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ABSTRACT: Small molecule kinase inhibitors are critical in the modern treatment of cancers, evidenced by the 
existence of over 80 FDA-approved small-molecule kinase inhibitors. Unfortunately, intrinsic or acquired 
resistance, often causing therapy discontinuation, is frequently caused by mutations in the kinase therapeutic 
target. The advent of clinical tumor sequencing has opened additional opportunities for precision oncology to 
improve patient outcomes by pairing optimal therapies with tumor mutation profiles. However, modern 
precision oncology efforts are hindered by lack of sufficient biochemical or clinical evidence to classify each 
mutation as resistant or sensitive to existing inhibitors. Structure-based methods show promising accuracy in 
retrospective benchmarks at predicting whether a kinase mutation will perturb inhibitor binding, but 
comparisons are made by pooling disparate experimental measurements across different conditions. We 
present the first prospective benchmark of structure-based approaches on a blinded dataset of in-cell kinase 
inhibitor affinities to Abl kinase mutants using a NanoBRET reporter assay. We compare NanoBRET results to 
structure-based methods and their ability to estimate the impact of mutations on inhibitor binding (measured as 
ΔΔG). Comparing physics-based simulations, Rosetta, and previous machine learning models, we find that 
structure-based methods accurately classify kinase mutations as inhibitor-resistant or inhibitor-sensitizing, and 
each approach has a similar degree of accuracy. We find that physics-based simulations are best suited to 
estimate ΔΔG of mutations that are distal to the kinase active site. To probe modes of failure, we investigate 
two clinically significant mutations poorly predicted by our methods, T315A and L298F, and find that starting 
configurations and protonation states significantly alter the accuracy of our predictions. Our experimental and 
computational measurements provide a benchmark for estimating the impact of mutations on inhibitor binding 
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affinity for future methods and structure-based models. These structure-based methods have potential utility in 
identifying optimal therapies for tumor-specific mutations, predicting resistance mutations in the absence of 
clinical data, and identifying potential sensitizing mutations to established inhibitors. 
 
INTRODUCTION 
The emergence of drug-resistant mutations represents a significant obstacle in the effective treatment of 
various diseases, including cancer. This is most recently exemplified by over 80 FDA-approved kinase 
inhibitors already having known resistant mutations.1 These mutations can arise in the target proteins of 
therapeutic agents, rendering them less susceptible or completely resistant to the drugs' intended mechanisms 
of action. The ability to predict drug-resistant mutations in advance promises to guide precision medicine.2–4 
A number of susceptible and resistance mutations have been characterized for FDA-approved kinase inhibitors 
(e.g. OncoKB) but a much larger number of mutations in the target of therapy (the kinase domain) have been 
observed for which no data is available.4–9  

Predicting the impact of mutations remains challenging due to the complex and diverse nature of resistance 
mechanisms. Kinase mutations may decrease drug-binding affinity or potency,10–12 increase kinase activity,13–16 
tune inhibitor sensitivity profiles,11,17,18 or any combination of these mechanisms, or other mechanisms 
involving additional cellular machinery.19,20 Alternatively, mutations may shift the population of conformations 
towards alternative states, decreasing the population of drug-compatible conformations.21–26 Some resistance 
mutations may even be compensatory, increasing activity of the kinase either through shifting towards 
increased propensity towards an active kinase,27,28 or increasing the affinity for ATP.14,22,29 Of these potential 
mechanisms, the most direct way that a mutation can cause drug resistance is by perturbing the kinase-
inhibitor binding affinity.10–12,30,31 

Mutation-induced changes in kinase-inhibitor binding affinity would lead to reduced drug potency. In some 
cases, a change in binding affinity upon mutation may indicate that a mutation sensitizes a protein to an 
inhibitor, offering new therapeutic strategies.17,32,33 Thus, being able to measure the impact of a mutation on 
protein-inhibitor binding affinity offers new insights and avenues into circumventing drug resistance. 
Experimental methods such as mutagenesis studies and binding assays can provide critical biophysical insight 
but are often time-consuming, costly, and limited in throughput.28,34,35 One approach to mechanistically 
characterizing drug-resistant mutations involves measuring the direct change in binding free energy (ΔΔG).10–

12,31,36 

Structure-informed methods show promise in predicting the impact of mutations on ΔΔG, and may help classify 
mutants as resistant or susceptible to kinase inhibitors. Existing benchmarks have only been 
retrospective.10,12,31 Computational approaches have been previously shown to predict changes in binding 
affinity caused by mutations with an average error of 1.2 to 2.0 kcal/mol.10,37 Rosetta-based methods predict 
ΔΔG using Monte Carlo methods to sample and optimize protein conformations, predicting mutational effects 
on protein structure and stability.10,12,38 However Monte Carlo search methods are limited in their ability to 
sample conformational changes upon mutation and so may not capture impact of a mutation on the 
conformational landscape of a protein. Molecular dynamics (MD)-based methods leverage the power of 
atomistic simulations to explore the dynamics and energetics of protein-drug complexes.23,39,40 By simulating 
the behavior of the system over time, molecular dynamics can capture the effects of mutations on the stability 
and dynamics of the binding pocket and the interactions with the drug.23,33,41 However these methods require 
extensive simulation to appropriately sample larger clinically-relevant systems, limiting throughput.39 Recently, 
machine learning (ML) methods have also gained prominence in predicting ΔΔG changes in binding 
affinity.12,31,42 Such ML approaches utilize large datasets of experimentally determined binding affinities to train 
predictive models.10,12 By learning the relationship between sequence, structure, and binding affinity, ML 
models can predict the impact of mutations on binding affinity with remarkable accuracy. However, these 
methods require large datasets of clinically identified mutations, and knowledge of their mechanistic impact to 
accurately predict mutational impact.43,44 As such, ML methods require an existing dataset to train upon using 
consistent experimental measurements, which does not exist yet. Once such datasets become available, 
active learning loops can be deployed to cycle between experimental measurement, model training, and 
predictive evaluation to improve ML model prediction further.45 



 

 

Alchemical methods, also called Free Energy Calculations (FECs), have emerged as powerful computational 
methods for predicting changes in binding affinity without the need for extensive experimental data.31,36,37,39,46,47  
These alchemical methods are used to estimate free energies of binding (ΔG) by estimating the energetic cost 
of atoms going from one thermodynamic configuration to another via tuning the strength of atomic interactions 
via a so-called alchemical transformation.47 To study the impact of a mutation on drug binding, we estimate the 
energetic cost of transforming amino acids between wild-type (WT) and mutant residues in the presence and 
absence of a ligand (Supp. Fig. 1). These alchemical methods compute free energy differences (ΔG) using a 
so-called “transformation” between the wild-type and mutant amino acid atoms. This transformation is 
“alchemical” in that it scales, using the parameter λ, bonded and nonbonded interactions of an amino acid 
sidechain found in WT and mutant. Several alchemical approaches can be used to estimate ΔΔG changes 
associated with mutations. Replica exchange methods, such as Hamiltonian replica exchange molecular 
dynamics (RepEx, HREX, or REMD),46,48–51 enable enhanced sampling of conformational space and provide 
insights into the thermodynamics of the binding process. Non-equilibrium switching methods utilize fast out-of-
equilibrium transitions along the reaction coordinate to estimate free energy differences.36,52,52–55 However, 
existing benchmarks have only been retrospective,10,12,36,55,56 and the prospective capabilities of FECs require 
examination. 

Previous FEC benchmarks derive from IC50 measurements across multiple types of biochemical or in cellular 
measurements,18,24 ranging from qPCR detection, Ba/F3 activity assays, or mobility shift assays (gel shift).30,57–

60 In turn, there are many more sources of experimental variation that can affect the quality of benchmarking 
measurements.61 Furthermore, variation in experimental contexts, from cells to in vitro mobility measurements, 
to variability in cell type for qPCR, may cause context-dependent variation that alters the measured impact of 
clinical kinase mutations.61,62 Such protocol specific variability may not capture accurate cancer-like cellular 
contexts and environments, thus introducing noise into the benchmarking dataset.63,64 Ideally, our ability to 
measure IC50 would use a consistent experimental readout that more directly and consistently reports on 
binding. There is a need for comparing against a dataset that uses a single type of measurement in a 
controlled rigorous manner. 

NanoBRET offers a high throughput in-cell approach to prospectively evaluate mutations and their impact on 
kinase-inhibitor binding.65,66 This method relies on the principle of resonance energy transfer between a 
bioluminescent donor and a fluorescent acceptor. NanoBRET has proven valuable for high-throughput 
screening of mutations and their effects on ligand binding,24,67,68 and allows for the cellular environment to 
influence kinase-inhibitor binding, providing an in-cell characterization of the change in affinity.24,67 The 
consistency in experimental measurements allows us avoid multiple sources of experimental variation when 
benchmarking FEC results.62 NanoBRET data has previously demonstrated its capacity to measure the impact 
of mutations on Abl kinase, even revealing new possible kinetic mechanisms of drug resistance.24 
Computational tools to identify these highly sensitive mutations a priori may reduce patient burden and 
increase treatment outcomes as we are able to more precisely treat patients who would benefit most from the 
use of sensitized drugs. 

Here, we present the first prospective benchmark of structure-informed physical and machine learning models 
for the prediction of resistance/susceptibility, using a recently-described NanoBRET assay to measure the 
impact of clinical Abl mutations within cells, considering first- and second-generation TKIs, imatinib and 
dasatinib (Fig. 1 and 2).24,60,69–71 We compare and evaluate the performance of structure-based methods to 
predict the impact of mutations, including replica exchange and non-equilibrium switching methods, Rosetta-
based methods,38 and a previously published Random Forest method (Fig. 3).10,56 We apply these methods on 
clinically identified mutations of Abl kinase, and compare ΔΔG predictions against measured values from 
experimental nanoBRET measurements of Abl binding to imatinib and dasatinib. Furthermore, we show that 
high throughput biophysical methods like nanoBRET provide comparable measurements to other low-
throughput methods, demonstrating the value of nanoBRET as a benchmark measurement for assessing ΔΔG 
accuracy. We further demonstrate the capacity of free energy calculations to independently predict accurate 
ΔΔG values even for distal mutations that are not near the binding site. Lastly, we also demonstrate that FECs 
are capable of improving ΔΔG by considering alternative protonation states. The integration of multiple 
computational methods allows for a comprehensive and reliable prediction of mutation effects, aiding in the 
design of effective therapeutic strategies and advancing precision medicine. 



 

 

 

 
Figure 1. Clinically relevant ABL1A mutations occur throughout the kinase domain at varying frequencies.  
A. Structure of Abl kinase (PDB: 1OPJ), highlighting the positions of clinically derived Abl mutations (orange spheres) 
associated with resistance (defined by COSMIC or OncoKB). B. Lollipop plot denoting the number of clinical samples found 
in the COSMIC/OncoKB databases denoting the number of times a mutation occurs at each position of the kinase domain 
sequence. Secondary structure of the corresponding region is indicated (above) denoting whether the region is helical (red), 
a β-strand (yellow) or a loop (blue). 
 
RESULTS AND DISCUSSION:  
NanoBRET is consistent with previous experimental measurements of mutational impact to identify 
inhibitor-resistant and -sensitizing mutations. 
To understand the clinical relevance of mutations within the ABL1A kinase domain, we gathered mutations 
observed in clinical settings using known databases and quantified mutation prevalence across clinical 
samples (Fig. 1).5 While there are multiple possible mutations per position, the total number of clinical samples 
with a particular mutation can be represented using a lollipop plot (Fig. 1B). Mapping the distribution and 
frequency of clinical mutations to the structure of ABL1A kinase domain (Fig. 1A) also allows us to identify 
structural hotspots with high mutation propensity, or pinpoint hotspots where mutations are particularly 
prevalent in ABL1A. We note that mutations are distributed throughout the secondary structure and sequence 
of ABL1A, and while certain positions have many mutations, mutations do not appear to concentrate to any 
particular hotspot or secondary structural kinase element.  

We obtain NanoBRET measurements that quantify the impact of 90 highly prevalent mutations from this 
clinical dataset (Fig. 2, SI data). NanoBRET allows for precise quantification of the changes in drug binding 
affinity caused by these mutations.24,67,68 These NanoBRET measurements measure the degree of inhibitor-
target engagement using bioluminescent probes that luminesce when bound to one another.24,67,68 These 
engagement measurements can be converted into an IC50 by scanning engagement across a variety of 
titratable concentrations.24 Our structural map demonstrates the broad distribution of mutated residues in 
relation to the drug binding site (Fig. 1A) 

We can also assess the fold-change in IC50 for any mutant’s imatinib- or dasatinib- affinity relative to wild type 
(WT). Mapping the maximal fold-change onto the three-dimensional structure of ABL1A kinase (Fig. 2A) allows 
us to visualize the range of impact mutations have on ligand binding. Mapping the maximum fold impact of a 
mutation at a specific position from NanoBRET onto the structure of Abl kinase highlights the broad distribution 



 

 

of mutated residues relative to the inhibitor binding site (Fig. 2A). Notably, the color-coded mutations illustrate 
a spectrum of impacts, with some mutations causing increased inhibitor resistance, while others surprisingly 
lead to increased inhibitor sensitivity. The latter suggests that certain mutations, rather than conferring 
resistance, render the kinase more amenable to inhibition by existing drugs, thereby identifying potentially 
promising targets for therapeutic intervention. Mutations found to induce inhibitor sensitization may present 
promising targets for existing drugs, while others require additional treatment development. 

 
Figure 2: An intracellular NanoBRET assay for measuring the impact of clinical mutations on kinase inhibitor 
binding free energy is concordant with previously-reported IC50-derived data. A. Experimental IC50 values of Abl 
kinase binding to Imatinib (left, green) or Dasatinib (right, green) for a variety of mutations (spheres) normalized by the WT 
IC50 of each compound (color scale, bottom). This WT-based normalization  demonstrates which mutations are resistant 
or sensitizing to either imatinib or dasatinib. B. Experimental ΔΔG values from the current work plotted against those from 
Hauser et al. A subset of 18 mutations common to the sets of Hauser et al. and the current work is considered. Data points 
for which the experimental values disagree by more than 1 kcal/mol are marked in a darker edge color. Root Mean Square 
Error (RMSE) and Pearson correlation (labeled “cor”) between datasets noted for each mutation-ligand pair, alongside 95% 
confidence intervals. 

We compare these NanoBRET measurements with previously published work on ABL1 mutations and their 
impact on imatinib and dasatinib binding affinity (Fig. 2B).31,57,59,60 By comparing the IC50 of wild-type and 
mutant ABL1A binding to a known inhibitor, imatinib or dasatinib, we estimate the change in free energy of 
binding (ΔΔG); the NanoBRET protocol using tracer concentrations at the KM ensures that significant changes 
in IC50 will be largely driven by changes in inhibitor binding affinity. The ΔΔG values from previous works can 
be correlated directly against these ΔΔG measurements (Fig. 2B). The comparison of ΔΔG values obtained 
from NanoBRET with those from prior experimental data exhibits a noteworthy consistency for both Imatinib 
and Dasatinib. This consistency is quantitatively supported by low RMSE values and decent correlation 
coefficients (RMSE=0.61 kcal/mol for imatinib, and 0.59 kcal/mol for dasatinib), indicating the accuracy of our 



 

 

NanoBRET assay. It is worth noting that our NanoBRET measurements are derived from single-shot 
experiments, ensuring a high-throughput collection protocol. As such, we estimate error associated with each 
NanoBRET from the goodness-of-fit for each individual mutation (Fig. 2B, SI data). This provides a nuanced 
estimate of the experimental uncertainty despite the lack of statistical replicates. In conclusion, low RMSE and 
correlation scores not only reinforce the consistency of the NanoBRET measurements with previously 
published results but also underscore NanoBRET’s utility as a tool for the high-throughput screening of kinase 
mutations. 

Free energy calculations prospectively predict the change in affinity with RMSE of 1 kcal/mol and 
provide a robust classification metric for predicting a resistant or sensitizing mutation. 

While NanoBRET is a robust high throughput tool to assess mutations and their impact on inhibitor binding, it 
would be particularly useful, and cost-effective, for computational approaches to prospectively parse mutations 
as resistant, sensitizing, or neutral relative to any particular inhibitor. By forecasting the impact of genetic 
alterations on drug efficacy, computational predictions promise a preemptive tailoring of therapeutic strategies.  

Prospective testing is crucial to verify the applicability of computational models. Retrospective analyses may 
inadvertently incorporate biases from known outcomes and contain outdated information and biases influence 
benchmarking comparisons. A prospective approach evaluates the predictive power of models in novel, 
untested scenarios, where tools are employed in standard default fashions without any biased use of the tool 
to a known outcome. This forward-looking methodology is essential for validating the robustness of predictive 
algorithms and ensuring their utility in clinical settings.  

To effectively classify mutations as inhibitor-resistant or -sensitizing, a variety of computational and machine 
learning approaches were prospectively tested against NanoBRET. These methods include free energy 
calculations using two different sampling strategies: Hamiltonian Replica Exchange (RepEx or HREX),46,48–51 
and Non-Equilibrium perturbations (NEQ),12,31,36,46 Rosetta flex_ddg,12,38 and a machine learning model utilizing 
Random Forests (called “ML” here).10,12 Each method offers a unique computational strategy to predict the 
impact of mutations on protein stability and drug binding (Fig. 3). Briefly, alchemical free energy methods 
estimate the impact of a mutation on drug binding by estimating the thermodynamic cost of transforming one 
amino acid to another in the presence and absence of a ligand. These alchemical methods compute free 
energy differences (ΔG) using a so-called “transformation” between the wild-type and mutant amino acid 
atoms. This transformation is “alchemical” in that it scales, using the parameter λ, bonded and nonbonded 
interactions of an amino acid sidechain found in WT and mutant Abl kinase (Fig. 3) such that λ=0 represents a 
complete WT Abl and λ=1 represents the mutant; values of 0<λ<1 are a scaled combination of the two sets of 
interactions. During a transformation, the sidechain of one amino acid (WT) is “phased out” while another 
amino acid chain (the mutant) is “phased in” (Fig. 3).37,46,47,72 In computing the free energy (ΔG) in both holo 
and apo conditions, a thermodynamic cycle is constructed, from which we subtract the apo ΔG from the holo 
ΔG to arrive at the thermodynamic impact of mutation upon drug-binding (ΔΔG) (Supp. Fig. 1).47 The Rosetta 
flex_ddg protocol models the structural and energetic effects of mutations by generating mutant structures and 
extensively sampling possible rotamers. The protocol then iteratively refines ΔΔG across multiple iterations 
using the Rosetta scoring function to generate averaged predictions that account for likely rotamers of both WT 
and mutant amino acid.38  

AI/ML approaches that directly assess the impact of mutations on drug binding have the potential to reduce the 
computational cost of predicting drug resistant mutations. In fact, many powerful models have been published 
that accurately predict the impact of mutations on protein stability.73–76 While stability is correlated with drug 
binding, it would be particularly useful if models provided direct readouts of the impact upon drug binding. In 
this work we will focus on prior published models that directly predict ΔΔG upon mutation of drug binding; 
Specifically, we will focus on a prior published Random Forest model to assess Abl kinase mutations.10,12 A 
Random Forest model uses an ensemble of randomized decision trees to predict the change in binding affinity 
(ΔΔG) of drugs upon point mutations in the human Abl kinase.10,12,77 The model was trained on a curated 
dataset of 144 ΔΔG values for eight tyrosine kinase inhibitors, incorporating a diverse set of features that 
describe ligand properties, mutation environments, amino acid changes, protein-ligand interactions, docking 



 

 

scores, and solvent accessibility.31,57,59,60 Feature selection was performed using a greedy algorithm to identify 
the most predictive features. 

 
Figure 3. Overview of computational methods used to prospectively assess estimation of ΔΔG upon mutation. 
Physics-based alchemical methods (top) estimate the impact of mutation on drug binding (ΔΔG) by generating an alchemical 
transformation between wild-type (WT) and mutant constructs using a lambda parameter sampled using A. Replica 
Exchange methods and B. Non-equilibrium protocols. C. The Rosetta flex–ddg protocol considers rotameric positions of 
both WT and mutant amino acid side chains, using the Rosetta scoring function to compute the energetic impact of both 
constructs. D. Random forest models generated using an ensemble of decision trees are trained on prior assay 
measurements and structural data to generate ΔΔG value predictions.31 

Comparing each method against known mutations that have been previously studied highlights the capacity of 
each method to reasonably predict the impact of mutation on imatinib or dasatinib affinity. To test the 
prospective accuracy of these methods, we compared their predictions against experimental NanoBRET 
measurements for mutations in a manner similar to previous studies (Fig. 4).31,57,59,60 This comparative analysis 
demonstrates that while each approach has varying degrees of success, they collectively exhibit a reasonable 
predictive capacity for the same set of mutations. 

Interestingly, all approaches appear to consistently do better at predicting the impact of mutations on dasatinib 
binding than imatinib binding, highlighted by the lower RMSE for dasatinib vs. the RMSE of imatinib across all 
the approaches (Fig. 4). This is further supported by the degree of correlation between calculated changes in 
affinity and NanoBRET measurements in the datasets. The discrepancy in predictive capability between 
imatinib and dasatinib may be related to the degree of conformational sampling required to accurately sample 
imatinib binding vs. dasatinib binding. Previous work has shown that to characterize the complete ABL1 
imatinib binding, a conformational transition in ABL1A must occur.78–80 However, efforts to characterize the full 
ensemble of structural transitions on binding have been limited by sampling, and there may be additional 
ABL1-Imatinib configurations.26,81,82 No such conformational transition or degree of sampling is needed to 
sample dasatinib binding.78 As such, there may be currently unseen states of the ABL1-Imatinib bound 
complex that must be considered in addition to the singular crystal that was used as a starting configuration 
here. The differences between dasatinib and imatinib are consistent across the different MD force fields as well 
as Rosetta. Thus, it may be that the degree of conformational sampling required to achieve predictively 
convergent calculations within 1 kcal/mol differs between the two ligands. 



 

 

 
Figure 4. Prospective computational methods have comparable summary statistics and performance in predicting 
the impact of mutation on binding. Scatterplots showing the prospective ability of different computational methods and 
their ability to predict the ΔΔG of either imatinib (orange) or dasatinib (blue) binding. Root Mean Square Error (RMSE) and 
Pearson correlation (labeled “cor”) are provided in the top left (imatinib) and bottom right corners (dasatinib). These 
comparisons are all done relative to the same ΔΔG measurements collected using NanoBRET. Prospective methods shown 
are Replica Exchange using FEP+ (top left), Nonequilibrium switching using PMX using Amber99 force field (bottom left), 
the Amber14sb force field (bottom middle), and the resultant prediction taken from pooling the work values from both force 
fields (top middle). Rosetta’s flex_ddg (top right) and a random forest model trained on prior data (bottom right) are also 
shown. 

Marking the 1 kcal/mol boundary as an acceptable margin of error and degree of significance for perturbative 
mutations, we can categorize mutations as either resistant, sensitizing, or neither (Supp Fig. 2).  Previous 
results show that most reproducible estimations occur with an RMSE of up to 1 kcal/mol.12 To then capture the 
most reproducible predictions, we consider a mutation to be correctly assigned as resistant if both the 
NanoBRET and computational approach predicted an increase in ΔΔG by ΔΔG > +1 kcal/mol for a single 
inhibitor. Conversely, a mutation is considered to be correctly assigned as sensitizing if both NanoBRET and 
computational predictions identify drug-binding affinity is decreased by ΔΔG > -1 kcal/mol. We can visualize 
these classifications as “quadrants” in our correlation analysis, generating truth tables (confusion matrices) for 
each computational method (Supp Fig. 1).31 This matrix allows us to evaluate the performance of each 
computational approach in correctly classifying mutations and compare that performance statistically against a 
baseline classifier. 

From these truth tables, we show that computational approaches classify mutations as resistant or sensitizing 
better than a baseline classifier would, shown using a precision recall curve (Fig. 5, Supp. Table 1). A 
precision-recall curve graphically represents model performance in contexts where the classifications have 
different populations and frequencies. This allows us to evaluate the sensitivity and specificity of our 
measurement and model. Precision, known as positive predictive value, measures the ratio of the predictive 
model’s true positives to all the positive predictions. Recall, also defined as sensitivity, measures the model's 
ability to identify all true positives from the data. This allows us to identify the best threshold for the predictive 
model, and helps us establish whether our classifier is performing better than random behavior. A higher area 



 

 

under the curve (AUC) indicates a better model performance. We compare the performance of each 
computational approach as a classifier to a baseline classifier (Fig. 5, Supp. Table 1), where the baseline 
classifier reports the performance if everything was labeled as statistically positive, or in our case, a resistant 
or sensitizing mutation. For the 1 kcal/mol cutoff, all approaches perform better than a baseline classifier, 
having a positive distance above the baseline as shown by the positive distance above the baseline (Supp. 
Table 1). 

 
Figure 5. Precision-Recall Curves for each method to demonstrate their ability as classifiers is better than random, 
and that they are all similar in performance. Precision is defined as the fraction of mutations that are classified as resistant 
that are actually resistant, while recall is the fraction of mutations that are classified as resistant. The area under the precision 
recall curve (AUPRC) is computed for both imatinib (orange) and dasatinib (blue). The singular point on the curves 
corresponds to the precision (x) and recall (y) value for mutations with |ΔΔG| > 1 kcal/mol, and are computed for imatinib 
(orange) and dasatinib (blue), and compared against the performance of a random classifier (dashed line). 

The distance from the baseline at 1 kcal/mol acts as a useful measure to compare both the performance of 
each approach against one another as well as between the two different drugs. At the 1 kcal/mol margin, it is 
worth noting that the Random Forest model is closest in performance to the baseline classifier (Supp. Table 1), 
indicating that it performed relatively worse than the other methods as a classification tool compared to a 
statistical baseline. The larger number of false positives (mutations that computationally are not predicted to 
reduce the affinity but experimentally do) indicates that the Random Forest model was over-assigning 
resistant/sensitizing classifications. Consistent with RMSE metrics, we find that imatinib is much harder to 
classify relative to baseline than dasatinib for many of the tools, with each approach having a much greater 
distance to baseline when classifying dasatinib than imatinib. Our Random Forest model is particularly bad at 
classifying imatinib mutations relative to dasatinib, with its overall performance being worse than the physics 
based alchemical method.  

Taken together, these results highlight the capacity of the employed computational methods to act 
prospectively as classifiers within an average accuracy of 0.81 for resistant or sensitizing mutations (Supp. 
Table 1). Modern computational approaches act as useful classifiers for sorting clinically observed mutations 



 

 

into useful, potentially actionable categories. These approaches appeared very similar to one another using 
RMSE and correlative measures, with no clear indicator of relative performance. Precision-recall curves, the 
area underneath them, and comparing relative to a baseline classifier allows us to better compare between 
methods and across inhibitors to identify improvements in performances and challenging drugs/mutations that 
may require further analysis. However, the above findings highlight that it is necessary to analyze datasets and 
prospective predictions analysis beyond using summary statistics and correlative measures when evaluating 
benchmarks.  

Alchemical methods can detect impact of distal mutations upon ligand binding 

While each of these methods may be similarly capable of predicting the impact of mutations on binding, 
summary statistics and analysis may mask issues when considering prospective benchmarking predictions. In 
turn, it is important to consider each mutation’s prediction individually to observe similarities or performance 
improvement. For example, the similarity of results shown from the classifier model may mask a degree of per-
residue and per-mutation variance that results from a larger systematic issue. 

By looking at the maximum possible improvement possible by simulation per mutation, we find that, while 
predictions are within ~1 kcal/mol experiment, free energy calculations generally offer more improved 
predictions at any position in the sequence. By subtracting the least accurate non-free energy calculation 
prediction (Random Forest/ML and Rosetta) from the most accurate alchemical prediction, we compute the 
maximum amount that physics-based simulations are capable of making better predictions (Supp. Fig. 3). A 
more negative improvement score thus conveys that simulations were much closer to the answer than non-
free-energy methods were, while a positive score indicates the reverse. We find that, for any single mutation, 
free energy calculations provide a small but consistent margin of improvement, at most 0.5 kcal/mol, relative to 
alternative methods such as Rosetta or ML-based methods (Supp. Fig. 3). 

Potential improvements offered by simulation-based methods such as alchemical physics-based simulations is 
further emphasized when considering allosteric mutations (i.e. distant residues relative to the ligand binding).   
Identifying distal mutations that perturb binding free energy remains a challenge for modern computational 
methods but has great potential to help prospectively identify allosteric mutations and cryptic pockets.23,40,41,83–

86 However identifying significant distal mutations, and prospectively analyzing them, remains a challenge due 
to their relative infrequency in clinical datasets that identify significant mutations with known impact. 

We consider how distal a mutation is relative to the ligand binding site by computing the distance from the 
center of mass of a residue to the center of mass of the inhibitor. We first note that experimental ΔΔG from 
NanoBRET experiments show many distal mutations impact inhibitor binding, with residues up to 30 Å away 
having an impact on ΔΔG of imatinib binding (Fig. 6A). However, we note that many residues have large error 
bars due to the singlicate measurements. A significant alteration to ΔΔG would be much clearer if a mutation 
with ΔΔG is non-zero while its error bars are much smaller (Supp. Fig. 4-6). Most residues with significant 
impact on inhibitor binding are in closer proximity to the binding site, with only a few distal mutations having 
significant impact (Fig. 6A, Supp. Fig. 5,6). 

By projecting the predicted ΔΔG or the deviation of predicted ΔΔG from experiment (Fig. 6B, Supp. Fig. 6), we 
note that both Rosetta and the Random forest (ML) methods appear to have systematic biases in their 
predictions (Fig. 6B); This is especially obvious for Rosetta and ML methods when looking directly at the ΔΔG 
predicted values as a function of distance. Both approaches appear to flatten out and center around a single 
value, with Rosetta predictions returning ΔΔG=0 kcal/mol beyond a certain distance from the active site. 
Similarly, the random forest model makes predictions for residues within the binding pocket of imatinib beyond 
1 kcal/mol, collapsing to predictions around a ΔΔG~0.5 kcal/mol upon moving further away from the drug 
binding pocket. This systematic error is likely the result of in-built distance cutoffs in the computational 
approaches. By enforcing a cutoff to make mutation ΔΔG predictions computationally tractable, a mutation’s 
local environment is mainly considered. As a result, while a mutation may have some impact on its local and 
global environment, constraining only to local effects will ignore any impact a distal mutation may have on 
inhibitor binding affinity. 



 

 

 
Figure 6. Physics-based methods are capable of estimating ΔΔG for distal mutations, while default parameters for 
Rosetta and ML-based methods collapse at a distance. A. The deviation from predicted ΔΔG to experiment is plotted 
for imatinib (orange) and dasatinib (blue) as a function of the distance from the residue’s Cα carbon to the center of mass 
of the ligand in the crystal structure. Values for shown (top to bottom) for Replica Exchange using FEP+, PMX predictions 
taken from pooling the work values from both Amber99 and Amber14sb, Rosetta’s flex_ddg protocol, Nonequilibrium 
switching using PMX using Amber99 force field, followed by Nonequilibrium switching using the Amber14sb force field, and 
a random forest model trained on prior data B. Predicted ΔΔG values for shown (top to bottom) for Rosetta’s flex_ddg 
protocol and the random forest model trained on prior data, indicating the model predicts within a small range of values for 
distal mutations. 



 

 

Conversely, we note that free energy calculation predictions appear to deviate from experiment more 
randomly, but remain within 1 kcal/mol even at a distance (Fig. 6A, Supp. Fig. 4). Consistent with experimental 
results, residues predicted to have the strongest impact on ΔΔG are generally closer to the active site. 
Importantly, even at a distance, the vast majority of computed deviation from experimental values appears to 
be below 1 kcal/mol (Fig. 6A). However, due to the error within the NanoBRET experiments, it remains unclear 
if this low margin of error is computationally driven, or if these mutations themselves do not impart a very large 
ΔΔG upon inhibitor binding, reducing the possible margin of error. Regardless, alchemical methods appear 
capable of predicting and considering the impact of distal mutations. 

Structural considerations on a per-mutation basis allow us to more broadly assess the prospective ability of 
computational methods to predict the impact of mutation on an inhibitor’s binding affinity. The error bars within 
our experimental results also further highlight the importance of considering experimental error as well as 
computational error when considering predictions. 

Retrospective analyses of clinically significant mutations emphasize the importance of starting 
configurations, protonation states, and sampling. 

While each method appears to predict the impact of each mutation to a consistent rate, based on summary 
statistics and AUPRC findings, it is interesting to also note the consistent points of failure. Certain clinically 
notable mutations such as T315A, a known clinical mutation that causes imatinib resistance,16,87,88 are 
inaccurately predicted in a consistently poor manner. In fact, PMX based NEQ protocols are unable to predict 
even the correct sign of  T315A (Supp. Table 2). The consistent failing to accurately predict the ΔΔG of certain 
mutations suggests a systematic error across all methods that results in this inaccurate prediction.  

There are many possible sources of error that could systematically bias ΔΔG estimations. Indeed, considerable 
effort has gone into characterizing the source of errors that occur in ΔΔG predictions from replica exchange 
alchemical transformations.46 These previous efforts identified many potential system specific structural 
features that might be slow to converge in a replica exchange sampling schema. Consistently, there may be 
structural features that are slow to converge that are the basis of some errors in the alchemical 
transformations. However, other ΔΔG estimations presented here do not necessarily use physics-based 
simulations, instead utilize other information, sampling schemes, or alternative datasets to generate their 
predictions. As a result, there are only a few common systematic sources of biases due to the variable 
parameters and defaults used in each estimation. The consistency in deviation from NanoBRET across 
multiple approaches may also hint at discrepancies between experimental measurements of target 
engagement and the direct binding affinity estimated via computation (Supp. Table 2). 

To retrospectively analyze these predictions in an open-source, interpretable manner at scale, we employ the 
open source free energy tool, Perses.46 Perses allows us to assess multiple sampling strategies, considering 
both replica exchange and nonequilibrium methods used by FEP+ and PMX, respectively, using a single 
unified implementation (Supp. Figure 7-8).72,89,90 We can rapidly generate NEQ estimations using Perses in a 
massively parallel manner by deploying alchemical simulations of mutations on Folding@home.39,91 
Folding@home is a distributed computing platform where molecular simulations are run in discrete work units. 
The asynchronous nature of each work unit makes Folding@home particularly suited to evaluate many 
mutations in parallel.37,92 Indeed, prior computational work has leveraged Folding@home’s massively parallel 
nature to evaluate mutations and potential inhibitors in an embarrassingly parallelizable manner using NEQ 
sampling; each work unit can run an individual replicate of a singular forward and reverse transformation.37,92,93 
These individual “cycles” of NEQ replicates can then be aggregated to generate ΔΔG estimations (Supp. 
Figure 6-7). To obtain detailed assessments of the source of biases within our estimations, we focus on 
emblematic examples of clinically relevant mutations that were inaccurately predicted. Specifically, we consider 
two mutations: the perturbative “gatekeeper mutation” T315A mutation with known clinical significance to give 
rise to imatinib resistance,16,87,88 and the known stabilizing mutation L298F that improves imatinib binding 
affinity and increases sensitivity (Fig. 7, Supp. Table 2-4).24 Identifying sources of errors spanning both these 
mutations, one perturbative and one stabilizing, can suggest generalized sources of errors that span different 
mechanistic impacts.  



 

 

Perses retrospective ΔΔG predictions are consistent with prospective predictive findings, showing that it is a 
useful platform for benchmarking and testing our results (Supp. Fig. 7-8). Perses predictions appear to be 
consistent in summary statistics with findings from both RepEx and NEQ (Supp. Fig. 7). Perses predictions 
appear to behave similarly to other approaches when considered as a classifier (Supp. Fig. 7), returning 
equivalent or better precision-recall statistics and F1 scores (Supp. Fig. 7). Retrospective calculations using 
Perses also appear to capture the impact of distal mutations by FECs with a similar degree of consistency to 
other free energy methods (Supp. Fig. 8). Deviation of predictions by Perses from experiments across 
distances also appears similar (Supp. Fig. 8); This consistency with other free energy predictions demonstrates 
that Perses provides an appropriate platform to conduct detailed testing of high error estimations. Importantly, 
improvements made in Perses ΔΔG predictions would generalize and apply to other platforms and tools as 
well. 

In the case of T315A, we find that the systematic failure in ΔΔG prediction is corrected by alteration of the 
starting configuration used to run these free energy calculations (Fig. 7, Supp Table 2-3). In our estimation 
attempts with T315A in the presence of imatinib, we find that ΔΔG estimations are highly inaccurate; Both 
physics-based sampling methods, RepEx and NEQ, fail to predict the correct sign of ΔΔG upon the T315A 
transformation (Fig. 7, Supp Table 2-3).  Given this broad inability across multiple methods to accurately 
predict the correct sign of ΔΔG, the source of consistent error is likely related to some shared input or 
parameter that drives this error. In turn, we investigated the starting structure provided for Abl-imatinib for 
running ΔΔG predictions, since that is a common starting point for each of these protocols.  

 
Figure 7. Starting configuration details such as water placement, play a major role in ΔΔG accuracy. A. Structure of 
a dehydrated T315 residue (left, blue) that yields a low error in ΔΔG prediction between physics-based simulations from 
Perses and PMX (below image). Equilibrium MD trajectories (top right) started from this dehydrated structure for both WT 
(red) and the T315A mutant (blue) show that the closest water molecule rarely comes within 4 Å of the residue (grey region), 
largely keeping the residue away from water (white region). B. Conversely, structures started from a hydrated structure 
(bottom left, green), where the closest water molecule is within 4 Å of residue 315, yields highly inaccurate ΔΔG predictions 
relative to NanoBRET (below image). Consistently, equilibrium MD trajectories (bottom right) started from the hydrated 
structure for both WT (red) and T315A (blue) show that the water largely remains bound (grey region) to the molecule for 
the same number of steps that the alchemical free energy predictions are run for, with little water dissociation occurring 
(white region). 

We observe a water molecule adjacent to T315 that we conjecture is having nonbonded interaction with the 
polar side chain of threonine (Fig. 7B). However, upon mutation to alanine, one would expect that the water 
would exit that interacting region due to the lack of interaction. We investigate the exchange of water within this 
pocket by measuring the distance between residue 315 and the closest water molecule at each frame (Fig. 7). 



 

 

Based on these structures, we define a hydrated starting structure of Abl kinase as hydrated if the closest 
water molecule is within 0.4 nm of residue 315. Investigating the hydration status of residue 315 in Perses-
NEQ trajectories reveals that the closest water molecule never dissociates about 5 Å away from the binding 
site (Fig. 7). To test whether this hydrated state is consistently present at equilibrium, we ran equilibrium MD 
simulation from the hydrated starting structure with both T315 and A315 (Supp. Fig. 9). We observe that the 
closest water molecule rarely dissociates away from residue 315 (Supp. Fig. 9). While a few transitions are 
observed where the water molecule dissociates from residue 315 (Supp. Fig. 9), we hypothesize that this lack 
of water dissociation upon the T315A mutation may be a source of error.  

Consistently, we find that ΔΔG estimations that start from dehydrated structures, where the closest water 
molecule to residue 315 is deleted, improves our predictions (Fig. 7A). Using these dehydrated structures as 
starting configurations in both Perses and PMX  structures, the sign of our predictions aligns with experimental 
results and reduces the deviation from experiment to 0.10 kcal/mol (Fig. 7A). Consistently, trajectories starting 
from a dehydrated starting structure only rarely observe a water molecule come within 4 Å of the mutated 
T315A  construct, but a water molecule still does associate with the wild type T315A simulations (Supp. Fig. 9). 
Interestingly, both simulations starting from dehydrated structures have a degree of mixing; water in the 
dehydrated trajectories are both interacting with T315 and dissociating (Fig. 7, Supp. Fig. 9). Overall, these 
findings indicate to us that in the absence of an appropriate starting structure, sufficient sampling of water 
configurations would enable accurate predictions. As a result, we recommend ensuring sufficient sampling 
using established metrics.94,95 As well as using a long enough switching time both to ensure appropriate 
structural relaxation to enable equilibration of solvent molecules.  

For both T315A and L298F, we find that considering alternative protonation states improves ΔΔG estimations 
(Supp. Table 2-4). Due to resource limitations and default parameters, prospective methods only consider a 
singular protonation state, imatinib with 0 net charge, which we call imatinib+0. However, imatinib can also 
exist at physiological pH conditions with a +1 charge, a species we call imatinib+1. Dasatinib does not have 
multiple likely titratable states at physiological pH however, and so only one species needs to be considered.  

For T315A and L298F, prospective methods struggle to obtain consistent ΔΔG predictions for imatinib+0 
(Supp. Table 2, 4). Some methods such as FEP+ estimate the correct sign of ΔΔG upon the L298F mutation 
relative to the experimental NanoBRET measurement (Supp. Table 4). However, prospective evaluation of 
T315A is much more difficult for all three prospective methods, FEP+, PMX with A99 force field, and PMX with 
the A14 force field (Supp Table. 2, 4). Prospective ΔΔG measurements are unable to get the correct ΔΔG sign 
when predicting the impact of the T315A mutation on imatinib+0 binding (Supp table 2, 4).  

We find that considering both protonation states of imatinib improves prediction capabilities. Running Perses 
RepEx methods or NEQ on Folding@home, we estimate ΔΔG for both T315A and L298F mutations for both 
imatinib protonation states. Using previously established approaches to consider the bulk ΔΔG given multiple 
protonation states,46 we compute a ΔΔG estimation in the presence of “bulk” imatinib, considering both 
protonation states by their propensity to exist at a given pH. Considering both protonation species generates 
more accurate ΔΔG estimations for T315A (Supp. Table 2), accurately predicting the correct sign of ΔΔG for 
both species of imatinib and the bulk estimated value. Despite Dasatinib only having a single protonation state, 
prospective methods obtain much more accurate ΔΔG values for L298F than for T315A (Supp. Table 3). The 
inaccuracy of ΔΔG predictions in the T315A predictions can be explained by an improper starting configuration 
with a trapped water molecule adjacent to residue 315, as described above (Fig. 7, Supp. Fig. 7-9). Previous 
work has shown that considering the protonation state of titratable residues can improve sources of error in 
ΔΔG estimations.96,97 In contrast, we find that changing the protonation state of titratable amino acids does not 
improve ΔΔG accuracy relative to experiment (Supp. Table 5). However, previous work has highlighted the 
importance of protonation states in titratable residues in ABL1A kinase,46,79,96 indicating that while protonation 
state may be important for kinase activity, it may have less of an impact on direct inhibitor binding in the 
context of these two inhibitors. Overall, our work in light of previous findings highlights the importance of 
considering the protonation state of both titratable amino acids as well as of the ligand when predicting the 
impact of mutations. 



 

 

Overall, using Perses to retrospectively analyze emblematic mutations that are challenging to estimate, we 
show that there are multiple potential sources in the starting configuration of a system that can introduce large 
systematic errors in estimations of mutation ΔΔG. These starting configuration errors can arise mainly in two 
ways: protonation state and through under-sampling of water interaction networks. Protonation states of both 
ligand and titratable amino acids must be considered when comparing with experiment, as it is important to 
consider both sources of variation in protonation states. This includes considering both tautomers as well as 
altered charge species of ligands and amino acids. We also show that appropriately sampling water networks 
is critical, as alchemical transformations can perturb these water networks without giving them time to 
appropriately relax and equilibrate. This can in turn introduce large errors in ΔΔG estimation. This can be 
remedied by longer sampling times, larger sampling windows, and ensuring appropriate time to relax between 
non-equilibrium alchemical transformation steps. 

CONCLUSIONS: In this work we highlight the ability of computational physics-based methods to prospectively 
estimate the thermodynamic cost of mutating an amino acid to predict the ΔΔG of ligand binding upon 
mutation. Using two different inhibitors of Abl kinase, imatinib and dasatinib, we show that NanoBRET 
measurements provide a consistent reproducible measurement for experimentally measuring ΔΔG for multiple 
constructs without having to rely on pooling measurements from a variety of sources and accruing multiple 
points of bias and error. This demonstrates that NanoBRET is a suitable tool to provide benchmarks for 
computational predictions of mutation-driven impact, and that this dataset will provide an initial test bed for the 
benchmarking of future predictive methods (SI data). We evaluate multiple prospective physics- and structure-
based methods, alchemical free energy methods sampling via both replica exchange and nonequilibrium 
switching, Rosetta’s flex_ddg protocol, and a Random Forest model trained entirely on prior data. We show 
that all methods provide reasonably similar prediction accuracy, but that physics-based simulation provides 
improved minimum prediction accuracy on a per-residue level. Importantly, we emphasize that all structure-
based and physics-based methods can reasonably propose whether or not a mutation is significantly resistant 
or sensitizing with an average accuracy of 0.81. Within this range of accuracy, these methods can act as 
suitable classifiers to prospectively predict whether a mutation is resistant or sensitizing in the absence of prior 
data. We also show that physics-based simulations are best able to capture the impact of distal mutations on 
ΔΔG of inhibitor binding, presumably due to their ability to capture the impacts of mutation on the dynamics of 
the kinase. Physics-based simulations are also more able to capture long-range electrostatic effects at greater 
distances, some approaches such as Rosetta and Random Forest models do not consider due to default 
cutoffs in their implementations. Lastly, we consider emblematically difficult mutations to predict and show that 
considering either 1) alternative starting configurations to better sample water-interaction networks, or 2) 
multiple protonation states and charge species, can improve ΔΔG prediction accuracy. By sharing these 
datasets, both experimental and computational predictions, in an open-source manner, we provide an initial 
test benchmark for future computational methods to evaluate their ability to predict the impact of resistant and 
sensitizing mutations. We hope these datasets highlight the utility of these methods and their capacity to 
classify the mechanistic impact of mutations in data-poor regimes where prior biochemical data is absent. 

METHODS:  
Lollipop plot generation of clinical variants. All variants were obtained from the Catalogue of Somatic 
Mutations in Cancer (COSMIC) ABL1 entry (ENST00000318560) as of 7/28/2023.5 Counts were aggregated 
for the 94 variants assessed in this study.  

Prospective Free energy calculations: 
Free energy calculations with FEP+. System preparation and free energy calculations were performed using 
Schrödinger Maestro Suite Version 2020-3 (Schrödinger Release 2020-3: Maestro, Prime, FEP+; Schrödinger, 
LLC: New York, 2020).98 System preparation used the protein preparation wizard within Maestro and 
resembled Hauser et. al. but differed in some aspects which will be pointed out below.31 Residue numbering 
was adjusted such that the threonine gatekeeper of Abl kinase obtained the residue number 315 to match 
common practice. As in Hauser et. al. chain B of PDB structure 1OPJ was used as input for the calculations of 
imatinib in complex with Abl.71 However, the complete chain as present in the PDB file was used. Solvent 
exposed serine 336 (355 in PDB file) was mutated to asparagine using Maestro. Termini were capped and all 
water molecules present in the PDB structure were kept. No loops were missing and needed modeling. 
Imatinib was modeled as positively charged by the protein preparation wizard. For some of the calculations, 



 

 

imatinib was manually neutralized. For the simulations of dasatinib in complex with Abl PDB structure 4XEY 
was used.99 Specifically, Chain A of the PDB structure (4XEY) was used, but no homology modelling was done 
to add on unresolved N- and C-terminal residues. Both imatinib and dasatinib ligand parameters are described 
by the OPLS forcefield.100 The preparation wizard neutralized aspartates 381 and 421. Input structures for 
imatinib and dasatinib can be found as a part of the supplementary material and are available online 
(https://osf.io/s6ktq/). The effect of residue mutation on ligand affinity was calculated using FEP+ with default 
settings i.e. using the muVT ensemble, a simulation time of 5ns per lambda window and 12, 16, or 24 lambda 
windows for standard, core hopping, and charge changing perturbations, respectively. Each run was performed 
in triplicates using different random number seeds. Error estimates correspond to standard deviations over the 
three runs. 
 
Curation and preparation of structures for Nonequilibrium protocols with PMX (NEQ). Structures of the 
ABL1A-inhibitor complexes were used as previously described by drawing up on previously published crystal 
structures (4XEY and 1OPJ for dasatinib and imatinib, respectively).31 Apo structures were generated by 
discarding ligand atoms, and crystallographic water molecules were retained. All mutant structures were 
generated using FoldX v4.101 Amino acid protonation states were set at pH 7.4 using PDB2PQR and PROPKA 
v3.1 via the HTMD protein preparation tool (v1.12).102–105 Ligand protonation states were kept previously 
described in Hauser et al by default.31 Proteins were described using the Amber99sb*-ILDN (shown as “A99”) 
and Amber14sb (shown as “A14sb”) force fields.106–109 The TIP3P water model was used.111 Ligands 
parameters were created using GAFF2 (v2.1) via AmberTools 16112 where charges were described using 
restrained electrostatic potential (RESP).113 Gaussian 09 (Rev D.01) was used to conduct geometry 
optimizations and molecular electrostatic potential (ESP) calculations using the HF/6-31G* level of theory. 
Three optimization steps were used to ensure the ligand conformation remained similar to the kinase-bound 
poses. ESP points were sampled according to the Merz-Kollman scheme.114,115 Halogen atom σ-holes were 
modeled as previously described by Kolář and Hobza.116 All ligand parameters can be found in the input files in 
(https://osf.io/s6ktq/). Protein-ligand systems were solvated in a dodecahedral box with periodic boundary 
conditions with a minimum padding distance 12 Å from the protein system to the edge of the box. Sodium and 
chloride ions were added to neutralize the wild-type (WT) system at a concentration of 0.15 M NaCl. For the 
mutants, the same number of ions as in the wild type systems was added; i.e. the net charge of the wild type 
systems was always zero, while the net charge of the mutant systems was allowed to deviate from zero. 
Clashes may also be present in this initial structure as FoldX does not consider the presence of ligands when 
inserting mutations in the protein. Clashes were considered present if any protein heavy atom was within 1.5 Å 
of any ligand heavy atom. If one or more clashes were present, an approach similar to alchembed was used to 
resolve them: 2000 steepest descent minimization steps were conducted, after which, the ligand vdW 
interactions were switched on for 2000 additional steps in using the MD integrator steps carried out with a 0.5 
femtosecond time step with position restraints (at 1000 kJ mol−1 nm−2 ) on all heavy atoms.117 

Non-equilibrium protocol (NEQ) with PMX.  
All simulations were carried out on Gromacs 2016 on Intel Xeon processors with Ivy Bridge (4 cores, E3-1270 
v2) or Broadwell (10 cores, E5-2630 v4) architectures and NVIDIA GeForce GPUs (GTX 1070, GTX 1080, or 
GTX 1080 Ti).118,119 Energy minimization was carried out using a steepest descent algorithm for 10,000 steps. 
The systems were subsequently simulated for 100 ps in the isothermal-isobaric ensemble (NPT) with harmonic 
position restraints applied to all solute heavy atoms with a force constant of 1000 kJ mol-1 nm-2. Equations of 
motion were integrated with a leap-frog integrator and a time-step of 2 femtoseconds (fs). The temperature 
was coupled with the stochastic v-rescale thermostat at the target temperature of 300 K.120 The pressure was 
controlled with the Berendsen weak coupling algorithm at a target pressure of 1 bar.121 The particle mesh 
Ewald (PME) algorithm was used for electrostatic interactions with a real space cut-off of 10 Å when using 
Amber force fields, a spline order of 4, a relative tolerance of 10−5, and a Fourier spacing of 1.2 Å.122 Verlet cut-
off schemes with the potential-shift modifier was used with a Lennard-Jones interaction cut-off of 10 Å, and a 
buffer tolerance of 0.005 kJ mol−1 ps−1.123 All bonds were constrained with the P-LINCS algorithm.124 For 
equilibration, unrestrained MD simulations were then performed for 1ns in the NPT ensemble with the 
Parrinello-Rahman barostat at 1 bar with a time constant of 2 ps.125 Production simulations were then 
performed for 3 ns for A14 and 5 ns for A99.  



 

 

For ΔΔG estimations, the above procedure for equilibrium simulations was repeated ten times on both the apo 
and complex states of both wild-type and mutant to estimate ΔΔG. From each of these ten equilibrium 
simulations, 30 equally spaced frames were extracted to serve as starting configurations for the non-
equilibrium protocol, generating a total of 300 non-equilibrium trajectories. There were 150 trajectories going 
from wild-type to mutant (“forward”) and 150 trajectories going from mutant to wild-type (“reverse”) for each 
mutation. For the A99 protocol, ten repeated equilibrium simulations were used for charge-conserving 
mutations, and twenty for charge-changing mutations; from these, 400 frames were extracted for charge-
conserving mutations, and 800 frames were extracted for charge-changing mutations. The non-interacting 
(“dummy”) atoms for morphing wild-type residues into mutants were introduced via pmx, using the mutant 
structure proposed by FoldX as a template.72 Positions of the dummy atoms were then minimized while 
freezing the rest of the system. These systems, now containing “hybrid” residues, were then simulated for 10 
ps to equilibrate velocities.  

Finally, amino acid side chains were alchemically morphed at constant speed during non-equilibrium 
simulations of 80 ps in length for A14 and 100 ps for A99. Work values associated with each non-equilibrium 
transition were extracted using thermodynamic integration (TI) and then used to estimate the free energy 
differences with the Bennett’s Acceptance Ratio (BAR).52,126,127 Point estimates of the free energy differences 
(ΔGapo, forward and ΔGholo, forward) were calculated with BAR after pooling all available forward and reverse work 
values coming from the nonequilibrium trajectories. Uncertainties in ΔGapo,forward and ΔGholo, forward were 
estimated as standard errors (σΔG) by considering each equilibrium simulation and the resulting non-
equilibrium trajectories as independent calculations. Uncertainties were then propagated to the final ΔΔG 
estimate to obtain the estimate of the standard error σΔΔG. 

Machine learning model deployment: 
The machine learning (ML) model was built in Python using the ExtraTreesRegressor class in the scikit-learn 
library, following the approach similar to Aldeghi et al., with variations in dataset splitting applied to feature 
selection procedures.12 

Training dataset curation. The dataset described in Hauser et al. was used for training the model.31 This 
dataset contains 144 binding affinity changes (ΔΔG) for eight tyrosine kinase inhibitors (TKIs) due to point 
mutations in human Abl kinase. Six of these are structures resolved experimentally via X-ray crystallography 
(4WA9, 3UE4, 4XEY, 1OPJ, 3CS9, 3OXZ) and two were obtained via docking (referred to as DOK1 and 
DOK2).87,99,128–130 Models for mutant apo structures were generated using FoldX (v4). Structures of the mutant 
complexes were obtained by maintaining the ligand coordinates from the WT structures. 

Features and feature selection. A total of 128 features were calculated and considered as inputs of the 
model: 18 ligand properties (e.g., molecular weight, calculated logP, number of rotatable bonds) were 
calculated with RDKit (v2018.09.1;  https://www.rdkit.org), and 21 properties describing  the mutation 
environment (e.g., distribution of ligand and protein atoms around the mutation site, number of 
polar/apolar/charged residues in the binding pocket) were calculated with Biopython (v1.73; 
www.biopython.org),131 13 features describing the change in the amino acid chemical nature were calculated 
using precomputed properties for each amino acid (e.g., change in side-chain volume, hydropathy, number of 
hydrogen bond donors). Among these features, we also include the change in folding free energy upon 
mutation as predicted by FoldX v4. Six features describing protein-ligand interactions (hydrogen bonds, 
hydrophobic contacts, salt bridges, π-stacking, cation-π interactions, and halogen bonds) were calculated with 
the Protein-Ligand Interaction Profiler (PLIP).132 The Vina binding score, along with 59 Vina features were 
calculated with AutoDock Vina via scripts that are part of DeltaVina.133 The latter tool, in conjunction with the 
molecular surface calculation library MSMS, was also used to calculate 10 pharmacophore-based solvent-
accessible surface area (SASA) features. 

Feature selection was performed with a greedy algorithm using the `mlxtend` library. We allowed the selection 
of any number of features up to a maximum of 40, which minimized the mean-squared error (MSE) of 10-fold 
cross-validation on the training set of 144 published ΔΔG values. The 10 folds were created such that each 
fold would contain a unique set of mutations. Our feature selection procedure selects those features that would 
allow the model to better extrapolate to previously unseen point mutations. From this protocol, 10 features 
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were selected: 1. Change in hydrogen bond acceptor SASA between the WT and mutant complexes, 2. 
Change in halogen SASA, 3. Number of ligand-mutated residue atom pairs within 2 Å of each other (reporting 
on whether the mutation might introduce steric clashes), 4. Gain/loss of cation-pi interactions and salt bridges 
between the WT and mutant complexes, 5. Change in number of aromatic rings for the protein residue, 6. 
Change in the number of hydrogen bond acceptor atoms for the protein residue, 7. Maximal distance between 
ligand and WT residue atoms, 8, 9. The 25th and 50th percentiles of the values of the angles between each 
ligand atom and the beta and alpha carbons of the protein residue (a measure of the side chain orientation with 
respect to the ligand), 10. number of rotatable bonds in the ligand. 

The model was then trained on the full set of 144 ΔΔG values from Hauser et al. using these features.31 This 
model was used to predict the ΔΔG values associated with the ABL1A kinase mutations described in this 
manuscript. The machine learning (ML) model was built in python using the ExtraTreesRegressor class in the 
scikit-learn library.134 This model uses ensembles of randomized decision trees in a similar fashion to random 
forest.77 The input files and the code (as Jupyter notebooks) used to train and test the ML models are provided 
online (https://osf.io/s6ktq/). All computations pertaining to the ML results were performed on a desktop 
machine equipped with an Intel Xeon processor of Broadwell architecture (E5-1630 v4). Splits were done by 
mutation. We split the Hauser dataset in 10 folds, such that each fold would have a different set of mutations, 
with the idea of encouraging the selection of feature that provide good extrapolation performance to new 
mutations (since we knew the ligands would be imatinib and dasatinib, but the mutations would be new). 

Data analysis. The accuracy of the calculations was evaluated using three performance measures: the root-
mean-square error (RMSE), the Pearson correlation (r), and the area under the precision-recall curve 
(AUPRC). The uncertainty in these measures was evaluated by bootstrap. Pairs of experimental and 
calculated ΔΔG values were resampled with replacement 105 times. For each bootstrap sample, RMSE, R, 
and AUPRC were calculated. From these 105 bootstrap measures, the 2.5 and 97.5 percentiles were taken as 
the lower and upper bounds of the 95% confidence interval. A bootstrap procedure was also used to obtain p-
values for the differences between approaches. In this case, triplets of ΔΔG values were resampled with 
replacement together 105 times: ΔΔG values from experiment and from the two approaches to be compared. 
At each bootstrap iteration, the difference in the performance measure of interest (e.g. RMSE) between the two 
computational approaches to be compared was stored. At the end of the procedure, 105 bootstrap differences 
(e.g. ΔRMSE) would have been collected. The fraction of differences crossing zero was multiplied by two to 
provide a two-tailed p-value for the difference observed. Data analysis was performed in python using the 
numpy, scipy, pandas, scikit-learn, matplotlib, and seaborn libraries.135–139 All comparative analysis and 
summary statistics do not consider the mutations included in the dataset used to train the model, to reduce 
bias caused by data leakage. 

Rosetta prediction of mutation impact using flex_ddg. Using the above protocol in the structure 
preparation and data curation of the PMX calculations, Rosetta binding free energy changes were calculated 
with Rosetta (v2017.52) using the flex_ddg protocol.38 These calculations were carried out on cluster nodes 
equipped with an Intel Xeon processor of S4 Broadwell architecture (E5-2630 v4), using one CPU core per 
ΔΔG calculation. Ligand parameters were obtained with the molfile_to_params.py script provided with Rosetta. 
The REF2015 and beta_nov2016 (referred to as βNOV16) scoring functions were used. The final ΔΔG 
estimates were the average values of the generalized additive model obtained from 35 iterations of the 
protocol. The command lines used for the Rosetta calculations and the input files can be found online 
(https://osf.io/s6ktq/). 

NanoBRET affinity assay. Bioluminescence resonance energy transfer (BRET) is used as a proximity-based 
measure of drug binding to kinase targets in live HEK293T cells.140 BRET is observed between a 
NanoLuciferase (nLuc) tag on the full-length protein kinase and a tracer molecule (a BODIPY fluorophore 
attached to an ATP-competitive inhibitor scaffold). Upon binding of either imatinib or dasatinib to the kinase, 
the tracer is displaced to reduce BRET in a dose-dependent manner. The Abl NanoBRET affinity and 
residence time assay data used in this manuscript was collected as previously described by Lyczek et al.24 
Briefly, full-length Abl was cloned in frame with an N-terminal NanoLuc fusion, mutagenized, and used to 
transiently transfect HEK293T cells at a density of 2x105 cells/mL for twenty hours. Transfected cells were 
incubated with BRET Kinase Tracer K4 (Promega) at the previously measured Tracer IC50 and serially diluted 



 

 

imatinib and dasatinib in OptiMEM media without phenol red. The system was allowed to equilibrate for two 
hours at 37ºC and 5% CO2. The 3X Complete Substrate and Inhibitor solution was prepared by mixing 
NanoBRET Nano-Glo Substrate (Promega) and Extracellular NanoLuc Inhibitor (Promega) into OPTI-MEM. 
Tracer compound was added to cells using a liquid dispenser at the tracer IC50 concentration for each 
mutant,24 followed by addition of serially diluted inhibitor using an Echo 550 and incubated for 2 hours. 
Afterwards, 3X Complete Substrate and Inhibitor were added to cells and luminescence was measured at 450 
nm (donor emission). BRET was measured at multiple serially diluted concentrations of either imatinib or 
dasatinib and 650 nm (acceptor emission) in a PHERAstar plate reader (BMG Labtech). Background-corrected 
BRET ratios (610 nm/450 nm)  were determined by subtracting the BRET ratios of samples from the BRET 
ratios in the absence of tracer and inhibitor. BRET ratios were plotted as a function of inhibitor concentration 
and graphed using GraphPad Prism (v9). IC50 determination was done via curve fitting to:  

𝑌 = 𝐵𝑜𝑡𝑡𝑜𝑚 +(
𝑇𝑜𝑝 − 𝐵𝑜𝑡𝑡𝑜𝑚

1 + -𝐼𝐶!"𝑋 1
#$%%&%'()2 

where the 𝐻𝑖𝑙𝑙𝑆𝑙𝑜𝑝𝑒 describes the steepness of the curve (fixed to -1.0), and 𝑇𝑜𝑝 and 𝐵𝑜𝑡𝑡𝑜𝑚 describe the 
upper and lower plateaus in the units of the Y-axis, 𝑋 is the ligand concentration, and 𝑌 is the BRET ratio. 
Apparent affinity values for each compound/mutant pair were calculated using the Cheng-Prusoff equation.141 

Retrospective analysis with Perses: 
Structure preparation and setup for alchemical transformations within Perses. Perses calculations were 
performed with structures of human wild type ABL1 in complex with imatinib and dasatinib prepared using 
functionality of OEChem and Spruce from the OpenEye Toolkits 2021.1.1 implemented in the open-source 
framework KinoML.11 PDB entries 2HYY (chain C) and 2GQG (chain A) were chosen as the ligands of interest 
were co-crystalized and due to the high quality score reported by KLIFS.69,142–144 Unresolved side chains of 
both structures were modeled with Spruce (OpenEye). The phosphorylated tyrosine of 2GQG at position 393 
was altered to a standard tyrosine residue using Spruce. Missing residues of 2HYY, D276 and T389-D391 
were built with Spruce. Finally, both structures were protonated at pH 7.4 using OEChem.This resulted in a  
charge of +1 for imatinib at the piperazine ring. Generated structures and scripts for structure preparation are 
available on github (https://github.com/openkinome/study-abl-resistance).  
 
Perses hybrid topology setup. The hybrid topology, positions, and system for each transformation were 
generated using Perses 0.10.1 and OpenMM 8.0.0.46,145,146 The hybrid topology was generated using a single 
topology approach. The hybrid positions were assembled by copying the positions of all atoms in the WT 
(“old”) topology and then copying the positions of the atoms unique to the mutant (“new”) residue (i.e., unique 
new atoms). Unique new atom positions were generated using the Perses FFAllAngleGeometryEngine, which 
probabilistically proposes positions for one atom at a time based on valence energies alone. Further details on 
hybrid topology, positions, and system generation (including definitions of the valence, electrostatic, and steric 
energy functions) are available in the Perses “RESTCapableHybridTopologyFactory” class. For charge-
changing mutations, counterions were added to neutralize the mutant system by selecting water molecules in 
the WT system that are initially at least 8 Å from the solute and alchemically transforming the WT water 
molecules into sodium or chloride ions in the mutant system. For example, if the mutation was ALA→ASP, a 
water molecule in the WT system was transformed into a sodium ion in the mutant system to keep the system 
endstate neutral. If the mutation was GLU→ALA, a water molecule in the WT system was transformed into a 
chloride ion in the mutant system. Additional details on the counterion implementation can be found in the 
Perses “_handle_charge_changes()” function found in “perses.app.relative_point_mutation_setup”. To prevent 
singularities when turning off the nonbonded interactions involving unique old or unique new atoms, a softcore 
approach was used that involves “lifting” unique old or unique new interaction distances: A padding distance 
(𝑤(𝜆)) was added to the interaction distances involving unique old or unique new atoms so that the atoms 
could not be on top of each other.147 𝑤 lifting (the maximum value for 𝑤(𝜆)) was selected to be 0.3 nm. This 
lifting softcore approach was applied to both the electrostatic and steric interactions, so multi-stage alchemical 
protocols (e.g., where electrostatics must be turned off before sterics) were not necessary for scaling on or off 
the electrostatic and steric interactions. Instead, a linear protocol was used for interpolating the valence, 
nonbonded, and lifting terms. This softcore approach is similar to traditional softcore approaches with the 
critical difference being with our handling of the Lennard Jones potential. Our approach uses a lifting distance 



 

 

(𝑤(𝜆)) that is independent of 𝜎 (the distance at which the Lennard Jones potential energy equals zero),148,149 
whereas prior approaches define the lifting distance as a function of 𝜎. In our approach, the lifting distance was 
defined to be independent of sigma for ease of implementation. 

Replica exchange sampling using Perses (RepEx). Alchemical replica exchange (AREX) simulations were 
performed using Perses 0.10.1 and OpenMMTools 0.21.5 (https://github.com/choderalab/openmmtools). The 
alchemical protocol was defined with evenly spaced 𝜆 values between 0 and 1. Before AREX was performed, 
the positions were minimized at each of the alchemical states using the OpenMM LocalEnergyMinimizer with 
an energy tolerance of 10 kJ/mol. Each AREX cycle consisted of running 250 steps (4 femtosecond timestep) 
with the OpenMM 8.0.0 LangevinMiddleIntegrator at a temperature of 300 K, a collision rate of 1 picosecond-1, 
and a constraint tolerance of 1e-6.150–152 All-to-all replica swaps were attempted every cycle.50 Replica mixing 
plots were created using OpenMMTools 0.21.5 (https://github.com/choderalab/openmmtools) to extract the 
mixing statistics from the AREX trajectories. Default settings were used unless otherwise noted. Full details on 
the AREX implementation are available online (https://github.com/choderalab/perses-b arnase-barstar-
paper/blob/main/scripts/04_run_repex/run_repex.py). For each replica, 5000 cycles (i.e., 5 ns) were run, 
resulting in 30 ns of sampling per phase per mutation. Replicas mixed well for all mutations, indicating good 
phase space overlap. 10000 cycles were initially run per replica (10 ns/replica), resulting in 240 ns of sampling 
per phase per neutral mutation and 360 ns of sampling per phase per charge changing mutation. To improve 
the accuracy of our predicted free energy differences, the sampled alchemical states were bookended with 
“virtual endstates,” which were not sampled during free energy calculation, but for which reliable estimates of 
the physical endstates could be robustly produced during analysis. 

System equilibration and alchemical sampling using Replica Exchange and Nonequilibrium cycling 
(NEQ). All systems used the AMBER14SB force field for the protein and GAFF-2.11 for the small-
molecule.106,112 Each system was then equilibrated for 3 nanoseconds (ns) where bonds to hydrogen were 
constrained with CCMA and Hydrogen Mass Repartitioning (HMR) with hydrogen masses set to 4 amu) was 
applied to allow for a 4 femtosecond (fs) timestep.153 A nonbonded cutoff of 1.1 nm was used for Lennard-
Jones 12-6 interactions. Particle mesh Ewald (PME) was applied for treatment of long-range interactions with a 
direct-space cutoff of 1 nm, relative error tolerance of 0.0005, and automatic (default) selection of alpha and 
grid spacing.122 Alchemical Replica Exchange (RepEx) was performed on Perses using multiple swapping 
cycles to mix alchemical configurations.46 Each RepEx cycle consisted of running 250 steps (1 picosecond at a 
4 femtosecond timestep) using the Leapfrog Langevin Integrator with a BAOAB splitting at a temperature of 
300 K, a collision rate of 1 picosecond-1, and a constraint tolerance of 1e-6.150,154 All-to-all replica swaps were 
attempted every cycle. This set of cycles was repeated for every mutation in both complex (inhibitor-bound) 
and apo (inhibitor-absent) constructs of Abl kinase with both Dasatinib and Imatinib complex structures. 
Replica mixing plots were created using OpenMMTools 0.21.5 (https://github.com/choderalab/openmmtools) to 
extract the mixing statistics from the AREX trajectories. Default settings were used unless otherwise noted. Full 
details on AREX implementation are available on github (https://github.com/choderalab/perses). Non-
equilibrium cycles (NEQs) are independently collected on Folding@home where each individual cycle serves 
as an independent statistical replicate in free energy estimation.39,91,155 A single cycle consisted of 4 stages 
each of which lasted 1.5ns. An initial equilibration at λ = 0 was first run, followed by a forward non-equilibrium 
process which drives λ from 0 to 1 over 100 equally spaced windows, followed by another equilibrium 
simulation at λ = 1. Lastly, a reverse non-equilibrium process driving λ from 1 to 0 was run over 100 equally 
spaced windows across another 1.5ns. All cycles were run using a Leapfrog Langevin Integrator with BAOAB 
splitting at a collision rate of 1 picosecond-1 and a constraint tolerance of 1e-8, leading to a total trajectory time 
of 6ns per cycle. 100 replicate cycles were collected per mutation in both complex (inhibitor-bound) and apo 
(inhibitor-absent) on Folding@home to obtain forward and reverse work distributions. For both RepEx and 
NEQ sampling using Perses, free energy differences were calculated using the Multistate Bennett Acceptance 
Ratio.156  
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SUPPLEMENTARY FIGURES: 

 
Supp. Figure 1. Representative thermodynamic cycle that highlights the set of transformations used to predict the ΔΔG of 
mutations upon drug binding in a protein-ligand system. Transformations are computed by computing the energetic cost of 
mutating a residue from wild type (yellow) to mutant (dark green), in both apo phase (top row) and in complex with drug 
binding (bottom row). From these calculations, ΔΔG can be computed by subtracting the apo phase (ΔGapo) from the 
complex phase (ΔGcomplex).  



 

 

 
Supp. Figure 2. Truth tables for each method demonstrate the capacity of computational methods to act as 
classifiers. The number of “true positives” of ΔΔG predictions for a variety of methods are shown (top right and bottom left 
integers). A prediction is considered a true positive if its has the same sign as the experimental NanoBRET predictions, and 
both have |ΔΔG| > 1 kcal/mol (top right and bottom left quadrants). True positives for resistant (top right integers) and 
sensitizing mutations (bottom left integers) are shown for both imatinib (orange) and dasatinib (blue).  Experimental ΔΔG 
measurements with magnitude below 1 kcal/mol are not labeled as “true positives.” Prospective methods shown are Replica 
Exchange using FEP+ (top left), Nonequilibrium switching using PMX using Amber99 force field (bottom left), the 
Amber14sb force field (bottom middle), and the resultant prediction taken from pooling the work values from both force 
fields (top middle). Rosetta’s flex_ddg (top right) and a random forest model trained on prior data (bottom right) are also 
shown.  
 
Supp. Table 1. Summary statistics from AUPRC curves highlighting the similarity in performance for each method.  The 
95% confidence intervals are calculated based on bootstrapping 1000 repeats with replacement 

Method Pooled 
AUPRC 95% Conf. Interval Pooled 

accuracy 

Distance from 
imatinib 

baseline at 1 
kcal/mol 

Distance from 
dasatinib baseline 

at 1 kcal/mol 

FEP+ 0.6 0.45–0.73 0.82 0.27 0.68 

PMX A99/A14 0.55 0.38–0.71 0.82 0.52 0.57 

PMX A99 0.47 0.31–0.65 0.81 0.66 0.63 

PMX A14 0.52 0.37–0.68 0.82 0.36 0.46 

Rosetta 15 0.6 0.44–0.77 0.85 0.41 0.54 

Random 
forest 0.58 0.44–0.71 0.79 0.19 0.44 

 



 

 

 
Supp. Figure 3. Maximum possible improvement in ΔΔG prediction by an alchemical simulation method relative to 
a non-alchemical method. The maximum possible improvement the is computed by taking the least accurate non-
alchemical ΔΔG prediction and subtracting it from the most accurate ΔΔG prediction, where a negative score indicates the 
best possible improvement for any predicted ΔΔG value. These values are mapped onto the structure of Abl kinase (PDB: 
1OPJ) for each mutation (spheres), and colored to indicate the degree to which alchemical methods are able to improve 
upon individual non-alchemical predictions (color scale, below). Mappings are made for both imatinib predictions (left) and 
dasatinib (right). 
 



 

 

 
Supp. Figure 4. ΔΔG estimations from both experiment and computation. Computed ΔΔG for NanoBRET and each 
computational method is plotted for imatinib (orange) and dasatinib (blue) as a function of the distance from the residue’s 
Cα carbon to the center of mass of the ligand in the crystal structure.  



 

 

 
Supp. Figure 5. Estimation accuracy and summary statistics is dependent on the degree of distance from the active 
site. Calculation accuracy grouped in ranges of the distance between the mutated residue and the imatinib. “Zero” denotes 
a prediction where every mutation is predicted to be neutral in impact on inhibitor binding (ΔΔG  = 0 kcal/mol). Horizontal 
lines mark RMSE and correlation values between two experimental measurements. 
 

 
Supp. Figure 6: Calculation accuracy grouped in ranges of the distance between the mutated residue and the inhibitor. 
“Zero” denotes a prediction where every mutation is predicted to be neutral in impact on inhibitor binding (ΔΔG  = 0 kcal/mol). 
Horizontal lines mark RMSE and correlation values between two experimental measurements (Fig. 2). 
 
 
 



 

 

 
Supp. Figure 7. Open-source tools like Perses can estimate ΔΔG and act as a classifier while allowing a user to 
robustly tune parameters and investigate simulation details. Scatterplots (top row) showing predictions made using 
Perses using both NEQ (left column) and Replica Exchange (RepEx, right column), including both Root Mean Square Error 
(RMSE) and Pearson correlation (labeled “cor”). These can be converted into truth tables (middle row) that generate 
Precision-Recall curves (bottom row) for both sampling methods on Perses are also shown for both Imatinib (orange) and 
dasatinib (blue).  
 
 
 



 

 

 
Supp. Figure 8. Perses-based alchemical simulations ΔΔG estimations are also able to predict the impact of distal 
mutations on imatinib and dasatinib binding. The deviation from predicted ΔΔG to experiment is plotted for imatinib 
(orange) and dasatinib (blue) as a function of the distance from the residue’s Cα carbon to the center of mass of the ligand 
in the crystal structure. Values are shown for predictions made with Perses using Nonequilibrium Cycling (top) and replica 
exchange (bottom). 
 

 
Supp. Figure 9. Trajectories started with the crystal water removed both increase alchemical ΔΔG prediction and 
decreased water binding. A. The distance from residue 315 to the closest water molecule in equilibrium MD trajectories 
(right) started from a crystal structure that removed the closest water molecule to residue 315, rendering the residue in a 
“dehydrated” state. Trajectories were collected for both wild-type (middle)  and T315A constructs (right) Alchemical free 
energy calculations estimating ΔΔG using this structure yield accurate predictions (left).  B. Distance from residue 315 to 
the closest water molecule in equilibrium trajectories starting from the same crystal structure with all water molecules present 
(middle and right) show increased proximity and potential interaction between residue 315 and water molecule in both WT 
(middle) and T315A constructs (right). However, alchemical ΔΔG predictions made using this starting structure are far less 
accurate (left). 
 
 
 
 



 

 

Supp. Table 2. Protonation state of imatinib alters ΔΔG predictions for several simulated mutations. Predictions 
were considered significantly changed when the error in predicted ΔΔG compared to the simulations with positively charged 
imatinib changed by 0.6 kcal/mol or more. Reported values of ΔΔG calculations are the mean of at least 3 independent 
repeats. Each cell is colored by how much the prediction deviates from the NanoBRET (bottom row of table).  

Mutation Ligand 
and net 
charge 

NanoBRET  
(kcal/mol)  

FEP+ 
(kcal/mol) 

a99  a14  PersesNEQ  PersesRepEx  

L298F imatinib+0 -1.27 -0.77 -0.58 -0.2 -0.55 0.28 

L298F imatinib+1     -0.79 -2.91 

L298F Imatinib 
(bulk) 

    -0.77 -2.86 

T315A imatinib+0 1.36 -1.31 -1.31 -0.97 2.01 2.48 

T315A imatinib+1     2.36 2.45 

T315A Imatinib 
(bulk) 

    2.30 2.45 

  Colorscale for 
difference 
between 
computational 
prediction vs. 
NanoBRET 
measurement: 
(kcal/mol) 

< 0.5 0.5 - 
1.0 

1.0 - 
1.5 

> 1.5  

 

Supp. Table 3. Dasatinib alters ΔΔG predictions for several simulated mutations. Predictions were considered 
significantly changed when the error in predicted ΔΔG compared to the simulations with positively charged imatinib changed 
by 0.6 kcal/mol or more. Reported values of ΔΔG calculations are the mean of at least 3 independent repeats. Each cell is 
colored by how much the prediction deviates from the NanoBRET (bottom row of table). 

Mutati
on 

Ligand NanoBRET  
(kcal/mol)  

FEP+ 
(kcal/mol) 

A99 
(kcal/
mol)  

A14 
(kcal/
mol)  

PersesNEQ 
(kcal/mol)  

PersesRepEx  
(kcal/mol) 

L298F dasatinib -0.31 0.07 -1.5 0.27 -0.47 0.60 

T315A dasatinib 1.48 -1.51 -0.46 -1.19 2.39 2.24 

  Colorscale for 
difference between 
computational 
prediction vs. 
NanoBRET 
measurement: 

< 0.5 0.5 - 
1.0 

1.0 - 
1.5 

> 1.5  



 

 

Supp Table 4. A neutral protonation state of imatinib alters FEP+ predictions for several simulated mutations. 
Reported values of FEP+ calculations are the mean of at least 3 independent repeats.  

  FEP+ prediction: ΔΔG ± SD (kcal/mol) 

Mutation: Experiment value 
(kcal/mol) 

Prediction for 
imatinib+1 

Prediction for 
imatinib+0 

Bulk Imatinib prediction 

Y353H 1.367 0.077 ± 0.059 0.880 ± 0.220 0.113 ± 0.070 

F359I 1.068 0.033 ± 0.284 0.733 ± 0.317 0.066 ± 0.286 

N368S 0.002 -0.853 ± 0.522 -0.180 ± 1.146 -0.825 ± 0.553 

E282G 1.284 0.673 ± 0.090 0.007 ± 0.352 0.582 ± 0.107 

E282K 1.920 1.130 ± 0.198 0.173 ± 0.345 0.966 ± 0.208 

V289F 0.710 0.430 ± 0.270 2.02 ± 0.435 0.475 ± 0.281 

E292V 0.388 0.080 ± 0.227 -0.540 ± 0.220 -0.001 ± 0.225 

M351K 1.920 1.920 ± 0.303 0.440 ± 0.422 1.546 ± 0.311 

E355G 0.539 -0.017 ± 0.330 -0.740 ± 0.169 -0.120 ± 0.315 

 

Supp Table 5. Alternative side chain protonation states do not improve FEP+ predictions. Predictions were 
considered significantly changed when the error in predicted DDG compared to the simulations with the default side chain 
protonation state changed by 0.6 kcal/mol or more. Protonation state of imatinib was +1. Reported values of FEP+ 
calculations are the mean of at least 3 independent repeats. 

  Experimental Default protonation state Alternative protonation state 

Mutation Ligand ΔΔG [kcal/mol] Mutation ΔΔG [kcal/mol] ± SD Mutation ΔΔG [kcal/mol] ± SD 

Y253H imatinib 1.920 TYR253HID 1.517 ± 0.429 TYR253HIE 0.877 ± 0.452 

E282K imatinib 1.920 GLU282LYS 1.130 ± 0.198 GLU282LYN 0.260 ± 0.110 

M351K imatinib 1.920 MET351LYS 1.920 ± 0.303 MET351LYN 0.017 ± 0.442 

L248R dasatinib 0.883 LEU248ARG 1.184 ± 0.468 LEU248ARN 2.230 ± 0.184 

G250E dasatinib 0.187 GLY250GLU 0.028 ± 0.416 GLY250GLH -0.877 ± 0.685 

 


