
  

  

Abstract—The Bin Packing Problem (BPP) has attracted 

enthusiastic research interest recently, owing to widespread 

applications in logistics and warehousing environments. It is 

truly essential to optimize the bin packing to enable more 

objects to be packed into boxes. Object packing order and 

placement strategy are the two crucial optimization objectives of 

the BPP. However, existing optimization methods for BPP, such 

as the genetic algorithm (GA), emerge as the main issues in 

highly computational cost and relatively low accuracy, making 

it difficult to implement in realistic scenarios. To well relieve the 

research gaps, we present a novel optimization methodology of 

two-dimensional (2D)-BPP and three-dimensional (3D)-BPP for 

objects with regular shapes via deep reinforcement learning 

(DRL), maximizing the space utilization and minimizing the 

usage number of boxes. First, an end-to-end DRL neural 

network constructed by a modified Pointer Network consisting 

of an encoder, a decoder and an attention module is proposed to 

achieve the optimal object packing order. Second, conforming 

to the top-down operation mode, the placement strategy based 

on a height map is used to arrange the ordered objects in the 

boxes, preventing the objects from colliding with boxes and 

other objects in boxes. Third, the reward and loss functions are 

defined as the indicators of the compactness, pyramid, and 

usage number of boxes to conduct the training of the DRL 

neural network based on an on-policy actor-critic framework. 

Finally, a series of experiments are implemented to compare our 

method with conventional packing methods, from which we 

conclude that our method outperforms these packing methods 

in both packing accuracy and efficiency. 

 

I. INTRODUCTION 

    Known to be a classical strongly non-deterministic 
polynomial-time (NP) hard combinatorial optimization 
problem with high complexity, the Bin Packing Problem (BPP) 
has attracted considerable attention in realistic application 
scenarios, such as logistics and warehousing environments 
due to the rapid development of the industrial automation and 
the labor shortage [1, 2, 3] (see Fig.1). The key to optimizing 
the BPP lies in generating the object packing order and 
determining the object placement strategy. To maximize the 
space utilization and minimize the usage number of boxes, 
conventional packing methods [1, 4, 5] take advantage of the 
meta-heuristics to generate the optimal object packing order, 
such as the genetic algorithm (GA) [6], generally resulting in 
highly computational cost and relatively low accuracy. 
Learning-based methods [7, 8, 9] employing DRL to resolve 
the BPP have gradually come up in academia, being 
advantageous in saving computational cost as well as 
increasing packing accuracy. 
    Some achievements have been witnessed in bin packing 
optimization from substantial literature available during the 
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past few decades. The earliest research on the BPP dates back 
to the 1960s [10], in which a collection of objects with various 
weights is packed into the minimum number of boxes with the 
same capacity, called one-dimensional (1D)-BPP. All the 
objects were simply sorted in descending order of weight to 
increase the space utilization and reduce the usage number of 
boxes [11]. However, most of the objects in realistic scenarios 
have multi-dimensional dimensions rather than scalar weights, 
enabling the 1D-BPP to be unavailable in practical scenarios. 
The 2D-BPP and 3D-BPP are the extensions of the 1D-BPP, 
where the objects and boxes do not have scalar weights or 
capacities but 2D or 3D dimensions. Conventional packing 
methods of 2D-BPP and 3D-BPP for objects with regular 
shapes leverage meta-heuristics, including the GA, the local 
search (LS) algorithm [12], and the tabu search (TS) algorithm 
[13] to optimize the object packing order. The GA is widely 
applied in combinatorial optimization problems. Wang [14] 
presented an adaptive GA for the 2D-BPP and a hybrid GA 
was proposed with a heuristic algorithm [15] for the 3D-BPP 
in the same year. The LS algorithm selects the current solution 
from a neighborhood solution, until a local optimal solution is 
reached. Imahori et al. [16] proposed the LS algorithms for the 
rectangle packing problem, arranging given rectangles 
without overlap in the plane, to minimize the spatial cost. To 
resolve the 3D-BPP, a heuristic algorithm based on a guided 
LS was presented in [17]. The TS algorithm is an extension of 
LS, which marks the local optimal solution and avoids it in the 
subsequent search. Hamiez et al. [18] developed a reinforced 
TS algorithm to address a variant of the 2D-BPP, namely the 
2D strip packing problem, while Viegas et al. [19] employed a 
TS and best-fit decreasing algorithms to resolve a real-world 
steel-cutting problem. Unfortunately, the highly 
computational cost and relatively low accuracy limit the 
popularization of the conventional packing methods in 
practical scenarios. Recently, learning-based methods 
equipped with DRL have gradually been applied to resolving 
the BPP. Hu et al. [20] developed a neural optimization 
solution based on deep reinforcement learning to address the 
transport-and-pack (TAP) problem. To deal with the 3D-BPP 
having limited information about the objects to be packed, an 
effective and easy-to-implement constrained DRL method 
under the actor-critic framework was proposed in [9]. 
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Figure. 1. The BPP is widely useful in realistic application scenarios, such 

as logistics and warehousing. 



  

Moreover, Song et al. [21] added synergies between packing 
and unpacking into the constrained DRL method, further 
improving the packing accuracy. However, the learning-based 
methods generally focus on optimizing the placement of 
objects arriving successively on a conveyor belt, in the boxes, 
rather than the object packing order, making them difficult to 
deploy in the practical scenarios with batches of objects. 
    How well the objects can be packed into boxes is not only 
determined by the object packing order, but also influenced by 
their arrangement within the boxes. The placement strategy is 
applied to arranging the ordered objects in the boxes. For the 
1D-BPP, the placement strategy is generally heuristic to seek 
for the approximate solution, such as the Next Fit (NF) 
algorithm [22] and the First Fit (FF) algorithm [23]. For the 
2D-BPP, Jakobs [24] first introduced the Bottom Left (BL) 
algorithm where each object is moved as far as possible to the 
bottom of the box and then to the left. To reduce the empty 
areas in the layout generated by the BL, Hopper [25] then 
developed the Bottom Left with Fill (BLF) algorithm. 
Karabulut et al. [4] further extended the BLF algorithm to the 
3D-BPP, proposing the Deepest Bottom Left with Fill (DBLF) 
algorithm. The concept of Corner Point (CP) [26] was first 
introduced in a branch-and-bound method and Crainic et al. 
[27] extended it to the Extreme Point (EP). The Empty 
Maximal Space (EMS) [28] and Maximum Contact Area 
(MCA) [29] were proposed to deal with the 2D-BPP and 
3D-BPP, aiming to make full use of the gaps in the boxes and 
extremely reduce the space waste. However, these methods do 
not conform to the top-down operation mode. When a robot is 
involved in packing tasks, the target positions determined via 
these methods may be inaccessible due to being blocked by 
the objects above them, making them different to apply in 
automated industrial scenarios. 
    Motivated by the unresolved issues in the aforementioned 
areas, in this work, we propose a novel optimization 
methodology of the 2D-BPP and 3D-BPP for objects with 
regular shapes. We provide the statements of the regular 
2D-BPP and 3D-BPP in this work, where the objects to be 
packed have rectangular and cuboid shapes respectively. The 
key to optimizing them is to generate an object packing order 
by DRL and then arrange the ordered objects in the boxes via a 
placement strategy. Firstly, to maximize the space utilization 
and minimize the usage number of boxes, we construct an 
end-to-end DRL architecture modeled by a modified Pointer 
Network consisting of an encoder, a decoder, and an attention 
module to generate the optimal object packing order. Secondly, 
we pack the ordered objects onto the target positions in the 
boxes via a placement strategy based on a height map, which 
represents the placement configuration of all the objects in the 
boxes, preventing the objects from colliding with the inside of 
the boxes or other objects in the boxes. Since the target 
position is not blocked by other objects, the object can directly 
reach the target position from above, conforming to the 
top-down operation mode. Then the reward and loss functions 
for the object packing order and placement strategy are 
defined as the indicators of the compactness, pyramid, and 
usage number of boxes to conduct the proposed DRL model to 
generate the optimal object packing order based on an 
on-policy actor-critic framework. Finally, a series of 
experiments are implemented to compare our method with 
conventional packing methods to demonstrate the superiority 
of our method in both packing accuracy and efficiency. 

    We highlight the novelties of our work. Foremost, our 
core contribution is resolving the optimization of the regular 
2D-BPP and 3D-BPP via DRL, increasing the packing 
accuracy and dramatically improving the packing efficiency 
compared to the GA. The first novelty is that we employ a 
DRL neural network modeled by a modified Pointer Network 
to generate the optimal object packing order, which has hardly 
been attempted in the existing literature. A placement strategy 
based on a height map is proposed to arrange the ordered 
objects in the boxes, conforming to the top-down operation 
mode, which is attributed to the second novelty. In terms of 
the third contribution, we carry out various experiments to 
evaluate the performance of the proposed approach. 

II. METHODOLOGY 

    In this section, we first briefly introduce the statements of 
the regular 2D-BPP and 3D-BPP. Then the architecture of the 
DRL modeled via a modified Pointer Network is proposed to 
generate the optimal object packing order. Further, we 
introduce the placement strategy based on a height map to 
pack the ordered objects onto the target positions in the boxes. 
Finally, we design the reward and loss function of the DRL 
model based on an on-policy actor-critic framework. 

A. Problem Statement 

    We focus on the optimization of the regular 2D-BPP and 
3D-BPP with known dimension information of objects and 
boxes, in which the shapes of the objects to be packed are 
rectangular and cuboid respectively. The sizes of the objects in 
the regular 2D-BPP and 3D-BPP are provided by the 
following equations 

 𝑙2
𝑖  ≤  𝐿2 / 2, ℎ2

𝑖  ≤  𝐻2 / 2 () 

 𝑙3
𝑖  ≤  𝐿3 / 2, 𝑤3

𝑖  ≤  𝑊3 / 2, ℎ3
𝑖  ≤  𝐻3 / 2 () 

where 𝑙2
𝑖  and ℎ2

𝑖  respectively represent the length and height 

of the 𝑖𝑡ℎ rectangular object, while 𝐿2  and 𝐻2  are the length 

and height of the boxes in the regular 2D-BPP. 𝑙3
𝑖 , 𝑤3

𝑖 , and ℎ3
𝑖
 

indicate the length, width, and height of the 𝑖𝑡ℎ cuboid object, 
while 𝐿3, 𝑊3, and 𝐻3 are the length, width, and height of the 
boxes in the regular 3D-BPP respectively.  
    Furthermore, while arranging the objects in the boxes, we 
consider the physical stability as a simple criterion, in which 
the objects are physically stable when over 50% of their 
bottoms are supported. 

B. Deep Reinforcement Learning Architecture 

    Inspired by a multi-objective optimization model [30], we 
employ a DRL neural network modeled via the modified 
Pointer Network mentioned to generate the optimal object 
packing order. We first introduce the input and output 
structure of the modified Pointer Network, which are 
formulated as Eq. (3), Eq. (4), and Eq. (5) 

 𝑋 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} () 

 𝑠𝑖 = (𝑠1
𝑖 , 𝑠2

𝑖 , . . . , 𝑠𝑀
𝑖 )

𝑇
, 𝑖 = 1, 2, . . . , 𝑛 () 

 𝑌 = {𝜌1, 𝜌2, . . . , 𝜌𝑛} () 

where 𝑋 represents the input sequence of the neural network, 

and 𝑛  is the number of objects to be packed. 𝑠𝑖  is a 
𝑀 -dimensional vector, which represents the dimensional 



  

information of the 𝑖𝑡ℎ  object. Especially, in the regular 
2D-BPP, 𝑀  is 2, i.e. each object is modeled as a 

two-dimensional vector, where 𝑠1
𝑖  and 𝑠2

𝑖  represent the length 

and height of the 𝑖𝑡ℎ  object respectively, thus the input 
sequence 𝑋  is modeled as a 2 × 𝑛  matrix. In the regular 
3D-BPP, 𝑀  is 3, i.e. each object is modeled as a 

three-dimensional vector, where 𝑠1
𝑖 , 𝑠2

𝑖 , and 𝑠3
𝑖  represent the 

length, width, and height of the 𝑖𝑡ℎ object respectively, thus 
the input sequence 𝑋 is modeled as a 3 × 𝑛 matrix. The input 
structure of the regular 2D-BPP and 3D-BPP are shown in Fig. 
2. 𝑌 is the output sequence of the neural network, representing 
the object packing order. For instance, the output sequence {3, 
1, 5, 4, 2} indicates that the objects are packed into the boxes 
in the order of Object 3 — Object 1 — Object 5 — Object 4 — 
Object 2. 
    Then we introduce the architecture of the modified Pointer 
Network. Specifically, the neural network is composed of an 
encoder, a decoder, and an attention module, as shown in Fig. 
3. The encoder extracts the dimensional information of the 
input sequence to high dimensional feature vectors. 
Integrating with the attention module, the decoder generates 
the output sequence, namely the object packing order by 
decoding the information contained in the high dimensional 
feature vectors. 
Encoder. Considering the structure of the input sequence, we 
utilize the one-dimensional (1-D) convolution layer to 
construct the encoder. The number of the input channels of the 
1-D convolution layer is equal to the dimension of the input 
sequence, i.e. two and three, with concerning the regular 
2D-BPP and 3D-BPP respectively. The output of the encoder 
is a 𝑛 × 𝑑ℎ matrix, where 𝑛 represents the length of the input 
sequence i.e. the number of the objects in a collection to be 
packed and 𝑑ℎ is the number of the output channels of the 1-D 
convolution layer. It is noticed that all the objects in the input 
sequence share the parameters of the 1-D convolution layer, 
which means the number of the parameters in the encoder is 
fixed and does not increase with the length of the input 
sequence, making the encoder robust. 
Decoder. Different from the encoder, the decoder requires a 
recurrent neural network (RNN) architecture with memory 
capability because we need to consider the previously selected 
objects when selecting the current object. The gated recurrent 
neural network (GRU) able to capture widely spaced 
dependency in the sequential data and prevent gradient 
explosion is employed to construct the decoder. The GRU is 
not directly used to obtain the object packing order, but its 
hidden states storing the information of previously selected 
objects together with the encoding states of the input sequence 
are used to calculate the conditional probabilities formulated 
as Eq. (6) and Eq. (7) to generate the object packing order. 
Moreover, we take the dimensional information of the 
currently selected object as the input of GRU as follows 

 𝑢𝑗
𝑡+1 = 𝑣𝑇𝑡𝑎𝑛ℎ(𝑊1𝑒𝑗 +𝑊2ℎ𝑡+1), 𝑗𝜖(1, 2, . . . , 𝑛) () 

 𝑃(𝜌𝑡+1 = 𝑗 | 𝜌0, 𝜌1, . . . , 𝜌𝑡) = 

 

{
 
 

 
 𝑒

𝑢𝑗
𝑡+1

∑ 𝑒
𝑢𝑖
𝑡+1

𝑛
𝑖=1

, 𝑗 = 1, 2, . . . , 𝑛, 𝑗 ≠ 𝜌1, . . . , 𝜌𝑡

0 ×
𝑒
𝑢𝑗
𝑡+1

∑ 𝑒
𝑢𝑖
𝑡+1

𝑛
𝑖=1

, 𝑗 = 𝜌1, . . . , 𝜌𝑡

  () 

 𝑦𝑡 + 1 = 𝑠
𝜌𝑡 + 1  () 

where 𝑣, 𝑊1, and 𝑊2 represent the learnable parameters in the 
attention module. ℎ𝑡+1 is the hidden state output by GRU in 

the 𝑡𝑡ℎ step. For each object 𝑗, 𝑢𝑗
𝑡+1 is obtained via ℎ𝑡+1 and 

its encoding state 𝑒𝑗  to calculate the conditional probability 

𝑃(𝜌𝑡+1 = 𝑗 | 𝜌0, 𝜌1, . . . , 𝜌𝑡) of selecting the object 𝑗 as 𝜌𝑡+1 , 
where 𝜌0, 𝜌1, . . . , 𝜌𝑡  are the previously selected objects. 𝜌𝑡+1 
is the currently selected object, and 𝑠𝜌𝑡 + 1  indicates its 
dimensional information, which is taken as the input of GRU 
in the 𝑡 +  1 step, i.e. 𝑦𝑡 + 1 . In particular, we take a zero 

vector as the initial input of GRU, i.e. 𝑦0 = �⃗⃗� , which means 
we randomly select the object  𝜌1 from the input sequence. 
Furthermore, as one object can not be selected twice in a 
packing instance, we stipulate a masking mechanism where 
the conditional probabilities of the previously selected objects 
are multiplied by zero to prevent them from being selected 
twice. 
Attention module. The attention module works with the 
decoder to calculate the conditional probabilities. During the 
training process, we randomly sample an object as 𝜌𝑡+1 
according to the distribution of the conditional probabilities. 

 
Figure. 2. Input structure of the modified Pointer Network. (A) The input 

𝑋 in the regular 2D-BPP is a 2 × 𝑛 matrix. (B) The input 𝑋 in the regular 

3D-BPP is a 3 × 𝑛 matrix. 

 
Figure. 3. The architecture of the modified Pointer Network, which 

consists of an encoder, a decoder, and an attention module. The attention 
module, integrating with the encoder and decoder, computes the 

conditional probabilities to generate the object packing order. As shown 

in the figure, the conditional probability of the object 2 is the highest, 

while selecting the second object to be packed, so we set 𝜌2 = 2 and take 

the dimensional information of the object 2 as the input of GRU to select 

the third object 𝜌3. 



  

When in the testing process, we select the object with the 
highest conditional probability as 𝜌𝑡+1. 

C. Placement Strategy 

    We need to arrange the ordered objects in the boxes via the 
proposed placement strategy after obtaining the optimal object 
packing order. Conforming to the top-down operation mode, 
the placement strategy based on a height map is used to pack 
the ordered objects onto the target positions, preventing the 
objects from colliding with the inside of the boxes or other 
objects in the boxes. 
    The height map represents the placement configuration of 
all the objects in the box. For the regular 2D-BPP, we discrete 
the bottom edge of the box into a one-dimensional array with 
length 𝐿 along the direction of the box length, i.e. X-axis, and 
each element in the array denotes the height of the objects in 
the box, generating the 2D height map 𝐇𝟐 ∈ ℤ

𝐿, as illustrated 
in Fig. 4(A). For the regular 3D-BPP, we discrete the bottom 
area of the box into a two-dimensional matrix with size 𝐿 ×𝑊 
along the direction of the box length and width, i.e. X- and 
Y-axis, and each element in the matrix denotes the height of 
the objects in the box, generating the 3D height map 𝐇𝟑 ∈
ℤ𝐿×𝑊 (see Fig. 4(B) and Fig. 4(C)). 
    When determining the target positions where objects are 
packed in the box, we follow the principle of minimizing the 
height map, which is detailed as follows. For the regular 
2D-BPP, the object is packed with its bottom-left corner onto 
the target position, which is conjointly determined by the 2D 
height map, object size, and box size. We first find out all the 
allowable positions, which ensure no collision between the 
object and either the inside of the box or other objects in the 
box as well as keeping the object stable. The target position is 
the position that has a minimum 𝑧 value and 𝑥 value among 
all the allowable positions. We further choose the one with a 
minimum 𝑥 value as the target position when some allowable 
positions have equal 𝑧  values. Fig. 5(A) illustrates how to 
determine the target position in detail for the regular 2D-BPP. 
For the regular 3D-BPP, the object is packed with its 
front-bottom-left corner onto the target position, which is 
conjointly determined by the 3D height map, object size and, 
box size. Similar to the 2D-BPP, we first find out all the 
allowable positions and the target position is the position that 
has a minimum 𝑧 value, 𝑦 value, and 𝑥 value among all the 
allowable positions. We further choose the one with a 
minimum 𝑦  value and 𝑥  value as the target position when 
some allowable positions have equal 𝑧 values. Subsequently, 
we pack the bottom-left/ front-bottom-left corner of the object 
onto the target position and update the height map to pack the 
next object. 

D. Loss Function 

    We optimize the solution of the regular 2D-BPP and 
3D-BPP i.e. maximize the space utilization and minimize the 
usage number of boxes via a DRL neural network. To achieve 
this objective, we design the reward function of the proposed 
DRL model by integrating the compactness, pyramid, and 
usage number of boxes, which is formulated as 

 𝑅 = 5 ∗ [𝛼 ∙ (1 −
∑ 𝐶𝑖
𝑘
𝑖=1

𝑘
) + 𝛽 ∙ (1 −

∑ 𝑃𝑖
𝑘
𝑖=1

𝑘
)] () 

where 𝑘 indicates the usage number of boxes, while 𝐶𝑖 and 𝑃𝑖  
are respectively the compactness and pyramid of the 𝑖𝑡ℎ box. 

∑ 𝐶𝑖
𝑘
𝑖=1

𝑘
 and  

∑ 𝑃𝑖
𝑘
𝑖=1

𝑘
 represent the average compactness and 

average pyramid of the 𝑘 boxes, respectively. 𝛼 and 𝛽 are the 
hyperparameters to tradeoff the compactness and pyramid in 
the reward function. The instructions for the compactness and 
pyramid are detailed as follows. 
    Compactness 𝐶 is the ratio between the total area/ volume 
of all objects in the box and the region defined by the 
maximum height in the box, as illustrated in Fig. 5(B, D). The 
region should be minimized to fully leverage the space in the 
box. Therefore, we encourage maximizing the compactness to 
improve the space utilization. Pyramid 𝑃 is the ratio between 
the total area/ volume of all objects in the box and the region 
acquired by projecting all objects to the bottom of the box, as 
shown in Fig. 5(C, E). The objects packed in the box should 
leave more continuous space available to pack the subsequent 
objects to enhance the space utilization. Thus, we encourage 
maximizing the pyramid to avoid continuous space being 
blocked by the objects. 
    We train the DRL neural network via an on-policy 
actor-critic framework, where two networks, namely the 
actor-network and critic-network are constructed (see Fig. 6). 
In this work, the actor-network is the modified Pointer 
Network introduced above, taking action i.e. generating the 
object packing order, and the critic-network consisting of four 
1-D convolution layers is used to evaluate the behavior of the 
actor-network. The bottom 1-D convolution layer of the 
critic-network shares the parameters with the encoder of the 
actor-network, and the critic-network ultimately outputs a 
value that represents the expected reward the actor network 
can acquire concerning a given input sequence. The on-policy 
method means that the actor-network to train and the 
actor-network for interacting are the same. For each batch, we 
use the actor-network with the current parameters to generate 
the object packing order and compute the reward. Then we 
update the parameters of the actor-network by the policy 
gradient. The parameters of the critic-network are updated by 
reducing the difference between the real reward obtained via 
the actor-network and the expected reward predicted via the 
critic-network. The corresponding loss functions of the 
actor-network and critic-network are formulated as 

𝐿𝑎𝑐𝑡𝑜𝑟 = [𝑅 − 𝑉
𝜃(𝑋, ∅)] ∗∑ 𝑙𝑜𝑔𝑃(𝜌𝑡+1, 𝜃|𝜌0, 𝜌1, . . . , 𝜌𝑡)

𝑛−1

𝑡=0

 

 𝐿𝑐𝑟𝑖𝑡𝑖𝑐 = [𝑅 − 𝑉𝜃(𝑋, ∅)]
2
 () 

 
Figure. 4. The illustration of the 2D and 3D height map. (A) The left is the 

height map of a regular 2D-BPP instance, which is a one-dimensional 

array, 𝐇𝟐 = [5 5 2 3 3]. The right shows the bottom-left corner of the 

object to be packed. (B) The left displays the placement configuration of 

the objects in the box of a regular 3D-BPP instance. The right shows the 

front-bottom-left corner of the object to be packed. (C) The height map of 

the regular 3D-BPP instance in (B), which is a two-dimensional matrix. 



  

where 𝜃  and ∅  are respectively the parameters of the 
actor-network and critic-network, while 𝑅  is the reward 
calculated via Eq. (9). 𝑃(𝜌𝑡+1, 𝜃|𝜌0, 𝜌1, . . . , 𝜌𝑡)  is the 
conditional probability computed by the actor-network with 
the parameter 𝜃 via Eq. (6) and Eq. (7). As the output of the 

critic-network, 𝑉𝜃(𝑋, ∅) represents the expected reward that 
the actor-network with the parameter 𝜃  can acquire 
concerning a given input sequence 𝑋. 

III. EXPERIMENTS 

    In this section, we carry out various experiments on the 
regular 2D-BPP and 3D-BPP to evaluate the performance of 
the proposed methods. We first describe the implementation 
details in the experiments, including the construction of the 
datasets and the configuration of the DRL neural network. 
Then the evaluation metrics are introduced for the 
optimization performances of the regular 2D-BPP and 
3D-BPP. Finally, we illustrate the optimization performances 
obtained via our method and conventional packing methods, 
verifying the superiority of our method in both packing 
accuracy and efficiency. 

A. Implementation Details 

    The implementation details about the construction of the 
datasets in this work are introduced as follows. For the regular 
2D-BPP, we set the number of objects to be packed to 40, the 
lengths and heights of which are randomly sampled from a 
uniform distribution of 1–5, respectively. Moreover, All the 
boxes have the same size (10, 10). For the regular 3D-BPP, we 
set the number of objects to be packed to 70, the lengths, 
widths, and heights of which are randomly sampled from a 
uniform distribution of 2–5, respectively. Moreover, All the 
boxes have the same size (10, 10, 10). 
    Following the aforementioned statements, we randomly 
generate 100,000 instances as the training set and 10,000 
instances as the validation set to train the DRL neural network 
for the optimization of the regular 2D-BPP and 3D-BPP, 
respectively. We use the Adam optimizer to update the 
parameters of the actor-network and critic-network. The 
learning rate is set to 5 × 10−4  for both actor-network and 
critic-network. The batch size is set to 50 while the total 
number of training epochs is set to 5. Thus, during the training 
process, the parameters of the actor-network and 
critic-network are updated 20,000 times in total. The 
hyperparameters 𝛼 and 𝛽 in the reward function are assigned 
with 0.5 and 0.5 in the regular 2D-BPP and 3D-BPP, which 

means we treat the compactness and pyramid as equally 
important. 

B. Evaluation Metrics 

    To evaluate the optimization performances, we employ 
three indicators, including the average compactness, average 
pyramid, and usage number of boxes. The average 
compactness displays the space utilization of the boxes while 
the average pyramid measures the available space in the boxes 
to pack the subsequent objects, so we encourage maximizing 
the average compactness and average pyramid as well as 
minimizing the usage number of boxes. Meanwhile, we take 
the operation time to complete per instance as another 
indicator to have an intuitional evaluation of the packing 
efficiency. 

C. Comparison with Conventional Packing Methods 

    We compare our method with conventional packing 
methods which respectively generate the object packing order 
randomly (Random), sorting the objects in descending order 
of area/ volume (B-Box Seq) [31], and employing the Biased 
Random Key Genetic Algorithm (BRKGA) [32] to optimal 
the object packing order. Moreover, the placement strategy 
based on a height map is applied to arranging the ordered 
objects in the boxes. 
Figure. 7 shows the optimization performances of a regular 
2D-BPP instance where the same collection of rectangular 
objects is packed into boxes of the same size, using the 
conventional packing methods (Random, B-Box Seq, and 

 
Figure. 5. The illustration of the placement strategy and the compactness and pyramid in the reward function. The pink rectangular represents the object to 

be packed and the green solid dot is its bottom-left corner. The red solid dot indicates the allowable positions (0, 5) and (3, 2), and the position (3, 2) with 

the minimum 𝑧 and 𝑥 values is chosen as the target position, highlighting with a blue hollow circle (A). The compactness 𝐶 is the ratio between the total 

area/ volume of all objects in the box and the region (red dashed line) defined by the maximum height in the box (B, D). The pyramid 𝑃 is the ratio 

between the total area/ volume of all objects in the box and the region acquired by projecting all objects to the bottom of the box (green dashed line), which 
is equal to the summation over the height map (C, E). 

 

 

 

Figure. 6. The actor-critic framework to train the DRL neural network. 
The actor take the observation of the environment, i.e. the dimensional 

information of the objects and boxes as input, and take action i. e. generate 

the object packing order, obtaining corresponding reward. The critic 
evaluate the behavior of the actor, predicting the expected reward that the 
actor can acquire. 

 

 



  

BRKGA) and our method (DRL). Obviously, only our method 
uses the minimum number of boxes to accommodate all the 
objects. Table Ⅰ displays the average compactness, average 
pyramid, usage number of boxes, and the operation time to 
complete per instance of the regular 2D-BPP on the average of 
1,000 BPP instances, obtained via the conventional packing 
methods and our method. Compared to the BRKGA, our 
method increases the average compactness by 0.019 (0.929 vs. 
0.910) and decreases the usage number of boxes by 0.009 
(4.203 vs. 4.212). Moreover, our method far outperforms the 
BRKGA in the operation time, which saves the operation time 
more than 1000 times. 
Figure. 8 shows the optimization performances of a regular 
3D-BPP instance where the same collection of cuboid objects 
is packed into boxes of the same size, using the conventional 
packing methods (Random, B-Box Seq and BRKGA) and our 
method (DRL). Obviously, only our method uses the 
minimum number of boxes to accommodate all the objects. 
Table Ⅱ displays the average compactness, average pyramid, 
usage number of boxes, and the operation time to complete per 
instance of the regular 3D-BPP on the average of 1,000 BPP 

TABLE I. OPTIMIZATION PERFORMANCE OF THE REGULAR 2D-BPP ON THE 

AVERAGE OF 1,000 INSTANCES, OBTAINED VIA THE METHODS OF RANDOM, 
B-BOX SEQ, BRKGA AND DRL (OURS), WHERE 𝐶, 𝑃, AND NUM. REPRESENT 

THE AVERAGE COMPACTNESS, AVERAGE PYRAMID, AND USAGE NUMBER OF 

THE BOXES RESPECTIVELY WHILE LAT. IS THE OPERATION TIME TO 

COMPLETE PER INSTANCE. 

Methods 𝑪 𝑷 Num. Lat.(ms) 

Random 0.832 0.949 4.646 0.672 

B-Box Seq 0.894 0.964 4.307 0.927 

BRKGA 0.910 0.990 4.212 832.715 

DRL 0.929 0.985 4.203 0.764 

 
instances, obtained via the conventional packing methods and 
our method. Compared to the BRKGA, our method increases 
the average compactness by 0.022 (0.791 vs. 0.769) and 
decreases the usage number of boxes by 0.01 (4.078 vs. 4.088). 
Moreover, our method far outperforms the BRKGA in the 
operation time, which saves the operation time more than 
1000 times. 

 

 

 

 
Figure. 7. The optimization performances of the regular 2D-BPP via the methods of Random, B-Box Seq, BRKGA and DRL (ours) respectively from top 
to bottom. 

 



  

IV. CONCLUSION 

    In summary, this work mainly focuses on the optimization 

of the Bin Packing Problem. We present a novel optimization 

methodology via a DRL neural network modeled by a 

modified Pointer Network for both 2D-BPP and 3D-BPP for 

regular objects. A series of experiments implemented to 

compare our method with conventional packing methods 

demonstrate the superiority of our method in both packing 

accuracy and efficiency. 

    The limitations of this work can be summarized as follows. 

First, we focus on the discrete BPP where the dimension of 

the objects and boxes are both integers. When deploying our 

method to realistic application scenarios, the dimension of the 

practical objects requires to be approximated by rounding up, 

which leads to the gaps in the boxes and the decline of the 

space utilization. Second, we limit the optimization to regular 

objects with rectangular or cuboid shapes, while the objects to 

be packed in realistic application environments are usually  

TABLE Ⅱ. OPTIMIZATION PERFORMANCE OF THE REGULAR 3D-BPP ON THE 

AVERAGE OF 1,000 INSTANCES, OBTAINED VIA THE METHODS OF RANDOM, 
B-BOX SEQ, BRKGA AND DRL (OURS), WHERE 𝐶, 𝑃, AND NUM. REPRESENT 

THE AVERAGE COMPACTNESS, AVERAGE PYRAMID, AND USAGE NUMBER OF 

THE BOXES RESPECTIVELY WHILE LAT. IS THE OPERATION TIME TO 

COMPLETE PER INSTANCE. 

Methods 𝑪 𝑷 Num. Lat.(ms) 

Random 0.677 0.929 4.683 37.075 

B-Box Seq 0.747 0.964 4.253 44.323 

BRKGA 0.769 0.958 4.088 48463.754 

DRL 0.791 0.961 4.078 39.583 

 

irregular. To deal with the irregular objects, we need to 

approximate the irregular objects to their minimum bounding 

boxes, resulting in space waste and possibly unstable 

placement. Given the above limitations, we assume to extend 

our method from discrete to continuous as well as from the 

regular objects to the irregular objects in future work. 

 

 

 

 
Figure. 8. The optimization performances of the regular 3D-BPP via the methods of Random, B-Box Seq, BRKGA and DRL (ours) respectively from top 
to bottom in the figure. 
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