODE annotations,
and future analyses using Singletrome to perform the original clustering may provide additional
resolution compared to GENCODE.

To determine cell types based on lncRNAs without the statistical assumptions, we applied the
XGBoost classifier for predicting cell type using only lncRNA expression. In order to establish a
baseline for comparing cell type predictions using lncRNAs, we additionally trained the XGBoost
classifier on the expression data of protein-coding genes and Singletrome. We trained and
predicted cell types for all the three datasets (Table 3). The classification of cells into cell types
for each dataset (Table 3) was challenging due to (1) multiple cell types in each dataset and (2)
imbalanced datasets (Supplementary data 5-7). There were 13 cell types in PBMCs, 20 in liver
set 1, and 12 in liver set 2. Furthermore cell types were not represented equally within the
dataset. For example, PBMCs have 52 platelets and 2992 CD14+ monocytes, and liver set 1
contains 37 hepatic stellate cells and over a thousand hepatocyte_1 cells. Similarly liver set 2
has 70 mast cells and over 20,000 T cells. A number of machine learning classifiers can be
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applied for the cell type prediction problem, such as neural networks, support vector machines,
random forest and logistic regression. We selected XGBoost as it is a preferred machine
learning technique for classification with imbalanced datasets against the aforementioned set of
classifiers. (Hernesniemi et al. 2019; Nishio et al. 2018; Ogunleye and Wang 2020).

The overall accuracy for predicting cell types using lncRNAs was comparable to that of
protein-coding genes for PBMCs (96.39% for protein-coding genes and 90.30% for lncRNAs)
and liver set 2 (99.10% for protein-coding genes and 95.43% for lncRNAs). However, liver set 1
had an accuracy of 75.48% for lncRNAs, which is considerably less than the accuracy of
93.66% for protein-coding genes. Most of the mis-classifications in liver set 1 were amongst
sub-clusters of the same cell type (Supplementary data 7). For example 100 cells of
Hepatocytes_3 were classified correctly, but 72 cells of Hepatocytes_3 are classified as
Hepatocytes_1. These results indicate that the cells in each subcluster still contain many of the
same lncRNAs. When we collapsed cell sub-clusters into a single cell type, we predicted liver
set 1 cell types with an accuracy of 98.16% for protein-coding and 90.40% for lncRNAs
(Supplementary data 7). These results suggest that lncRNA expression can be used to predict
cell types with a similar accuracy to protein-coding genes. However, the prediction accuracy
drops when separating sub-clusters of the same cell type. In these cases it is not yet clear
whether lncRNAs are slightly less able to predict cell type, or the difference in prediction
between lncRNAs and protein-coding genes reflects an inherent bias towards the protein-coding
genes in the original cell type labeling.

The ability to cluster and predict most cell types using lncRNA expression alone, demonstrates
the depth and diversity of lncRNA transcripts detected in single cell data. The overall goal of
Singletrome is to increase the depth of annotations of single cell data and to define differentially
expressed lncRNA genes that may regulate disease processes. Comparing cells from healthy
and cirrhotic liver (liver set 2), we were able to identify 937 differentially expressed lncRNAs.
XIST and H19 are both linked to liver fibrosis (Wu et al. 2022; Xiao et al. 2019) and were
identified in our analysis. This suggests that other lncRNAs with similar patterns of expression
(Fig 5C-F and Supplementary data 8) may also have activity in liver fibrosis. Our analysis was
based on currently available data for healthy and cirrhotic liver. The data includes five cirrhotic
livers with different causes of cirrhosis. As liver datasets expand in the future to include
additional replicates with cirrhosis from multiple sources of injury and different stages along
disease progression, the statistical power will increase to allow identification of additional
differentially expressed lncRNAs across all conditions.

lncRNAs alone can cluster and predict cell types (Fig4D, 4H and Supplementary Fig 9D, 10D,
16-19), and we were able to identify differential regulation of lncRNAs linked to cirrhosis in
particular cell types. Machine learning also demonstrated the ability of lncRNAs to predict
disease (Fig 5G). These analyses demonstrates that lncRNA expression changes significantly
in disease and provides further support to suggest that lncRNAs, in addition to protein-coding
genes, can serve as biomarkers and mechanistic drivers of disease (Nath et al. 2019; Delás and
Hannon 2017; Bolha, Ravnik-Glavač, and Glavač 2017).

The Human Cell Atlas has now mapped more than a million individual cells across 33 organs of
the human body (Suo et al. 2022; Domínguez Conde et al. 2022) The focus of these analyses
has understandably been on protein-coding genes. This comprehensive genome annotation
optimized for scRNA-seq data can now be applied to existing and future single cell data sets to
promote the development of an atlas of human lncRNAs in health and disease.
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Feature Genes Exons

Type protein-coding LncRNA protein-coding LncRNA

Total 19,384 101,285 476,299 611,102

Sense strand overlap 6309 7531 42,868 24,357

Antisense strand overlap 10,492 14,212 47,057 44,062

Post sense strand filtering * 93,754 * 565,717

Post antisense strand
filtering

* 91,215 * 537,373

Table 1. Integrating GENCODE v32 (Frankish et al. 2019) and LncExpDB v2 (Li et al. 2021).
GENCODE (dated 27.10.2021) contains 19,384 protein-coding genes (476,299 exons), and
LncExpDB (27.10.2021) contains 101,285 lncRNA genes (611,102 exons). The table indicates
the number of lncRNAs that were filtered based on sense strand and antisense overlap as
described in the text. * denoted no filtering of protein-coding genes and exons.
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Feature Genes Exons

Type protein-coding LncRNA protein-coding LncRNA

Total 19,384 16,849 476,299 109,075

Sense strand overlap 619 516 3514 2106

Antisense strand overlap 3590 3791 12,941 8809

Table 2. Distribution of protein-coding and lncRNA genes in GENCODE v32.



Dataset Source Number of
samples

Number
of cells

pbmc_10k_v3 (10x Genomics)* PBMCs 1 9432

GSE115469 (MacParland et al. 2018) Liver 5 8444

GSE136103 (Ramachandran et al. 2019) Liver 20 58358

Table 3. Datasets analyzed. 10x single cell RNA-seq datasets used to validate Singletrome
annotation and create lncRNA cell type maps. * denotes 10k PBMCs from a Healthy Donor (v3
chemistry) Single Cell Gene Expression Dataset by Cell Ranger 3.0.0, 10x Genomics, (2018,
November 19).
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Material and methods

Genome indices. We downloaded the human reference genome index from 10x Genomics
https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz, which includes
genes from different biotypes (lncRNA, protein_coding, IG_V_pseudogene, IG_V_gene,
IG_C_gene, IG_J_gene, TR_C_gene, TR_J_gene, TR_V_gene, TR_V_pseudogene,
TR_D_gene, IG_C_pseudogene, TR_J_pseudogene, IG_J_pseudogene, IG_D_gene) as
shown in Supplementary Table 6 along with the number of genes for each biotype. We termed
this genome annotation as GENCODE (used by Cell Ranger) in the manuscript. For evaluating
protein-coding and lncRNAs exonic overlap in the GENCODE annotation, we used the same
strategy and script from 10x Genomics with protein_coding and lncRNA as the biotype patterns
respectively. In brief, we obtained 19,384 protein-coding genes with GENCODE v32 filtering for
‘protein_coding’ as the ‘gene_type’ and ‘transcript_type’. We additionally filtered transcripts with
tags such as ‘readthrough_transcript’ and ‘PAR’. We obtained 16,849 long noncoding RNAs
filtering GENCODE v32 for ‘lncRNA’ as the ‘gene_type’ and ‘transcript_type’. We additionally
filtered transcripts with tags such as ‘readthrough_transcript’ and ‘PAR’. For TLGA and ULGA
genome indices, we downloaded the human lncRNA genome annotation file from
ftp://download.big.ac.cn/lncexpdb/0-ReferenceGeneModel/1-GTFFiles/LncExpDB_OnlyLnc.tar.g
z. We removed 8 genes (HSALNG0056858, HSALNG0059740, HSALNG0078365,
HSALNG0092690, HSALNG009306, HSALNG0089130, HSALNG0089954 and
HSALNG0095105) where we found invalid exons in the transcript or exons of transcripts were
not stored in ascending order. To create the TLGA and ULGA genome indices, we included the
protein-coding genes obtained from the GENCODE with the inhouse created genome
annotation file (see section ‘Expanding lncRNA annotations in single cell analysis’), and created
the genome indices using the bash script available at 10x Genomics website
(https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build#hg1
9_3.0.0). For all the genome indices, the human reference sequence for GRCh38 was
downloaded from
http://ftp.ensembl.org/pub/release-98/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.pri
mary_assembly.fa.gz. Genome indices were created using Cell Ranger version 3.1.0 due its
compatibility with all the versions (3.1 to 6.0 as of the current work) of count pipelines and older
v1 chemistry versions of Cell Ranger count (Supplementary Table 7). Using Cell Ranger version
3.1.0 mkref will help to analyze scRNA-seq data generated with the older v1 chemistry version.

Data. We analyzed three publicly available 10x scRNA-seq datasets consisting of 26 samples
(Table 3) with the most widely used genome annotation for scRNA-seq analysis (GENCODE)
and our custom genome annotations (TLGA and ULGA).

Gene expression. Cell Ranger count version 6.0.2 was used with the default parameters for all
the genome versions to obtain gene expression count matrix.

lncRNA quality filter. To compute the gene body coverage for each dataset (PBMCs, liver set 1
and liver set 2) we utilized RSeQC (Wang, Wang, and Li 2012). The program was used to check
if reads coverage was uniform and if there was any 5’ or 3’ end bias or if majority of the reads
are mapped to one location (single bin) in the transcript. RSeQC scales all the transcripts to 100
bins and calculates the number of reads covering each bin position and provides the normalized
coverage profile along the gene body. We modified the RSeQC geneBody_coverage.py script to
obtain raw read counts (default is normalized read count to 1) for each bin. To assess the read
distribution across the gene body and avoid transcript length bias, we subdivided lncRNAs and
protein-coding transcripts based on transcript length. Gene and transcript length were
calculated using R package GenomicFeatures version 1.46.1 (Supplementary Table 3). The
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input for the program is an indexed BAM file and gene model in BED format. Gene models were
created for protein-coding genes from GENCODE and lncRNAs from Singletrome. We assessed
read distribution across the transcript body to identify lncRNA genes where 1) mapped reads
exhibit 5’ bias in 3’ sequenced scRNA-seq libraries and 2) the majority of reads were mapped to
a single location in the transcript, as both situations could represent library artifacts or mapping
anomalies (Ma and Kingsford 2019). LncRNA genes for which all transcripts met either criteria
in a dataset were excluded from further analysis in that dataset. LncRNAs that passed these
filtering steps were used for all the downstream analysis such as cell type clustering, cell type
prediction, differential expression in healthy and cirrhotic liver and disease prediction.

Cell type clustering. We used Seurat version 4.0.6 for analyzing all the gene expression
matrices for all the datasets (Table 3). We retained cell type labels from the original publications.
We matched the barcodes from our mapping to the original publication barcodes to obtain the
cell type labels. In all the analyses, the Singletrome count matrix was subsetted for
protein-coding genes and lncRNAs to cluster cell types. Since we used the cell labels from the
original publications (Table 3), we discarded all the other cells that were not labeled (assigned
cell type identity) in the original publication.

Cell type markers identification. We used Seurat version 4.0.6 for the identification of cell type
markers in all the datasets (Table 3). To identify cell type markers based on lncRNA and
protein-coding genes, gene expression count matrices obtained from Singletrome mapping
were split into protein-coding and lncRNA genes for each dataset. We used FindAllMarkers
function from Seurat to find markers (differentially expressed genes) for each of the cell types in
a dataset. We retained only those genes with a log-transformed fold change of at least 0.25 and
expression in at least 25% of cells in the cluster under comparison.

Cell type prediction using machine learning. We trained a XGBoost classifier (version 1.6.2)
on the expression data of protein-coding genes, lncRNAs, and the combination of both in
Singletrome to predict cell types. Cell type labels were retained from the original publications
(Table 3). We opted for XGBoost, as it is a preferential model for the imbalanced data and some
cell types were under-represented in the datasets (Table 3 and Supplementary data 5-7).
Expression data for each model (protein-coding, lncRNAs and Singletrome) was split into a
training set (80%) and test set (20%). The model was trained using 80% of the data and
evaluated using the remaining 20% of the data for each dataset (Table 3). To find the optimal
parameters for the model, we used RandomizedSearchCV. The resultant optimal parameters for
cell type classification were n_estimators : 25, max_depth : 25 and tree_method : 'hist'.
Measurements of the model performance such as accuracy, recall, precision, f1, specificity,
AUC are reported for each model for all the datasets (Supplementary data 5-7).

Differential expression analysis. We used Seurat version 4.0.6 to perform differential
expression analysis between healthy and cirrhotic liver for liver set 2. The gene expression
count matrix obtained from Singletrome mapping was split into protein-coding and lncRNA
genes. Differential expression analysis was performed separately for Singletrome,
protein-coding genes and lncRNA genes. We used FindMarkers function from Seurat to identify
the differentially expressed genes between healthy and cirrhotic liver for each cell type. We
filtered differentially expressed genes (protein-coding and lncRNAs) for padj-value less than 0.1
and log2FC more than 0.25 in either direction.

Disease (cirrhosis) prediction using machine learning. We trained XGBoost classifier
(version 1.6.2) on the expression data of protein-coding genes, lncRNAs, and the combination
of both in Singletrome to predict the condition (healthy or cirrhotic) of the cell in liver set 2.
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Condition (healthy or cirrhotic) labels were retained from the original publication (liver set 2).
RandomizedSearchCV technique was used to identify the optimum values of various
parameters for the model. The optimum values obtained for various parameters were
n_estimators: 400, max_depth: 25, subsample: 0.75, and tree_method:’hist’. Expression data
for each model (protein-coding, lncRNAs and Singletrome) was split into a training set (80%)
and test set (20%). The model was trained using 80% of the data and evaluated using the
remaining 20% of the data. Measurements of the model performance such as accuracy, recall,
precision, f1, specificity, AUC are reported for each model (Supplementary data 6).

Data availability. All the datasets (Table 3) used in this study are publicly available. The PBMCs
dataset was obtained from the 10x Genomics platform “10k PBMCs from a Healthy Donor (v3
chemistry) Single Cell Gene Expression Dataset by Cell Ranger 3.0.0, 10x Genomics, (2018,
November 19)”. The previously-published datasets from the Gene Expression Omnibus (GEO)
used in this study are GSE115469 and GSE136103.

Code availability. Python, R and Bash Scripts for data processing are available through
https://github.com/RAZA-UR-RAHMAN/Singletrome.

Acknowledgments. The authors thank Kate Jeffrey for helpful discussion. A.C.M. was
supported by the Chan Zuckerberg Initiative, Pew Biomedical Scholars Program, and
NIH/NIDDK R01DK116999. This publication is part of the Human Cell Atlas -
www.humancellatlas.org/publications.

Author contributions. R.R and A.C.M. conceived and designed the study. Computational
analysis was performed by R.R. I.A. and R.R. designed the cell type and disease prediction
analysis and I.A implemented the Xgboost models. R.S and A.S assisted with the analysis of
the differentially expressed lncRNAs in liver fibrosis. The manuscript was written by R.R. and
A.C.M with input from all other authors.

Competing interests: A.C.M. receives research funding from Boehringer Ingelheim,
Bristol-Myers Squibb, and Glaxo Smith Klein for other projects and is a consultant for Third
Rock Ventures. R. R. is founder of deepnostiX in Germany and Pakistan.



References

Atanasovska, Biljana, Sander S. Rensen, Marijke R. van der Sijde, Glenn Marsman, Vinod
Kumar, Iris Jonkers, Sebo Withoff, et al. 2017. “A Liver-Specific Long Noncoding RNA with
a Role in Cell Viability Is Elevated in Human Nonalcoholic Steatohepatitis.” Hepatology 66
(3): 794–808.

Bell, Charles C., Paulo P. Amaral, Anton Kalsbeek, Graham W. Magor, Kevin R. Gillinder, Pierre
Tangermann, Lorena di Lisio, et al. 2016. “The Evx1/Evx1as Gene Locus Regulates
Anterior-Posterior Patterning during Gastrulation.” Scientific Reports 6 (May): 26657.

Bolha, Luka, Metka Ravnik-Glavač, and Damjan Glavač. 2017. “Long Noncoding RNAs as
Biomarkers in Cancer.” Disease Markers 2017 (May): 7243968.

Cabili, M. N., C. Trapnell, L. Goff, M. Koziol, B. Tazon-Vega, A. Regev, and J. L. Rinn. 2011.
“Integrative Annotation of Human Large Intergenic Noncoding RNAs Reveals Global
Properties and Specific Subclasses.” Genes & Development.
https://doi.org/10.1101/gad.17446611.

Daneshvar, Kaveh, M. Behfar Ardehali, Isaac A. Klein, Fu-Kai Hsieh, Arcadia J. Kratkiewicz,
Amin Mahpour, Sabrina O. L. Cancelliere, et al. 2020. “lncRNA DIGIT and BRD3 Protein
Form Phase-Separated Condensates to Regulate Endoderm Differentiation.” Nature Cell
Biology 22 (10): 1211–22.

Delás, M. Joaquina, and Gregory J. Hannon. 2017. “lncRNAs in Development and Disease:
From Functions to Mechanisms.” Open Biology 7 (7). https://doi.org/10.1098/rsob.170121.

Derrien, Thomas, Rory Johnson, Giovanni Bussotti, Andrea Tanzer, Sarah Djebali, Hagen
Tilgner, Gregory Guernec, et al. 2012. “The GENCODE v7 Catalog of Human Long
Noncoding RNAs: Analysis of Their Gene Structure, Evolution, and Expression.” Genome
Research 22 (9): 1775–89.

Ding, Jiarui, Xian Adiconis, Sean K. Simmons, Monika S. Kowalczyk, Cynthia C. Hession,
Nemanja D. Marjanovic, Travis K. Hughes, et al. 2020. “Systematic Comparison of
Single-Cell and Single-Nucleus RNA-Sequencing Methods.” Nature Biotechnology 38 (6):
737–46.

Domínguez Conde, C., C. Xu, L. B. Jarvis, D. B. Rainbow, S. B. Wells, T. Gomes, S. K. Howlett,
et al. 2022. “Cross-Tissue Immune Cell Analysis Reveals Tissue-Specific Features in
Humans.” Science 376 (6594): eabl5197.

Faghihi, Mohammad Ali, Ming Zhang, Jia Huang, Farzaneh Modarresi, Marcel P. Van der Brug,
Michael A. Nalls, Mark R. Cookson, Georges St-Laurent 3rd, and Claes Wahlestedt. 2010.
“Evidence for Natural Antisense Transcript-Mediated Inhibition of microRNA Function.”
Genome Biology 11 (5): R56.

Fang, Shuangsang, Lili Zhang, Jincheng Guo, Yiwei Niu, Yang Wu, Hui Li, Lianhe Zhao, et al.
2018. “NONCODEV5: A Comprehensive Annotation Database for Long Non-Coding
RNAs.” Nucleic Acids Research 46 (D1): D308–14.

Frankish, Adam, Mark Diekhans, Anne-Maud Ferreira, Rory Johnson, Irwin Jungreis, Jane
Loveland, Jonathan M. Mudge, et al. 2019. “GENCODE Reference Annotation for the
Human and Mouse Genomes.” Nucleic Acids Research 47 (D1): D766–73.

Hernesniemi, Jussi A., Shadi Mahdiani, Juho A. Tynkkynen, Leo-Pekka Lyytikäinen, Pashupati
P. Mishra, Terho Lehtimäki, Markku Eskola, Kjell Nikus, Kari Antila, and Niku Oksala. 2019.
“Extensive Phenotype Data and Machine Learning in Prediction of Mortality in Acute
Coronary Syndrome - the MADDEC Study.” Annals of Medicine 51 (2): 156–63.

Huang, Weizhen, Yunming Tian, Shaoting Dong, Yinlian Cha, Jun Li, Xiaohong Guo, and Xia
Yuan. 2017. “The Long Non-Coding RNA SNHG3 Functions as a Competing Endogenous
RNA to Promote Malignant Development of Colorectal Cancer.” Oncology Reports 38 (3):
1402–10.

Jiang, Lichun, Felix Schlesinger, Carrie A. Davis, Yu Zhang, Renhua Li, Marc Salit, Thomas R.

http://paperpile.com/b/tqag56/wmbRx
http://paperpile.com/b/tqag56/wmbRx
http://paperpile.com/b/tqag56/wmbRx
http://paperpile.com/b/tqag56/wmbRx
http://paperpile.com/b/tqag56/n5PnC
http://paperpile.com/b/tqag56/n5PnC
http://paperpile.com/b/tqag56/n5PnC
http://paperpile.com/b/tqag56/68Omg
http://paperpile.com/b/tqag56/68Omg
http://paperpile.com/b/tqag56/w0cdo
http://paperpile.com/b/tqag56/w0cdo
http://paperpile.com/b/tqag56/w0cdo
http://paperpile.com/b/tqag56/w0cdo
http://dx.doi.org/10.1101/gad.17446611
http://paperpile.com/b/tqag56/w0cdo
http://paperpile.com/b/tqag56/EEL15
http://paperpile.com/b/tqag56/EEL15
http://paperpile.com/b/tqag56/EEL15
http://paperpile.com/b/tqag56/EEL15
http://paperpile.com/b/tqag56/sDA5b
http://paperpile.com/b/tqag56/sDA5b
http://dx.doi.org/10.1098/rsob.170121
http://paperpile.com/b/tqag56/sDA5b
http://paperpile.com/b/tqag56/5OIvE
http://paperpile.com/b/tqag56/5OIvE
http://paperpile.com/b/tqag56/5OIvE
http://paperpile.com/b/tqag56/5OIvE
http://paperpile.com/b/tqag56/xWItf
http://paperpile.com/b/tqag56/xWItf
http://paperpile.com/b/tqag56/xWItf
http://paperpile.com/b/tqag56/xWItf
http://paperpile.com/b/tqag56/tsu9t
http://paperpile.com/b/tqag56/tsu9t
http://paperpile.com/b/tqag56/tsu9t
http://paperpile.com/b/tqag56/YOgcq
http://paperpile.com/b/tqag56/YOgcq
http://paperpile.com/b/tqag56/YOgcq
http://paperpile.com/b/tqag56/YOgcq
http://paperpile.com/b/tqag56/8b65C
http://paperpile.com/b/tqag56/8b65C
http://paperpile.com/b/tqag56/8b65C
http://paperpile.com/b/tqag56/LC4gY
http://paperpile.com/b/tqag56/LC4gY
http://paperpile.com/b/tqag56/LC4gY
http://paperpile.com/b/tqag56/O97yu
http://paperpile.com/b/tqag56/O97yu
http://paperpile.com/b/tqag56/O97yu
http://paperpile.com/b/tqag56/O97yu
http://paperpile.com/b/tqag56/QnLYV
http://paperpile.com/b/tqag56/QnLYV
http://paperpile.com/b/tqag56/QnLYV
http://paperpile.com/b/tqag56/QnLYV
http://paperpile.com/b/tqag56/XXCZJ


Gingeras, and Brian Oliver. 2011. “Synthetic Spike-in Standards for RNA-Seq Experiments.”
Genome Research 21 (9): 1543–51.

Kotzin, Jonathan J., Sean P. Spencer, Sam J. McCright, Dinesh B. Uthaya Kumar, Magalie A.
Collet, Walter K. Mowel, Ellen N. Elliott, et al. 2016. “The Long Non-Coding RNA Morrbid
Regulates Bim and Short-Lived Myeloid Cell Lifespan.” Nature 537 (7619): 239–43.

Liu, Siyuan John, Tomasz J. Nowakowski, Alex A. Pollen, Jan H. Lui, Max A. Horlbeck, Frank J.
Attenello, Daniel He, et al. 2016. “Single-Cell Analysis of Long Non-Coding RNAs in the
Developing Human Neocortex.” Genome Biology 17 (April): 67.

Li, Zhao, Lin Liu, Shuai Jiang, Qianpeng Li, Changrui Feng, Qiang Du, Dong Zou, Jingfa Xiao,
Zhang Zhang, and Lina Ma. 2021. “LncExpDB: An Expression Database of Human Long
Non-Coding RNAs.” Nucleic Acids Research 49 (D1): D962–68.

Luo, Haitao, Dechao Bu, Lijuan Shao, Yang Li, Liang Sun, Ce Wang, Jing Wang, et al. 2021.
“Single-Cell Long Non-Coding RNA Landscape of T Cells in Human Cancer Immunity.”
Genomics, Proteomics & Bioinformatics 19 (3): 377–93.

Ma, Cong, and Carl Kingsford. 2019. “Detecting, Categorizing, and Correcting Coverage
Anomalies of RNA-Seq Quantification.” Cell Systems 9 (6): 589–99.e7.

MacParland, Sonya A., Jeff C. Liu, Xue-Zhong Ma, Brendan T. Innes, Agata M. Bartczak, Blair
K. Gage, Justin Manuel, et al. 2018. “Single Cell RNA Sequencing of Human Liver Reveals
Distinct Intrahepatic Macrophage Populations.” Nature Communications 9 (1): 1–21.

Mahpour, Amin, and Alan C. Mullen. 2021. “Our Emerging Understanding of the Roles of Long
Non-Coding RNAs in Normal Liver Function, Disease, and Malignancy.” JHEP Reports :
Innovation in Hepatology 3 (1): 100177.

Mourão, Kira, Nicholas J. Schurch, Radek Lucoszek, Kimon Froussios, Katarzyna MacKinnon,
Céline Duc, Gordon Simpson, and Geoffrey J. Barton. 2019. “Detection and Mitigation of
Spurious Antisense Expression with RoSA.” F1000Research 8 (June): 819.

Nath, Aritro, Eunice Y. T. Lau, Adam M. Lee, Paul Geeleher, William C. S. Cho, and R.
Stephanie Huang. 2019. “Discovering Long Noncoding RNA Predictors of Anticancer Drug
Sensitivity beyond Protein-Coding Genes.” Proceedings of the National Academy of
Sciences of the United States of America 116 (44): 22020–29.

Nishio, Mizuho, Mitsuo Nishizawa, Osamu Sugiyama, Ryosuke Kojima, Masahiro Yakami,
Tomohiro Kuroda, and Kaori Togashi. 2018. “Computer-Aided Diagnosis of Lung Nodule
Using Gradient Tree Boosting and Bayesian Optimization.” PloS One 13 (4): e0195875.

Ogunleye, Adeola, and Qing-Guo Wang. 2020. “XGBoost Model for Chronic Kidney Disease
Diagnosis.” IEEE/ACM Transactions on Computational Biology and Bioinformatics / IEEE,
ACM 17 (6): 2131–40.

Parkhomchuk, Dmitri, Tatiana Borodina, Vyacheslav Amstislavskiy, Maria Banaru, Linda Hallen,
Sylvia Krobitsch, Hans Lehrach, and Alexey Soldatov. 2009. “Transcriptome Analysis by
Strand-Specific Sequencing of Complementary DNA.” Nucleic Acids Research 37 (18):
e123.

Ramachandran, P., R. Dobie, J. R. Wilson-Kanamori, E. F. Dora, B. E. P. Henderson, N. T. Luu,
J. R. Portman, et al. 2019. “Resolving the Fibrotic Niche of Human Liver Cirrhosis at
Single-Cell Level.” Nature 575 (7783): 512–18.

Statello, Luisa, Chun-Jie Guo, Ling-Ling Chen, and Maite Huarte. 2021. “Gene Regulation by
Long Non-Coding RNAs and Its Biological Functions.” Nature Reviews. Molecular Cell
Biology 22 (2): 96–118.

Suo, Chenqu, Emma Dann, Issac Goh, Laura Jardine, Vitalii Kleshchevnikov, Jong-Eun Park,
Rachel A. Botting, et al. 2022. “Mapping the Developing Human Immune System across
Organs.” Science 376 (6597): eabo0510.

Wang, Liguo, Shengqin Wang, and Wei Li. 2012. “RSeQC: Quality Control of RNA-Seq
Experiments.” Bioinformatics 28 (16): 2184–85.

Wu, Xiong-Jian, Yuan Xie, Xiao-Xiang Gu, Hai-Yan Zhu, and Li-Xing Huang. 2022. “LncRNA

http://paperpile.com/b/tqag56/XXCZJ
http://paperpile.com/b/tqag56/XXCZJ
http://paperpile.com/b/tqag56/yH27E
http://paperpile.com/b/tqag56/yH27E
http://paperpile.com/b/tqag56/yH27E
http://paperpile.com/b/tqag56/BUrqR
http://paperpile.com/b/tqag56/BUrqR
http://paperpile.com/b/tqag56/BUrqR
http://paperpile.com/b/tqag56/tMYlE
http://paperpile.com/b/tqag56/tMYlE
http://paperpile.com/b/tqag56/tMYlE
http://paperpile.com/b/tqag56/qyZL
http://paperpile.com/b/tqag56/qyZL
http://paperpile.com/b/tqag56/qyZL
http://paperpile.com/b/tqag56/bbdzp
http://paperpile.com/b/tqag56/bbdzp
http://paperpile.com/b/tqag56/iLrSG
http://paperpile.com/b/tqag56/iLrSG
http://paperpile.com/b/tqag56/iLrSG
http://paperpile.com/b/tqag56/6u37q
http://paperpile.com/b/tqag56/6u37q
http://paperpile.com/b/tqag56/6u37q
http://paperpile.com/b/tqag56/nQf68
http://paperpile.com/b/tqag56/nQf68
http://paperpile.com/b/tqag56/nQf68
http://paperpile.com/b/tqag56/VDZKQ
http://paperpile.com/b/tqag56/VDZKQ
http://paperpile.com/b/tqag56/VDZKQ
http://paperpile.com/b/tqag56/VDZKQ
http://paperpile.com/b/tqag56/OtZlf
http://paperpile.com/b/tqag56/OtZlf
http://paperpile.com/b/tqag56/OtZlf
http://paperpile.com/b/tqag56/5J8yt
http://paperpile.com/b/tqag56/5J8yt
http://paperpile.com/b/tqag56/5J8yt
http://paperpile.com/b/tqag56/i2CNP
http://paperpile.com/b/tqag56/i2CNP
http://paperpile.com/b/tqag56/i2CNP
http://paperpile.com/b/tqag56/i2CNP
http://paperpile.com/b/tqag56/GZBSE
http://paperpile.com/b/tqag56/GZBSE
http://paperpile.com/b/tqag56/GZBSE
http://paperpile.com/b/tqag56/MN0e5
http://paperpile.com/b/tqag56/MN0e5
http://paperpile.com/b/tqag56/MN0e5
http://paperpile.com/b/tqag56/uCQYR
http://paperpile.com/b/tqag56/uCQYR
http://paperpile.com/b/tqag56/uCQYR
http://paperpile.com/b/tqag56/1UpmA
http://paperpile.com/b/tqag56/1UpmA
http://paperpile.com/b/tqag56/Zh6Gl


XIST Promotes Mitochondrial Dysfunction of Hepatocytes to Aggravate Hepatic
Fibrogenesis via miR-539-3p/ADAMTS5 Axis.” Molecular and Cellular Biochemistry, July.
https://doi.org/10.1007/s11010-022-04506-0.

Xiao, Yongtao, Runping Liu, Xiaojiaoyang Li, Emily C. Gurley, Phillip B. Hylemon, Ying Lu,
Huiping Zhou, and Wei Cai. 2019. “Long Noncoding RNA H19 Contributes to Cholangiocyte
Proliferation and Cholestatic Liver Fibrosis in Biliary Atresia.” Hepatology 70 (5): 1658–73.

Yap, Kyoko L., Side Li, Ana M. Muñoz-Cabello, Selina Raguz, Lei Zeng, Shiraz Mujtaba, Jesús
Gil, Martin J. Walsh, and Ming-Ming Zhou. 2010. “Molecular Interplay of the Noncoding
RNA ANRIL and Methylated Histone H3 Lysine 27 by Polycomb CBX7 in Transcriptional
Silencing of INK4a.” Molecular Cell 38 (5): 662–74.

Zeng, Weihua, and Ali Mortazavi. 2012. “Technical Considerations for Functional Sequencing
Assays.” Nature Immunology 13 (9): 802–7.

Zheng, Grace X. Y., Jessica M. Terry, Phillip Belgrader, Paul Ryvkin, Zachary W. Bent, Ryan
Wilson, Solongo B. Ziraldo, et al. 2017. “Massively Parallel Digital Transcriptional Profiling
of Single Cells.” Nature Communications 8 (January): 14049.

http://paperpile.com/b/tqag56/Zh6Gl
http://paperpile.com/b/tqag56/Zh6Gl
http://paperpile.com/b/tqag56/Zh6Gl
http://dx.doi.org/10.1007/s11010-022-04506-0
http://paperpile.com/b/tqag56/Zh6Gl
http://paperpile.com/b/tqag56/GXu5n
http://paperpile.com/b/tqag56/GXu5n
http://paperpile.com/b/tqag56/GXu5n
http://paperpile.com/b/tqag56/TtVOr
http://paperpile.com/b/tqag56/TtVOr
http://paperpile.com/b/tqag56/TtVOr
http://paperpile.com/b/tqag56/TtVOr
http://paperpile.com/b/tqag56/GZXR2
http://paperpile.com/b/tqag56/GZXR2
http://paperpile.com/b/tqag56/DgAP4
http://paperpile.com/b/tqag56/DgAP4
http://paperpile.com/b/tqag56/DgAP4


Main Figures



Figure 1. Enhancing the transcriptome with expanded lncRNA annotation for single cell
analysis. (A) Development of Singletrome workflow. Exons of protein-coding genes from
GENCODE v32 and lncRNA genes from LncExpDB v2 were integrated (Table 1). lncRNA genes
overlapping on the sense strand with protein-coding genes were deleted to create the
untrimmed lncRNA genome annotation (ULGA), and antisense strand overlapping lncRNA
exons were trimmed to create the trimmed lncRNA genome annotation (TLGA) for scRNA-seq
analysis. scRNA-seq data were mapped to both ULGA (to account for all lncRNA mapped
reads) and TLGA (to define lncRNA expression based on reads with the highest confidence).
Mapped lncRNAs were subjected to additional quality filters to remove transcripts that have
reads mapped predominantly to the 5’ end of a transcript or to a single, non 3’ bin. The quality
filtered lncRNAs (Singletrome) were used to perform cell type identification, differential
expression analysis, and prediction of cell types and disease using machine learning. (B) Sense
strand overlap. Cell Ranger discards reads mapped to overlapping exons on the same strand
(red dotted box). To avoid miscounting reads to protein-coding genes by the inclusion of
additional lncRNAs in the genome, lncRNA genes were discarded if they overlap in sense with
protein-coding exons (red x), as it is more difficult to exclude the protein-coding potential of
these lncRNAs. (C) Antisense strand overlap. Cell Ranger prioritizes alignments of sense over
antisense reads. If spurious antisense reads are generated from transcripts of protein-coding
genes, these could be incorrectly interpreted to indicate expression of an antisense overlapping
lncRNA gene. To overcome this potential problem, we trimmed the overlapping region (red x)
and an additional 100nt of lncRNA exons that were overlapping with protein-coding exons in the
antisense direction. We retained the trimmed lncRNA exons if their length was at least 200nt
(marked with white check). Gene and transcripts coordinates were updated accordingly. (D)
Improved mapping specificity. Reads (red bars, 1) uniquely mapped to a single exon and were
carried forward to UMI counting in GENCODE. In Singletrome, with the inclusion of 91,215
lncRNA genes (537,373 exons) these reads are now mapped to two exons (red bars 1 and 2).
Removing these reads from UMI counting would improve read mapping specificity but reduce
the total number of uniquely mapped reads.





Figure 2. Distribution of transcripts in bulk and by cell type in PBMCs. (A) lncRNAs (blue)
are expressed at lower levels than protein-coding genes (orange) in PBMCs. Reads aligned to
lncRNAs and protein-coding genes are shown in log scale (y-axis). (B) lncRNAs are expressed
at lower levels than protein-coding genes in all PBMC cell types. (C) Expression of lncRNAs that
overlap protein-coding genes in the antisense direction. Expression of lncRNAs in
non-overlapping regions [TLGA (green)], expression of lncRNAs in overlapping and
non-overlapping regions [ULGA (blue)], and lncRNA exons that are expressed only in regions
antisense to protein-coding exons [antisense only (orange)] are displayed (y-axis). The Y-axis
shows the number of reads in log scale. TLGA (green) identifies lncRNAs with the highest
confidence in expression but reduces the reads associated with lncRNAs as compared to ULGA
(blue). (D) Data for each cell type are shown as described in (C). (E) Example where using
ULGA reads could incorrectly suggest expression of an antisense lncRNA gene. SRGAP2-AS1
(brown) is expressed antisense to SRGAP2C (red). Reads mapped to SRGAP2C (forward) are
shown in red, while ULGA reads mapped to SRGAP2-AS1 (reverse) are shown in brown. In this
example, the reads mapped to SRGAP2-AS1 are contained in exons antisense to an exon of
SRGAP2C, where there are many more reads supporting the mRNA antisense to the lncRNA
(blue arrows). This lncRNA gene is discarded because there are insufficient reads to support
expression of SRGAP2-AS1 in regions that do not overlap with exons of SRGAP2
(SRGAP2-AS1 has no reads mapped in TLGA). The genomic scale is indicated on the upper
right, and the direction of transcription is indicated by horizontal black arrows. (F) Example
where TLGA identifies reads mapped to exons of HSALNG0137471 that do not overlap (in
antisense) to exons of DDX3X (black vertical arrows), but does not capture the majority of reads
mapped towards the 3’ end of HSALNG0137471. LncRNA HSALNG0137471 (brown) is
antisense to DDX3X (red). TLGA (reverse) only displays reads mapped to HSALNG0137471 in
exons that do not overlap (in antisense) to exons of DDX3X. ULGA (reverse) shows all reads
mapped to HSALNG0137471. In this case, all reads mapped to HSALNG0137471 [ULGA
(reverse)] are used for down-stream analysis after the lncRNA is defined as expressed based
on TLGA reads.





Figure 3. Distribution and quality control of lncRNA mapping in PBMCs. (A) Distribution of
reads mapped across transcripts of protein-coding genes (orange) and lncRNA genes (blue).
The x-axis represents RNA transcripts from 5’ to 3’ divided into 100 bins (Body percentile), and
the y-axis indicates transcript coverage (0-1). The overall read distribution for lncRNA genes is
similar to protein-coding genes when all transcripts are considered. (B) Distribution of reads
mapped across transcripts from 1000-2000 nt in length. Red circle indicates an enrichment of
reads in the first 10 bins of lncRNA transcripts. The transcripts responsible for this peak were
identified and filtered. Filtered-lncRNAs (red line) shows the distribution of the mapped reads after
removing lncRNAs that were flagged for low quality (material and methods). (C) Distribution of
reads mapped across transcripts from 2000-3000 nt in length. Red circle indicates an
enrichment of reads in the first 10 bins of lncRNA transcripts. The transcripts responsible for this
peak were identified and filtered. Filtered-lncRNAs (red line) shows the distribution of the mapped
reads after removing lncRNAs that were flagged for low quality (material and methods). (D) The
correlation between transcript length (y-axis) and gene length (x-axis) is weaker for lncRNA
genes (blue) than protein-coding genes (orange). Gene length (x-axis) is plotted versus
transcript length (y-axis) for all lncRNAs (blue dots). The blue line indicates R, and the R value
is displayed in blue. The orange line represents R for protein-coding genes, and the R value is
displayed in orange. (E) The correlation between transcript length (y-axis) and gene length
(x-axis) is plotted as in (D) for all protein-coding genes and lncRNA genes with at least one
transcript with length between 1000 and 2000 nt. (F) The correlation between transcript length
(y-axis) and gene length (x-axis) is plotted as in (D) for all protein-coding genes and lncRNA
genes with at least one transcript with length between 2000 and 3000 nucleotides. (G) Example
where reads mapped to lncRNA gene HSALNG0144719 show that the majority of reads are
from the 5’ end of the transcript and do not follow the expected distribution towards the 3’ end of
the transcript. This lncRNA gene is discarded. The genomic scale is indicated on the upper
right. The start site and direction of transcription are indicated by a black arrow. (H) Example
where lncRNA gene HSALNG0083676 has the majority of reads mapped to a single location in
the transcript and this location is not at the 3’ end (last 10 bins). This lncRNA gene is discarded
because this could be a library artifact or mapping anomaly.





Figure 4. lncRNAs alone predict most clusters and cell types in single cell data.
scRNA-seq data of PBMCs were mapped using annotation from (A) GENCODE, (B)
Singletrome, (C) only protein-coding genes in Singletrome, and (D) only lncRNAs in
Singletrome. The labels for each cell were retained from the original publications. For this
analysis, Singletrome only contains lncRNAs that meet all described filters for PBMCs. (E) The
heatmap displays the top differentially expressed protein-coding genes (y-axis) for each cell
type in PBMCs. Cell types are indicated by color at the bar above the heatmap, and the key is
displayed to the right. Expression level is indicated by Z-score. (F) The heatmap displays the
top differentially expressed lncRNA genes for each cell type using the same gene expression
scale as (E). Monocyte is abbreviated as Mono and double negative T cell is abbreviated as Dbl
neg T cell. (G) The total number of mapped reads per cell (y-axis, log scale) is quantified for
PCG (protein-coding genes) (orange), lncRNA (S) (lncRNA genes from Singletrome) (blue), and
lncRNA (G) (lncRNA genes from GENCODE) (green) in PMBCs. (H) Bars showing accuracy in
percentage (y-axis) for PBMC cell type prediction based on Singletrome (dark-red), PCG
(protein-coding genes) from Singletrome (orange), and lncRNAs from Singletrome (blue).
Receiver-operating characteristic (ROC) curves for each cell type are shown in Supplementary
Fig 16.





Figure 5. lncRNA expression predicts disease pathology. (A) scRNA-seq data of liver set 2
(GSE136103(Ramachandran et al. 2019)) were mapped using annotations from Singletrome.
The labels for each cell were retained from the original publication. Cells were clustered based
on lncRNAs from Singletrome and annotated by condition healthy (left) and cirrhotic liver (right).
For this analysis, only lncRNAs that meet all the described filters in the section ‘Quality control
of lncRNA mapping’ are considered. (B) Proportion of cells in each cell type, healthy (left) and
cirrhotic liver (right). (C) The heatmap displays the top differentially expressed (two up- and two
down-regulated) lncRNA genes (y-axis) between healthy and cirrhotic liver for each cell type.
Average log2-fold is indicated by Z-score for each cell type. (D) Differentially regulated lncRNA
expression in mesenchymal cells, (E) cholangiocytes and (F) hepatocytes. Y-axis shows the
expression of the differentially regulated lncRNA gene in cells of healthy and cirrhotic liver.
Circles on the right show the percentage of cells expressing the lncRNA gene in healthy (green)
and cirrhotic liver (red). (G) Receiver-operating characteristic (ROC) curve showing true and
false positive rates for healthy and cirrhotic disease prediction based on the expression of SC
(all genes in Singletrome) (red), lnc (lncRNA genes) (blue) and PCG (protein-coding genes)
(orange). The table shows the AUC, precision (%), recall (%), F1 (%), and accuracy (%) for
healthy and cirrhotic disease prediction based on the expression of SC (all genes in
Singletrome) (red), lnc (lncRNA genes) (blue) and PCG (protein-coding genes) (orange).
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Supplementary Figure 1. Distribution of transcripts in bulk and by cell type in liver.
LncRNAs (blue) are expressed at lower levels than protein-coding genes (orange) in liver set 1
(A), all cell types of liver set 1 (B), liver set 2 (C), and all cell types of liver set 2 (D). Reads
aligned to lncRNAs and protein-coding genes are shown in log scale (y-axis). Cell types (x-axis)
are determined by the original description from liver set 1 (GSE115469 (MacParland et al.
2018)) and liver set 2 (GSE136103 (Ramachandran et al. 2019)).
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Supplementary Figure 2. Loss of lncRNA expression due to trimming in bulk and by cell
type in liver. Expression of lncRNAs that overlap protein-coding genes in the antisense
direction. Expression of lncRNAs in non-overlapping regions [TLGA (green)], expression of
lncRNAs in overlapping and non-overlapping regions [ULGA (blue)], and lncRNA exons that are
expressed only in regions antisense to protein-coding exons [antisense only (orange)] are
displayed (y-axis). The Y-axis shows the number of reads in log scale. TLGA (green) identifies
lncRNAs with the highest confidence in expression but reduces the reads associated with
lncRNAs as compared to ULGA (blue) in liver set 1 (A), all cell types of liver set 1 (B), liver set 2
(C) and all cell types of liver set 2 (D). Cell types (x-axis) are determined by the original
description from liver set 1 (GSE115469 (MacParland et al. 2018)) and liver set 2 (GSE136103
(Ramachandran et al. 2019)).
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Supplementary Figure 3. Comparison of total genes detected and unique exonic mapping
with GENCODE, TLGA, and ULGA annotations. (A) The total number of genes mapped
(y-axis) increases in TLGA and ULGA compared to GENCODE. Analysis was performed for
PBMCs (10x genomics) and liver set 1 (liver 1-5) (MacParland et al. 2018) and liver set 2 (liver
6-25) (Ramachandran et al. 2019). (B) The percentage of reads mapped uniquely to exons in
TLGA and ULGA compared to GENCODE in PBMCs, samples from liver set 1, and liver set 2.
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Supplementary Figure 4. Comparison of reads uniquely mapped to genome,
transcriptome, intronic regions and intergenic regions with GENCODE, TLGA, and ULGA
annotations. Y-axis shows percentage of reads mapped uniquely to (A) genome, (B)
transcriptome, (C), intronic regions and (D) intergenic regions with TLGA and ULGA compared
to GENCODE in PBMCs, samples from liver set 1 (liver 1-5) (MacParland et al. 2018) and liver
set 2 (liver 6-25) (Ramachandran et al. 2019).
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Supplementary Figure 5. Distribution of the mapped reads across the transcripts in liver.
Distribution of reads mapped across transcripts of protein-coding genes (orange) and lncRNA
genes (blue) in liver. The x-axis represents RNA transcripts from 5’ to 3’ divided into 100 bins
(Body percentile), and the y-axis indicates transcript coverage (0-1). (A) Expressed
protein-coding genes (orange) and lncRNAs (blue) in liver set 1. (B) Expressed protein-coding
genes (orange) and lncRNAs (blue) in liver set 2. In both liver set 1 and liver set 2 lncRNAs
(blue) transcripts indicate an enrichment of reads at the 5’ end of lncRNA transcripts.





Supplementary Figure 6. Distribution of lncRNA mapping in PBMCs across transcripts of
different lengths. (A-O), distribution of reads mapped across transcripts of protein-coding
genes (orange) and lncRNA genes (blue) across different lengths of transcripts. Minimum and
maximum length of the transcripts for each panel are shown at the top in parenthesis. The
x-axis represents RNA transcripts from 5’ to 3’ divided into 100 bins (Body percentile), and the
y-axis indicates transcript coverage (0-1). lncRNA transcripts of 1000 or more nucleotides (E-O)
were filtered, if reads mapped to a transcript indicate an enrichment of reads in the first 10 bins
of lncRNA transcript, or if the majority of reads were mapped to a single location (1 bin) in the
transcript and that location is in the first 90 bins. Filtered-lncRNAs (red line) shows the distribution
of the mapped reads after removing lncRNAs that were flagged for low quality (material and
methods).





Supplementary Figure 7. Distribution of lncRNA mapping in liver set 1 across transcripts
of different lengths. (A-O), distribution of reads mapped across transcripts of protein-coding
genes (orange) and lncRNA genes (blue) across different lengths of transcripts. Minimum and
maximum length of the transcripts for each panel are shown at the top in parenthesis. The
x-axis represents RNA transcripts from 5’ to 3’ divided into 100 bins (Body percentile), and the
y-axis indicates transcript coverage (0-1). lncRNA transcripts of 1000 or more nucleotides (E-O)
were filtered, if reads mapped to a transcript indicate an enrichment of reads in the first 10 bins
of lncRNA transcript, or if the majority of reads were mapped to a single location (1 bin) in the
transcript and that location is in the first 90 bins. Filtered-lncRNAs (red line) shows the distribution
of the mapped reads after removing lncRNAs that were flagged for low quality (material and
methods).





Supplementary Figure 8. Distribution of lncRNA mapping in liver set 2 across transcripts
of different lengths. (A-O), distribution of reads mapped across transcripts of protein-coding
genes (orange) and lncRNA genes (blue) across different lengths of transcripts. Minimum and
maximum length of the transcripts for each panel are shown at the top in parenthesis. The
x-axis represents RNA transcripts from 5’ to 3’ divided into 100 bins (Body percentile), and the
y-axis indicates transcript coverage (0-1). lncRNA transcripts of 1000 or more nucleotides (E-O)
were filtered, if reads mapped to a transcript indicate an enrichment of reads in the first 10 bins
of lncRNA transcript, or if the majority of reads were mapped to a single location (1 bin) in the
transcript and that location is in the first 90 bins. Filtered-lncRNAs (red line) shows the distribution
of the mapped reads after removing lncRNAs that were flagged for low quality (material and
methods).





Supplementary Figure 9. lncRNAs alone predict most clusters and cell types in single cell
data of liver set 1. scRNA-seq data of liver set 1 were mapped using annotation from (A)
GENCODE, (B) Singletrome, (C) only protein-coding genes in Singletrome, and (D) only
lncRNAs in Singletrome. The labels for each cell were retained from the original publication. For
this analysis, Singletrome only contains lncRNAs that meet all filters developed with analysis of
PBMCs and applied to data from liver set 1. Hepatocytes are abbreviated as Hep and hepatic
stellate cells are abbreviated as HSC.





Supplementary Figure 10. lncRNAs alone predict most clusters and cell types in single
cell data of liver set 2. scRNA-seq data of liver set 2 from healthy and cirrhotic cells were
mapped using annotation from (A) GENCODE, (B) Singletrome, (C) only protein-coding genes
in Singletrome, and (D) only lncRNAs in Singletrome. The labels for each cell were retained
from the original publication. For this analysis, Singletrome only contains lncRNAs that meet all
filters developed with analysis of PBMCs and applied to data from liver set 2.



Supplementary Figure 11. Protein-coding based cell type markers for liver set 1. The
heatmap displays the top differentially expressed protein-coding genes (y-axis) for each cell
type in liver set 1. Cell types are indicated by color at the bar above the heatmap, and the key is
displayed to the right. Expression level is indicated by Z-score.



Supplementary Figure 12. lncRNA based cell type markers for liver set 1. The heatmap
displays the top differentially expressed lncRNA genes (y-axis) for each cell type in liver set 1.
Cell types are indicated by color at the bar above the heatmap, and the key is displayed to the
right. Expression level is indicated by Z-score.



Supplementary Figure 13. Protein-coding based cell type markers for liver set 2. The
heatmap displays the top differentially expressed protein-coding genes (y-axis) for each cell
type in liver set 2. Cell types are indicated by color at the bar above the heatmap, and the key is
displayed to the right. Expression level is indicated by Z-score.



Supplementary Figure 14. lncRNA based cell type markers for liver set 2. The heatmap
displays the top differentially expressed lncRNA genes (y-axis) for each cell type in liver set 2.
Cell types are indicated by color at the bar above the heatmap, and the key is displayed to the
right. Expression level is indicated by Z-score.



Supplementary Figure 15. Expression of quality filtered lncRNAs compared to
protein-coding genes in liver. The total number of mapped reads per cell (y-axis, log scale) is
quantified for protein-coding genes (orange), lncRNA genes from Singletrome (blue), and
lncRNA genes from GENCODE (green) in liver set 1 (A) and liver set 2 (B).



Supplementary Figure 16. Cell type prediction for PBMCs. Receiver-operating characteristic
(ROC) curve showing true and false positive rates for cell type prediction based on the
expression of all genes in Singletrome (A), protein-coding genes alone (B), and lncRNA genes
alone (C). Cell types are indicated by color of the line, and the key is displayed to the right. The
table inside the panel of each (A-C) shows the AUC, precision (%), recall (%), F1 (%), and
accuracy (%) for cell type prediction of PBMCs.





Supplementary Figure 17. Cell type prediction for liver set 2. Receiver-operating
characteristic (ROC) curve showing true and false positive rates for cell type prediction based
on the expression of all genes in Singletrome (A), protein-coding genes alone (B), and lncRNA
genes alone (C). Cell types are indicated by color of the line, and the key is displayed to the
right. The table inside the panel of each (A-C) shows the AUC, precision (%), recall (%), F1 (%),
and accuracy (%) for cell type prediction of liver set 2.





Supplementary Figure 18. Cell type prediction for liver set 1. Receiver-operating
characteristic (ROC) curve showing true and false positive rates for cell type prediction based
on the expression of all genes in Singletrome (A), protein-coding genes alone (B), and lncRNA
genes alone (C). Cell types are indicated by color of the line, and the key is displayed to the
right. The table inside the panel of each (A-C) shows the AUC, precision (%), recall (%), F1 (%),
and accuracy (%) for cell type prediction of liver set 1.





Supplementary Figure 19. Cell type prediction for liver set 1 (sub-clusters merged to the
same cell type). Receiver-operating characteristic (ROC) curve showing true and false positive
rates for cell type prediction based on the expression of all genes in Singletrome (A),
protein-coding genes alone (B), and lncRNA genes alone (C). Cell types are indicated by color
of the line, and the key is displayed to the right. The table inside the panel of each (A-C) shows
the AUC, precision (%), recall (%), F1 (%), and accuracy (%) for cell type prediction of liver set
1.



Supplementary Figure 20. Singletrome cell type map in healthy and cirrhotic liver.
scRNA-seq data of liver set 2 (GSE136103(Ramachandran et al. 2019)) were mapped using
annotations from Singletrome. The labels for each cell were retained from the original
publication. Cells were clustered based on all the genes in Singletrome and annotated by
condition healthy (left) and cirrhotic liver (right). For this analysis, Singletrome contains all the
protein-coding genes and only lncRNAs that meet all the described filters in the section ‘Quality
control of lncRNA mapping’.

https://paperpile.com/c/yXe9tC/XnGCW


Supplementary Figure 21. Protein-coding cell type map in healthy and cirrhotic liver.
scRNA-seq data of liver set 2 (GSE136103(Ramachandran et al. 2019)) were mapped using
annotations from Singletrome. The labels for each cell were retained from the original
publication. Cells were clustered based on protein-coding genes from Singletrome and
annotated by condition healthy (left) and cirrhotic liver (right).

https://paperpile.com/c/yXe9tC/XnGCW
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 PBMCs Liver set 
1 

Liver set 
2 

Total expressed genes in ULGA 39599 36262 57210 
Total expressed lncRNAs in ULGA 25470 20813 40375 
Total expressed lncRNAs in TLGA 24034 19692 38576 
Overlapping antisense lncRNAs expressed in ULGA 6379 5347 8516 
Overlapping antisense lncRNAs expressed in TLGA 4924 4201 6681 
Overlapping antisense lncRNAs expressed only in ULGA 1458 1153 1841 
Overlapping antisense lncRNAs expressed in both TLGA and 
ULGA 

4921 4194 6675 

Median expression of common (antisense overlapping) 
lncRNAs in ULGA 

174 45 70 

Median expression of common (antisense overlapping) 
lncRNAs in TLGA 

142 38 57 

ULGA Genes after filtering for TLGA 24012 19660 38534 
Singletrome:Total Genes after filtering 38141 35109 55369 

 
Supplementary Table 1. Total detected genes in TLGA and ULGA. The table shows a 
comparison of the antisense overlapping lncRNA genes that are expressed commonly in ULGA 
and TLGA or expressed only in ULGA. The median of the read count for the lncRNA genes 
expressed commonly in TLGA is lower than the ULGA. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 GENCODE TLGA ULGA 
PBMCs 5064 24034 25470 
Liver set 1 4800 19692 20813 
Liver set 2 8211 38576 40375 

 
Supplementary Table 2. Number of expressed lncRNA genes in GENCODE, TLGA and ULGA. 
ULGA detected significantly more lncRNAs compared to GENCODE (the most widely used 
genome annotation for scRNA-seq analysis). lncRNAs are considered as expressed and utilized 
for the down-stream analysis if they are expressed in at least 10 cells in a dataset (similar to 
protein-coding genes). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Min transcript 
length 

Max transcript 
length 

Number of protein-coding 
transcripts 

Number of lncRNA 
transcripts 

200 300 1721 19279 
300 400 4018 19877 
400 500 9120 21362 
500 1000 61852 86054 
1000 2000 27848 81517 
2000 3000 19481 35542 
3000 4000 10793 18395 
4000 5000 6314 10355 
5000 10000 8629 15126 
10000 15000 923 2471 
15000 20000 158 567 
20000 30000 48 286 
30000 40000 3 59 
40000 50000 2 27 
50000 10000+ 7 21 

 
Supplementary Table 3. Number of protein-coding and lncRNA transcripts in different length 
ranges. These sets of transcripts were used to calculate read coverage across the transcript body 
of protein-coding and lncRNA genes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Minimum Transcript 
length 

Maximum Transcript 
length 

Protein-coding 
correlation 

lncRNA 
correlation 

200 300 0.28 0.22 
300 400 0.28 0.22 
400 500 0.27 0.2 
500 1000 0.3 0.21 
1000 2000 0.3 0.17 
2000 3000 0.27 0.11 
3000 4000 0.19 0.07 
4000 5000 0.15 0.03 
5000 10000 0.09 -0.01 
10000 15000 0.04 -0.08 
15000 20000 0.37 -0.12 
20000 30000 0.06 -0.08 
30000 40000 0.07 -0.01 
40000 50000 -0.23 -0.02 
50000 100000+ NA -0.04 

 
Supplementary Table 4. Correlation between transcript length and gene length for protein-
coding genes and lncRNA genes. Correlation was calculated for all transcripts of a gene if it 
contained at least one transcript in the length range of minimum transcript length and maximum 
transcript length. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 PBMCs Liver set 1 Liver set 2 
5' high expressed lncRNA genes 2445 3065 4486 
5' high expressed lncRNA genes discarded 433 488 928 
5' high expressed lncRNA transcripts discarded 5685 7372 9296 
Peak bin expression lncRNA genes 606 644 1084 
Peak bin lncRNA genes discarded 67 45 98 
Peak bin lncRNA transcripts discarded 1455 1312 2271 
Total expressed lncRNAs in ULGA 25470 20813 40375 
Total retained lncRNAs after QC filtering 23510 19126 37507 

  
Supplementary Table 5. Quality control of lncRNA genes. lncRNA transcripts and genes were 
discarded. if lncRNA mapped reads exhibit 5’ bias in 3’ sequenced scRNA-seq libraries or if the 
majority of reads were mapped to a single location (peak bin expression) in the transcript, as both 
situations could represent library artifacts or mapping anomalies (Ma and Kingsford 2019). 
LncRNA genes for which all transcripts met either criterion in a dataset were excluded from further 
analysis in that dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Biotype Number of Genes 
lncRNA 16562 
protein_coding 19394 
IG_V_pseudogene 188 
IG_V_gene 144 
IG_C_gene 14 
IG_J_gene 18 
TR_C_gene 6 
TR_J_gene 79 
TR_V_gene 106 
TR_V_pseudogene 33 
TR_D_gene 4 
IG_C_pseudogene 9 
TR_J_pseudogene 4 
IG_J_pseudogene 3 
IG_D_gene 37 

 
Supplementary Table 6. GENCODE v32 (Frankish et al. 2019) human genome (dated 
27.10.2021) number of genes per biotype. This genome annotation file was downloaded from 
https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz. Of note, 10x 
genomics have filtered the GENCODE v32 to contain genes and transcripts only with the above-
mentioned biotypes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
MKREF 

COUNT 
 

CRv3.1 CRv4.0 CRv5.0.1 CRv6.0 

CRv3.1 True True True True 
CRv4.0 False True True True 
CRv5.0.1 False False True True 
CRv6.0 False False True True 

 
Supplementary Table 7. The reference compatibility table for custom references from 10x 
genomics. Cell Ranger v3.1 mkref is stable across all count pipelines and it is compatible with the 
v1 chemistry. 
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