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We investigate a generalized antiferromagnetic cluster XY model in a transverse magnetic field, where long-
range interactions decay algebraically with distance. This model can be exactly solvable within a free fermion
framework. By analyzing the gap, we explicitly derive the critical exponents ν and z, finding that the relationship
νz = 1 still holds. However, the values of ν and z depend on the decaying exponent α, in contrast to those for
the quantum long-range antiferromagnetic Ising chain. To optimize scaling behavior, we verify these critical
exponents using correlation functions and fidelity susceptibility, achieving excellent data collapse across various
system sizes by adjusting fitting parameters. Finally, we compute the entanglement entropy at the critical point
to determine the central charge c, and find it also varies with α. This study provides insights into the unique
effect of long-range cluster interactions on the critical properties of quantum spin systems.

I. INTRODUCTION

Understanding quantum phase transitions (QPTs) in many-
body systems, which describe complex behaviors as external
parameters are varied, is fundamental to quantum physics [1].
A widely studied model for exploring QPTs is the transverse
Ising model [2, 3]. Initially developed to describe spin inter-
actions in magnetic materials [4], the Ising model finds nu-
merous applications in frontier fields such as quantum com-
puting [5–7], quantum information [8], machine learning [9–
11], and social dynamics [12]. While the one-dimensional
and two-dimensional versions of the Ising model can be
solved exactly [13–15], the three-dimensional case remains
unsolved [16]. The original Ising model considered only
nearest-neighbor interactions. However, describing many-
body systems solely through local interactions is often an ap-
proximation that may fail in many real materials, where the
long-range interactions play a crucial role in capturing essen-
tial physics [17]. In particular, long-range interactions can
give rise to emergent phases and critical behaviors that dif-
fer fundamentally from those in systems dominated by short-
range interactions [18–34].

Unlike typical long-range interactions between two distant
sites, cluster models involve interactions spanning multiple
sites. The cluster Ising model is another important exten-
sion [35–37], closely related to the cluster state in quantum
computation [38, 39]. Cluster state quantum computing [40–
46] is also known as measurement-based quantum computing,
where entangled cluster states are used as the resource for per-
forming quantum computations [46]. An increase in the num-
ber of entangled qubits has exponentially enhanced quantum
computing capabilities [47].

Meanwhile, advancements in quantum simulation tech-
niques have significantly expanded the capabilities for con-
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structing complex quantum many-body systems and explor-
ing exotic phases of matter [48, 49]. Rydberg atoms are par-
ticularly notable for their exceptional programmability, due
to a combination of Van der Waals and dipole-dipole inter-
actions [50–55], and thus provide an excellent platform for
studying such models with cluster interactions. This platform
enables precise manipulation of neutral atoms to exhibit long-
range and tunable interactions, including long-range dipolar
XY interactions [56, 57]. The cluster XY model introduces
anisotropy as a tunable parameter and has attracted increas-
ing attention [58]. However, the QPTs and critical phenom-
ena in cluster models remain insufficiently explored. Under-
standing the universality class of these transitions is essential
for uncovering the unique properties of many-body systems,
particularly given recent experimental advances in measuring
critical exponents [59, 60].

In this work, we fill this gap by investigating the critical be-
havior of a generalized antiferromagnetic cluster XY model
with long-range interactions that decay algebraically with dis-
tance. The model is analytically solvable, which enables the
precise extraction of critical exponents. Interestingly, we find
that the critical exponents vary continuously with the decay
exponent, deviating significantly from behavior observed in
typical long-range models. These analytical results are fur-
ther validated through finite-size scaling analyses of correla-
tion functions and several information-theoretic measures.

This paper is organized as follows. In Sec. II, we briefly
present the long-range cluster XY models and explicitly de-
rive the critical exponents by analyzing the gap. In Sec. III,
we analyze the critical behaviors of correlation functions. In
addition, fidelity susceptibility and entanglement entropy are
analyzed. The summary and conclusion are given in Sec. IV.
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II. MODEL AND QUANTITIES

We consider a spin-1/2 long-range cluster XY model in a
transverse magnetic field, which can be given by

H =

N∑
j=1

M∑
m=1

Jm

(
1 + γ

2
σx
j σ

x
j+m +

1− γ

2
σy
j σ

y
j+m

)

× Oz
j+1,m−1 − h

N∑
j=1

σz
j , (1)

where the operators σx,y,z
j are the Pauli matrices for spin at

jth site, the Jordan-Wigner string Oz
j+1,m−1=

(∏j+m−1
p=j+1 σz

p

)
accumulates the parity of m − 1 consecutive spins starting
from j + 1th site, γ denotes the anisotropy of the XY in-
teractions, and h characterizes the strength of the transverse
magnetic field. Here the periodic boundary condition (PBC)
is assumed, i.e., σa

N+j = σa
j . The interactions Jm between

two spins decay algebraically with the distance m as

Jm = Jm−α. (2)

For convenience, we set J = 1 and the power-law-decaying
exponent α > 0. In the cluster XY model (1), it is apparent
that the ground-state energy of the system diverges for α ≤ 1
if one does the infinite sums. The largest distance of long-
range interactions is truncated to be M . For the case M =
1, Eq.(1) is reduced to the thoroughly studied anisotropic XY
model. For M = 2, Eq.(1) has (XZX + YZY) type three-site
interactions. The halfway interactions are the farthest inter-
actions correspond to M = N/2 (assuming N is even). The
Hamiltonian in Eq. (1) exhibits distinct symmetry properties
based on the value of γ. For γ ̸= 0, the system has a dis-
crete Z2 symmetry. However, when γ = 0, this symmetry
is enhanced to a continuous U(1) symmetry. As a result, the
critical properties vary fundamentally between these cases—a
distinction that holds not only for the nearest-neighbor Ising
case (M = 1) but also extends to arbitrary M with the inclu-
sion of Jordan-Wigner strings.

The Jordan-Wigner transformation maps commuting oper-
ators of different spins into anti-commuting fermionic opera-
tors as

σ+
j = exp

[
iπ

j−1∑
n=1

c†ncn

]
cj = Oz

1,j−1cj , (3)

σ−
j = exp

[
−iπ

j−1∑
n=1

c†ncn

]
c†j = Oz

1,j−1c
†
j , (4)

σz
j = 1− 2c†jcj , (5)

where spin ladder operators are defined as σ±
j = 1

2 (σ
x
j ± iσy

j ),
and c+j (cj) represents the fermion creation (annihilation) op-
erator at site j. By Jordan-Wigner transformation the Hamil-
tonian in Eq.(1) can thus be written as a quadratic form of
the creation operator and annihilation operator of spinless

fermions.

HF =

N∑
j=1

{
M∑

m=1

Jm[(c+j+mcj + c+j cj+m)

+γ(cj+mcj + c+j c
+
j+m)]− h(1− 2c+j cj)}. (6)

Note that the boundary term in Eq. (6) contains an additional
phase factor cN+1= c1(−1)(Np+1), where the total fermion
number Np=

∑N
j=1 c

†
jcj . This subtle boundary effect leads

to either PBC or antiperiodic boundary conditions (APBC)
for the spinless fermion chain [61]. The boundary contribu-
tion becomes negligible in the thermodynamic limit due to
the 1/N correction. To diagonalize the Hamiltonian in Eq.(6)
within the APBC channel, we consider systems with even
fermion-number parity. By performing a Fourier transforma-
tion, we obtain the Hamiltonian in momentum space:

HF =

π∑
k=−π

(
c†k c−k

)
M̂k

(
ck
c†−k

)
, (7)

with

M̂k =

(
ϵk −iδk
iδk −ϵk

)
, (8)

and

ϵk =

M∑
m=1

Jm cosmk + h, δk =

M∑
m=1

Jmγ sinmk, (9)

where k = nπ/N , n = −(N − 1/2),−(N − 3/2), ..., (N −
3/2), (N − 1/2). We diagonalize the Hamiltonian by succes-
sive application of the Bogoliubov transformation,

ηk = cos(θk/2)ck − i sin(θk/2)c
+
−k, (10)

imposing θ−k = −θk. To this end, the Hamiltonian can be
reduced to a diagonal form given by

HF =

π∑
k=−π

εk(η
+
k ηk − 1

2
), (11)

where the excitation energy of Bogoliubov quasiparticles

εk = 2
√
δ2k + ϵ2k (12)

and the ground state with the form of a BCS state

|Ψg⟩ =
∏

0≤k≤π

[cos(θk/2) + i sin(θk/2)c
+
k c

+
−k]|0⟩c, (13)

with

θk = − arctan(δk/ϵk), (14)

ηk|Ψg⟩=0, ck|0⟩c=0. In this way, the ground-state energy can
be obtained E0 = −1

2

∑
kεk. The gap closes when δkc

= 0
and ϵkc

= 0. Two straightforward solutions can be yielded
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for kc1 = 0 and kc2 = π. The critical values of the magnetic
field corresponding to the transitions from the antiferromag-
netic phase to the paramagnetic phase are

hc1 = −
M∑

m=1

Jm, hc2 = −
M∑

m=1

(−1)mJm. (15)

Regarding Eq.(2) with M = ∞, hc1=-ζ(α) and hc2=(1 −
21−α)ζ(α), where the Riemann zeta function ζ(α) is a func-
tion of a complex variable α that analytically continues the
sum of the Dirichlet series ζ(α)=

∑∞
m=1 m−α. For α → 1,

hc1 goes to negative infinity and hc2 approaches ln 2. Con-
versely, as α approaches infinity, which corresponds to the an-
tiferromagnetic XY model with nearest-neighbor interactions,
hc1 tends toward -1 and hc2 approaches 1 (see Fig. 1).

The critical behavior is determined by those low-energy
states near the critical mode. As h approaches, the gap van-
ishes as ∆ ∼ (h − hc)

νz , where ν and z are the correlation
length and dynamic exponents, respectively. The gap near
criticality hc1 is

∆1 ≃ ε0 = 2|h+
∑

Jm| = 2|h− hc1|, (16)

and the one near criticality hc2 is

∆2 ≃ επ = 2|h+
∑

(−1)mJm| = 2|h− hc2|. (17)

The critical exponents then satisfy νz = 1. Since the size
dependence of the gap, ∆ ∼ N−z , defines the dynamic ex-
ponent z, we expand the gap around the critical line hc from
threshold critical mode kc, i.e., |k − kc| ≪ 1,

ε0 ∼ −2

(
M∑

m=1

mJmγ

)
|k|, (18)

επ ∼ −2

(
M∑

m=1

(−1)mmJmγ

)
|k − π|. (19)

Take the first critical point hc1 as an example, the critical ex-
ponent z can be extracted by the following relationship,

N−z ∼ 2|
M∑

m=1

mJmγ| · |k|. (20)

Critical exponent ν and z for the first critical point hc1 with
respect to α for the long-range cluster XY model are shown in
Fig. 2. To obtain the critical exponent z, we selected a range
of N values from Nmin to Nmax for fitting. In this model, the
critical exponent is no longer constant and will change with α.
When α > 3, ν = 1, z = 1. In this case, the model come back
to the traditional XY model with only nearest-neighbor inter-
actions. Notably, the case of α = 2 represents a special point
where the correlation function is characterized by an exponent
ν = 1, albeit with logarithmic corrections. These corrections
may account for the observed numerical deviation of the ex-
ponent from the expected value of ν = 1 [62]. In numerical
calculations for extracting the critical exponents, noticeable
finite-size effects are observed [63].

1 2 3 4 5 6
α

−4

−3

−2

−1

0

1

h

hc1

hc2

FIG. 1. Critical lines for the power-law-decaying exponent α with
M = ∞, calculated according to Eq. (15). The red and blue lines
denote the critical fields hc1 and hc2, respectively. The dashed lines
indicate the location of the critical point as α → ∞.
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FIG. 2. Critical exponents ν and z at the first critical point hc1

as a function of α for the long-range antiferromagnetic cluster XY
chain with γ ̸= 0. Three specific values of α (α = 1.6, 1.8, 2.0) are
highlighted with red solid dots, as they will be used in subsequent
scaling analysis. Here we use Nmin = 1000 and Nmax = 10000 to
perform the fitting.

III. RESULTS

To determine whether the ground state of the model has
long-range order, we calculate the two-point correlations



4

0.0

0.2

0.4

0.6

0.8

1.0
|〈σ

x i
σ
x i+
r〉|

(a)

1 2 3

ln r

−1.0

−0.5

ln
|〈σ

x i
σ
x i+
r
〉|

r = 1

r = 2

r = 4

r = 16

r = 64

r = 512

−2 −1 0 1 2
h

0.0

0.2

0.4

0.6

0.8

1.0

|〈σ
x i
σ
x i+
N
/2
〉|

−5 −4
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ln
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σ
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N
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〉|

α = 2
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α =∞

FIG. 3. Correlation function |⟨σx
i σ

x
i+r⟩| as a function of h un-

der various conditions: (a) Correlation for different values of r with
α = 2. The inset displays the power-law decay of the correlation
at the critical point hc2, with a decay exponent of -0.3647; (b) Cor-
relation for different values of α when r = N/2. The inset shows
the power-law relationship between ln |⟨σx

i σ
x
i+N/2⟩| and ln |h−hc|,

with exponents of 0.2461, 0.2498, and 0.2498 for α = 2, 10, and ∞,
respectively. Here, we set γ = 1 and N = 1024.

⟨σx
i σ

x
i+r⟩. From the Jordan-Wigner transformation, we have

⟨σx
i σ

x
i+r⟩ = ⟨BiAi+1Bi+1Ai+2 · · ·Bi+r−1Ai+r⟩,

(21)

with Ai = c+i + ci and Bi = c+i − ci. When εk is always pos-
itive, this correlation function can be calculated by the Wick
theorem [61, 64–68], namely

⟨σx
i σ

x
i+r⟩

=

∣∣∣∣∣∣∣∣
⟨BiAi+1⟩ ⟨BiAi+2⟩ · · · ⟨BiAi+r⟩

⟨Bi+1Ai+1⟩ ⟨Bi+1Ai+2⟩ · · · ⟨Bi+2Ai+r⟩
...

...
. . .

...
⟨Bj−1Ai+1⟩ ⟨Bj−1Ai+2⟩ · · · ⟨Bj−1Ai+r⟩

∣∣∣∣∣∣∣∣ ,
(22)

where

⟨BiAi+r⟩ = − 1

2π

∫ π

−π

cos(rk)ϵk − sin(rk)δk√
ϵ2k + δ2k

dk. (23)

As shown in Fig. 3(a), the correlation function |⟨σx
i σ

x
i+r⟩|

is examined for varying distances r as a function of the ex-
ternal magnetic field h. In the interval hc1 < h < hc2,
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βP = 0.3643
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P (a3)α = 1.6

5 6 7
lnN
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−0.6

−0.5

ln
P

(N
,h

c) (b3)

βP/ν = 0.0559

0 20
N 1/ν(h− hc)

0.1

0.2

0.3

0.4

N
−
β
P
/ν
P

(c3)

ν = 1.7157

βP = 0.0959

FIG. 4. Critical behavior of the correlation function for α = 2.0,
1.8, and 1.6 with γ = 1.0: (a) First derivative of the correlation
function P with respect to h; (b) Logarithmic plot of P(N,hc) ver-
sus system size N ; (c) Scaled derivative of the correlation function,
N−βP/νP , plotted as a function of the scaled variable N1/ν(h−hc).
All curves for different lattice sizes collapse onto a single curve when
the correlation length critical exponent is set to ν = 1.1438, 1.3351,
and 1.7157 for α = 2.0, 1.8, and 1.6, respectively.

|⟨σx
i σ

x
i+r⟩| tends towards a nonzero constant with increas-

ing r, indicating the presence of long-range order character-
izing the antiferromagnetic phase. Conversely, for h < hc1 or
h > hc2, the correlation function also saturates but reflects a
paramagnetic phase lacking long-range order. Notably, at the
critical point hc2, the inset reveals a power-law decay of the
correlation function as a function of distance r, described by
|⟨σx

i σ
x
i+r⟩| ∼ rk0 with k0 = −0.3647.

As depicted in Fig. 3(b), by increasing α, the region of
the antiferromagnetic phase has shrunk. It is observed that
increasing α results in a shrinkage of the antiferromagnetic
phase region, with no discernible differences between α = 10
and α = ∞. The inset illustrates a power-law relationship
between ln |⟨σx

i σ
x
i+N/2⟩| and ln |h−hc|, yielding coefficients

of 0.2461, 0.2498, and 0.2498 for α = 2, 10,∞, respectively.
This comprehensive analysis highlights the dependence of the
system’s phase behavior on the tuning parameter α and de-
lineates the phase boundaries in the context of the cluster XY
model.

The scaling behavior of the first derivative of the
farthest two-point correlation function in x-direction
∂⟨σx

i σ
x
i+N/2⟩/∂h is shown in Fig. 4. To simplify the de-

scription, we first define P ≡ ∂⟨σx
i σ

x
i+N/2⟩/∂h. The first

derivative of the correlation function P for a finite system of
size N in the neighborhood of a quantum critical point shall
obey the universal scaling form [69]

P(N,h) = NβP/νfP(|h− hc|N1/ν), (24)

where ν is the correlation-length critical exponent, βP is a fit-
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ting parameter chosen to improve data collapse in the scaling
analysis, and fP is a universal scaling function. Numerical
results for P as a function of h at γ = 1 for different system
sizes are presented in Fig. 4(a). As h increases, P exhibits
a peak, suggesting the occurrence of a phase transition at this
point. With increasing system sizes N , the peaks of P become
more pronounced and the maximal value of P is expected that

P(N,hc) = NβP/νfP(0). (25)

When α = ∞, βP = 2, ν = 1 [27, 70, 71]. As
shown in Fig. 4(b), βP/ν = 0.4453, 0.2728, 0.0559 for α =
2.0, 1.8, 1.6 respectively.

TABLE I. Critical exponents {z, ν} and order parameter exponents
{βP , βF } through relations Eqs. (24) and (28).

α γ ν z βP βF

2.0 1.0 1.1438 0.8743 0.5093 0.7056
2.0 0.8 1.1438 0.8743 0.4852 0.7198
2.0 0.6 1.1438 0.8743 0.4491 0.7328
1.8 1.0 1.3351 0.7490 0.3643 0.5402
1.8 0.8 1.3351 0.7490 0.3239 0.5515
1.8 0.6 1.3351 0.7490 0.2611 0.5557
1.6 1.0 1.7157 0.5829 0.0959 0.2449

As shown in Fig. 4(c), using the critical exponent from
Eq. (20), we can get a good collapse of scaled function
N−βP/νP as a function of scaled variable N1/ν(h − hc) for
a given βP , which is extracted from the fitting in Fig. 4(b).
For γ = 0.8 and 0.6, similar results are shown in Fig. 5. The
corresponding critical exponents z, ν and fitting parameters
βP , βF are summarized in Table I. Different values of γ share
the same critical exponents ν and z, only with different values
of βP .
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−
β
P
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ν = 1.1438

βP = 0.4491

FIG. 5. Critical behavior of the correlation function P for γ = 0.8
and 0.6 with α = 2.0: (a) First derivative of the correlation function
P with respect to h; (b) Logarithmic plot of P(N,hc) versus system
size N ; (c) Scaled function N−βP/νP as a function of the scaled
variable N1/ν(h− hc).

To be more unbiased, we also show the results of the fidelity
susceptibility. The fidelity susceptibility is a general probe of
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lnN
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FIG. 6. Critical behavior of the fidelity susceptibility χF for
α = 2.0, 1.8, and 1.6 with γ = 1. (a) Fidelity susceptibility χF

as a function of h; (b) Logarithmic plot of χF(N,hc) versus system
size N ; (c) Scaled fidelity susceptibility N−βF /νχF as a function
of the scaled variable N1/ν(h − hc). Data for different lattice sizes
collapse onto a single curve when choosing the correlation length
critical exponents ν = 1.1438, 1.3351, and 1.7157, respectively.

the QPTs. By definition, quantum fidelity of a many-body
Hamiltonian Ĥ(λ) = H0 + λHI is [72]

F (λ0, λ1) = |⟨Ψ0(λ0)|Ψ0(λ1)⟩|, (26)

where |Ψ0⟩ is the ground state, λ0 and λ1 specify two points
in the parameter space of driving parameter λ. In this respect,
fidelity susceptibility is defined as leading order of the Taylor
expansion of the overlap function F (λ, λ+ δλ), given by [73,
74]

χF = lim
δλ→0

−2 lnF (λ, λ+ δλ)

(δλ)2
. (27)

The fidelity susceptiblity χF obey the similar universal scaling
form

χF(N,h) = NβF /νfF (|h− hc|N1/ν), (28)

where βF is a fitting parameter used to achieve optimal scaling
collapse for the fidelity susceptibility, and fF is a universal
scaling function. Figure 6 shows the scaling behavior for the
fidelity susceptibility χF, yielding the same critical exponents
ν and z.

Moreover, we also study the critical behavior of the entan-
glement entropy. Quantum phase transitions arise when quan-
tum fluctuations alter the ground-state properties of a many-
body system. At the critical point, entanglement entropy re-
veals non-local correlations across all distances, which makes
it a valuable tool for identifying these transitions. The entan-
glement entropy is defined as follow

SL = −
∑
k

[ξk ln ξk + (1− ξk) ln(1− ξk)] , (29)
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FIG. 7. The half-chain entanglement entropy SN/2 as a function
of h for different system sizes N with α = 2 and γ = 1. Inset (a)
displays SL versus L at the critical point hc2, following Eq. (30).
Inset (b) shows the central charge c as a function of α at the right
critical points for γ = 1 and γ = 0.6.

where ξk is the k-th eigenvalue of the correlation matrix
Ĝij = Tr(ρAc

†
i cj). Near the critical point, the block entan-

glement obtains a logarithmic correction with [75, 76]

SL ∼ c

3
ln(

N

π
sin(

πL

N
)) + S′, (30)

where c is the central charge, varying for different universality
classes, and S′ is a non-universal constant, which is shown in
the upper inset. In the cluster XY model, central charge c is
non-universal and varies with α. The block entanglement en-
tropy SL with N = 128, 256, 512, 1024 along the line which
crosses two different phases when α = 2 is shown in Fig. 7.
Here the half-chain entanglement entropy SN/2 can also be
treated as a detector of the quantum critical points in the clus-
ter XY model. It is observed that the entanglement entropy
reaches its maximum at two critical points, which approxi-
mately occur at h ≈ −1.64 and h ≈ 0.82. These peaks in
SN/2 indicate QPTs of the system. The inset in Fig. 7(a) dis-
plays the entanglement entropy SL as a function of the sub-
system size L for the system size N = 1024. The entropy
SL exhibits a characteristic dome-like shape, peaking in the
middle of the system and decreasing towards the edges, con-
sistent with Eq. (30) which is the prediction for a critical sys-
tem near a conformal field theory (CFT) describing the phase
transition. The inset in Fig. 7(b) shows the dependence of the
central charge c on the decaying exponent α for γ = 1.0 and

γ = 0.6, with a fixed system size of N = 1024. The central
charge differs between values of γ, and as α increases, c grad-
ually converges to approximately 0.5, suggesting a transition
into a critical phase that can be described by conformal field
theory (CFT) [77].

IV. SUMMARY

In conclusion, we have analyzed the critical properties of
a generalized antiferromagnetic cluster XY model in a trans-
verse magnetic field with algebraically decaying long-range
interactions. By using exact solutions within the framework
of free fermions, we explicitly determined the critical expo-
nents ν and z from the energy gap, confirming the relationship
νz = 1. However, unlike the quantum long-range antiferro-
magnetic Ising chain, where critical exponents remain fixed,
we observed that ν and z vary with the decay exponent α. To
further validate these critical exponents, we examined corre-
lation functions and fidelity susceptibility. By carefully ad-
justing scaling parameters, we achieved an excellent data col-
lapse onto a single curve for the rescaled field-derivative of the
farthest two-point correlation function across different sys-
tem sizes, demonstrating consistency in our findings. Fidelity
susceptibility exhibits a comparable scaling behavior, further
supporting these results. Additionally, entanglement entropy
analysis at the critical point revealed that the central charge c
depends on α, converging to 0.5 as α increases—a behavior
that parallels z and highlights the distinctive effects of clus-
ter interactions on quantum correlations and critical phenom-
ena. Our findings deepen the understanding of non-local in-
teractions in many-body systems and offer insights for design-
ing quantum simulators and computational models leveraging
cluster-based interactions to explore complex quantum behav-
iors.
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Supplemental Material for “Continuously varying critical exponents in an exactly solvable
long-range cluster XY model”

Appendix A: Finite-size effect on the fitted critical exponents

In this supplementary material, we discuss the impact of finite-size effects on the extraction of the critical exponents. As we
mentioned before, the critical exponent z can be extracted by the following relationship,

N−z ∼ 2|
M∑

m=1

mJmγ| · |k|, (A.1)

where M = N/2. Taking the logarithm of both sides of the above relationship (A.1), we obtain:

−z logN ∼ log

M=N/2∑
m=1

1

mα−1

+ log(2γ|k|). (A.2)

Here, we can extract the critical exponent z through linear regression. We choose Nmin = N/10, and Nmax = N to do the
fitting.
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FIG. 1. The impact of finite-size effects on the extraction of the critical exponent ν. For the fitting, we select Nmin = N/10, and Nmax = N
to do the fitting.

The corresponding result is shown in Fig. 1. As the system size N increases, the critical exponent ν will converge to 1.2743,
1.0825, 1.0159 and z will converge to 0.7848, 0.9238, 0.9843 when α = 1.8, 2.0, 2.2, respectively.

Appendix B: Asymptotic Analysis of the Fitted Critical Exponents

This scaling behavior can be understood analytically by examining the asymptotic form of (A.1). Specifically, we define f(N)
as

f(N) ∝

∣∣∣∣∣∣ 1N
N/2∑
m=1

m

mα

∣∣∣∣∣∣ =
∣∣∣∣ 1NHN/2,α−1

∣∣∣∣ , (B.1)
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where Hn,r =
∑n

j=1 j
−r represents the generalized harmonic number for an exponent r. To understand the scaling behavior

of Hn,r, we apply the Euler-Maclaurin formula for n ≫ 1 and r ̸= 1, which gives the asymptotic expansion, which gives the
asymptotic expansion:

Hn,r = ζ(r) +
n1−r

1− r
+

n−r

2
− rnr−1

12
+O(n−r−2). (B.2)

where ζ(r) is the Riemann zeta function. Substituting this expansion into HN/2,α−1, we obtain:

HN/2,α−1 ≈ ζ(α− 1) +
(N/2)2−α

2− α
+

(N/2)1−α

2
− (α− 1)(N/2)−α

12
, (B.3)

For large N , HN/2,α−1 is dominated by either ζ(α − 1) or the power-law term (N/2)2−α, depending on the value of α.
Substituting HN/2,α−1 back into f(N), we find:

f(N) ∝
∣∣∣∣ 1N

[
ζ(α− 1) +

(N/2)2−α

2− α

]∣∣∣∣ . (B.4)

For α > 2, the term (N/2)2−α becomes asymptotically negligible compared to ζ(α− 1), so that:

f(N) ∝ N−1, (B.5)

yielding z = 1. For α < 2, ζ(α− 1) is asymptotically negligible compared to (N/2)2−α, leading to:

f(N) ∝ N1−α, (B.6)

which implies z = α− 1.
These results are consistent with the observed numerical trends. For α ≥ 2, the first term dominates, while for α < 2, the

second term becomes more significant. The crossover at α = 2 marks a transition between the dominance of ζ(α − 1) and
(N/2)2−α. In this case, logarithmic corrections may arise and require careful consideration in the numerical analysis.

In summary, the asymptotic analysis leads to the following results for the value of z in the thermodynamic limit:

z =

{
1 if α ≥ 2,

α− 1 if α < 2.
(B.7)


