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Abstract
This study explores the computational potential of single striatal projection neurons (SPN),
emphasizing dendritic nonlinearities and their crucial role in solving complex integration
problems. Utilizing a biophysically detailed multicompartmental model of an SPN, we
introduce a calcium-based, local synaptic learning rule that leverages dendritic plateau
potentials. According to what is known about excitatory corticostriatal synapses, the learning
rule is governed by local calcium dynamics from NMDA and L-type calcium channels and
dopaminergic reward signals. In addition, we incorporated metaplasticity in order to devise a
self-adjusting learning rule which ensures stability for individual synaptic weights. We
demonstrate that this rule allows single neurons to solve the nonlinear feature binding
problem (NFBP), a task traditionally attributed to neuronal networks. We also detail an
inhibitory plasticity mechanism, critical for dendritic compartmentalization, further enhancing
computational efficiency in dendrites. This in silico study underscores the computational
capacity of individual neurons, extending our understanding of neuronal processing and the
brain's ability to perform complex computations.

Introduction
Classically, single neurons in the nervous system have been thought to operate as simple
linear integrators where the nonlinearity of dendrites can be neglected (McCulloch and Pitts,
1943). Based on this simplification, powerful artificial neural systems have been created,
outperforming humans on multiple tasks (Silver et al., 2018). However, in recent decades it
has been shown that active dendritic properties participate in shaping neuronal output. Not
only the axon spikes, but also the dendrites can display nonlinear integration of input signals
(Antic et al., 2010). Dendritic nonlinearities endow a neuron with the ability to perform
sophisticated dendritic computations, expanding its computational power beyond what is
available with the somatic voltage threshold and making it similar to a multilayer artificial
neural network (Poirazi, Brannon and Mel, 2003).

A dendritic nonlinearity common among projection neurons in several brain areas is the
NMDA-dependent plateau potential (Oikonomou et al., 2014). Plateau potentials are
regenerative, all-or-none, supralinear voltage elevations triggered by spatio-temporally
clustered glutamatergic input (Schiller et al., 2000; Polsky, Mel and Schiller, 2004; Losonczy
and Magee, 2006; Major et al., 2008; Larkum et al., 2009; Lavzin et al., 2012; Xu et al.,
2012). Such plateaus require that nearby spines are coactivated, but the requirement is
perhaps somewhat loose as even single branches have been proposed to act as
computational units (Losonczy and Magee, 2006; Branco and Häusser, 2010). With that
said, multiple dendritic regions, preferentially responsive to different input values or features,
are known to form with close dendritic proximity (Jia et al., 2010; Chen et al., 2011; Varga et
al., 2011). Such functional synaptic clusters are present in multiple species, developmental
stages and brain regions (Kleindienst et al., 2011; Takahashi et al., 2012; Winnubst et al.,
2015; Wilson et al., 2016; Iacaruso, Gasler and Hofer, 2017; Scholl, Wilson and Fitzpatrick,
2017; Niculescu et al., 2018; Kerlin et al., 2019; Ju et al., 2020). Hence, multiple features are
commonly clustered in a single dendritic branch, indicating that this could be the neural
substrate where combinations of simple features into more complex items occur.
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Combinations of features in dendritic branches further provide single neurons with the
possibility to solve linearly non-separable tasks, such as the nonlinear feature binding
problem (NFBP) (Tran-Van-Minh et al., 2015; Gidon et al., 2020). In the most elementary
form, the NFBP consists of discriminating between two groups of feature combinations. The
problem is nonlinear since the neuron should learn to respond only to specific feature
combinations, even though all features are represented by the same amount of synaptic
input. Common example features used are two different shapes combined with two different
colors, giving in total four combinations of which the neuron should respond to only two
feature combinations (exemplified in Fig. 1A and 1B).

As a task, the NFBP is relevant to brain regions which perform integration of multimodal
input signals, or signals representing different features of the same modality (Roskies,
1999). It is usually illustrated with examples from the visual system, as in Fig. 1A (Roskies,
1999; von der Malsburg, 1999; Tran-Van-Minh et al., 2015). A region that integrates
multimodal inputs, such as sensory information and motor-related signals, is the input
nucleus of the basal ganglia, the striatum (Reig and Silberberg, 2014; Johansson and
Silberberg, 2020), and this system will be used in the present modeling study. We will here,
however, continue to illustrate the NFBP with the more intuitive features borrowed from the
visual field, although for dorsal striatum these features would rather map onto different
sensory- and motor-related features. Plateau potentials and some clustering of input have
been demonstrated in SPNs (Plotkin, Day and Surmeier, 2011; Oikonomou et al., 2014; Du
et al., 2017; Hwang et al., 2022; Day et al., 2024; Sanabria et al., 2024).

In addition to integrating convergent input from the cortex and the thalamus, the striatum is
densely innervated by midbrain dopaminergic neurons which carry information about
rewarding stimuli (Schultz, 2007; Matsuda et al., 2009; Surmeier et al., 2010). As such, the
striatum is thought to be an important site of reward learning, associating actions with
outcomes based on neuromodulatory cues. In this classical framework, peaks in dopamine
(Da) signify rewarding outcomes and pauses in dopamine represent omission of expected
rewards (Schultz, Dayan and Montague, 1997). Dopamine signals further control the
synaptic plasticity of corticostriatal synapses on the SPNs (Fig. 1C). In direct pathway SPNs
(dSPN) expressing the D1 receptor, a dopamine peak stimulates the D1 receptor, which
together with significant calcium influx through NMDA receptors triggers synaptic
strengthening (long-term potentiation - LTP). Conversely, when little/no dopamine is bound to
the D1 receptors, as during a dopamine pause, and there is significant calcium influx through
L-type calcium channels, synaptic weakening occurs (long-term depression - LTD) (Shen et
al., 2008; Fino et al., 2010; Plotkin et al., 2013) (see Fig. 1D).

If dopamine peaks are associated with the relevant feature combinations in the NFBP and
dopamine pauses with the irrelevant ones, it can trigger LTP in synapses representing the
relevant feature combinations and LTD in those representing irrelevant combinations. If,
after learning, the relevant feature combinations have strong enough synapses so they can
evoke plateau potentials while the irrelevant feature combinations have weak enough
synapses so they don’t evoke plateaus, the outcome of this learning process should be a
synaptic arrangement that could solve the NFBP (Fig. 1D) (Tran-Van-Minh et al., 2015). In
line with this, it has been demonstrated that the NFBP can be solved in abstract neuron
models where the soma and dendrites are represented by single electrical compartments
and where neuronal firing and plateau potentials are phenomenologically represented by
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instantaneous firing rate functions (Legenstein and Maass, 2011; Schiess, Urbanczik and
Senn, 2016). Good performance on the NFBP has also been demonstrated with biologically
detailed models (Bicknell and Häusser, 2021). This solution used a multicompartmental
model of a single pyramidal neuron, including both excitatory and inhibitory synapses and
supralinear NMDA depolarizations. Synapses representing different features were randomly
dispersed throughout the dendrites and a phenomenological learning rule - dependent on
somatic spike timing and high local dendritic voltage - were used to optimize the strength of
the synapses. The solution did, however, depend on a form of supervised learning as
somatic current injections were used to raise the spiking probability of the relevant feature
combinations.

In this article we develop a local, calcium-dependent synaptic learning rule based on the
known synaptic machinery of the corticostriatal synapse onto dSPNs (Shen et al., 2008),
which, guided by the reward signals from dopaminergic neurons, can solve the NFBP in a
multicompartment model of a dSPN. The learning rule is initially tested assuming
pre-existing clustered synapses for each individual feature, potentiating synaptic clusters to
the point where they can evoke robust plateau potentials for the relevant feature
combinations of the NFBP, and weakening synapses representing irrelevant features. We
also apply the learning rule on more randomly distributed synapses, and results suggest that
branch-specific plasticity might be important for the single neuron to solve nonlinear
problems. Although brain systems integrating multimodal inputs, such as the striatum,
somehow solve nonlinear problems at the network/systems level, it is not known whether
any individual neuron in the brain actually solves the NFBP on a regular basis. Our
investigation suggests, however, that single SPNs have the computational capacity to solve
linearly non-separable tasks by utilizing information of the organism’s success (here
represented by a dopamine peak) and failures (here a dopamine pause). This might also
generalize to other projection neurons that can display dendritic plateaus, such as pyramidal
neurons. Depending on neuron and synapse type, however, the specific feedback
mechanisms (which in this case is dopamine) will have to be mapped to another
neuromodulatory signal.
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Figure 1: Learning Mechanisms in direct pathway Striatal Projection Neurons (dSPNs) for the Nonlinear
Feature Binding Problem (NFBP)
A: Inputs and assumed supralinearity that could solve the NFBP: The NFBP is represented with an example from
visual feature binding. In the simplest form of the NFBP, a stimulus has two features, here shape and form, each
with two possible values, strawberry and banana, and red and yellow, respectively. The NFBP consists of
responding with neuronal spiking to two of the feature combinations, corresponding to the relevant stimuli (red
strawberry and yellow banana), and remaining silent for the other two feature combinations which represent the
irrelevant stimuli (yellow strawberry and red banana). Assuming that each feature is represented with locally
clustered synapses, a solution of the NFBP can be achieved when the co-active clusters on a single dendrite,
representing the features of a relevant stimulus, evoke a plateau potential, thus supralinearly exciting the soma.
Conversely, co-activation of synaptic clusters for the irrelevant combinations should not evoke plateau potentials.
B: Dendritic Learning: Illustration of how synaptic plasticity in SPNs may contribute to solving the NFBP for a
pre-existing arrangement of synaptic clusters on two dendrites. A plasticity rule which strengthens only synaptic
clusters representing relevant feature combinations, so that they produce robust supralinear responses, while
weakening synapses activated by irrelevant feature combinations, could solve the NFBP.
C: Dopamine (Da) Feedback in Learning: dopaminergic feedback from the midbrain to the striatum (Str) guides
the learning process, differentiating between positive feedback for relevant stimuli and negative feedback for
irrelevant stimuli. Positive feedback represented by dopamine peaks is necessary for LTP, and negative feedback
represented by a dopaminergic pause is necessary for LTD.
D: Signaling pathways underlying synaptic plasticity in dSPNs: Illustrations of molecular components at the
corticostriatal synapse that modify synaptic strength (redrawn from Shen et al., 2009). NMDA calcium influx,
followed by stimulation of D1 dopamine receptors (D1Rs), triggers LTP (while inhibiting the LTD cascade). L-type



calcium influx and activation of metabotropic glutamate receptors (mGluRs) when D1Rs are free of Da triggers
LTD (while counteracting the LTP cascade).

Results

Characterization of the dendritic NMDA-dependent nonlinearities in the
model
The nonlinear, sigmoidal voltage sensitivity of the NMDA receptors is a crucial element for
formation of dendritic plateau potentials. We use a model for generating plateau potentials
first presented in Gao et al., (2021) and adjusted to SPNs (Trpevski et al., 2023). To produce
robust, all-or-none plateau potentials, glutamate spillover from the synaptic cleft that
activates extrasynaptic NMDA receptors is included in the model. Glutamate spillover occurs
when the total synaptic weight (normalized value) of the activated synapses reaches a
threshold value (see Methods). The threshold value here is set to be equivalent to the total
weight of 10 clustered synapses with weights of 0.2 each (weight 0.2 corresponds to 0.5 nS).
Figure 2A shows the somatic membrane potential following synaptic activation of a cluster of
synapses of increasing size and the corresponding local spine membrane potential
(averaged over all spines in the cluster) as well as the NMDA and L-type calcium
accumulated in a single spine (also averaged over all spines in the cluster). A plateau
potential is generated when a critical level of total NMDA conductance in a dendritic segment
is reached (accomplished here by the addition of more synapses in a cluster and by
glutamate spillover). Reaching the spillover threshold produces a sudden and robust
increase in NMDA conductance, caused by the activation of extrasynaptic NMDA receptors
(where the clearance of glutamate is assumed to be slower), thus triggering an all-or-none
plateau potential as investigated in Trpevski et al., (2023).

The synaptic input to the neuron is provided through the activation of a cluster of synapses
at the indicated location in Fig. 2B, and gives the voltage and calcium responses in Fig. 2A.
Figure 2C shows the maximal amplitudes of the somatic voltage and of the NMDA and
L-type calcium signals in the dendritic spines, averaged over 10 trials and over 10 dendrites,
and shown for three different synaptic weights in the clusters. The “baseline” results in Fig.
2C are within the range of the initial synaptic weights of excitatory synapses in all remaining
figures in the article, and thus illustrate a possible initial situation before learning. Stronger
and weaker synapses require a smaller and a larger cluster to trigger a plateau potential,
respectively. In the simulation using “strengthened” synapses the synaptic weights in the
cluster are 40% greater than in the “baseline” case, and hence need fewer synapses to
trigger plateau potentials. Conversely, with weaker synapses where weights are 25% smaller
than the “baseline” case, more synapses are needed to evoke a plateau.

To summarize, the dSPN model exhibits the dendritic nonlinearities required for solving the
NFBP. If a cluster of strengthened synapses can reliably generate robust plateau potentials,
this increases the likelihood for somatic spiking compared to when a more gradual NMDA
dependent nonlinearity occurs in the dendrite. This also means that the neuron can reliably
spike following the activation of a set of synapses strengthened (see illustration in Fig. 1).
Conversely, a cluster of weakened synapses will most likely not generate plateau potentials,
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and thus the neuron will spike with much lower probability following activation of such a
cluster.

Figure 2: Characterization of dendritic plateau behavior in the model. A: Somatic voltage, spine voltage, NMDA calcium
([Ca]NMDA), and L-type calcium ([Ca]L-type) evoked by a cluster varying in size from 1 to 20 synapses. A plateau potential is
evoked after a threshold level of NMDA conductance is exceeded, here set at 10 synapses with a weight of 0.2 each
(corresponding to the “baseline” weights in C). The traces for spine voltage, [Ca]NMDA, and [Ca]L-type are averages over all
activated spines in the cluster.
B: Schematic of the neuron morphology with an arrow indicating the stimulated dendritic branch in A.
C: Maximal amplitude of the measures shown in A averaged over 10 dendritic locations. The curves represent clusters with
different synaptic weights: baseline (0.2), strengthened (0.28) and weakened weights (0.15). Somatic voltages higher than the
action potential threshold were set to -50 mV. A synaptic background noise is used in all simulations to elevate the membrane

potential to ranges seen in vivo (Reig and Silberberg, 2014).
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Characterization of the plasticity rule

To characterize the learning rule we start with a simple setup where three features (each
illustrating either a color or a shape) are distributed onto two dendritic branches, so that one
relevant and one irrelevant feature combination can be represented per dendrite (see Fig.
3A). Each feature is represented with 5 synapses, and we start with assuming that those
synapses are already organized in pre-existing clusters. In addition to background synaptic
noise inputs (compare Fig. 1), we also added 108 distributed glutamatergic synapses that
were activated together with all four stimuli, i.e. they were feature-unspecific. SPNs have a
very hyperpolarized resting potential, and the additional feature-unspecific synapses allow
the neurons to spike often enough in the beginning of the learning process so that a
dopamine feedback signal would be elicited and trigger learning in the activated synapses.
The neuron model was then activated with a sequence of feature combinations (960 here)
including equal amounts of relevant (i.e. ‘red strawberry’ and ‘yellow banana’) and irrelevant
feature combinations (i.e. ‘yellow strawberry’ and ‘red banana’). Thus, since the neuron
always spikes initially due to the feature unspecific synapses, dopamine peaks and
dopamine pauses arrive equally much. Fig. 3A shows an illustration of the setup. When the
neuron spikes for the relevant feature combinations, dopamine rewards are delivered,
triggering LTP in those active synapses with NMDA Ca levels within the LTP kernel, while
spiking for the irrelevant feature combinations elicits a dopamine pause as feedback, instead
triggering LTD as a function of L-type Ca. As learning progresses, the cell learns to respond
only to the relevant feature combinations (see example in Fig. 3B). Initially all four stimuli,
‘yellow banana’ and ‘red banana’ in dendrite 1, and ‘red strawberry’ and ‘yellow strawberry’
in dendrite 2, elicited robust supralinear responses (as they together reached the threshold
for glutamate spillover in our model). After learning the neuron could differentiate between
the two sets of stimuli. The relevant feature combinations associated with a reward
continued to provoke a plateau potential, eliciting somatic spiking. In contrast, the neuron's
response to irrelevant feature combinations was notably decreased following LTD in the
synapses on the dendrite where this feature is irrelevant.

Figure 3C shows the evolution of synaptic conductances during the learning process for
dendrite 1 (dendrite 2 is not shown, but has the same behavior). The synapses representing
the relevant feature combination in this dendrite (‘yellow’ and ‘banana’) are typically
strengthened, eventually encoding this stimulus robustly. Conversely, the synapses for the
feature ‘red’, activated during the irrelevant feature combination (‘red banana’) are all
weakened, making the dendrite only weakly responsive to this stimulus following learning.
Note that LTD also occurs in some of the synapses representing the features yellow as well
as ’banana’ as these features are also parts of the irrelevant stimuli (yellow strawberry and
‘red banana’, respectively). Nevertheless, the reward process still causes the remaining
yellow synapses to strengthen, albeit to a lower level than the synapses for the feature
‘banana’ due to the LTD that has occurred (when combined with strawberry). This is
because of the learning rule that successively slides the LTP NMDA Ca dependent plasticity
kernel over training (see Methods). This means that our learning rule tends to stabilize the
number of synapses that are needed to perform the task, but not necessarily all the
synapses carrying the relevant features. Depending on the initial local Ca response in the
synapse to relevant and irrelevant stimuli, individual synapses might either be preferentially
recruited into the LTP or LTD process.



The NMDA calcium levels shown in Fig. 3D, left panel, shows examples on how the different
synapses stabilize at their particular conductances/weights (for three example synapses
marked with arrows in 3C). With repeated dopamine rewards, the metaplasticity kernel
moves towards lower calcium levels, while a dopamine pause moves the kernel to higher
calcium levels (i.e. it becomes easier for a synapse to strengthen for a slightly lower local
calcium level if a reward has been seen often and also if the synapse is not being activated
too often during reward omissions). Because the rate of metaplasticity kernel adaptation
towards higher calcium levels is faster when the neuron makes errors (omitted rewards) on
the NFBP, the kernels for all features move higher. This results in LTD in the ‘red’ synapses
on the dendrite, while LTP develops in most of the ‘yellow’ and ‘banana’ synapses in
dendrite 1. The upward shift in the kernel serves to prevent excessive strengthening in the
weakened 'red' synapses on dendrite 1 when rewards for ‘red strawberry’ arrive (due to
learning in dendrite 2), as they no longer fall within the optimal calcium range for LTP. In
contrast to this, most synapses for ‘yellow’ and ‘banana’ are strengthened initially, but as
their LTP kernels move downwards due to rewards and a sufficiently high NMDA calcium
locally, no further LTP occurs. This means that in our learning rule, synapses tend to stop
changing their weights when the neuron can perform the NFBP.

The feature-unspecific synapses exhibit different types of behaviors, which are primarily
determined by the initial positioning of their calcium levels with respect to the optimal
learning zone of the LTP plasticity kernel (Fig. 3C and 3D, right panels). The common trend
of gradual weakening of these synapses, triggered by co-activation with irrelevant stimuli
and subsequent dopaminergic pauses, is due to the metaplasticity kernel shifting away from
the calcium level necessary for LTP. This shift increases the likelihood of LTD (initially during
the training this occurs half of the time) This general weakening is exemplified by the purple
trace in the right panel of Fig. 3D.

However, not all feature-unspecific synapses follow this trend. Some synapses, like the one
depicted in blue, are situated close enough to the input clusters to experience increased
NMDA Ca levels, enabling them to strengthen their synaptic connections. Finally, there are
also a few feature-unspecific synapses that randomly happen to trigger calcium levels within
the optimal learning region of the LTP plasticity kernel, causing enhanced LTP at the
beginning (Fig. 3D, right panel, green trace). However, as the LTD amplitude is proportional
to the L-type calcium level, the LTD-drive eventually becomes too high, pushing the calcium
level below the LTP-kernel from which a period of LTD-only follows until synapses stabilize.
To summarize, initially all synapses, clustered and feature-unspecific, may experience some
LTP as dopamine rewards are delivered initially half of the time. However, as omitted
rewards occuring for irrelevant stimuli cause the LTP metaplasticity kernel to slide higher,
only clustered synapses signaling relevant feature combinations (and synapses close to
them), where supralinear voltage effects cause high NMDA calcium, remain in the optimal
learning region of the LTP kernel and a few undergo LTP before stabilizing. Note that
learning is always “on”, i.e. weight updates happen for each training example, meaning that
there are no separate training and testing phases. The reason why synapse weights stop
changing and stabilize is because the neuron performance improves so fewer and fewer
omitted rewards occur (and this halts the LTD process) while at the same time the LTP
kernel slides downwards when the neuron responds correctly most of the time and thus
receives a reward (and this halts the LTP process).



Figure 3: Example of setup and learning-induced synaptic plasticity A: Illustration of input configuration.
Upper panel shows the arrangement of the features in two dendrites. Each dendrite has synaptic clusters for
three features allowing the representation of each of the four feature combinations if seen from the whole
neuron's perspective. Also, the feature combinations allow for only one relevant feature combination per dendrite.
The middle panel illustrates the stimulation protocol used in the simulation where stimuli presentation is followed
by a dopaminergic feedback signal only if the neuron spikes. The two features representing a stimulus are active
within 20 ms, and dopamine feedback, lasting for 50 ms, is delivered 300 ms after the beginning of the stimulus.
Two stimuli are spaced 800 ms apart, to allow for the calcium dynamics to reach baseline levels. The bottom
panel illustrates the stimulus sequence over the full learning task: all stimuli are equally present in a sequence of
12 stimuli.
B: Example voltage in the soma and the two dendrites before and after learning. Each dendrite stops responding
to the irrelevant feature represented by its synaptic clusters.
C: Evolution of synaptic conductances throughout learning. The left panel shows the conductances of the
clustered synapses in one of the dendrites (dendrite 1, d1). B, Y and R stand for ‘banana’, ‘yellow’ and ‘red’,
respectively. The right panel shows the distributed feature-unspecific synapses. The initial synaptic conductances
are set to 0.25 0.05 (around 0.625 nS) . The purple trace exemplifies a synapse that is weakened, while the±
green and blue traces exemplify synapses that are close to the clusters (blue) or by chance (green) have a
sufficiently high local NMDA calcium level for LTP to dominate.
D: Peak calcium (dots) and plasticity kernel dynamics (solid lines) during learning. The left panel shows the
NMDA calcium of a single ‘banana’ and a single ‘yellow’ synapse that undergo LTP as well as for a single red
feature synapse undergoing LTD in dendrite 1 (marked with arrows in the left panel in C). The right panel shows
the NMDA calcium for the feature-unspecific synapses identified in the right panel of C.

Characterization of input combinations that can be learned
After showing that the SPN can learn to separate relevant from irrelevant stimuli in the single
example in Fig. 3, we next generalized the setup by giving different innervations of the four
features to the two dendrites and recorded the performance of the SPN on the NFBP as
learning progressed. Out of all possible feature innervations to two dendrites, we used only
the innervations containing both relevant feature combinations arranged at least one per
dendrite, as these are the cases with enough feature innervation to possibly solve the NFBP
(for an illustration see Fig. 4A). We then estimated how the performance developed over



training, i.e. whether the SPN spiked for the right feature combinations and was silent for the
irrelevant ones. Performance of 100% indicates that the neuron spikes only for the relevant
stimuli and is silent for the irrelevant stimuli. Performance of 50% can indicate two situations:
i) either the neuron spikes for all four stimuli, or ii) is silent for all four stimuli. Performance of
75% indicates spiking behavior between the following two cases: i) the SPN spikes for only
one of the relevant feature combinations, remaining silent for the other three, or ii) it is silent
for one of the irrelevant feature combinations while spiking for the other three. In this study
we consider the NFBP solved when the performance is greater than 87.5%, exemplified by
the situation where the SPN always spikes for one relevant stimulus, and at least half of the
time for the other relevant stimulus, while remaining silent for the irrelevant stimuli.
In the cases with two or three features innervating one dendrite (where one relevant feature
combination is present per dendrite) the mean performance is above 90%, indicating that
both stimuli are learned (Fig. 4B, purple traces). In the cases when all four features can
innervate at least one of the dendrites, typically only one relevant feature combination (i.e.
‘red strawberry’ or ‘yellow banana’) could be correctly learned (Fig. 4B, light blue traces). In
this case the same feature combination is usually encoded in both dendrites. In Fig. 4C the
performance over the last 160 training examples of the simulation is shown, for each of the
four stimuli separately. Fig. 4C1 shows the performance for the purple traces in Fig. 4B, while
Fig. 4C2 shows the same for the light blue traces in Fig. 4B. This illustrates that for the purple
traces in Fig. 4B, the NFBP is solved by the neuron, and the mistakes are usually made by
firing for some of the irrelevant feature combinations. For the light blue traces in Fig. 4B, the
NFBP is usually not solved, with somatic spiking for the relevant stimuli occurring only
around 75% of the time. Additionally, spiking for the irrelevant stimuli is increased.

Optimal learning is achieved at intermediate distances from soma
through excitatory plasticity
We also investigated the impact of synaptic positioning on learning (Fig. 4 D) when using
the same settings as in Fig. 3, but varying dendritic locations. Our results predict that the
best performance on the NFBP is obtained with synaptic clusters positioned at intermediate
somatic distances from the soma (Fig. 4E). From Fig. 4E one can infer that after learning the
proximal synapses have actually decreased when trained on the NFBP as the performance
is around 50%. The neuron stays silent for the irrelevant feature combinations (blue dots),
which is the correct response, but also the neuron can’t respond to the relevant feature
combinations (red dots). For successively more distal synapses the performance increases
and then slightly decreases for the most distal clusters that sometimes fail to evoke somatic
spiking for the correct feature combinations (red dots). This result can be conceptually
explained in the following way. The electrotonic properties of dendrites dictate that synapses
near the soma, in the most proximal regions, are less capable of inducing supralinear
potentiation underlying plateau potentials (Du et al., 2017). This is due to the soma acting as
a current sink, resulting in smaller localized voltage changes (and hence a lower input
resistance in accordance with Ohm’s law). Consequently, these synapses cannot easily
evoke dendritic nonlinearities necessary for solving the NFBP, and hence the performance
with proximal clusters is low for NFBP. Note that in our simulations we allow glutamatergic
synapses on spines quite close to the soma, although SPN dendritic spines are relatively
rare at more proximal distances than 40-50 𝜇m from the soma (Wilson et al., 1983).
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In contrast, the most distal dendritic regions are electrically more isolated and have a higher
local input resistance, enabling larger voltage changes locally and thus also higher local
calcium concentrations when synapses are activated in our model. This allows even a small
number of active synapses to generate local supralinear NMDA-dependent responses. Such
ease of elevating the local calcium, seems advantageous, but in fact results in decreased
performance on the NFBP for the following reasons. In the distal synaptic clusters related to
irrelevant stimuli, local calcium levels might stay in the optimal learning region of the LTP
kernel despite omitted rewards occurring regularly and thus the weakening of the synapses
takes longer. This causes increased somatic stimulation for irrelevant stimuli, sometimes
leading to spiking over a longer period during the training. In addition, distally evoked
dendritic signals, including plateau potentials from strengthened synaptic clusters, naturally
attenuate more before they reach the soma, and sometimes fail to elicit somatic spiking. As
a consequence, compared to more optimally placed clusters, the proportion of negative
feedback signals is increased and that of positive feedback is decreased. The altered
feedback results in a decreased capacity to selectively reinforce the active synapses to only
relevant stimuli and weaken synapses activated with irrelevant stimuli.

The ideal learning zone for NFBP in our simulations thus lies at an intermediate somatic
distance, roughly 100-150 µm from the soma, where synapses can effectively contribute to
learning the NFBP (Fig. 4 E). In this zone synaptic changes are more likely to impact the
neuron's firing probability as the dendritic plateau potential at this location causes a larger
elevation of the somatic potential, and thus synapses at this distance benefit more from the
dopamine feedback loop. Note that the prediction that proximal and very distal synapses are
less likely to contribute to the solving of the NFBP doesn’t imply they are not important for
more ‘linear’ learning contexts. For instance, if we had trained the neuron to only respond to
one single stimulus, such as ‘red strawberry’, both proximal and very distal synapses
representing that stimulus would of course be able to both strengthen or weaken as well as
contribute to spiking of the neuron following learning.



Figure 4: Impact of feature combinations and synaptic cluster locations on NFBP learning performance
A-C: NFBP configurational analysis. Configurations are categorized based on the number of features per
dendrite, those with two or three features (purple traces) and those with all four features on at least one dendrite
(light blue traces).
A: Illustration of the setup of the task where two, three or four features are given in two dendritic locations.
B: Performance trajectories for the combinatorial task illustrated in A. Traces of the performance of the model
over time for 31 unique feature configurations. Light blue lines show combinations with four features in at least
one dendrite, while purple lines show input with maximally 3 input in the local dendritic branches. Right-side
histograms display the distribution of the end performance.
C: Outcome results split on stimuli for configurations where maximally three features in one dendritic location (C1)
or at least one dendrite has all four features present in a single dendrite (C2).
D and E: End performance in a three-feature configuration as a function of cluster location. D illustrates the
location of the inputs, and E shows end performance in the three-pattern configuration as a function of somatic
distance of the synapse clusters. Initial synaptic weight is 0.25 ± 0.05 in all the simulation experiments.

The possible role of inhibitory plasticity in learning
In our initial simulations we assumed that only the excitatory synapses could undergo
plasticity during learning, and we identified two critical observations that highlight possible
areas for improvement. The first is a vulnerability to noise, which resulted in a performance
around 90 percent, as illustrated in Fig. 4B. The second is decrease in performance
observed across very distal synapses, as detailed in Fig. 4E. These findings prompted us to
explore the potential role of inhibitory synapses in addressing these challenges.



We therefore developed a phenomenological inhibitory plasticity rule to enhance dendritic
nonlinearities (detailed in the Methods section). The rule is designed to compartmentalize a
dendrite so that it mostly responds to excitatory inputs that cause the strongest dendritic
activation. It achieves this by weakening inhibitory connections at highly active excitatory
synapses based on the local increase in voltage-dependent calcium, reinforcing their
dominance, and strengthening them where excitatory activity is lower (and thus as well local
calcium concentration, see Methods for details).

To demonstrate our inhibitory plasticity rule, we use the same excitatory synapse setup as in
Fig. 4 to which we add four inhibitory synapses near each cluster in the middle of the
dendritic branch, representing each of the four features (Fig. 5A). Thus, a single feature
activates both the excitatory and inhibitory synapses. To achieve a level of depolarization
and spike probability comparable to that in our excitatory-only setup, we increased the
distributed synaptic input from 108 to 144. Alongside this, we began with low inhibitory
synaptic weights. This was key to maintaining higher baseline activity in our model as
starting with strong inhibitory weights could excessively suppress excitatory activity as e.g.
inhibitory inputs close to clustered synapses effectively can counteract the NMDA-dependent
nonlinearities (Doron et al., 2017; Du et al., 2017; Dorman, Jędrzejewska-Szmek and
Blackwell, 2018). This setup ensured that we could clearly observe how learning modified
synaptic connections without initial excessive inhibition preventing the dendritic nonlinearities
initially.

As in the example in Fig. 3, the conductances of the excitatory inputs representing 'yellow’
and ‘banana' increase to cluster the 'yellow banana' pairing, while the weights of synapses
representing the feature ‘red’ decrease (Fig. 5D, left panel). Conversely, the inhibitory
synapses associated with the 'yellow' and 'banana' features, linked to excitatory synapses,
are instead further weakened, while those linked to 'red' and 'strawberry' features in the
same compartment are strengthened (Fig. 5D, right panel). This outcome of the inhibitory
plasticity rule effectively prevents the 'red banana' and 'yellow strawberry' stimuli from
triggering spikes due to the excitatory inputs to this particular dendrite, thereby
compartmentalizing dendrite 1 to be responsive to mainly 'yellow banana'.

We also show the dynamics of peak calcium levels associated with both excitatory and
inhibitory synapses for each task (Fig. 5E). For excitatory synapses, for which strengthening
NMDA calcium influx is a key factor, the patterns in peak calcium levels behave as in the
example in Fig. 3D (Fig. 5E, right panel). On the inhibitory side, the peak calcium levels,
influenced by voltage-gated calcium channels as shown in the right panel of Fig. 5E,
displayed different behavior, resulting from the inhibitory plasticity rule. The threshold levels
of calcium for inhibitory synapses followed the highest excitatory synaptic activity, which in
our task corresponded to the 'yellow banana' input. Conversely, the minimum threshold level
was able to surpass all other synaptic activities, effectively designating it for 'yellow banana'
only.

We also compared the performance for different feature configurations with added inhibitory
synapses to the results for the excitatory-only setup from Fig. 4B. The results show not only
that learning with inhibitory plasticity is faster, i.e. requires less training examples, but also
achieves high performance, nearing 100%. This demonstrates the potential impact of
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inhibitory synapses in enhancing learning capabilities, as well as in performing the NFBP
computation (Fig. 5B).

Inhibitory plasticity additionally produced a marked improvement in performance when the
location of the synaptic clusters was varied, especially prominent at very distal locations (Fig.
5C). Incorporating inhibitory plasticity allows for more rapid, robust, and accurate learning.
Unlike excitatory plasticity, which relies on dopaminergic feedback signals, our inhibitory
plasticity model follows a passive rule that just aligns with the local excitatory activity. It
reinforces the most active excitatory synapses within a dendritic branch by decreasing the
inhibitory synapses corresponding to the same features there, and conversely, it strengthens
inhibitory synapses for features for which excitatory activity is less prominent. This
'winner-takes-all' strategy not only accelerated the learning process by requiring fewer
training examples but also enhanced performance consistency across different dendritic
locations, including the distal regions where excitatory-only models faltered to some extent
when challenged with the NFBP. The inhibitory rule's ability to function without dopaminergic
feedback streamlines the learning process, leading to higher accuracy and a more stable
and robust set of synaptic modifications, regardless of the synaptic cluster's position along
the dendrite. This demonstrates the influence inhibitory synapses could potentially exert in
fine-tuning dendritic responsiveness and refining the neuronal circuitry critical for learning.



Figure 5: Effects of inhibitory inputs on performance
A: Dendritic input configuration with inhibitory synapses added. Illustrations depict two dendritic branches, each with synaptic
connections from three excitatory and four inhibitory features, but the general setup is the same as in Fig. 4.
B: Displays average performance for configurations with varying pattern configurations as a comparison between the setup with
(orange) and without inhibitory plasticity (blue).
C: Shows task-specific performances for dendritic locations of the clustered synapses, with individual dots and curves
representing fitted performance curves with (solid) and without plastic inhibition (dashed).
D: Synaptic conductance changes during learning. Left panel shows excitatory synaptic conductances in dendrite 1 during
learning. The right panel shows the inhibitory synaptic conductances. B, Y, R and S stands for ‘banana’, ‘yellow’, ‘red’ and
‘strawberry’.
E: Peak calcium (dots) and plasticity thresholds dynamics (lines) over the learning. The left panel shows examples of the
postsynaptic calcium amplitude of the clustered spines in dendrite 1 (marked with arrows on the left panel in D). The right panel
tracks calcium levels at inhibitory synapses. The Upper threshold (Tmax) captures peak calcium levels while the lower threshold
(Tmin) identifies the next highest. Stability achieved at both thresholds enhances contrast between the activity levels and makes
the dendrites respond preferentially to one relevant feature combination at that dendritic site.

Dendritic Branch Plasticity and Synaptic Learning – Investigating the
Role of Randomly Distributing Excitatory and Inhibitory Synapses on the
Dendrites
We finally challenged our plasticity rule by relaxing the assumption that single features are
represented by pre-clustered synapses on specific dendritic branches. The synaptic
plasticity rule was therefore investigated by randomly distributing 200 excitatory synapses
signaling the different features across 30 dendrites. Each feature was represented by 40
excitatory synapses and an additional 40 feature-unspecific excitatory synapses were used.
Figure 6A illustrates the setup and exemplifies the pre- and post-learning synaptic weights
for both excitatory and inhibitory synapses. Our objective was to examine the learning
dynamics in the absence of assumed synaptic clustering and to determine the capability of
the single neuron to learn the NFBP. We initiated the experiment with synaptic conductance
set to 0.3 ± 0.1 (around 0.75 nS), focusing first on purely excitatory synapses. This higher
initial weight and increased variance, compared to the initial weights of 0.25 ± 0.05 (around
0.75 nS) with clustered synapses, were chosen to compensate for the reduced efficacy of



non-clustered synaptic inputs in producing sufficient depolarization and calcium influx,
essential for effective learning and synaptic plasticity.

Figure 6B (right panel) shows limited learning capacity on the NFBP, which corresponded
with our hypothesis: that without clustering-induced supralinearities due to spillover in the
dendrites, distributed synapses would be too weak to trigger high enough differences in local
calcium levels for separating the correct and incorrect feature combinations. To confirm that
the lack of dendritic nonlinearities is the cause for not learning the NFBP, we extended this
concept by introducing a hypothetical branch-specific spillover mechanism assuming that
spillover occurs if synapses are on the same dendritic branch. This hypothetical construct
assumes that concurrent activation of a critical mass of co-activated synapses in a single
dendritic branch would trigger both plateau potentials and a significant rise in calcium levels
despite that the synapses are not spatially pre-clustered, endowing the dendrites with
supralinear responses even without closely clustered synapses. We also tested a more
gradual spillover model proposing that each synapse could contribute incrementally to a
cumulative spillover effect, instead of using a sharp glutamate threshold (see Trpevski et al,
2023). This modification provided a reduced level of nonlinearity compared to the
branch-specific spillover model but still led to an increase in learning effectiveness. As
shown in Fig. 6B, adding the hypothetical nonlinearities to the model increases the
performance towards solving part of the NFBP, i.e. learning to respond to one relevant
feature combination only. The performance increases with the amount of nonlinearity.

We next extended our investigation by including 60 inhibitory synapses, 15 for each feature,
dispersed randomly over the 30 dendrites. Performance improved with the introduction of
these additional nonlinearities, especially in combination with the branch-specific spillover
mechanisms. This finding emphasizes the importance of dendritic branch plasticity and
calcium nonlinearity in coordinating synaptic modifications for both excitatory and inhibitory
inputs. In Fig. 6C, we report that a subset of neurons (5 out of 31) successfully solved the
NFBP (reaching a performance of at least 87.5%).

For a more granular analysis of the successful cases, we selected an example that learned
the NFBP. In Fig. 6D, we show the somatic and dendritic voltages for four dendritic branches
where we found successful encodings of the relevant stimuli. The voltage traces show the
somatic and dendritic responses to all four stimuli after learning. For each dendrite we also
estimated the cumulative synaptic conductances for both excitatory and inhibitory synapses
at the dendritic branch midpoint. Notably, in dendrites numbered 1 and 4, we observed an
enhancement of excitatory inputs for the 'yellow banana' pattern and inhibitory inputs for the
'red strawberry' pattern. Conversely, dendrites 2 and 3 displayed the opposite arrangement.

These results show that for an adequate random innervation of distributed synapses, where
the necessary features for a relevant stimulus innervate the same dendritic branch with
enough synapses, that stimulus can be stored on that dendrite. In this way, the NFBP can
also be learned if the two relevant stimuli are encoded on different dendrites and each of
them can trigger a supralinear dendritic response. Since on average the two features
representing a relevant stimulus do not innervate a single dendrite with enough synapses,
the stimulus is not stored in a single dendrite, but is distributed across the dendritic tree. And
since distributed synapses summate more linearly at the soma, only one of the relevant
stimuli can be typically encoded by the dendritic tree.



Figure 6: Performance analysis of learning using distributed synaptic inputs
A: Example illustration of synaptic distribution before (top) and after learning (bottom) of the 200 excitatory and 60 inhibitory
inputs.
B: Learning performance with two spillover models, branch-specific thresholded and accumulative, without (left) and with
plasticity of inhibitory synapses (right).
C: Performance trends of 31 distributions with branch-specific thresholded spillover and inhibitory plasticity.
D: Example of summed synaptic conductances (left) and voltage (right) in the soma, and four example dendrites (d1-d4) of one
model following successful learning of the NFBP. The sums of both excitatory (Ex) and inhibitory (Inh) inputs are shown.

Discussion
In this article we studied whether single neurons can solve linearly non-separable
computational tasks, represented by the NFBP, by using a biophysically detailed
multicompartment dSPN model. Based on the synaptic machinery of corticostriatal synapses
onto dSPNs, we propose a learning rule that uses local synaptic calcium concentration and
dopamine feedback signals: rewards for relevant stimuli and omitted rewards for irrelevant
stimuli. Assuming first that single features in the NFBP are represented by clustered
synapses, we show that the learning rule can solve the NFBP by strengthening (or
stabilizing) synaptic clusters for relevant stimuli and weakening clusters for the irrelevant
stimuli. The feature combinations for the relevant stimuli, stored in strengthened synaptic
clusters, trigger supralinear dendritic responses in the form of plateau potentials, which is an
important ingredient for the solution of the NFBP, as plateaus significantly increase the
likelihood of neuronal spiking in SPNs in a robust way (Du et al., 2017).
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The location of the synaptic clusters along the dendrites influenced the performance on the
NFBP. In our model the region for optimal performance was 100-150 𝜇m away from the
soma, at about the same distance as where the somatic depolarization and induced spike
probability, following activation of clustered input, is largest in an older version of the model
(Lindroos and Hellgren Kotaleski, 2021). Clusters placed further away produce smaller
somatic depolarizations, due to dendritic filtering (Major et al., 2008), and as a consequence
does not control the likelihood of somatic spiking as decisively. As the supralinear response
is necessary for discriminating the relevant from the irrelevant stimuli, the performance with
distally placed clusters decreases somewhat.

We further verified that supralinear dendritic responses were necessary to solve the NFBP
by using randomly distributed synapses instead of clustered for each feature. In this
scenario, only one relevant stimulus is sometimes learned in a dendritic branch by the
randomly distributed synapses. The random setup was tested with two glutamate spillover
models: The first model assumed that thresholded glutamate spillover is branch-specific,
building on the notion that the single branch act as a single computational unit (Losonczy
and Magee, 2006; Branco and Häusser, 2010). The second assumed that spillover is
accumulative (Trpevski et al., 2023). Both spillover versions increase the performance of our
neuron model, further certifying the necessity of supralinear responses for solving the NFBP.
In the real dendritic branches, however, also diffusion of signaling molecules within the
branch likely contributes significantly both to the plasticity in already existing synapses as
well as to local structural plasticity, both of which could increase branch specific
supralinearities.

By using a phenomenological inhibitory plasticity rule based on the BCM formalism
(Bienenstock, Cooper and Munro, 1982), we also show that inhibitory synapses can
significantly improve performance on the NFBP. This is in line with earlier theoretical studies
where negative synaptic weights were required to solve the NFBP (Schiess, Urbanczik and
Senn, 2016). In our setup with pre-existing synaptic clusters, inhibitory synapses made
learning faster and increased performance by inhibiting supralinear NMDA responses for the
irrelevant stimuli. This was specifically true in distal dendrites where the input impedance is
higher (Branco, Clark and Häusser, 2010). The threshold for plateau initiation is also lower in
distal dendrites compared to proximal (Losonczy and Magee, 2006) which likely will further
extend the influence of inhibition in this region (Doron et al., 2017; Du et al., 2017). Similarly,
in the scenario with distributed synapses, inhibition enables one of the relevant stimuli to be
reliably encoded in the dendritic branch by strengthening the inhibitory synapses for features
different from those of the encoded stimulus. Together, it therefore seems like inhibition not
only has a role in learning (Chen et al., 2015; Cichon and Gan, 2015), but also improves the
ability of the neuron to discriminate between stimuli with shared features.

Although our learning rule only occasionally solves the NFBP when used with randomly
distributed synapses , it can always learn to perform a linearly separable task, such as
learning to respond to only one relevant stimulus (such as red strawberry). Moreover, the
learning rule is general enough so that in addition to the feature-specific inputs related to the
task, it can handle feature-unspecific inputs that might or might not be related to the NFBP.
Finally, the learning rule is always “on”, continuously updating synapses with each stimulus
presentation, which is a more realistic mechanism compared to using separate training and
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testing phases as in the field of machine learning. The synaptic weights automatically
stabilize in the model when the performance improves. That is, rewards are then seen very
regularly as the neuron has learned to spike for the relevant stimuli, while omitted rewards
seldomly occur as the neuron stays silent when the irrelevant stimuli are provided.

When formulating the learning rule in this article, our goal was to base it on what is known
regarding the synaptic machinery in corticostriatal synapses. This implied that the learning
rule is based on the local calcium activity and on dopamine signals. Feedback from the
dopamine system can also be viewed as an innate, evolutionarily encoded “supervisor”,
which instructs neurons which feature combinations are beneficial and which ones should be
avoided. However, in our case we do not use additional excitation to promote somatic
spiking for only the relevant feature combinations, and in that sense the learning rule does
not require a supervised learning paradigm. Since the SPNs rest at very hyperpolarized
membrane potential, our setup includes distributed excitatory inputs which are
feature-unspecific in order to make sure that the neuron spikes for all stimuli, especially at
the beginning of training. These additional inputs are on average weakened as learning
progresses (as they are activated for all stimuli and thus often receive negative feedback).
That general or noisy inputs are reduced during learning is in line with the observed
reduction of execution-variability during motor-learning as a novice becomes an expert
(Kawai et al., 2015). Also, the underlying neuronal representation of corticostriatal synapses
undergo a similar change during learning (Santos et al., 2015).

Since each synapse has its own calcium response, it is important for the learning rule to be
able to follow individual synaptic activities. The LTP plasticity kernel in our model is for this
reason itself plastic, meaning that it changes its calcium dependence as a function of the
history of reward and punishment. This setup helps the model separate clustered synaptic
input from the feature-unspecific input at the beginning of training, as only clustered
synapses will see enough calcium to fall within the plastic range. We further use an
asymmetric metaplasticity rule, where negative feedback causes a larger shift of the LTP
kernel than a positive. This was necessary in order to stop LTP in synapses participating in
LTD. Similarly to the classical loss-aversion tendency described in economic decision theory
(Kahneman and Tversky, 1979), the model hence predicts that negative feedback will have a
bigger impact in changing a well learned behavior on the single cell level than a positive
feedback. Dopamine signaling has also been linked as a neural substrate to the decision
making theory mentioned above (Stauffer et al., 2016).

It is not known whether single neurons solve the NFBP or other linearly non-separable tasks.
However, many brain nuclei receive convergent inputs from numerous other brain nuclei,
acting as integratory hubs (van den Heuvel and Sporns, 2013). Since feature binding
evidently occurs in the brain, and functional clusters for single features such as visual
stimulus orientation, receptive fields, color, or sound intensity exist on single neurons (Chen
et al., 2011; Wilson et al., 2016; Iacaruso, Gasler and Hofer, 2017; Scholl, Wilson and
Fitzpatrick, 2017; Ju et al., 2020), it is possible that the NFBP is a relevant task for neurons
to solve. How brain regions with different synaptic machinery than the striatal dSPN might
solve the NFBP remains a question, and reliance on other neuromodulatory signals may be
part of the answer. For example, in the striatum, the indirect pathway SPNs (iSPN) have
analogous synaptic machinery to the one in dSPNs, requiring calcium influx from the same
sources for LTP and LTD, but are differently responsive to dopamine (Shen et al., 2008). In
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iSPNs a dopaminergic pause, together with a peak in adenosine, is required to trigger LTP,
whereas a dopamine peak without peaks in adenosine rather promotes LTD (Shen et al.,
2008; Nair et al., 2015). Therefore, we expect that an analogously formulated learning rule
will also solve the NFBP in iSPNs, activating them for irrelevant feature combinations to e.g.
suppress movement, and suppressing their activity for relevant feature combinations to
facilitate movement. In addition, LTP in dSPNs might require co-activation of other
neuromodulatory systems, such as a coincident acetylcholine pause with the dopamine
peak, which we have not explicitly included in the model (Nair et al., 2015; Bruce et al.,
2019; Reynolds et al., 2022).

Method
In this paper we introduce a local, calcium- and reward-based synaptic learning rule,
constrained by experimental findings, to investigate learning in SPNs. The learning rule
operates based on the local calcium concentration in conjunction with plateau potentials and
other dendritic nonlinearities and shows that such events enable learning of the nonlinear
feature binding problem (NFBP). The learning rule is embedded in a biophysically detailed
model of a dSPN built and simulated in the NEURON software, v8.2 (Carnevale et al., 2006).
Here we will focus on the setup of the learning rule and only give a short summary of the
neuron and synapse models, focusing on changes compared to previously published
versions. For a detailed description of the neuron model setup, see Lindroos et al., (2018),
Lindroos & Hellgren Kotaleski, (2021), and Trpevski et al., (2023).

Neuron model
In short, the dSPN model used here was sourced from a collection of biophysically detailed
models, including a reconstructed morphology and all of the most influential ion channels,
including six calcium channels, each with its own voltage dependence and dendritic
distribution (Lindroos and Hellgren Kotaleski, 2021). In accordance with Trpevski et al.,
(2023), the model was further extended with synaptic spines on selected dendrites. Each
spine was modeled as two additional compartments consisting of a neck and a head region,
and contains voltage-gated calcium channels of types R (Cav2.3), T (Cav3.2 and Cav3.3),
and L (Cav1.2 and Cav1.3); the addition of explicit spines did not change the basic behavior
of the model, such as the response to current injections, etc.

Calcium sources used in learning
The intracellular calcium concentration is separated into distinct pools that are used during
the learning process. For learning in glutamatergic synapses, one pool for NMDA-evoked
calcium concentration ([Ca]NMDA) is used, and another for L-type calcium concentration
([Ca]L-type), to reflect the different synaptic plasticity responses of the SPN's biochemical
machinery to these two calcium sources in the corticostriatal synapse (Shen et al., 2008;
Fino et al., 2010; Plotkin et al., 2013). Both pools are based on the calcium influx from the
corresponding source (NMDA and the L-type channels Cav1.2 and Cav1.3, respectively).
Similarly a third pool, used for inhibitory plasticity, collects the current from all voltage
dependent Ca channels (T-, R-, L- and N-type, [Ca]V). All pools include extrusion
mechanisms in the form of a calcium pump as well as a one-dimensional time-decay. The
calcium pump follows the implementation in Wolf et al., (2005). The parameters for the
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[Ca]NMDA model were manually tuned to match the quantities reported in Dorman et al.,
(2018). The voltage gated calcium channel conductances in the spines were also manually
tuned to match the relative calcium proportions in Carter and Sabatini, (2004) and Higley
and Sabatini, (2010), as well as the calcium amplitudes due to stimulation with
backpropagating action potentials (Shindou, Ochi-Shindou and Wickens, 2011). Spatial
diffusion was not included in the present model.

Glutamatergic synaptic input
In our study, we used a synaptic model that includes both AMPA and NMDA conductances
activated on spines. Additionally, we considered extrasynaptic NMDA conductances on
dendritic shafts directly under the spines to account for glutamate spillover if the synapses
were sufficiently stimulated and spatially clustered. Spillover has been shown to be important
for generating robust all-or-none dendritic plateaus (Trpevski et al., 2023).
The conductance of extrasynaptic NMDARs during spillover matches their synaptic
counterparts. Glutamate spillover in a set of clustered synapses occurs in the model if a
glutamate threshold is met, and in that case a presynaptic spike also activates the
corresponding extrasynaptic NMDA conductance (Trpevski et al., 2023). The threshold
mechanism involves summing the synaptic weights for each NMDA synapse activated in the
cluster, and checking whether their sum is greater than a threshold level. The synaptic
weight is represented by a weight parameter (w) which scales the maximal conductance of
the synapse (the change of the weights are described by Eq. 1-3). We exemplify this with the
equation for calculating the NMDA current INMDA:

𝐼
𝑁𝑀𝐷𝐴

(𝑡) =  𝑔
𝑠𝑦𝑛

(𝑡)(𝑉(𝑡) − 𝐸
𝑁𝑀𝐷𝐴

);  𝑔
𝑠𝑦𝑛

(𝑡) = 𝑤𝑔
𝑚𝑎𝑥

𝑔(𝑡)

where V(t) is the membrane voltage, ENMDA is the reversal potential of the NMDA synapse,
gsyn is the NMDA conductance which has a time varying part, ranging from 0 to 1, scaled by
a fixed part comprised of the maximal NMDA conductance and the synaptic weight. In our
simulations a cluster needs to reach a summed weight of 2 to reach the glutamate threshold
for spillover, at which point the extrasynaptic NMDARs are activated. This is modeled in
NEURON by summing the NMDA synaptic weights upon each spike arrival, with the sum
normalized so that e.g. ten synapses of 0.2 weight reach the threshold. An integrate-and-fire
cell in NEURON generates a spike to extrasynaptic NMDARs when this threshold is met.
This model allows for fewer synapses to reach the threshold as synaptic weight increases, a
phenomenon linked to LTP and enhanced glutamate spillover due to astroglial process
withdrawal (Henneberger et al., 2020).

Extrasynaptic NMDA synapses were not included for feature-unspecific (non-clustered)
synapses although we explored the role of a potential branch-specific spillover mechanism,
where non-clustered synapses localized on the same branch still could interact through
spillover mechanisms, either assuming thresholded or accumulative spillover as detailed in
Trpevski et al., (2023). The AMPA and NMDA synapse models were taken from Gao et al.,
(2021) and are a variation of the saturating synapse models in Destexhe et al., (1994). See
Trpevski et al., (2023) for a detailed description of how the synaptic input was set for the
SPN model.
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Learning rule

Excitatory synaptic plasticity
The learning rule is based on experimental findings showing that striatal LTP depends on
NMDA-channel activation and the presence of dopamine, while LTD is dependent on
activation of the L-type Ca channel Cav1.3 and the mGluR5 receptor in the absence of
dopamine (low dopaminergic tone) (Shen et al., 2008; Fino et al., 2010; Plotkin et al., 2013;
Yagishita et al., 2014; Fisher et al., 2017; Shindou et al., 2019). Under basal dopamine
levels, no significant synaptic plasticity is assumed to occur. The rule describes a
reward-based learning scheme in which a dopamine peak increases the synaptic weight
based on one function (plasticity kernel) while a dopamine pause decreases the weights
based on another function. Hence, dopamine acts as a switch selecting which of the LTP or
LTD pathways should be activated (as illustrated in Fig. 1D). The plasticity kernels for LTP
and LTD depend on NMDA calcium and L-type calcium, respectively, and are described
below.

LTP

The LTP process is triggered by increased dopamine levels and is based on calcium influx
through the NMDA channel. Here the synaptic strength is updated based on a sliding
bell-shaped kernel in such a way that the maximal increase is obtained for peak calcium
levels close to the kernel midpoint, while higher or lower peak calcium levels result in a
smaller increase. This sets an upper limit on the synaptic strength and guarantees that the
weights will not grow beyond a certain limit (Zenke and Gerstner, 2017; Zenke, Gerstner and
Ganguli, 2017). Since each synapse has its own calcium level, the sliding of the bell-shaped
kernel enables the precise tuning of each synaptic weight separately (see Fig. 7A for an
illustration).
Mathematically, the bell-shaped kernel for the LTP process is represented by the derivative
of the sigmoid function (Eqs. 1 and 2) with a slope that can be adjusted through the β
parameter. The LTP learning rule (Eq. 3) describes the increase in synaptic weight (w) of the
inputs, as a function of peak calcium level ([Ca]NMDA), the learning rate (η1), and the midpoint
(θltp) and slope of the sigmoid curve (β1).

Eq. 1

Eq. 2

Eq. 3

LTD

The LTD process is triggered by a dopamine pause and is dependent on L-type calcium. The
LTD plasticity rule (Eq. 4), describes a threshold level of the calcium level necessary for LTD
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to occur (Shindou, Ochi-Shindou and Wickens, 2011), after which the decrease in synaptic
weight is linearly proportional to the amplitude of the peak calcium level, and is scaled by the
learning rate (η2, see left panel of Fig. 7B for an illustration). The peak calcium threshold is
implemented with a sigmoid function, whose slope parameter, β2, was set to a high-value to
make the curve resemble a step function. The midpoint, θltp, of the LTP kernel was also
increased during LTD, as described in the next section (Fig. 7B right panel).

Eq. 4

Metaplasticity
Metaplasticity is a form of regulatory mechanism changing the state of the synapses in such
a way as to influence subsequent learning. In our model we implemented this as a
reward-history-dependent change of the location of the calcium range over which the LTP
kernel was operating - a pause in dopamine triggered a shift towards higher calcium
concentrations while a peak in dopamine pushed the LTP kernel in the opposite direction.
The metaplasticity was also implemented using a kernel with the same midpoint as the LTP
kernel, but with a wider calcium dependence. Together the setup with the two dynamically
moving kernels allowed for a wide range of calcium levels to induce plasticity. This setup
typically gave rise to a few characteristic situations:

1. For peaks in dopamine (see Fig. 7C for an illustration),
a. In synapses with low calcium levels, the kernel will be shifted closer to the

observed level and thereby eventually enable LTP in synapses that are
regularly activated during rewards, despite that they initially don’t generate big
changes in calcium.

b. In synapses with already high calcium levels, the kernel will be shifted away
from the observed level, and thereby protect the neuron from excessive LTP
and instead stabilize the weight (as illustrated with the red circle moving to the
blue one in Fig. 7C).

2. For dopaminergic pauses, the kernel will be shifted away from the observed level and
thereby reducing the likelihood of LTP in synapses that are undergoing LTD (see Fig.
7D for an illustration).

The LTP kernel update was further asymmetric with regards to dopamine peaks and pauses
in such a way that a pause caused a larger shift of the kernel than a peak. This further
reduced the likelihood of inducing LTP in synapses often participating in LTD or in synapses
randomly activated with regard to the dopamine feedback signal. The metaplasticity kernel
thus adjusts the LTP kernel for these processes based on ongoing neural activity. These
changes are described by Eq. 5, where the LTP kernel midpoint is updated based on the
learning rate (ηs), the peak NMDA calcium level ([Ca]NMDA), and the slope of the sigmoid
curve (β3). The learning rate, ηs, captures the described asymmetry in response to dopamine
feedback (see Table 1). This setup can give rise to the following situations:

1. For randomly alternating dopamine peaks and pauses,
a. In a few synapses that initially happen to generate very high calcium levels

the synapses can become even stronger as their postsynaptic calcium
response is still within the shifted LTP kernel. This explains e.g. the increase
in strengths of the synapses illustrated with the blue and green traces in the
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right panel of Fig. 3C. (However, as the computational performance of the
neuron successively improves these synapses stabilize when the neuron
starts to receive less dopamine pauses).

b. In synapses that generate somewhat less postsynaptic calcium responses the
general trend is that they decrease as their calcium level becomes lower than
the LTP kernel. This is illustrated in Fig. 7D with the red circle shifting to the
blue one; also e.g. compare the purple trace in the right panel of Fig. 3C.

In summary, the slower shifting metaplasticity kernel, compared to the weight update, allows
the individual synapses to stabilize when the neuron has learned a specific task and thus
doesn't receive negative reward feedback that often. Also, the rule allows initially weaker
synapses to be recruited to undergo LTP if they are more consistently co-active with a
reward than with an omitted reward (an illustration of this can be seen in Fig. 5D, where one
of the yellow synapse traces jumps upwards during the middle of the training session) .

Eq. 5

Inhibitory synaptic plasticity
In contrast to the well studied mechanistic underpinnings of glutamatergic plasticity in e.g.
SPNs, much less is known about how inhibitory synapses might be updated during learning.
The inhibitory plasticity rule developed here is therefore more phenomenological and
exploratory in nature and was developed to enhance nonlinearities in the local dendrite. The
rule is based on the Bienenstock-Cooper-Munro (BCM) formalism (Bienenstock, Cooper and
Munro, 1982). In the BCM rule there is a threshold level of synaptic activity below which LTD
is triggered and above which LTP is triggered (Fig. 7E). Inspired by (Gandolfi et al., 2020;
Ravasenga et al., 2022) and, we use calcium from all voltage-gated calcium channels ([Ca]V)
as the indicator of excitatory synaptic activity near the dendritic shaft where an inhibitory
synapse is located. The inhibitory rule is designed to passively observe and respond to the
surrounding excitatory synaptic activity, governed by local calcium influx, but without reliance
on dopamine or explicit feedback. It operates at a slower pace to ensure alignment with the
excitatory activity levels, thus enhancing the contrast in activity by amplifying local
differences in excitatory synaptic efficacy. The weight change is further dynamic and
dependent on the weight itself, in such a way that large and small weights get small updates.
This stabilizes the weight at the end of learning in the inhibitory synapses, together with the
dynamical threshold level meeting the local calcium level, and prevents the weight from
taking on large or negative values. Large weights are then close to and small weights
close to 0 (see Fig. 5D).
The rule is described by Eq. 6-9 where Eq. 6 describes the basic plasticity curve used in Eq.
7 to control the change in inhibitory weights (dwinh). In these equations, the parameters a and
b set the activity values for the two terms in Eq. 6 while β and T control the steepness and
intersection with the x-axis.
The parameter c recalibrates the baseline for Tmin, ensuring Tmin and Tmax intersect at zero, as
depicted in Fig. 7E (right panel, indicated by an green asterisk *).
The upper threshold Tmax gradually shifts toward the highest calcium level observed in each
synapse while the lower threshold Tmin shifts towards a level below the maximum calcium
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level (Eqs. 8 and 9; see Fig. 7E right panel for an illustration). Once the thresholds stabilize,
the synapse will also reach stability. The goal of this is to enhance the difference in
depolarization/calcium between the most active level, and the next one.
Further, depending on whether the synapse was active or inactive during the period of the
calcium influx, the learning rate of Eq. 7 (ηact) takes on negative or positive values. Because
of this, the active synapses are depressed when the calcium concentration is higher than the
upper threshold Tmax and potentiated if the concentration is between the two thresholds,
while inactive synapses follow the inverse relationship. No change happens below the lower
threshold (see Fig. 7E left panel for an illustration). This framework emphasizes the inhibitory
synapse capacity to follow and dynamically amplify the contrast between local excitatory
synaptic activity levels.

Eq. 6

Eq. 7

Eq. 8

Eq. 9

Training Procedure
We present the neuron with a sequence of 960 stimuli, which, as described in Fig. 1, can
come in four varieties (four possible feature combinations). The learning rule is always “on”,
i.e. synapses can always be updated, meaning that there are no separate training and
testing phases in which synapses are plastic and frozen, respectively. We used two distinct
synaptic arrangements for when representing the features: the clustered setup and the
distributed setup.

Clustered setup: This setup is based on the assumption of pre-existing clustered synapses
for each feature. The features of a stimulus are represented here by the shape and color of
bananas and strawberries (Fig. 1A). Features were allocated to two dendritic branches.
Each branch had each feature represented with five synapses clustered closely on a single
dendrite. Depending on the feature combination, two, three, or four features were
represented in clusters on one or both dendritic branches (see Fig. 3A, 4A and 4D for
example). Additionally, 108 feature-unspecific synapses were distributed throughout the
dendrites, activated concurrently with all stimuli to enhance the probability of spiking (as
plateau potentials together with the general background synaptic noise used do not often
lead to spikes in SPNs, cf Fig 2A). To demonstrate the inhibitory plasticity rule, four inhibitory
synapses near each cluster (in the middle of the dendritic branch), representing each of the
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four features, were added (Fig. 4A). With this setup a single feature activates both excitatory
and inhibitory synapses. To match the level of depolarization seen in our excitatory-only
setup, the number of distributed feature-unspecific synaptic inputs was increased to 144.
The initial conductance of inhibitory synapses is set at 0.1 ± 0.01 nS.

Distributed setup: In contrast, this setup examines learning dynamics in neurons without
pre-existing synaptic clustering for individual features. A total of 200 excitatory synapses
were randomly distributed over 30 dendrites. Each feature was represented by 40 excitatory
synapses, and an additional 40 feature unspecific excitatory synapses were used (Fig. 6A).
We initiated this experiment with excitatory synaptic weights at 0.3 ± 0.1 (around 0.75 nS).
This higher initial weight was chosen to compensate for the reduced efficacy of
non-clustered synaptic inputs in producing sufficient depolarization and calcium influx.
Extending our investigation, we added 60 inhibitory synapses, 15 for each feature, dispersed
randomly over the 30 dendrites. We initiated this extended experiment with excitatory
synaptic weights at 0.45 ± 0.1 (around 1.125 nS), aiming to maintain the same baseline
voltage activity as in the excitatory-only case. Figure 6A illustrates this setup, highlighting the
pre- and post-learning synaptic weights for both excitatory and inhibitory synapses.
The four stimuli were presented in random order three times each within a block of 12
stimuli, followed by another reshuffled block of 12, and so on, for 960 trials. Each trial
consisted of a stimulus presentation, lasting 20 ms, followed by a reward cue arriving 300
ms after stimulus onset, and lasting for 50 ms (Fig. 3A). During the stimulus presentation,
the stimuli-related synapses receive one randomly-timed spike per synapse. We opted not to
quantitatively model the dopamine receptor response to dopamine concentrations. Instead,
dopamine levels from the reward-based learning system are represented with +1 (dopamine
peak) for relevant stimuli if the neuron spikes, and -1 (dopamine pause) for irrelevant stimuli
if the neuron spikes, and 0 for baseline levels when the neuron was silent, at which time the
calcium amplitudes were measured, and the synaptic weights were updated during the
presence of the reward cue.
The time between two stimuli is 800 ms, long enough to allow for the voltage, calcium (and
all other state variables in the model) to return to their baseline values.

Table 1: Excitatory Plasticity Parameters
Parameter Description Value

η₁ Learning rate for [Ca]NMDA-dependent
plasticity

1.5×10−5 [µ𝑆 ∙𝑚𝑀∙𝑚𝑠−1]

η2

Learning rate for [Ca]L-type-dependent

plasticity
3×10−3 [𝑚𝑠−1 ∙𝑚𝑀−1 ]

ηs, LTP Learning rate for θLTP during Da peaks 1×10−7  [𝑚𝑀2 ∙𝑚𝑠−1]

ηs, LTD Learning rate for θLTP during Da pauses 4×10−7 [𝑚𝑀2 ∙𝑚𝑠−1]

θLTP Midpoint of LTP kernel (initial value) 0.02 [𝑚𝑀 ]



θLTD Constant LTD threshold parameter 7×10-5 [𝑚𝑀 ]

β₁ Parameter controlling width of LTP kernel 103 [𝑚𝑀−1 ]

β₂
Parameter controlling steepness of LTD

threshold
105 [𝑚𝑀−1 ]

β₃
Parameter controlling width of metaplasticity

kernel
334 [𝑚𝑀−1 ]

Table 2: Inhibitory Plasticity Parameters
Parameter Description Value

ηact Learning rate for the modification of inhibitory weight for

active and inactive synapses

𝑎𝑐𝑡𝑖𝑣𝑒: − 0. 055

𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒: 0. 055

[µ𝑆−1∙𝑚𝑠−1]

𝑤
𝑖𝑛ℎ
𝑚𝑎𝑥 Maximum synaptic strength 5 [𝑛𝑆]

η7 Learning rate for modifying Tmax 9×10-4 [𝑚𝑀 ∙𝑚𝑠−1]

η8 Learning rate for modifying Tmin -5×10-5 [𝑚𝑀 ∙𝑚𝑠−1]

a₁ Parameter controlling inhibitory weight -1

b₁ Parameter controlling inhibitory weight 3

a₂ Parameter controlling Tmax -1

b₂ Parameter controlling Tmax 3

a₃ Parameter controlling Tmin -2

b₃ Parameter controlling Tmin 3

c Calcium concentration offset 6×10-4 [𝑚𝑀 ]



β4 Parameter for controlling the steepness of the curves 2.5×103 [𝑚𝑀−1 ]

Figure 7: Synaptic Plasticity Rules: Calcium and Dopamine Interactions in Synaptic Weight
Modification

A: Synaptic weight updates during a dopamine peak. (Left) LTP kernel is a bell-shaped curve
which determines an optimal [Ca]NMDA region in which synaptic weight is increased. (Right) A
wider bell-shaped kernel, i.e. the metaplasticity kernel, determines how the LTP kernel (the
optimal region for plasticity) slides along the calcium level ([Ca]NMDA) axis following a Da peak.



B: Synaptic weight updates during LTD. (Left) The LTD plasticity kernel. This kernel is
constant. The LTD threshold is constant and set at 70 nM (Right). Metaplasticity describes
how the LTP kernel slides along the calcium axis following a Da pause.
C: A schematic of how the LTP kernel window is updated following a dopamine peak. As
NMDA calcium levels increase following activation of the strengthened synapse due to a
dopamine peak (illustrated with the red circle jumping to the blue circle), the LTP kernel slides
down and in this example the strengthened synapse (blue circle) stabilizes, and doesn’t
increase in strength even though additional rewards arrive.
D: A schematic showing the update of the LTP window following a dopamine pause leading to
that synaptic weight and calcium response decrease as a function of L-type Ca (illustrated
with the red circle jumping to the blue one). Here, the LTP kernel slides up towards higher
NMDA calcium levels, and thus the weakened synapse (blue circle) is more unlikely to be
recruited into the LTP window (unless it in the future is activated with Da peaks more regularly
than with Da dips).
E: Depicts the inhibitory plasticity rule. (Left) Changes in synaptic weight for active (orange)
and inactive (blue) synapses based on voltage dependent calcium levels in the dendritic shaft
at the location of the inhibitory synapse, and minimum (Tmin) and maximum (Tmax) threshold.
(Right) Functions for sliding the minimum and maximum thresholds with voltage dependent
calcium level. The asterisk denotes the semi-stable zero level where the curves for active and
inactive synapses meet.
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