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Abstract. Grid structures are among the lightest spatial structures for supporting 

large-span shells while constructing an efficient free-form casefree-form is ex-

ceedingly challenging. This research aims to investigate a special type of pattern 

for free-form grid structures using a process that combines selected design vari-

ables with their corresponding structural properties. Therefore, functional grid 

structures based on traditional Iranian geometries are parametrically intercon-

nected in a workflow, where the results are compared to a base case. Iranian Cha-

har-Lengeh Girih as the main generative designer is generated by the Hankin 

Method that defines a controlling parameter (P) for the shape typology where the 

elements of the structure support a simple quadrilateral grid or a reciprocal one. 

Comparing these two validates the structural efficiency of architectural and struc-

tural performance. The workflow carries out a multi-objective evolutionary algo-

rithm (NSGAII) to optimize the structural performance of the free-form grid 

structures with satisfying the architectural design requirements concomitantly. It 

is composed of the design-related part which includes the parameters of generat-

ing free-form grid structures, while the element diameter, element thickness, and 

the number of columns represents the structure-related counterparts. Conse-

quently, reducing Mass, Displacement, and Elastic Energy are optimization ob-

jectives, besides K-Means Clustering with diverse approaches is used to explore 

patterns of possible solutions among the functions. The results portray that in the 

Overall-Best solution extracted by the workflow, with a P parameter equal to 0.8, 

Displacement, and Elastic Energy are improved by %88.44 and %89.82, respec-

tively compared to its Reference Case where P = 0.5 (simple grid shell).  

Keywords: Integrated Design, Grid structures, Multi-Objective Optimization, 

Machine Learning, Clustering 
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1 Introduction 

The free-form grid structure has been widely used in spatial structure development due 

to its architectural expression. Traditional grid structures usually have simple shapes 

and regular grids. Computational modeling has made it possible to create free-form grid 

structures with complex shapes and grids in spatial structures. Also, structural optimi-

zation provides novel ideas for the computational shape generation of structures [1]–
[3]. In related research projects that address optimization, structural weight is often one 

of the primary objective functions. The geometrical values and the cross-sectional 

shape of the elements are commonly considered as Design Variables for implementing 

the computational workflows to be applied for optimization [4]. The inclinations in 

such projects are commonly set toward form optimization [5]–[9], elements’ size opti-
mization [10] and topology optimization [11]. Since it is not always explicit how to 

create an efficient grid pattern in free-form by integrating selected DVs with responding 

to structural variables; therefore, most have studied regular shapes, such as triangular 

or quadrangular grids, or a combination of basic paneling patterns [12], [13]. Although 

in recent years, more creative grids, such as hexagonal and polyhedron grids, have been 

developed by researchers [14] that address the more flexibility that can be offered by 

architectural aspects, the greater optimized structural forms are expected. 

Several researchers have 

depicted that it is not always 

obvious how to create an effi-

cient grid shell structure when 

it comes to free-forms. De-

signers face a challenging pro-

cess when selecting the opti-

mal pattern and geometry for a 

grid in order to achieve addi-

tional structural efficiencies. 

Many research projects have 

focused on optimizing free-

form grid structures using sin-

gle and Multi-Objective Opti-

mization in order to achieve 

this efficiency and in such en-

deavors, MOO problems have 

been extensively studied using 

evolutionary algorithms. Dif-

ferent Multi-Objective Evolu-

tionary Algorithms have also 

been projected for this purpose and one of the most common is the Non-Dominated 

Sorting Genetic Algorithm (NSGA-II) [15]. The subsequent paragraph discourses some 

Nomenclature 

 

MOEA               Multi-Objective Evolutionary Algorithm 

MOGA              Multi-Objective Genetic Algorithm 

NSGA                    Non-Dominated Sorting Genetic Algorithm 

MOO                 Multi-Objective Optimization 

SOO                  Single-Objective Optimization 

GA                   Genetic Algorithm 

DVs                  Design Variables 

PCA                 Principal Component Analysis 

ML                  Machine Learning 

BO                  Best Overall 

BD                  Best Displacement 

BEE                Best Elastic Energy 

BM                 Best Mass 
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of the research projects using NSGA-II since the algorithm has been introduced by Pro-

fessor Deb et al. in 2002. 

Several studies [4], [16]–[24] represent the importance of NGSA-II for working with 

the variant design process. Among the significant ones, there is the presentation of a 

method for the synthesis of optimal grid structures using MOO with NSGA-II [18]. 

Such attempts are followed by Richardson and others representing a novel yet general 

approach to grid shell structure preliminary design which uses a combination of form-

finding with grid configuration correlated with GA optimization techniques [20]. These 

research outputs mostly correspond to substantial mass reduction by optimizing the grid 

shell configuration in paneling shape and form. Developing such already approved 

methods is possible to have geometrical variables added to the problem formulation.  

The MOO of free-form cable-braced grid shells was examined by Feng et al in 2015 

to support the feasibility of this perspective. Multi-objective indices are employed in 

this case, including mechanical properties indexes (maximum displacement, buckling 

loads, strain energies), geometrical indexes (mean square deviation of tube lengths, a 

difference between the optimal surface and the initial surface), and economic indexes 

(strength of the tubes). Succeedingly, a new MOO procedure was developed by Ehsani 

and Dalir in 2020 to determine the grid plate's architecture (pattern and geometry). This 

model is called the variable rib model (VRM) written for GA and uses ε-constraint 

approach. In the ε-constraint method, only one of the objectives gets optimized during 

the optimization process. A similar study by Goodarzi et al in 2023 examines the effect 

of collaboration between structural and architectural features on improving grid shell 

efficiency on non-regular surfaces with a MOO algorithm designed to minimize dis-

placement and steel weight which clinches the possibility of linking different parame-

ters to a specific feature. 

According to this study, minimizing displacement, and elastic energy, among the 

mechanical properties, and minimizing the structure's weight, among the economic at-

tributes, have been identified as three important objectives in the optimization of grid 

shells. Furthermore, since minimizing one item may negatively impact the others, this 

research proposes a MOO approach to manage the true proportion among objective 

functions. Although The optimization of the pattern and geometries of the grid structure has 

also been the subject of numerous studies, reaching a multidisciplinary method that integrates 

architecture and structure in the free-form grid structures through the relationships between them 

is the problem; This could contribute to the definition of free-form grid structures that, 

along with the appropriate form and pattern, have also reached a balance in terms of 

structural elements. Consequently, the preferences behind this research are established 

by answering the following question: 

• How an optimization setting can offer a free-form grid structure with proper form, 

pattern, and balanced structural components? 
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Using MOO algorithms is a crucial part of this study in respond to the question. One 

of the most widely used algorithms in this area is NSGA-II which provides editing of 

the definitions and accelerates the process in accordance with the objective types and 

functions. By using this framework to improving the structural features integration of 

a freeform grid structure, this study aims to maximize the benefits of architectural DVs 

while enhancing their structural performance. While using this method, a set of opti-

mum dimensions is obtained for the grid structure. This allows the workflow to be set 

up for the determination of the optimal pattern and minimization of displacement, elas-

tic energy, and mass. There are two sets of variables involved in the optimization pro-

cess. As part of the design component, parameters are provided for generating a grid 

shell based on free-form and structural patterns. Regarding that, this research employs 

the Hankin method to draw a Chahar-Lengeh Girih for generating a reciprocal pattern. 

In addition, structure-related parameters include the element and column diameters, 

their thicknesses, and the number of columns. The dataset integration checkpoints are 

investigated using K-Means clustering algorithms amplified by Principal Component 

Analysis (PCA) to reduce cluster variation dimensions due to the large number of var-

iables in this study. In addition, the clusters are visualized to demonstrate their charac-

teristics concerning design and structural variables. 

2 Research Methodology 

Architects design only based on general knowledge and structural conceptual concern 

without evaluating the optimal performance of free-form grid structures. For this pur-

pose, to achieve the optimal grid structure by integrating parameters from design to 

structure, MOO algorithms must involve searching for solutions that optimize two or 

more conflicting objectives, such as minimizing cost while maximizing performance.  
Research involving MOO requires a workflow that integrates parameters with various 

factors, from design through analysis to optimal results, ensuring all relevant infor-

mation is considered during optimization . 
 

In this study, a comprehensive approach was used to  identify patterns that can be 

used to optimize design decisions through feature-based iterations, allowing MOO al-

gorithms to achieve better results.  As a result, a customized  workflow is established  
that integrates data from multiple sources, including design parameters, structural anal-

ysis, and results. Parametric modeling and  structural analysis are uniquely  constructed. 

Thus, in order to understand the aforementioned characteristics, it is necessary to in-

vestigate the variables that comprise a free-form grid structure and their relationship 

with the structure of the form. Accordingly, the factors that comprise the parameters of 

generating a free-form grid structure, such as the coordinates of the points forming the 

free-form, and Girih creator parameter, as well as additional variables that can be eval-
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uated, such as element diameter, element thickness, and a number of columns, are ex-

amined in this study.  In Fig. 1, inputs, layers of analysis that are applied by MOO using 

NSGA-II, Machine Learning (ML), and outputs are indicated in a flowchart. 

 

In the first segment of the research, Girih Geometry while highlighting a structural 

pattern that controls force flows by reciprocal interactions; should be constructed for 

analyzing structure. Since part of the design relies on the Girih pattern, the primary 

parameter called p, for generating a diverse format, represents the Girih Parameter in 

the 0.00:1.00 domain. In order to maintain asymmetrical properties, a free-form struc-

ture needs to have adapted support positions. Furthermore, parametric randomization 

The second approach 
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Fig. 1. Flowchart of the process of analysis and optimization 
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is used in this section to produce a more perforable location. Python programming lan-

guage enhanced this setup besides using Grasshopper to fulfill the algorithm’s input-
to-output setting. 

 

In the second step, Once the model generator setup was established, the analysis part 

was organized using Karamba3D [25] to determine the particular objectives: Mass, Dis-

placement, and Elastic Energy. To converge and decrease these three objectives, the 

DVs have been extensively updated and extended during the iterative generating pro-

cess. This phase, known as generative design, enables the generation of an endless num-

ber of design choices within a wide solution yet adaptable design space. This process 

is accomplished by repeating the loop through Multi-Objective GA implemented in 

Jupyter Notebook. The Pareto-optimal solutions in this section represent the best pos-

sible alternatives for the design section's grid structure. Finally (selection stage), The 

best design options resulting from the optimization part were extracted, and the chosen 

one solution was selected according to the architect’s priorities and project conditions 
using the Design Explorer online platform [26]. 

 

In the third phase, following the construction of the dataset, a 100*16 matrix is used 

for Clustering. The recorded data was transferred to Jupyter Notebook for applying K-

Means Clustering, one of the most common techniques for clustering numeric data [27], 

and PCA, [28]. to reduce dimensions through comprehensive elongations and reflec-

tions on each design iteration. The following paragraphs describe each study step and 

its associated practical instruments in depth.  

 
2.1 Step 1: Parametric Design and Generation 

Pattern Generation 

 

Implementing the framework for form-finding begins with generating a structural pat-

tern from which the grid shell can be derived.  According to this study, Islamic geomet-

ric patterns were selected based on the need to use a linear model to analyze structural 

Fig. 2. The x-shaped lines are in the middle of the sides of the polygon, each with a certain 

angle of incidence to the sides of the polygon. (Drawn by authors) 
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performance and to achieve more flexibility in grid structure patterns from the archi-

tectural perspective. In adaptive geometric grammars, these patterns serve as reciprocal 

elements. 

 The approach that addressed how to produce and develop Islamic geometric patterns 

in the West was first introduced in articles by Hankin under the titles of “The Drawing 
of Geometric Patterns in Saracenic Art”, “Examples of methods of drawing geometrical 

arabesque Patterns” and “Some difficult Saracenic designs”[29]–[31]. 

 

Hankin first presented the method of the guide network of polygons in the article 

“The Drawing of Geometric Patterns in Saracenic Art”. His description of this tech-
nique provides a starting point for an algorithmic approach. He pointed out that cover-

ing a surface with a polygonal grid is necessary for making such patterns. Then, two 

lines are drawn through each of the edges of the polygons. These lines cross each other 

like an x and continue until they reach similar lines passing through other edges [29]. 

A key variable in the model is the collision angle between the outwardly extending 

edges and polygon edges. (See Fig. 3). Also, Fig. 2, shows Different results can be 

created by changing the angle using Hankin’s method [32]. 

Fig. 3. Different results by changing the angle using Hankin’s 
method  
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Based on several case study reviews, the Char-lange or Chahar-lengeh or Hasht-va-

chahr-lengeh Girih [33], which are relatively widely used in Iranian geometries in 

wooden works among Islamic geometric patterns, was selected respecting to the fol-

lowing features it has (see Fig. 4). A distinctive characteristic of this Girih is having 

this ability to adapt itself to the Hankin method as well as its quadrilateral fitness within 

a guiding grid. In this manner, it becomes easier to match the grid to a quadrilateral 

mesh, thus simplifying geometrical design. In addition, it can also be adjusted to any 

angle, and it is capable of supporting intricate and complex design processes by defin-

ing specific variables.  

To drawing a Chahar-lengeh Girih followed traditional instructions, the first step is to 

draw a square (ABCD) and its diameter. The second step is to draw circles from each 

vertex of the square with a radius of half of the side edge. The adaptable points E, F, G, 

and H are located where the arcs of circles meet the AC and DB lines. Additionally, the 

last step is to connect adaptable points to the middle of the square edges respectively 

(see Fig. 5). 

The geometric pattern drawn in the traditional way forms an angle of 67.5 degrees at 

the intersection of the side edges and the reciprocal lines (angle θ). In Hankin's method, 
different shapes are created by changing the angle θ, considering the fact that the study 

looks to determine the length of the components and compare them in each performa-

tive exploration; therefore, it is preferred to define a numerical parameter (parameter 

p). 

Fig. 4. Chahar-lengeh Girih from the stair fence 

of the minbar in Nain Mosque 

Fig. 5. The traditional method of drawing a quadrilateral knot described 
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To get the relationship between theta and parameter p (see Fig. 6), which is the ratio of 

the distance between the reciprocal x-like lines and the center of the square(d) over the 

half diameter of it (b), the relationship of sines in the OFJ triangle in the left figure can 

precisely be established, referred to the following equations: 

 𝛼 = 45 + 𝜃  ,   𝑂𝐽 = 𝑎2  → 𝑎2sin(45 + 𝜃) = 𝑑sin(90 − 𝜃) → 𝑑𝑎 = cos 𝜃2 sin(45 + 𝜃)          
 𝑝 = 𝑑𝑏  , 𝑏 = 𝑎√2    →    𝑝 = √2cos𝜃2 sin(45+𝜃)         
 

Also, to compare the length of the components as shown in the right figure, by changing 

the p-parameter from p1 to p2 or in other words compare two star-shapes, LEIFJGJH, 

and LÉ IF́ JG ́ JH,́ the intersection points are moved by l (for example from F to F)́, 

therefore: 

  𝑝2 −  𝑝1 = 𝑂𝐹 ́𝑂𝐵  − 𝑂𝐹 𝑂𝐵  =  𝑙 𝑏   
 

After introducing the Girih drawing method, its parametric design process was imple-

mented by  Python programming language enhanced by Grasshopper3D. It was in-

tended to use this pattern as a design for a freeform structure in the form of a grid shell. 

For this purpose, parameters related to geometrical attributes and architectural design, 

such as the dimensions and number of squares (which are obtained by putting together 

a Cha-har-Lengeh Girih module) as well as the P parameter with the inputs affecting 

the structure, for example the attraction points defining the free-form shell and the min-

imum and maximum height of the structure was integrated so that the design and engi-

neering factors of the structure can be examined in an unified way. This process has 

been conceptualized by Algorithm 1 . 
 

(3) 

(2) 

(1) 

Fig. 6. The relationship between theta and parameter p 
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Algorithm 1 Parametric Design Workflow 

1: procedure NAME (Form generating) 

2:   P parameter ← define (Design Variables) 

3:   grid size ← define (Design Variables) 
4:    extent X ← define (Design Variables) 
5:    extent Y ← define (Design Variables) 
6:    𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐅𝟏 ( P parameter, grid size, extent X, extent Y) 

7:      Set a grid of squares with extent X and extent Y 

8:     Set Squares’ side lengths to grid size 

9:     for loop 

10:     Draw the diameters of each square 

11:     Draw a line from the p part of half of each diameter 

                       to the midpoint of the adjacent sides of the square 

12:     return lines, squares 

13:   end function 

14:    pt1, pt2, pt3 ← define (attractor points) 
15:    h1 ← define (surface maximum height) 
16:    h2 ← define (surface minimum height) 

17:    𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐅𝟐 ( pt1, pt2, pt3, lines, squares, h1, h2) 

18:      for loop 

19:     Calculate each square center point 

20:     Calculate the minimum distance between pt1, pt2, pt3 and each center 

21:     Remap distances between h1 and h2 

22:     Move centers with distances  

23:   Create a surface with moved centers 

24:   Map lines and square edges to the surface 

25:   return lines, square edges 

26:  end function 

27: end procedure 

Structural Analysis 

 

Having defined the design and analysis process, an iterative free-form generator is es-

tablished at this stage. To evaluate and explore the most optimal design(s), Karamba3D 

is utilized. Thus, interconnected parameters were defined so that the features of every 

design iteration can be studied with the structural analysis in parallel. These parameters 

are the number and position of the columns, the diameters, and thickness of structural 

elements, and the type of cross-sections each element obtains. In addition, Load Cases 

are defined accordingly. After carrying out the structural simulation, Maximum Dis-

placement, Elastic Energy, and Mass were outputted in order to select the most optimal 

solution in the GA process. (See Algorithm 2) 
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Algorithm 2 Structural Analysis 

1: procedure NAME (Structural analysis) 

2:   N← define (number of columns) 
3:   Seed ← define (columns’ positions) 
4:    ED ← define (Elements Diameter (cm))    

5:    ET ← define (Elements Thickness (cm)) 
6:   CD ← define (Columns Diameter (cm))   

7:    CT ← define (Columns Thickness (cm)) 

8:    Main Load = 150 kg/m2  
9:    Set support types 

10:   Set cross-section type 

11:   Set material 

12:   lines ← define (elements and columns) 
13:   𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐅𝟏 (N, Seed, ED, ET, CD, CT) 

14:    Run simulation engine 

15:    Read the required constants 

16:    Calculate the Maximum displacement, Elastic Energy 

17:     Calculate the Mass 

18:    return Maximum Displacement, Elastic Energy, Mass 

19:    end function 

20: end procedure 

 

2.2 Step 2: Optimization and Evaluation 

Multi-Objective Optimization Definition 

 

Engineers and architects may determine optimal solutions for complex problems by 

using the rule of optimization. In the engineering industry, derivatives are frequently 

used to solve variant numerical problems; however, in the field of architecture, resolv-

ing is much more complicated, and models include a wide range of independent and 

dependent variables entangled with objective functions from different influential fac-

tors. Therefore, such approaches like gradient descent are not reliable, because scanning 

the entire space involves expenditures of time and cost. Due to the large exploration 

data provided by parametric design, using a meta-heuristic approach to get to the opti-

mal model is applied. 

 

In order to match structural and architectural performance by considering a variety 

of structural parameters as well as form findings, the need for meta-heuristic algo-

rithms, and continuous space exploration, it has been demonstrated that the GA Pareto 

front can be an effective method of achieving this objective. This paper considers thir-

teen DVs to form the design space. The variables and their variation domains are pre-

sented in Table 1. Also, the research method has been determined upon finding an 

optimum design space for grid structures to reach the cases with minimum Displace-

ment, Elastic Energy, and Mass. This interconnected targeting that encompasses varia-

bles with true impact on the selection procedure in optimization models is termed the 

fitness objective setting. When a model contains more than two fitness objectives, it is 

called a multi-optimization model. Mostly, there is no single solution for MOO prob-

lems. Based on the application and situation, a designer decides which objective has 

priority over the others. The availability of an optimum design space for a grid structure 

helps to conclude a more certain combination setup of objectives for a particular prob-
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lem. By integrating parameters from the design to the structural range, MOEA is em-

ployed to develop the optimal grid structure. A well-known and powerful MOEA, the 

NSGA-II algorithm, was also implemented and edited in Python in accord with the 

objectives. 

Table 1. The Design Variables and their variation domains 

Symbols Description Minimum Value Maximum Value 
X1 

X2 

X3 

X4 

X5 

X6 

X7 

X8 

X9 

X10 

X11 

X12 

X13 

Parameter P 

Point1 X 

Point1 Y 

Point2 X 

Point2 Y 

Point3 X 

Point3 Y 

Number of Columns 

Seed 

Column Diameter 

Column Thickness 

Element Diameter 

Element Thickness 

0.08 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

4 

0 

0.30 

12.00 

0.30 

5.00 

0.92 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

10 

1000 

1.00 

20.00 

1.00 

12.00 

 

To apply NSGA-II, a specific guideline has been developed for constructing algo-

rithms, and hyperparameters must be set up according to the hardware requirements. 

The first hyperparameter is the population, so the population for the first generation 

was chosen consonantly. The second parameter needs to be set is Crossover. After the 

initial population started generating at random, the GA used this procedure to produce 

offspring. At first, this population mate in pairs. 

 

 𝑖𝑓  → (𝑉1, 𝑈1) & (𝑉2, 𝑈2)  →    ( 𝑉1, 𝑉22   , 𝑈1, 𝑈22  )  
 

 

After producing an offspring, the procedure is followed by adding population and off-

spring information to the list before selecting the optimal Pareto front. This loop is 

repeated multiple times until the optimal Pareto front is found. However, the algorithm 

sometimes finds a local rather than global optimum. Because of this, scientists employ 

mutations in each generation to randomly scan the entire space. 

 𝐷𝑎𝑡𝑎  → (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 +𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛)   
 

Throughout the process, Crowding Distance has been used to determine the optimal 

solution among information in which there is no consensus. The resulting moves are 

not capable of determining an optimal solution, regardless of how far they go. These 

conditions are necessary for dominating d1 to d2, which represent cardinally based so-

lution sets and their distances from solution boundaries. In the first condition, all func-

tions in d1 must be smaller or equal to d2, this condition is necessary but is not sufficient 

for Eq. (6).  

(4) 

(5) 



13 

{𝑑1 = {𝑓1𝑑1   , 𝑓2𝑑1  }𝑑2 = {𝑓1𝑑2   , 𝑓2𝑑2  }} 𝑑1𝑑𝑜𝑚𝑑2 → 𝑎𝑙𝑙𝐷𝑎𝑡𝑎 → ∀𝑖𝑓𝑖𝑑1 ≤𝑖 𝑓𝑖𝑑2 
 

The second prerequisite is the existence of an i such that the first structure's functions 

must be smaller than those of the second structure Eq. (7). 

 𝑎𝑛𝑦 → ∃𝑖 ∶ 𝑓𝑖𝑑1 < 𝑓𝑖𝑑2  

 

 

All crowding distance must be gathered in this case, and among all Pareto fronts, the 

one with the greatest crowding distance wins Eq. (8). 

 

{  
  𝑐𝑑𝑖1 = | 𝑓1𝑖+1 + 𝑓1𝑖−1| 𝑓1𝑚𝑎𝑥 + 𝑓1𝑚𝑖𝑛𝑐𝑑𝑖1 =  | 𝑓2𝑖+1 + 𝑓2𝑖−1| 𝑓2𝑚𝑎𝑥 + 𝑓2𝑚𝑖𝑛}  

    
 

On the basis of the maximum crowded distance, the Data Eq. (5) will be sorted, and the 

best data will be selected [34]. The hyperparameters are set up generally including the 

number of Generation, according to population size = 100, the number of Crossover = 

70, and the number of Mutation = 20. The hyperparameter of the alpha factor in the 

crossover was equal to 0.5, and the hyperparameter of the beta factor in mutation was 

considered equal to 10 of the ranges among the variables. Based on the algorithm and 

designer's experience, these settings for the algorithmic process besides defining the 

hyperparameters are chosen to enable exploration and exploitation, in a suitable equi-

librium, lead to escape from the local optimum Pareto and ultimately identify the global 

optimum Pareto. The GA Pareto front's pseudo-code is illustrated in Algorithm 3. 

 

Algorithm 3 NSGA II 

1: procedure NAME (Calculate the optimal Parto)      

2:     Initialize 𝑃0 of candidate solutions     

3:     Set 𝑃0 = (𝑓1, 𝑓2,… ) = non-dominated-sorted (𝑃0) for all 𝑓𝑖 𝜖 𝑃0 

4:       Crowding distance assignment (𝑓𝑖)  
5:    Set 𝑡 = 0 

6:    While not (termination criterion)      
7:        Use a recombination method to create children Ct from Pt  
8:  Set 𝑅𝑡 = 𝑃𝑡 ∪ 𝐶𝑡 
9:   Set 𝑓 = (𝑓1, 𝑓2, … ) = non-dominated-sorted (𝑅𝑡) 
10:        Set 𝑃𝑡 + 1 =  ∅ 

11:        Set 𝑖 = 1 

12:   While |𝑃𝑡 + 1| + |𝑓𝑖| < 𝑁   

13:           Crowding distance assignment (𝑓𝑖) 
14:           Set 𝑃𝑡 + 1 = 𝑃𝑡 + 1 ∪ 𝑓𝑖 
15:           Set 𝑖 = 𝑖 + 1 

16:         Do non-dominated-sorting with crowding distance to rank the individuals 

17:    Set 𝑃𝑡 + 1 = 𝑃𝑡 + 1 ∪ 𝑓𝑖[1: (𝑁 − |𝑃𝑡 + 1|)] 
18:   Set 𝑡 = 𝑡 + 1 

19:     Return 𝑓1  

20: end procedure 

(6) 

(7) 

(8) 
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2.3 Step 3: Clustering and PCA 

 

Based on the last correlation among parameters included in each iteration, the study 

extended to identify more advanced connections between feature-based design scenar-

ios. Thus, the recorded dataset was sent off to be analyzed using K-Means clustering to 

determine similar results in separate branches. The characteristics of the clusters are 

then explained by visualizing the clusters. The first stage comprises examining the Pa-

reto front solution based on two objective functions (Displacement and Mass) as well 

as two important features for clustering which are the P parameter and the number of 

columns. In the second stage, among the Pareto front solutions, the set of solutions that 

belong to each cluster, analyzed according to their design variable such as P-parameter, 

coordinates of the points forming the surface, number of columns, seed, columns thick-

ness, columns diameter, elements thickness, elements diameter and objective functions 

such as mass, displacement and elastic energy. In this phase, data set has 16 (13 design 

variable and 3 objective function) dimensions that it becomes increasingly difficult to 

make interpretations from the resultant data. Thus, PCA (Principal Component Analy-

sis) before K-means clustering leads to reduced dimensions, which produces better vis-

ualizations of aggregated high-dimensional data. First, Standard Scaler was used to 

standardize the existing data and then PCA was conducted to fit the standardized data. 

Followed by that, the necessity of a solid decision on how many features must be kept 

based on the cumulative variance plot took place. On Fig. 7, the amount of variance 

captured (on the y-axis) depends on the number of components included (on the x-axis) 

is depicted. Empirically, the progressive result suggests preserving around 80 % of the 

variance in the process. So, in this instance, 3 components are kept. 

 

Fig. 7. Explained variance by components 
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This stage requires the number of clusters determination in a K-means algorithm. Run-

ning the algorithm with different numbers of clusters is one way to determine which 

number performs the best in terms of K. Therefore, the Within Cluster Sum of Squares 

(WCSS) approach was selected to examine data dissipation regarding the selected K. 

Based on the values of the WCSS and an approach known as the Elbow method, Fig. 8 

shows that after K=3, the graph with an Elbow Shape goes smoothly downward, thus 

this number would be a good suggestion for analyzing data. In this instance, the kink 

comes at the 3 clusters mark. 

3 Result 

3.1 Decision-Making and Data Integration 

 

Maintaining existential flexibility when making decisions regarding a project's condi-

tional properties is essential since there are many variables to consider. Consequently, 

it is important to study design decisions when analyzing the results of any optimization 

procedure. Since all of the best-optimized designs are not superior to each other, based 

on the pareto optimal front of the NSGA-II process, the final design can be chosen from 

any of the best optimized solutions. As part of multi-objective optimization, there are 

various methods available for selecting the optimal solution from a pool of options on 

the optimal front. Some researchers believe an algorithmic process is necessary to select 

the final answer from the various options on the optimum front, including compromise 

programming, pseudo weight [35], and high trade-off points [36]. However, the archi-

tect may be able to contribute some perceptions regarding the project requirements to 

the selection of the most appropriate solution. 

    In this research project, the Thornton Tomasetti’s Design Exploration platform is 

used to study the design iterations in a progressive yet comprehensive way. Design 

Fig. 8. The Elbow Method 
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Explorer is a platform that facilitates the selection of the best optimized solution for a 

particular project based on its attributes. As of this approach, Fig. 9 (upper one) depicts 

all the optimal solutions in the optimum Pareto distribution. Throughout the polyline, 

the design solutions are associated with DVs and Objective Functions. In Fig. 9 (lower 

one), the selection process was carried out in two steps using the design explorer. At 

the outset of the design process, Displacement and Elastic Energy were limited to a 

range of excellent values consistent with the designer's priorities and the project speci-

fications. Initially, some solutions outside of the selected range were removed, leading 

to a selective removal step. In a subsequent step, the solution with the lowest mass was 

chosen. 

 

 

3.2 Optimization Result 

 

In general, when the problem involves two objectives, Pareto front diagrams are well 

implemented for visualizing the multi-objective optimization process. therefore, the op-

timization process's output can be represented in two dimensions. Similar to this study, 

problems with three objective functions cannot be effectively illustrated in diagrams by 

the multi-objective optimization process. Therefore, it is suggested that using the au-

thentic metric, “hypervolume Indicator” [37]. In evolutionary multi-objective optimi-

zation, the hypervolume indicator is a predetermined metric used to evaluate the effec-

tiveness of search algorithms and guide the search [38]. According to Fig. 11, the graph 

for NSGA-II shows an upward growth generally, which increases where HV rises.  On 

the basis of the diagram, it is obvious that during the optimization process, the algo-

rithm's performance is quite satisfactory, and the objective functions are continuously 

improved. The growth in the function evaluations from 1 to 2500 is accompanied by a 

fluctuating rise in respect to the path of optimization, and from about 2500 onwards, it 

reaches a relative stability, which indicates that a much better result may not be possi-

ble. 

Fig. 9. Best Overall Selection Procedure 
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To delineate the pareto-front convergence during the optimization progression, one per 

five diagrams has been selected from the latest 100 tries. The set is shown in Fig. 10. 

According to part 2.2, the maximum Crowding distance will be selected based on dif-

ferent inputs. The loop continually finds the best solution based on the objective func-

tions. After the model was optimized, the input and the output Data was accessible for 

further steps. 

In the decision-making section, the Best Overall sample was selected as the most opti-

mal solution for describing the performative design process within the workflow. More-

over, while the BO solution represents the design-to-analysis process in this study, other 

design scenarios also support data-driven decision-making. Best Displacement, Best 

Elastic Energy, and Best Mass are stages for comparing the results and identifying 

structural performance patterns relatively to a Diagrid structure where the P parameter 

equals 0.5 (Reference Case). Solutions with the highest performance in one component 

were selected from the optimal Pareto regardless of the other components attributes. 

Fig. 11. Hypervolume Metric Diagram 

Fig. 10. One per five diagrams of Pareto-front during the optimization process from the latest 

100 tries. 
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According to the Reference Case which provides the diagrid structure (P = 0.5), Table 

2 and Table 3 outline four design scenarios. Inferred from the tables, the BD has a 

significant reduction in displacement (4.16 Cm) while its mass (43641.36 Kg) is higher 

than the Reference Case. BEE exhibits a mitigated elastic energy (7.59 kN/m) accom-

panied by an enhanced mass (36358.77 Kg), analogous to the Reference Case. There 

are no significant differences between the BM and the diagrid structure in terms of 

mass, displacement, and elastic energy. For the BO solution, the amount of Displace-

ment, Elastic Energy and Mass in compare with Displacement in BD, Elastic Energy 

in BEE and Mass in BM increase by a certain amount (orderly, 0.41 Cm, 0.62 kN/m, 

1197.33 Kg), while in comparison with Reference Case, Displacement and Elastic En-

ergy decrease (3.75 Cm, 6.97 kN/m); nonetheless, Mass increases (1197.33 Kg). Thus, 

the BO solution seems having its displacement and elastic energy improved substan-

tially. Regarding the Displacement attribute, the minimum displacement among the dif-

ferent scenarios is 0.08, which is 98.11% less than the displacement in the Reference 

Case (4.24 Cm), while this amount of displacement results an increasing amount in 

mass (18.64%) in the same scenario. For Elastic Energy, a minimum value of 0.17 

kN/m represents 97.8% improvement over the Reference Case (7.76 kN/m). Even 

though the BO has a slightly higher Displacement and Elastic Energy than the BD and 

the BEE, it still has the least amount of Mass. Therefore, BO can be the best solution 

to reach an optimized structure among pareto optimal solution. Furthermore, it should 

be noted that the Column Thickness, Column Diameter, Elements Thickness, and Ele-

ments Diameter in the BO solution are equal to those in the Reference Case. Despite 

the fact that the number of columns in BO increases by ten, each randomly selected by 

the algorithm, whereas the Reference Case only has four columns. The BO performance 

appears to be more rational as compared to the diagrid for this reason. Considering the 

optimization setting, controlling the Mass beyond Displacement and Elastic Energy a 

more flexible fit to the design features. The workflow suggests that any other feature-

based setting the designer may follow would produce similar progressive but analogous 

results. 

Table 2. Summary of the Reference Case and four characteristic non-dominated solution 

 Design Variable 
Mas 

(Kg) 

Displacement 

(Cm) 

Elastic Energy 

(KN/m) 

Reference Case 
[0.5,0.48,0.87,0.47,0.03,0.62 

,0,4,972,0.3,12.07,0.3,5] 
5224.17 4.24 7.76 

Best Displacement 
[0.9,0.61,0.51,0.41,0.02,0.49 

,0.68,10,1000,1,19.07,1,12] 
48865.53 0.08 0.17 

Best 

Elastic Energy 

[0.9,0.59,0.51,0.41,0.02,0.49 

,0.68,10,1000,18.97,0.81,12] 
41582.94 0.09 0.17 

Best Mass 
[0.5,0.48,0.87,0.47,0.03,0.62 

,0,4,972,0.3,12.07,0.3,5] 
5224.17 4.24 7.76 

Best Overall 
[0.8,0.62,0.54,0.43,0,0.5,0.7 

,10,1000,0.3,12.19,0.3,5] 
6421.5 0.49 0.79 
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Table 3. Comparison of the configuration of Reference and characteristic solutions 

 
Perspective Plan 

Reference Case 

 

 

Best Displacement 

 

 

Best Elastic Energy 

 

 

Best Mass 

 

 

Best Overall 

 

 



20 

3.3 Clustering Result 

 

The first stage involved visualizing the clusters in order to understand the characteris-

tics of the features. Fig.  on the left shows data clustering is constructed on three factors: 

Mass (Y-axis), Displacement (X-axis), and Number of Columns (Z-axis). The amount 

of mass is divided into three clusters: low, medium, and high, as indicated by the colors 

blue, red, and orange. Displacement of the grid shells is generally low in the green and 

yellow clusters. Displacement values, on the other hand, are not concentrated within 

the blue cluster and have been dispersed over a wide range. According to the results in 

the red and orange clusters, most of the data has a mass of medium or high, and the 

number of columns is nine or ten. There is a wide range of types of patterns with dif-

ferent P in the blue cluster, even though the majority of the data represent low mass. 

Figure 12 on its right side, illustrates clustering of data based on three factors: Mass 

(Y-axis), Displacement (X-axis), and P parameter (Z-axis). Similarly, in the last stage, 

the three colors purple, red and orange are applied to identify low, medium, and high 

Mass. The analysis of P parameter reveals a consistent concentration across the itera-

tions in the blue cluster, ranging from 0.4 to 0.5 and 0.8 to 0.9, indicating a low mass. 

In the red and orange clusters, where the mass is medium or high, the P parameter 

concentrations are mostly between 0.8 and 0.9. There is typically a small displacement 

and a medium or high mass associated with the red and orange clusters. In spite of the 

uniformity of the grid geometry in this cluster, the P parameter is 0.8 to 0.9, whereas 

the blue cluster, on the other hand, does not have a central standard deviation. It has a 

wide variety of patterns with an extensive range of P parameters and displacements 

with low mass. 

 

 

Fig. 11. Clustering in diverse format of aimed objectives 
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Due to the large number of potential coalitions between feature-based design settings, 

each specific set within every cluster is then analyzed in accordance with its design 

variables in the second stage. Therefore, with 16-dimensional dataset (13 design varia-

bles and 3 objective functions) it is increasingly difficult to interpret the findings. This 

phase hence, uses PCA (Principal Components Analysis) prior to applying K-means 

clustering in order to reduce the dimension of the data which results in improved visu-

alizations of high dimensional dataset. In Fig. 12, the results of K-Means clustering are 

demonstrated with and without PCA. 

Following a more accurate clustering supported by PCA and analysis of the solutions 

obtained in the optimization section, summarized in Table 4, each solution is organized 

according to its specific cluster.  Based on the structural free-form of each scenario, 

whether it is BM, BEE, BD, or even other scenarios, feature-based design scenarios can 

be developed. The data structure and the process, however, are managed in an Excel 

file that is supported by a cross platform functional algorithm, which is principally 

based on Grasshopper3D and Python. This allows for the input of desired design criteria 

and the output of a selection of data-driven design based on varying criteria from the 

designer. The Excel file stores the data from each design scenario, so that the designer 

can easily compare and analyze the different outcomes. 

 

 

 

 

 

 

 

Fig. 12. Clustering with PCA (left) and, without PCA (right) 
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Table 4. Clustering of four characteristic non-dominated solutions 

 Best Overall Best Displacement Best Mass Best Elastic Energy 

F
re

e-
F

o
rm

 

    

C
lu

st
er

 

Cluster 3 Cluster 2 Cluster 1 Cluster 2 

D
es

ig
n

 V
a
ri

a
b

le
 

P parameter: 0.08 

Number of Col-

umns: 10 

Columns Thick-

ness: 0.3 Cm 

Columns Diame-

ter:12.19 Cm 

Element Thick-

ness: 0.3 Cm 

Element Diameter: 

5 Cm 

P parameter: 0.9 

Number of Col-

umns: 10 

Columns Thickness: 

1 Cm 

Columns Diameter: 

19.07 Cm 

Element Thickness: 

1 Cm 

Element Diameter: 

12 Cm 

P parameter: 0.5 

Number of Columns: 

4 

Columns Thickness: 

0.3 Cm 

Columns Diameter: 

12.07 Cm 

Element Thickness: 

0.3 Cm 

Element Diameter: 5 

Cm 

P parameter: 0.9 

Number of Columns: 

10 

Columns Thickness: 1 

Cm 

Columns Diameter: 

18.97 Cm 

Element Thickness: 

0.81 Cm 

Element Diameter: 12 

Cm 

O
b

je
ct

iv
e 

F
u

n
ct

io
n

 Mass: 6421.5 Kg 

Displacement: 

0.49 Cm 

Elastic Energy: 

0.79 kN/m 

 

Mass: 48865.53 Kg 

Displacement: 0.08 

Cm 

Elastic Energy: 0.17 

kN/m 

 

Mass: 5224.17 Kg 

Displacement: 4.24 

Cm 

Elastic Energy: 7.76 

kN/m 

 

Mass: 41582.94 Kg 

Displacement: 0.09 

Cm 

Elastic Energy: 0.17 

kN/m 

 

4 Conclusion 

A novel and open-srouce research framework is presented in this paper that integrates 

structure and design, particularly for free-form shells with respect to spatial structures 

studies. The architecture of the framework is composed of three main phases: 1) gen-

erative design and modification, 2) optimization and selection, and 3) clustering and 

evaluation. In the course of the generative design procedure, a special type of Girih 

structure (Traditional yet functional geometry from Persian architecture) was selected 

that can be parametrized flexible while it could also encompass simple grid shell struc-

tures. The Iranian Chahar-Lengeh Girih has been examined in this regard, modeled and 
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analyzed for parametric performance with the Hankin method. Using Python, the opti-

mization process is performed to minimize displacement, elastic energy, and mass in 

an integrated cross-platform including Grasshopper3D, Excel, Karamba3D and Ma-

chine Learning. As part of the ML algorithm implementation, K-Means is applied to 

free-form clustering in accordance with the feature-based design scenarios, by applying 

PCA to have the clustering set accurately. Therefore, by comparing iterations to the 

reference model with a P parameter of 0.5, which represents the diagrid shell, it has 

been inferred that a P parameter of 0.8 has resulted in an improvement in displacement 

and elastic energy of 88.44% and 89.82%, respectively, when it comes to finding the 

BO Solution. Despite the same thickness and diameter of the structural components, 

the BO alternative, which has only 0.05% mass above the diagrid shell, performs better 

in other attributes related to displacement and elastic energy. A conclusion of this study 

was that the reciprocal module on spatial structures applied to free-forms appears to be 

more effective if the objective functions and features are subjected to a large number 

of iterations in order to ensure there are interactions and reactions between a variety of 

factors, such as mechanical and physical characteristics. Future studies might also ex-

plore matching architectural planning to free-form structures with more flexible recip-

rocal geometries in both 2D and 3D formats as another strategy for incorporating more 

information into each iteration towards a more integrated model. 

 

Replication of results 

All Python codes, algorithms, and data utilized in this research, conducted in the Grass-

hopper3D and Jupyter Notebook environments, are available for public access on our 

open-source repository hosted on GitHub. We invite readers to access the codebase and 

implement the workflow by following this link: https://github.com/Elhaaaam/Multi-

Objective-Optimization-and-Machine-Learning. This repository includes detailed doc-

umentation to facilitate the replication of our results and further exploration of the 

methodology. 
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