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Abstract: Imidazolium-based ionic liquids (ILs) have been regarded as green solvents owing to
their unique properties. Among these, the melting point is key to their excellent performance in
applications such as catalysis, biomass processing, and energy storage, where stability and opera-
tional temperature range are critical. The utilization of neural networks for forecasting the melting
point is highly significant. Nevertheless, the excessive selection of descriptors obtained by density
functional theory (DFT) calculations always leads to huge computational costs. Herein, this study
strategically selected only 12 kinds of quantum chemical descriptors by employing a much more
efficient semi-empirical method (PM7) to reduce computational costs. Four principles of data pre-
processing were proposed, and the innovative use of a simulated annealing algorithm to search
for the lowest energy molecular conformation improved accuracy. Based on these descriptors, a
multi-layer perceptron neural network model was constructed to efficiently predict the melting points
of 280 imidazolium-based ILs. The R? value of the current model reached 0.75, and the mean absolute
error reached 25.03 K, indicating that this study achieved high accuracy with very little computational
cost. This study reveals a strong correlation between descriptors and melting points. Additionally,
the model accurately predicts unknown melting points of imidazolium-based ILs, achieving good
results efficiently.

Keywords: imidazolium-based ionic liquid; melting point; semi-empirical method; annealing;
artificial neural network

1. Introduction

Ionic liquids (ILs) are molten salts composed of cations, such as imidazolium, benzotri-
azolium, pyrrolidinium, piperidinium, quinolinium, and other organic compounds, along
with anions comprising diverse organic and inorganic substances. Imidazolium-based
ionic liquids are extensively researched among many types of ionic liquids [1-5], possess-
ing a series of unique physicochemical properties, including negligible vapor pressure,
excellent thermal stability, high electrical conductivity, and low flammability. Due to these
properties, imidazolium-based ILs are considered potential green solvents or catalysts [6,7].
The versatility of the imidazolium-based ILs is evident in their wide range of applications,
such as chemical catalysis solvents, biocatalysis, chromatography and analysis, biomass
pretreatment and processing, electrochemical applications, engineering fluids, and other
miscellaneous applications [8-13]. The synthesis of imidazolium-based ILs, tailored for
specific uses, is a significant focus of current research.
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The melting point, a fundamental physical property extensively utilized in chemistry,
plays a vital role in differentiating ILs from other salts [14]. In addition to being a reference
for the purity assessment, aiding in determining various significant physical and chemical
properties, including vapor pressure and water solubility [15], the melting point of ILs
establishes its operational temperature range [16]. One example is when ILs serve as liquid
organic hydrogen carriers (LOHCs). Due to LOHC dehydrogenation, it is preferable to
conduct this process at the lowest achievable temperature to ensure stability and minimize
energy loss [17]. In practical applications, when selecting an appropriate IL for a specific
purpose, it is crucial to make accurate predictions of specific properties rather than rely-
ing on general ranges, such as “low melting point” or “high viscosity” [18]. In the past,
quantitative structure—activity relationship (QSPR) modeling has provided extensive data
support for experiments and applications in the field of chemistry [19-21]. Trohalaki et al.
successfully predicted the melting point of a recently synthesized IL using a mathematical
QSAR model based on molecular orbitals and electrostatic descriptors [19]. Mathematical
models, as the fundamental basis for quantitative analysis across diverse disciplines, are
developed through a combination of first principles and empirical observations. The grow-
ing complexity of modern systems makes parameter estimation increasingly challenging,
often involving many parameters.

In contrast, machine learning models excel at effectively addressing these challenges
through the efficient handling of large parameter spaces and the provision of robust
solutions for complex modeling problems [22]. Machine learning models offer several
advantages, including the absence of complex programming requirements, rapid execution,
high precision, and an easy-to-use framework. As a result, machine learning models have
emerged as a powerful tool in various fields for data analysis, prediction, and decision-
making [23-27]. Therefore, over the past few years, a series of predictions have been
conducted on the physicochemical properties of ILs, particularly the melting point, using
machine learning techniques [1,28-34]. Valderrama et al. employed the group contribution
method to construct a four-layer neural network structure for predicting the melting points
of 667 ILs. The model achieved an average absolute error of less than 10% (~30 K) [30].
Low et al. introduced a kernel ridge regression (KRR) model that integrated five quan-
tum chemical descriptors calculated using density functional theory (DFT) alongside the
extended connectivity fingerprint (ECFP) and Coulomb matrix. This model exhibited a
strong correlation, as indicated by an R-squared (R?) value of 0.76, between the predicted
and experimental values [32]. In order to avoid the high computational cost of DFT, it was
observed that in a prior investigation, 113 descriptors were computed using the PM6 level,
yielding R? values between 0.64 and 0.67 for all three models with reduced accuracy [31].

In the previous prediction of the physical and chemical properties of ILs, the neu-
ral network combined with multiple descriptors achieved accurate prediction results.
These descriptors include a range of quantum chemical descriptors, molecular fragments,
three-dimensional structural features, as well as other structural and electronic descrip-
tors [18,28,30,31,35,36]. However, these descriptors are only used to enhance prediction
accuracy and establish higher precision models instead of studying the chemical relation-
ship between the melting point and descriptor. In essence, the melting point of ILs can be
accurately predicted by the thermodynamic cycle model and accurate quantum chemical
calculation. The physicochemical parameters involved in this thermodynamic cycle model
include the molar volume, lattice enthalpy, intermolecular forces (such as van der Waals
interactions and hydrogen bonding), temperature, and pressure [37]. These parameters are
essential in determining the Gibbs free energy changes throughout the cycle, contributing
to the accurate prediction of the melting point of ILs. Nevertheless, the utilization of
this method demands substantial computational resources, contributing to a relatively
sluggish pace in the research progress within this domain. Hence, it is imperative to ad-
dress the challenges outlined above, encompassing issues such as significant prediction
errors, a redundant descriptor selection, elevated computational costs associated with
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DFT, the expenses incurred in processing high-dimensional data, and inherent limitations
in scalability.

Inspired by the previous study, crucial physicochemical parameters inherent to the
aforementioned thermodynamic cycle model, along with quantitative parameters asso-
ciated with these physicochemical attributes, were utilized as descriptors for ILs in this
study [37]. Additionally, a detailed examination of the chemical significance of these de-
scriptors and their correlation with the melting points of ILs was undertaken. The primary
objectives of this paper are to attain high-precision predictive outcomes, streamline the
number of descriptors employed, and minimize computational costs—a focal point within
the current research landscape. To be specific, this study proposes a method that utilizes
only 12 physical and chemical descriptors at the semi-empirical PM7 level. A melting point
prediction model for imidazolium-based ILs was established in this study, aiding in the
rapid and accurate prediction of the melting point for specific ILs. This model guides the
selection of ILs with different melting points, addressing the challenges in choosing ILs in
practical applications.

2. Data and Models
2.1. Data and Descriptor Selection
2.1.1. Database

The database used in this study contains a total of 280 imidazolium-based ILs. Specific
ILs can be found in Table S1. Some of them refer to the study of Torrecilla, J. S. et al. [1].
Others are collected from IL databases (IPE, [38]). The melting points of the database
range from 180 K to 460 K. Figures 1 and 2 present the structures of anions (A) and cations
(C), respectively, with each species assigned a corresponding number. A subset of these
structures is shown in Figures 1 and 2, while the others are in the Supporting Information
(Figures S1 and S2).

2.1.2. Data Pre-Processing

The database used in this study contains a total of 280 imidazolium-based ILs. The
melting point of ILs can be influenced by various factors such as impurities, the measure-
ment technique used, and other contextual elements. For the IPE Ionic Liquid Database [38],
the melting points were sourced from multiple references in the literature. Given the poten-
tial variations in reported melting point values, specific protocols here have been established
to reduce inconsistencies in the database:

(1) If a particular melting point value for ILs with multiple melting temperature (Tm)
values occurs three times or more in different experiments, then it is considered to
be accurate.

(2) If the variation in experimental melting point temperatures measured for a single IL
falls within a range of less than 10 K, and no identical value occurs more than three
times, then the mean value is chosen.

(38) If there are data points that appear at least three times but differ from other data by
no more than 10 K, the method of calculating the average is chosen.

(4) If measurements of melting point temperatures for a single IL show variations ex-
ceeding 10 K across different literature sources, with no repeated occurrence of the
same value more than three times, or if multiple instances of a value appear more
than three times but their differences exceed 10 K, then these discrepancies imply a
debatable nature of the melting point of the IL, warranting the utilization of the model
for verification purposes.
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Figure 1. Structures of the first 48 imidazolium cations from the database, sorted by the complexity
of their ionic structures. Additional structures are provided in Figure S1. Different colors are used to

represent different chemical substances other than carbon and hydrogen.
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Figure 2. The first 45 anions of imidazolium-based ionic liquids (ILs) in the database, including both
organic and inorganic species. Additional anions are provided in Figure S2. Different colors are used
to represent different chemical substances other than carbon and hydrogen.
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2.1.3. Selection of Descriptors

In essence, the melting point of ILs can be accurately predicted using a Born—Fajans—
Haber cycle combined with accurate quantum chemical calculations. Previous research
accurately predicted the melting points of ILs using either first-principles methods or
molecular dynamics techniques. (The cyclic diagram can be found in Figure S3) [37,39].
These findings undeniably demonstrate the direct influence of the Gibbs fusion free energy
on the melting point. However, the direct computation of the Gibbs fusion free energy
(AgysG) is not feasible. Therefore, in the Born-Fajans—Haber cycle, Ag,sG can be estimated
through the lattice Gibbs energy (Ap,+G) of groups in molten salts and the solvation of
Gibbs energy (Aqo1vG) [37].

A1a4tG is affected by the size and interaction of anions and cations, with larger ions
leading to a reduced lattice enthalpy that facilitates melting [37]. The size of the ions is
quantified by volume and mass, with volume being a more convenient parameter than ion
radius. The volumes of symmetric and asymmetric ions can be precisely measured. Therefore,
this study selected volume and mass descriptors for both anions and cations [37,40].

Furthermore, the investigation of intermolecular interaction forces holds paramount
significance in chemical research [41]. These interactions not only impact the lattice en-
thalpy but also manifest their influence on the melting point in other research studies [42].
For example, imidazolium-based ILs with flexible side chains tend to exhibit significant
interionic van der Waals and inductive interactions between cations and anions, which
contribute to lower melting points. These interionic interactions help create a smoother
potential energy surface, facilitating molecular mobility at reduced temperatures. In the
condensed phase, the overall potential energy surface is crucial in determining the physical
properties of ILs. The formation of expanded domains or nanostructures within the IL
introduces microscopic heterogeneity, which further contributes to the reduction in the
melting point by enabling more efficient packing and accommodating low-energy configu-
rations within the structure [42]. Another study also discovered that stronger ion binding
results in a reduced lattice energy, leading to a decrease in the melting point [43]. Therefore,
in this study, to represent the influence of interaction forces on the melting point, three
descriptors were selected: cationic enthalpy, anionic enthalpy, and IL enthalpy (Table 1).

Table 1. Classification of physicochemical descriptors based on anions, cations, and the ILs as a whole.

Cations Anions ILs
Dipole moment Dipole moment Dipole moment
Enthalpy Enthalpy Enthalpy
Volume Volume
Mass Mass
LUMO HOMO

In addition, the asymmetry of imidazolyl cations weakens regular lattice filling, re-
sulting in a lower melting point. In addition, the solvation energy can be estimated by the
dielectric constant and other properties, and the dipole moment affects the electrostatic
constant [37,42,44]. Molecular dynamic simulations of the liquid also reveal that an increase
in the dipole moment leads to a reduction in cation repulsion, consequently lowering the
melting point of the IL [45]. This study adopts the dipole moments of different components
as descriptors, given its close association with the melting point of ILs.

In the process of intermolecular electron transfer, such as in photoabsorption and
charge transfer reactions, electrons move from the highest occupied molecular orbital
(HOMO) of one molecule to the lowest unoccupied molecular orbital (LUMO) of an-
other [46]. The energy level difference between HOMO and LUMO significantly influences
the electron distribution within the molecules, thereby affecting the electrostatic interac-
tions between them [47]. The dipole moment and polarizability of molecules are associated
with the HOMO-LUMO gap. A smaller HOMO-LUMO gap indicates that molecules are
more prone to polarization, enhancing electrostatic interactions [48]. These electrostatic
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forces are fundamental to chemical bonding, intermolecular interactions, and many other
chemical properties [49]. Therefore, HOMO and LUMO are closely related to the melting
point of ILs.

Consequently, in this study, twelve physicochemical descriptors influencing the melt-
ing point of ILs have been identified: the dipole moments of cations, anions, and the entire
ILs; the enthalpies of cations, anions, and the entire ILs; the volumes of cations and anions;
the LUMO of cations; the HOMO of anions; and the mass of the cations and anions, which
correlates with the ion’s energy and fundamental properties. To further investigate the
impact of cations and anions on melting points, descriptors are categorized into three
groups: those associated with cationic calculations, those for anionic calculations, and those
addressing the comprehensive calculations of ILs. The specific experimental descriptors
are shown in Table 1.

2.1.4. The Calculation of the Descriptors

All optimization calculations were performed using Gaussian 16 software at the
PM?7 level [50,51], which was selected for its ability to significantly reduce computational
costs compared to DFT methods. While first-principles methods like DFT generally offer
higher accuracy, they are computationally intensive, particularly for large-scale studies
involving thousands of compounds. Semi-empirical methods such as PM7 introduce
certain approximations that reduce accuracy but offer a practical compromise between
accuracy and computational efficiency, which is especially valuable when predicting the
melting points of large numbers of ILs in practical applications [52,53]. In cases where
the computational time required for prediction exceeds the time needed for experimental
measurement, predictive models become impractical.

The reason why we employed PM7 in this study is to balance accuracy with compu-
tational efficiency. Figure S4 and Table 54 provide the specific computation times. These
tables provide detailed comparisons of processing times for the selected tasks, highlighting
the significant efficiency gains achieved with the PM7 method. Previous research has
shown that PM7 is effective in accurately calculating key molecular properties, making it
a viable alternative to DFT for the large-scale screening of ILs [54,55]. Using PM7 allows
us to derive descriptors that are computationally affordable while retaining meaningful
accuracy for melting point prediction. Table 2 presents the numerical range of descriptors
calculated for ILs in the database. The calculation process is divided into the following
three steps:

Table 2. The numerical range of descriptors calculated for ILs in the database.

Descriptors Maximum Minimum
Dipole moment (Debye) 36.93994 0.82669
Enthalpy (Hartree) 0.82448 —0.76340
Cations Volume (Bohr? /mol) 6895.94200 1024.20200
Mass (amu) 530.05250 69.04527
LUMO (Hartree) —0.14256 —0.23956
Dipole moment (Debye) 27.691096 0
Enthalpy (Hartree) 0.37276 —2.39248
Anions Volume (Bohr? /mol) 10195.328 50.77300
Mass (amu) 935.33605 34.96885
HOMO (Hartree) —0.10436 —0.62145
IL Dipole moment (Debye) 20.425138 0.44500
S Enthalpy (Hartree) 0.700086 —2.058234

(1) Quantum chemical calculations using the PM7 method were performed on cations
and anions to derive descriptors related to these ions. (2) For complex molecules, there may
be hundreds or even thousands of potential structures, and many chemical phenomena
depend on the arrangement of molecular structures. Hence, for the preservation of data
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accuracy, it becomes imperative to opt for the molecular conformation with the lowest
energy when determining the total enthalpy and dipole moment of ILs. This task is com-
plicated by the formidable ‘multiple minimum’ challenge, which requires identifying and
characterizing geometric minima on complex multidimensional potential energy surfaces,
ranking among the most difficult problems in computational chemistry. An exhaustive
search without prior knowledge of the system is nearly unfeasible due to the vast number of
possible configurations. To address this, AMPAC utilizes a simulated annealing technique
in the form of a heuristic algorithm designed to identify the conformation with the lowest
energy. The concept of annealing is inspired by the physical process of heating an object to
a high temperature and then allowing it to cool slowly. At high temperatures, the atoms or
molecules are allowed to move from their initial positions, rearranging the system into a
more stable configuration. As the system cools, it is less likely to become trapped in higher
energy states and instead proceeds toward the lowest possible energy state within a given
region. This iterative process of heating and cooling helps guide the system to its most
stable conformation [56]. In AMPAC, this process is implemented using the PM7 method.
This approach is well-suited for the calculation of molecular descriptors, ensuring that the
selected conformation is energetically optimal and provides accurate data for the further
analysis of the ILs. Figure 3 illustrates five different ILs, each comprising the commonly
used cation C7 paired with several typical anions. Additional examples are provided in
Figure S5. The figure shows three different conformations for each IL, along with the
corresponding lowest heat of formation values obtained after the annealing process. This
illustrates how the simulated annealing method in AMPAC ensures the selection of the
most stable conformation for descriptor calculations. (3) At the PM7 level, quantitative
calculations were conducted on the lowest energy molecular conformations, yielding the
overall dipole moment and enthalpy of the IL.

2.2. Model

The multilayer perceptron network (MLP), which is based on the foundational research
of the perceptron model, was employed, and many popular neural network models were
either built upon or incorporated perceptron models as their component layers. MLP has
shown excellent performance for various problems and is relatively easier to implement in
practice [57]. The MLP network configuration was designed and evaluated using a five-fold
cross-validation process to ensure robust performance and reliable generalization [58,59].
The architecture, determined based on cross-validation results, consisted of three layers: an
input layer corresponding to the input features, a hidden layer with 50 neurons for captur-
ing complex patterns, and an output layer with a single neuron dedicated to predicting the
melting point.

The model was trained using the stochastic gradient descent (SGD), which is a gradient-
based optimization algorithm with an adaptive learning rate strategy. The initial learning
rate was set to 0.1 and was dynamically adjusted, decreasing when no improvement was
observed in the validation performance. The hidden layer employed the tanh activation
function to effectively capture non-linear relationships, while the output layer utilized a
linear activation function appropriate for continuous regression tasks. The training process
minimized the mean squared error (MSE) loss function, which is a standard metric for
regression problems to reduce the discrepancy between predicted and actual melting points.
An early stopping mechanism was implemented, terminating the training process if the
validation loss did not improve for 10 consecutive iterations. Additionally, a regularization
term (alpha = 0.01) was incorporated to mitigate overfitting and enhance the model’s
generalization capability. The maximum number of training iterations was set to 2000,
providing sufficient opportunity for convergence. A total of 280 imidazolium-based ILs
were randomly divided into training, validation, and test sets at 70%, 15%, and 15% ratios
to prevent the artificial division of the dataset from influencing the results.

Finally, an SHAP-based method (SHapley Additive exPlanations) was utilized to
evaluate the importance of descriptors during the model development process. SHAP is a
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technique designed to interpret and understand the outcomes of machine learning models.
It is grounded in the concept of Shapley values from cooperative game theory, which fairly
allocates the contributions of individual features to the model’s predictions [60].

high energy low energy

(- ) 5 [CTTTAZ]
b 4
HeBd Ggann oeds
IR e J v
- J s ©
AH;=21.8 kecal mol ~! AH:=12.0 kecal mol ~! AH:= 118 kcal mol !
d [CTITTAR]

J Jy d
3, ¥ 2R

9 ' *
9
299 "
> J f J :
)
AH;=—644 4 keal mol = AH:= 6468 keal mol ! AH:=—647 .4 keal mol -
4 J QICTTALOI
e :‘)« s 9 J
2 . ‘?'_'-*j P,
. (- ¥ 4 o J * ®
4 - ?
J R S9
3 2280 - .t y 23229,
AH:=—409 1 keal mol -} AH;=-410.2 keal mol ' AH.=—411.0 keal mol -
2 P " - 2 [CTTA13]
e8> J)m 9 L9
’Q, - ’ ?
aR ¢ d.ad 9 . #
-9 J > EIDQ,
4 J *d

AHg=-339 3 kcal mol !

J
é.a
J

Jpewd
o

AH:=-287 5 kcal mol ™

Figure 3. Three lowest energy molecular configurations obtained from annealed ILs. The energy
decreases sequentially from left to right. AHf:: Heat of formation (kcal mol~?!). The labels for the

AH:=-340.2 kcal maol -1 AH =340 3kcal mol -1
CT1 A6

& NE

FEP S d
|

Jad i ” J“ J ¥

ng' B
o

AH:=-287.6 kcal mol 7! AH;=-288.0 kcal mol ~!

anions and cations of the ILs are indicated in the form of [X]*[Y] .



Chemistry 2024, 6

1561

2.3. Validation

The measured melting point in experiments is influenced by various factors, including
laboratory conditions, reagent purity, and measurement methods, among others. As a
result, measuring the melting point of the same IL in different studies can yield diverse
experimental values, leading to the data presented in the fourth principle of data pre-
processing. We used these data as validation data to evaluate the model’s performance.
Subsequently, the established model was employed to predict the melting points of the
selected ILs.

3. Results and Discussions
3.1. Data Processing Results

For ionic liquids such as [C,MIm][NfO], where only a single data point is available
(301.15 K), the first principle was applied, treating the given value as accurate. In cases
like [C3MIm][NfO], with multiple data points having differences of less than 10 K but no
repeated values, the second principle was used to calculate the average value, resulting
in 206.65 K. For ionic liquids like [CoMIm][PFg], which have nine different values in the
database, with at least three occurrences differing from others by no more than 10 K, the
third principle was applied, and the average value was calculated, resulting in 333 K. Finally,
for [CIm][Br], which exhibited variations greater than 10 K across different literature
sources and lacked any repeated value appearing more than three times, the fourth principle
was followed, using these data for model verification purposes. The specific data used for
verification can be found in the validation results section. The melting points of other ILs
in the database are provided in the Supplementary Information, Table S1 [38].

3.2. Descriptor Importance

As shown in Figure 4, the proportions of different descriptors were obtained using the
SHAP method. The analysis highlights that the most influential descriptors are the mass
and volumetric properties of the cations, contributing 21.1% and 30.5%, respectively, to
the model’s predictions. Dipole moment-related descriptors, including contributions from
ILs, cations, and anions, account for 14.4%, indicating their significance in influencing the
melting point of ionic liquids. Enthalpy-related descriptors, encompassing the enthalpy
of ILs, cations, and anions, contribute 16.5%, underscoring their role in thermodynamic
stability. While size and mass remain critical for determining IL properties, polarity, and
thermodynamic parameters provide secondary but meaningful contributions to the model’s
performance. This study provides valuable insights into optimizing model inputs and
guiding targeted IL design.

I HOMO of anions
I LUMO of cations
Il Dipole moment of ILs
8.7% 4.8% I Dipole moment of cations
1.5% 6.8% [ Dipole moment of anions
6.3% Volume of cations
7% Volume of anions
2.5% Mass of cations
Mass of anions
‘ 4.6% Enthalpy of ILs
Enthalpy of cations
== 28%

Enthalpy of anions

21.1%

30.5%

3.4%

Figure 4. Proportion of importance of different descriptors in the MLP model.
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3.3. Model Training Results

The coefficient of determination R? and the Pearson correlation coefficient R are
standard measures for assessing the goodness of fit between model simulations and obser-
vations, and they also measure the degree of dependence that one variable has on another.
R is used to measure the linear relationship between the model’s predicted values and the
actual observed values [61]. R? represents the proportion of variance in the target variable
explained by the model [61,62]. The results are shown in Figure 5. The R value of the
training set is 0.89, the verification set is 0.83, the test set is 0.80, and the overall R value
of the neural network model is 0.87. Since R? is used to evaluate the performance of most
models, further analyses were conducted. These analyses revealed that the model exhibited
an overall R? value of 0.75, whereas the R? value for the test set was recorded at 0.63.
These results suggest that the model maintains a balance between predictive accuracy and
generalizability. To validate the model’s accuracy, the obtained R? values were compared
with those reported in prior studies (Tables 3 and S3). Notably, the overall R? value of 0.75
aligns with or exceeds the predictive accuracies reported in other machine learning-based
studies on ionic liquid property prediction, such as those conducted by Valderrama et al.
and Low et al. [30,32]. This comparison demonstrates that the model effectively balances
predictive accuracy with computational efficiency, achieving reliable performance within
the range commonly observed in the literature.

Training Validation
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R?: 0.8 %o R’: 0.69
* 400 - * 400 |
] ]
= =
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Figure 5. Pearson correlation coefficients for the training set, validation set, test set and the overall
dataset. The red line in the plots represents the best - fit line. The Highlight area indicates the error
range, which reflects the possible deviation between the predicted values and the actual values within
the scope determined by the confidence level of 95%.
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Table 3 illustrates the study results obtained with different neural network models in
forecasting the melting point of ILs, whilst other machine learning models are included
in Table S3. In contrast to prior experiments, which yielded R? values below 0.70 for
several models, this study achieved a substantial improvement in both prediction and
accuracy [31,63,64]. In earlier research, certain studies employed a larger number of descrip-
tors [28,30,33,34,63-66]. This study substantially reduced the descriptor count, while some
other studies generated descriptors from ab initio or employed DFT, incurring elevated
computational expenses [1,32]. This current work attained enhanced computational accu-
racy while concurrently reducing computational expenses. Additionally, Torrecilla et al.
conducted experiments using a restricted set of descriptors and attained an impressive R?
value of up to 0.99. Nonetheless, another study has suggested the possibility of overfitting
in their model [18,33].

As shown in Figure 6, the error distribution between predicted and experimental
values is concentrated. Specifically, there are a total of 154 ILs with errors of less than 20 K.
The mean absolute error (MAE) value is 25.03 K, and the root mean squared error (RMSE)
value is 33.75 K. Compared with some other studies in Tables 3 and S3, this study has a
smaller prediction error [31,32]. Two prior studies employed the mean absolute percentage
error (MAPE) as an error representation [30,31]. If the MAPE is converted to MAE, for
instance, the MAPE of the test set in this study is 14.6% [30]. If the melting point of an IL
is 300 K, then its predicted error is 43.80 K. The MAE in this study is comparable or even
lower compared to other studies.

50
Test set
Validation set
40 F Training set
30
-
=
=
)
o
20
10 |
0 i L i L A 1 A 1
-100 -50 0 50 100

Error (K)

Figure 6. The error distribution histogram of the training set, validation set, test set.

For this study, the overall R value of the database was found to be 0.87, indicating a
strong relationship between the melting point and functionality. The ILs with errors greater
than 40 K are listed in Table S2.

Additionally, the model includes eight ILs with MAE exceeding 80 K, as indicated in
Table 4. These substantial disparities are considered unsuitable for practical applications.
Hence, conducting a more comprehensive analysis is imperative to identify the root causes
of these errors. Initially, it is crucial to assess whether a specific ion is accountable for
causing a substantial error. Regarding this issue, the prediction errors of ILs with identical
ionic compositions to those exhibiting significant errors are compared.
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Table 3. The present state of research on predicting the melting point of ILs using neural network

models. “ " indicates data that is not mentioned in the original source.
Database Descriptor  Descriptor Model R2 R MAE RMSE Ref.
Count Type
126 pyridinium Constitutional,
bromides 1085 2D and 3D CPG NN 0.748 R 18.07 23.41 [28]
126 pyridinium Positional Training g iing 763 TAININg
bromides trees RNN 0.9782 Test 19.37 10.08 [29]
Test 0.8725 : Test 23.78
Fragment, . Training
711 1Ls 2837 Fragment BPNN ~ [raining 0.77 _— Test 31.50 30.00 [66]
Test 0.58
property Test 39.90
Training
Group %MAE 3.70
667 ILs 55 contribution ANN Test %OMAE [30]
14.60
- Training
2212 ILs — SMILES Trancslf\?;mer' Trf‘r‘;‘tnog%“ — — 50.00 [64]
’ Test 45.00
Constitutional,
1253 ILs 137 2D and 3D RNN 0.90 R R 32.88 [34]
o0 12 PM7 MLP (ANN) 0.75 0.87 25.03 33.75 This
imidazolium ILs work

Table 4. ILs with errors exceeding 80 K in Model 0, along with their corresponding datasets, as well
as their errors and associated datasets in the three newly established models; Model 0: the model
selected for this study. Model 1, Model 2, and Model 3: three neural network models with dataset
partitions different from that of Model 0.

No. 1 2 3 5 6 7 8
Cations C10 C87 C11 C10 C62 C56 C21
Anions Al12 A6l A2 A59 A72 A7 Al3 A22
Experimental values (K) 438.15 386.69 221.00 209.00 337.15 230.65 192.05 469.00
Errors (K) 81.76 99.79 —88.32 —104.53 118.01 —85.26 —104.22 80.51
model 0 R?=0.75
Dataset Train Train Train Validation  Validation  Validation Validation  Validation
Errors (K) 75.73 29.45 —106.39 —14.11 83.85 —43.06 —82.84 48.28
model 1 R?=0.70
dataset Train Validation Train Train Validation Train Train Train
Errors (K) 118.38 24.23 —99.47 —48.68 41.38 —65.48 —97.39 85.13
model 2  RZ=0.68
dataset Train Train Train Train Train Train Train Train
Errors (K) 80.34 —0.99 —77.66 —19.03 55.76 —49.99 —82.64 51.91
model 3  R2=0.68
dataset Train Train Train Train Train Train Train Train

As depicted in Table 5, the IL formed by the combination of cation C7 and anion
Ab59 exhibits a substantial prediction error of —104.53 K. Conversely, ILs resulting from
the interaction of cation C7 with anions A13 and A7 demonstrate prediction errors below
3 K. Likewise, the IL formed by the combination of cation C10 and anion A72 displays a
predicted error of —118.01 K. In contrast, ILs produced from anions A65, A51, and other
cations demonstrate errors below 8 K. Similarly, ILs composed of A13 and A2 with different
cations can also achieve minimal prediction errors. This suggests that despite significant
prediction errors in a specific IL, those sharing identical anions and cations may yield
minimal errors. Consequently, it is not a specific ion that influences the prediction rule for
the melting point of ILs, leading to a substantial discrepancy in the results.
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Table 5. Errors, experimental values, and predicted values of different ILs with the same ions.
Cations Anions Errors (K) Predicted Values (K)  Experimental Values (K)

A59 —104.53 313.53 209

c7 Al13 0.22 285.78 286.00
A7 —2.23 258.23 256.00
A72 118.01 219.14 337.15

C10 A65 —5.48 215.63 210.15
Ab51 —7.92 219.87 211.95

C56 —104.22 296.27 192.05

C16 A13 5.29 307.33 312.62

C65 3.74 186.81 190.55

C11 —88.32 309.32 221.00

C32 A2 —0.33 328.48 328.15

C92 1.63 445.52 447.15

Neural network models may experience overfitting when dealing with small databases,
leading to a diminished ability to generalize. Overfitting is typically characterized by a
small training set error, accompanied by substantial observation errors in the test and
validation sets. This manifestation has also been reflected in previous studies [29-31]. Thus,
to examine whether the larger errors stem from overfitting, Table 4 presents the datasets
and corresponding errors for ILs exhibiting significant discrepancies. The training set,
validation set, and test dataset underwent redivision, leading to the establishment of three
new neural network models (model 1, model 2, and model 3). By analyzing the prediction
errors of ILs in Table 4 and their respective datasets, it was found that the errors of certain
ILs (No. 2 and 4) can be attributed to the randomness of the model or dataset partition. For
the cation A12 of IL No. 1, A59 of IL No. 4, A72 of IL No. 5, C62 of IL No. 6, and C56 of IL
No. 7, each appears only once or twice in the database. Therefore, significant errors may
be due to insufficient data, indicating that the neural network has not learned sufficiently
about these ions [67,68].

Moreover, the differences in ILs No. 3 and 8 may stem from inherent limitations in the
experimental database. No. 8 in Table 4 comprises the anion A22, while the ILs formed
by cations paired with A22 display a broad range of melting points (refer to Table S1).
Among the 29 ILs investigated in this study, which are composed of various cations and
A22, only five exhibit melting points exceeding 400 K. Notably, the IL identified as No. 8 in
Table 4 demonstrates the highest melting point within this group. Therefore, the prediction
errors for IL No. 8 might be due to anomalies: ILs with similar structures have significantly
different experimental melting points.

No. 3, as listed in Table 4, contains featured halogen anions, A2. In the database for this
study, a total of 65 ILs contained halogen anions. Among these, two exhibited melting points
below 230 K, while the remaining compounds had melting points exceeding 285 K. Notably,
29 ILs within this group display melting points surpassing 400 K. Furthermore, in addition
to IL No. 3, the other ILs also exhibit errors exceeding 60 K. From the viewpoint of physical
chemistry, employing halogens as anions enhances the attainment of higher melting points
in ILs. Halogen anions, which are relatively larger, and larger ions necessitating more
lattice space contribute to heightened crystallization stability and an elevated melting
point [37,69,70]. Thus, the melting points of most halide-based ILs in the database adhere
to this pattern. However, two ILs exhibiting significantly larger errors indicate unusually
low melting points. This suggests that the notable discrepancies in the IL may originate
from anomalies within the data points, deviating from the general pattern.
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In summary, aside from incidental errors attributed to model algorithms and dataset
partitioning, inaccuracies may also stem from the inadequate learning of specific ILs.
Additionally, disparities might result from anomalies inherent in the data themselves.
The database compiles information from diverse literature sources without systematic
categorization or advanced processing. Various methodologies can yield varying melting
point values for the same IL. Moreover, experimental outcomes are subject to influences
like laboratory conditions, climatic variations, and equipment precision. Despite the pre-
processing efforts applied to experimental melting point values, disparities endure between
experimental values and theoretical values, particularly for ILs with limited experimental
values. It is imperative to recognize that, according to the data processing principles of this
study, if an IL has only one experimental melting point, data processing considers this value
as accurate. However, in reality, it may still differ significantly from the theoretical value.

3.4. Model Validation Result

As shown in Table 6, the model has exhibited excellent performance in predicting the
melting points of ILs. Specifically, when confronted with the multiple and significantly
disparate melting points of ILs, the model demonstrates its capability to aid in identifying
the appropriate data points.

Table 6. Judgement the melting points of ILs with uncertain melting points in external databases [38].

Experimental Predicted Judged
Values (K) Values (K) Values (K)
314.15

1 C2 A2 345.15 393.99 345.15

310.15
2 C2 Al3 305.55 345.28 325.55
382.65
3 Cé6 A2 398.15 398.42 398.15
449.00
<298.15
4 c7 A9 304.00 294.88 294.88
228.15
5 c7 A31 259.15 282.51 259.15
<253.15

303.00
322.30
6 c7 A6l 322 90 339.55 333.15
333.15
309.56

7 C8 A2 333.15 365.51 333.15

203.00

8 C8 A3 290.10 291.64 290.10
186.15
191.15

9 C12 Al 218.00 327.17 308.15
285.41
308.15
417.15

10 C19 A2 45115 395.24 41715

No. Cations Anions
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For instance, the anion resulting from the combination of C6 and A2 (No. 3 in Table 6)
exhibits three distinct experimental values from various studies, differing by more than
66.35 K. Substantial discrepancies in measured values pose challenges when selecting
specific ILs based on their melting points. In such cases, a well-fitted neural network model
can predict the theoretical melting point value. As an illustration of this, the predicted
melting point can reach 398.42 K, which helps to determine the true melting point of IL.
Moreover, the melting point of an IL can occasionally span a broad range rather than a
precise value. In such instances, the neural network model aids in pinpointing the exact
value, as demonstrated with ILs No. 4 and 5 in Table 6. The use of neural network models
can rapidly and accurately predict the melting point, significantly enhancing the selection
efficiency of ILs in practical applications.

3.5. Challenges, Research Gaps, and Future Directions

The accuracy and broader applicability of existing models face several issues and
research gaps in the field of IL melting point prediction. One of the main obstacles is data
limitations. The model struggles to generalize other types of ILs with distinct cations due
to the current dataset containing only imidazolium-based ILs. Expanding the dataset to
include a wider range of ILs is essential for improving both the accuracy of the model and
its ability to generalize.

Selecting and optimizing descriptors is another important difficulty. Even though the
12 descriptors employed in this study were carefully chosen to strike a compromise between
computing efficiency and prediction accuracy, more work is required to increase the model’s
robustness and generalizability. Future research may explore additional quantum chemical
and molecular descriptors that more precisely capture the unique structural characteristics
and intermolecular interactions in ILs.

The model’s performance is still a major issue. For more complicated or unique ILs,
higher precision might be needed because the existing model might not account for all
the important details. Investigating more complex or hybrid models may be useful in
subsequent studies. With an emphasis on enhancing prediction accuracy in regions where
the model exhibits the most uncertainty, these models may incorporate additional methods
or combine other machine learning techniques to better handle the inherent complexities of
ILs. Moreover, issues with model interpretability and generalization continue to present
challenges. Although neural networks perform well in prediction tasks, their “black-box”
nature makes it difficult to understand the relationships between descriptors and melting
point estimates. Future studies could examine interpretable machine learning techniques
that clearly illustrate these connections in order to offer a better knowledge of the chemical
properties influencing melting points. In conclusion, addressing these problems through
innovative modeling approaches, enhanced data collection, and enhanced descriptor analy-
sis will be necessary to increase the anticipated accuracy and use of melting point models
for ILs.

In conclusion, addressing these challenges through innovative modeling approaches,
better data collection, and refined descriptor analysis will be crucial for enhancing the
predictive accuracy and practical utility of melting point models for ILs. These efforts will
facilitate the development of novel ILs with optimized properties for a range of industrial
applications.

4. Conclusions

This study proposes four data pre-processing principles and innovatively employs
simulated annealing algorithms to determine molecular conformations with the lowest
energy, thereby enhancing data accuracy. A neural network model was constructed using
only 12 quantum chemical descriptors, with an R? of 0.75 and an MAE of 25.03 K, demon-
strating a strong correlation between the 12 quantum chemical descriptors and the melting
point. The model is notable for its minimal computational demands while offering rapid
and precise predictions of the melting points for imidazolium-based ILs. This facilitates the
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determination of melting points for ILs with unknown values, enabling high-throughput
screening to identify new ILs with desired melting points. Neural network models provide
promising potential for predictive analysis in the field of chemistry.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/chemistry6060094/s1. Table S1: Database of twelve quantitative
descriptors for imidazolium-based ILs; Table S2: ILs with prediction errors greater than 40 K in the
database; Table S3: The present state of research on predicting the melting point of ILs using machine
learning, excluding neural network models; Table S4: Optimization time, frequency calculation
time, and total time for the same IL using PM7 and DFT, calculated on a 40-core server; Figure S1:
Remaining structures of imidazolium cations. Different colors are used to represent different chemical
substances other than carbon and hydrogen.; Figure S2: Remaining structures of imidazolium
anions. Different colors are used to represent different chemical substances other than carbon and
hydrogen.; Figure S3: Born-Fajans—-Haber cycle for the assessment of the melting (fusion) of a binary
salt composed of complex ions ([A][X]), at temperature T, adapted from [37], based on lattice and
solvation energies; Figure S4: Optimization time and frequency calculation time for the same IL
using PM7 and DFT, calculated on a 40-core server; Figure S5: Three lowest energy molecular
configurations obtained from annealed ILs. The energy decreases sequentially from left to right. AHf:
Heat of formation (kcal mol~1). The labels for the anions and cations of the ILs are indicated in the
form of [X]*[Y]~; cartesian coordinates are given for ILs. References [28,31,32,37,63—66,71] are cited
in the supplementary materials.
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