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Abstract

Size estimation is a hard computer vision problem with widespread applications
in quality control in manufacturing and processing plants, livestock management,
and studies on animal behaviour. Typically, image-based size estimation is facili-
tated by either well-controlled imaging conditions, the provision of global cues, or
both. Reference-free size estimation is challenging, because objects of vastly dif-
ferent sizes can appear identical if they are of similar shape. Here, we attempt to
implement automated and reference-free body size estimation to facilitate large-
scale experimental work in a key model species in sociobiology: the leaf-cutter
ants. Leaf-cutter ants are a suitable testbed for reference-free size-estimation,
because their workers differ vastly in both size and shape; in principle, it is
therefore possible to infer body mass, a proxy for size, from relative body pro-
portions alone. Inspired by earlier work by E.O. Wilson, who trained himself to
discern ant worker size from visual cues alone, we used various deep learning
techniques to achieve the same feat automatically, quickly, and at scale from a
single reference image: Wilson Only Looks Once (WOLO). Utilizing over 3 million
hand-annotated and computer-generated images, a set of deep neural networks—
including regressors, classifiers, and detectors—were trained to estimate the body
mass of ants from image cut-outs. The WOLO networks approximately matched
human performance, measured for a small group of both experts and non-experts,
but were about 1000 times faster. Further refinement may enable accurate, high-
throughput, and non-intrusive body weight estimation at scale, and so eventually

1



contribute to a more nuanced and comprehensive understanding of the complex
division of labour that characterises polymorphic insect societies.

Introduction

Image-based size estimation is an important computer vision task, rendered chal-
lenging by the complexity and variability of visual cues. Applications range from
agriculture and robotics to animal behavioural research [1–8]. Although different in
motivation, these applications have in common the need to unify the appearance
of the target subjects across images, and to provide pre-processed information for
accurate inference [1, 3, 7, 9]. Image-based size estimation typically focuses on robotic
or agricultural subjects [1–8]; popular methods include convolutional network archi-
tectures that produce intermediate pose estimates, or binary image segmentations,
to provide approximate measurements from which size-estimates can be extracted
[5, 6, 8]. In agricultural settings, e.g. in fruit processing plants [2, 4] or in livestock
rearing [5, 6, 8], the recording environments are typically standardised, so that images
have consistent camera-subject angles and camera-subject distances, which reduces
task complexity. As visual information alone is often insufficient to accurately esti-
mate size, it is common practise to include absolute scale information in the images
[1, 3, 7, 9], for example in form of reference objects of known size. Radar, sonar,
or infrared light, can help address the same problem, because weight can then be
estimated from coarse 3D object reconstructions [10–12]. Completely reference-free
size-estimation, however, is rare [6].

The key challenge with reference-free weight estimation is that visually similar objects
may be of vastly different sizes; a tiny toy car can be readily confused with a real-sized
car, through manipulation of image magnification [3]. As a consequence, global cues
are typically vital for robust size estimation, but they cannot always be provided,
and at the very least reduce application versatility. One scenario where reference-free
weight estimation should at least in principle be possible is where object weight varies
with object shape; size may then be inferred solely from the object itself, through
assessment of relative subject proportions. In this work, we tackle one such example:
the workers of leaf-cutter ant colonies [13–15].

Leaf-cutter ants (Subtribe Attina) form complex societies comprising large numbers
of sterile “worker” ants, which can vary in body mass by more than two orders of
magnitude [13–18]. Leaf-cutter ant colonies present a textbook example of a division
of labour in eusocial insects that transcends the division into reproductive and sterile
castes: morphological differentiation is coupled with size-specific task specialisation
[14, 19]. The smallest individuals (minims) primarily tend to the fungus garden, the
queen and partake in brood care; medium to large sized workers (medias) cut and pro-
cess plant matter; and the very largest workers (majors, often referred to as soldiers)
almost exclusively partake in colony defense without contributing to the foraging
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efforts directly [14, 15, 17, 20]. Additional complexity arises within Atta colonies as
the variation in worker sizes is continuous rather than split into discrete sub-castes
[14, 21–23] and the tasks carried out by workers of different sizes may change with
the colony feeding state, age, distance to food sources, temperature, and ontogeny of
individual workers [14, 16, 22, 24–27]. The resulting task choices are hypothesised to
lead to an ergonomic optimum - that is worker sizes are allocated in such a way that
each task is carried out to maximise the energy available to the colony [15, 28–31].
Therefore, especially energetically demanding tasks such as foraging require appro-
priate worker size frequency distributions in the participating animals. To give but a
few examples, size frequency distributions of foraging parties appear to be adapted
to the specific requirements of the available food sources [14, 32] and are affected by
the food sources’ geometric properties[33]; toughness and thus required cutting force
[34]; and fragment surface-area and mass [35].

Unravelling the “rules” that underlie the complex organisation of leaf-cutter ant
colonies has been a long-standing challenge in sociobiology, rendered difficult by the
large number of involved behaviours, and the large number of individuals per colony.
In the absence of better options, researchers often resort to manual extraction and
weighing of individual workers, which is time consuming, error-prone, and disruptive
(see e.g. [13, 14, 36]).

To minimise disruption, E.O. Wilson trained himself to estimate leaf-cutter head
width by eye, aided by a physical look-up table in form of pinned workers [14]. Wilson
reported that he was able to assign ant workers into one of 24 discretised size classes
with an accuracy of 90%, with the remaining ten percent placed into adjacent classes.
Inspired by this work, we here aim to train deep neural networks to perform such
visual size estimation rapidly, at scale, and reference-free —that is, without provision
of an absolute scale. Unlike Wilson, who had rich contextual information as well as
a physical look-up table and virtually unbounded perspectives for each estimate, we
attempt inference of body mass as a proxy for size from only a single cropped image
sample: Wilson Only Looks Once (WOLO).

Results and Discussion

Body weight estimation from images is a challenging task, and usually only feasible if
reference lengths or other cues are provided. In Atta leaf-cutter ants workers, body size
variation is accompanied by changes in body shape [24, 37–43]; it is thus in principle
possible to learn how to estimate body mass or other size proxies without external
cues, and independent of image magnification [14]. To this end, we trained a variety of
deep convolutional neural networks to estimate leaf-cutter ant body mass directly from
cropped or full-frame samples. Three annotated datasets were curated for training
and performance benchmarking. The main dataset consists of 3× 5×10,000 = 150,000
full frame image samples; 10,000 frames were recorded with three cameras, each with
different perspective, and with five different recording area backgrounds. Each frame
contained 20 individuals that represent one of 20 body mass classes (Supplementary
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Table 1, see also Fig. 7, A), resulting in a total of 3 million cropped-frame samples; the
specific set of 20 individuals differed across recording backgrounds, leading to a total
of 100 distinct ant workers. Computer-generated images, generated and annotated
with scAnt [44] and replicAnt [45] were used to augment training datasets as discussed
further below (Fig. 7), and two additional test datasets, procured to represent different
inference scenarios, provide Out-Of-Distribution (OOD) test data (Fig. 1).
Network performance was evaluated in terms of prediction accuracy, precision and bias.
We distinguish between qualitative accuracy, defined as the ability to rank individuals
correctly by size and quantified through Spearman’s Rank Correlation Coefficient
(SRCC) between estimated and ground truth body mass, and quantitative accuracy,
as quantified through the Mean Relative Percentage Error (MAPE). Both metrics
are evaluated on mean or mode predictions per unique individual as appropriate.
Precision is assessed through the coefficient of variation (CoV), this time evaluated
on all predictions for the same individual. Last, network bias is evaluated through
the SRCC of accuracy with body mass, zero only for unbiased networks. Detailed
descriptions of dataset curation, model fitting, loss functions and performance metrics
can be found in the methods. In total, 98 networks were evaluated. These networks
differed in training and inference mode, training data, and regularisation. For the sake
of clarity and brevity, the performance of all networks is comprehensively summarised
in Supplementary Table S2, and only the main trends and key results are summarised
here.

Regressors rank order well, but suffer from accuracy bias

The most natural implementation of the body weight estimation problem is arguably
regression. This approach was realised in form of a cropped-frame deep regressor,
based on the XceptionNet architecture [47]. The regressor had a frozen network back-
bone as a feature extractor, followed by two fully connected layers of 4096 nodes each,
and a single output node as a head (Fig. 8). The regressor network was trained for a
total of 50 EPOCHS with the Adam optimiser [48], and using the mean square error
(MSE) as the loss function. Network performance was evaluated on the final 20% of
the main dataset, consisting of 500,000 samples withheld at training time. A regressor
network trained on raw body masses achieved good qualitative accuracy (SRCC =
0.826), but lacked quantitative accuracy (MAPE = 132.3%). Worse still, this relative
error varied substantially and systematically with worker size: the body mass of small
individuals was overestimated with large relative errors, and the body mass of large
individuals was underestimated with small relative errors (Fig. 2, B). In other words,
the regressor’s accuracy was strongly biased (SRCCacc = -0.927). One way reduce
this bias is to train the regressor network on log10-transformed instead of raw body
masses instead, i. e. to minimise relative instead of absolute errors (Fig. 8 E). This
approach almost doubled the quantitative prediction accuracy (MAPE = 67.5%),
and achieved a higher qualitative accuracy (SRCC = 0.90) (Fig. 2 C & D). However, a
strong bias in prediction accuracy remained (SRCCacc = -0.9). The regressor trained
on log10-transformed data produced a slightly higher CoV than the regressor trained
on raw mass data, 0.424 and 0.358 respectively, indicating a decrease in precision.
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Fig. 1 Curation of training, validation, and test datasets. (A) Three synchronised cameras—
a Nikon D850 with a 18-105 mm Nikkor lens, an OAK-D machine vision and a Logitech C920—were
used to record synchronised videos of 20 Atta vollenweideri (Forel, 1893) leaf-cutter ant workers,
ranging in body mass from 1 to 50mg. (B) The cameras recorded images of the same individuals
from three unique perspectives, and with different magnification (Fig. 7, and Supplementary Table S1
for exact worker weights). 10,000 frames were annotated semi-automatically using OmniTrax [46].
To streamline data processing, only the top-down OAK-D recordings were annotated, and a custom-
written perspective conversion script was used to translate the tracks, indicated by red bounding
boxes, into the other two camera views. (C) Further variation was introduced by means of an inter-
changeable background: either a default plain background, a textured brown forest floor, dry leaves,
dirt, or a plain background with cluttered leaf-fragments. The 20 individuals always covered the same
weight range, but each background had a unique set of individuals. (B) The resulting dataset con-
tained 3× 5× 10,000 = 150,000 labelled frames, each containing 20 individuals, resulting in a total
of 3,000,000 cropped image samples (examples on the right). The first 80% of the full frame and
cropped datasets were used as training data; the remaining 20% served as unseen validation data.
Two out-of-distribution datasets were curated for benchmarking. (D) Dataset Test A was recorded
with a Nikon D7000 camera, equipped with a micro Nikkor 105 mm lens, oriented top-down, and a
Logitech C920 camera at an angle of approximately 30% to the vertical. Single leaf-cutter ant work-
ers were put into a Petri dish placed on an ultra fine scale, and (E) between 20 to 50 monochromatic
frames were captured for each individual resulting in (F) 4,944 cropped and annotated samples. (G)
Test-B was recorded with an OAK-D camera positioned above a crowded container that served as a
section of a laboratory foraging trail. (H) Individual workers were annotated with the manual track-
ing module of OmniTrax [46]; (I) a total of 30,526 cropped RGB samples were extracted.
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It is not immediately obvious why regressor network accuracy was strongly biased.
One possible explanation is that networks by definition never see training samples
with a body mass outside the target domain, so that the mass of small workers is
substantially more likely to be over- than underestimated; mass-estimation in large
workers suffers from the opposite problem, and this argument is consistent with
the data (Fig. 2). The strong bias may also simply reflect that the mass-estimation
problem is hard, so that networks may be unable to predict masses with consistently
high confidence. Performance may then be optimised if estimates regress towards the
sample mean, which prevents error inflation due to outliers. In support of this argu-
ment, regressors trained on raw data were most accurate around the sample mean
body mass of 13mg, whereas the regressors trained on log10-transformed data were
most accurate around the log10-transformed sample mean body mass of about 7mg
(Fig. 2). Motivated by this interpretation, we next implemented the weight estimation
problem as a classification task: even if classifiers badly miss-classified workers from
time to time, as long as they classify them correctly most of the time, accuracy bias
should be reduced.

Classifiers are more accurate and unbiased, but produce larger
fluctuations in their predictions

To implement a body mass classifier, we took inspiration from E.O. Wilson, who
taught himself to classify Atta sexdens (Linnaeus, 1758) workers into one of 24 head
width classes by eye [14]. Instead of using head width as a proxy for size on a linear
scale, we defined 20 body mass classes, spanning the weight range [1, 50]mg, with
class-centres equi-distant in log10-space (Supplementary Table S1). Classifiers also
operated on cropped frame samples, and their architecture was identical to that of
regressors, apart from the head, which was replaced by one node per target class (see
fig. 8). Classifier networks were trained using cross entropy loss and one-hot encoded
discretised class labels; their accuracy was evaluated on the prediction mode per
unique individual—the appropriate metric of central tendency for categorical data.

Classifiers achieved MAPEs as low as 33%. Recognising that mass-discretisation
carries an inherent minimal error of about 6% (due to the within-class body mass
distribution, see methods), this corresponds to an improvement of factors between
two and three compared to regressors. Remarkably, classifier accuracy was also
independent of body mass (SRCCacc = -0.098). However, the price paid for these
improvements was a reduction in prediction precision: the coefficient of variation,
computed across predictions for the same individual across frames, almost doubled
from 0.42 for the regressor trained on log10-transformed data to 0.80, most clearly
visible in discretised confusion matrices (Fig. 3). As a more appropriate metric to
quantify classifier prediction stability, this fluctuation corresponds to 47.5% of classi-
fications being assigned to their respective individual prediction mode (see Methods
as well as Supplementary Table S2 for details). This effect is consistent with the
suggestion that regressor accuracy is poor to avoid influential outliers.
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Fig. 2 Deep regressor networks, trained on 2.5 million cropped frame samples of leaf-cutter ant
workers of different body mass, can rank individuals by their mass with reasonably high qualita-
tive accuracy, as assessed by Spearman’s Rank Correlation Coefficient (SRCC). However, prediction
accuracy is biased, and quantitative accuracy is poor for both small and large individuals, as quan-
tified by the Mean Average Percentage Error (MAPE). All results are from withheld within-domain
data. (A) & (C) show parity plots of the mean body mass prediction vs ground-truth for regressors
trained on raw (untransformed) and log10-transformed body masses, respectively. The dashed line
shows the parity line, which indicates perfect prediction accuracy. (B) & (D) show bar plot of the
class-wise MAPE, grouped in bins with equal centre-to-centre distance in log10-space for the same
regressors. Log10-transformation of body masses improved the qualitative and quantitative accuracy,
and reduced the bias, which however remained significant. Regressors generally achieved the best
accuracy for individuals with a body mass close to the sample mean (13 vs 7mg, for raw and log10-
transformed body mass, respectively). This observation indicates that accuracy bias may be caused
by a “regression-to-the-mean”, incentivised by the need to avoid prediction outliers, which may arise
from low prediction confidence.

Regressors have poor accuracy and are strongly biased, and classifiers have high accu-
racy and are unbiased, but suffer from outliers. These differences likely arise from the
different statistical elements that determine performance across the two approaches,
which rely on ordinal vs categorial information. In an attempt to combine the best of
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both worlds, we introduced ordinal characteristics into classification through class-
relationship aware label smoothing (CRALS). The main idea is to replace one-hot
linear encoding with a Gaussian activation profile, so that miss-classification in
adjacent classes is penalised less than miss-classification in classes further away. The
strength of this effect can be tuned through the parameter σ, the standard deviation
of the Gaussian distribution (Fig. 8D). Effectively, CRALS acts as a regularisation
technique: for very small σ, the approach resembles pure classification, and for very
large σ, it will approach discretised regression.

In support of this argument, networks trained with CRALS typically achieved better
qualitative and quantitative accuracy than regressors, and less prone to producing
distant outliers than pure classifiers (Fig. 3). Label smoothing rendered predictions
“fuzzier” (Fig. 3 F), in the sense that they clustered more closely around the mode, as
observed for regressors (Fig. 3B). However, and in contrast to regressors, the mode
remained unbiased, and tightly clustered around the ground truth, as observed for
classifiers (Fig. 3D). Another advantage of CRALS as a regularisation technique,
while slightly decreasing categorical classification accuracy on validation examples,
lies in a better retention of performance across metrics in OOD cases. The strength of
these effects generally varied with the magnitude of σ (see Supplementary Table S1 for
full details). Classifiers performed well on within-distribution data: the best network
had a MAPE of about 30.9%, independent of size. However, the ideal network also
has to be able to generalise; that is, it ought to be robust to variations in recording
settings, and work on OOD data without a strong drop in performance. To test this
ability, two OOD datasets were procured. Test A consists of images of single workers
on a white background, without any other objects in-frame (Fig. 1D–F); Test B
comprises cluttered images of busy laboratory foraging trails, including individual
worker overlap and partial occlusion (Fig. 1G-I). Even the best classifier performed
poorly on Test A; the prediction error almost doubled, and, perhaps surprisingly, a
strong accuracy bias returned (Fig. 4). The qualitative accuracy however remained
high (SRCC = 0.87). The performance on Test B was much better, and had an error
comparable to the within-distribution performance (MAPE = 44.2%). However,
the precision suffered significantly, i. e. the predictions were much noiser; we thus
conclude that prediction robustness and network generalisability were somewhat
wanting, likely indicating overfitting. Other potential sources of error arise from
different colour spaces in the recorded datasets and motion blur (TEST A), as well
as much higher degrees of individual overlap and occlusion (TEST B)

Synthetic data increases robustness in terms of qualitative
accuracy

Prediction robustness requires that networks learn generalisable cues (see e.g. [49–
52]), and this ability can be fostered through extensive augmentation or large training
datasets with maximal image variability. To implement augmentation on a large
scale, we produced thousands of computer-generate images that possesses far greater
variability in appearance than the original training data. Synthetic datasets were
generated with replicAnt, a computational data generation pipeline implemented in
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Fig. 3 Classifiers achieved high accuracy, have no prediction bias, but are more prone to outliers. The
top row (A, C, E) shows parity plots for within-distribution validation data of (A) the best regressor,
trained on log10-transformed weight data; (C) a classifier, trained on 20 class discretised data with
one-hot encoded labels; and (E) a classifier, trained on discretised data with class-relationship aware
Gaussian label smoothing (σ = 4). Datapoints represent the arithmetic mean for the regressor, but
the mode for the classifiers, evaluated across all frames for each unique individual. The bottom row
(B, D, F) shows the corresponding confusion matrices. Note that for the regressor, predictions cluster
more tightly around the class with highest activation, but this class itself is biased with respect
to the ground truth. Classifiers, in turn, stray further from the class mode on occasion, but show
practically no prediction bias. Label smoothing introduces ordinal characteristics to classification,
and so effectively acts as a regularisation technique that can control the trade-off between these two
effects.

Unreal Engine 5 and Python [45]. replicAnt takes textured and rigged 3D animal
models as an input, and places simulated populations of these models into complex,
procedurally generated environments. From these environments, computer-annotated
images can be exported, which then serve as training data supplement. Two syn-
thetic datasets, containing a total of 200,000 full-frame annotated images from digital
populations of 200 simulated individuals were created, providing a further 1,630,000
cropped frame image samples (see methods and Fig. 7).

Networks trained exclusively with synthetic data had poor quantitative accuracy, but
did well in rank-ordering, suggesting that compression artefacts or absolute frame
occupancy, and not shape difference, are the strongest indicators for individual size,
at least for the resolution and quality of images tested here. This observation is con-
sistent with the generally poor performance on the seemingly simple Test A dataset,
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which contains minimal cues other than the individual itself (see also below). In line
with expectation, supplementing the training data with synthetic images moderately
improved OOD performance, and most notably increased prediction precision (Fig. 4,
and Supplementary Fig. S10 for a more comprehensive evaluation). Images from Test
A turned out to be particularly challenging, likely because they provide no contex-
tual information. For the same reason, they are however also somewhat artificial
constructs; few, if any, real use case will resemble these imaging conditions. Most
realistic applications will instead involve images that contain multiple individuals
alongside other objects such as leaf litter or dirt. It will often be possible to keep
camera magnification and orientation fixed, so that reliable contextual information
independent of the focal individual will almost always be available. To investigate
whether networks can learn to use contextual information, we next implemented a
full-frame detector that localises and classifies individuals in a single pass, and thus
has access to more rich information at training time.

Contextual information improves performance at all scales

To explore the ability of networks to learn from global reference cues, a full-frame
custom YOLOv4 detector was given access to all contextual information of a full-
frame [53]; temporal information on adjacent frames was withheld. Detector models
were trained on full-frame datasets, both real and synthetic, and their performance
was quantified on both the full-frame validation dataset, and the two cropped-frame
OOD datasets (see methods). Detectors produced the highest achieved categorical
accuracies, as 20 and as 5 class variants (see Appendix 2). Overall, however, detectors
performed comparable to their equivalent classifier networks on validation data, in
terms of MAPE and SRCC, and displayed no obvious prediction bias. However, detec-
tor performance drastically deteriorated when contextual information was absent, i. e.
on OOD data (Fig. 5). It is not trivial to decide whether this performance drop reflects
the fact that the network learned to improve inference performance through the use
of contextual information, absent or reduced in the OOD data, or whether it simply
indicates overfitting to training data. Without doubt, any network will always benefit
from additional refinement with annotated samples from the target domain. However,
irrespective of overfitting, which may well affect all networks, a meaningful advan-
tage of a one-pass detector is a substantial reduction in inference time (see discussion
below).

The best networks outperform weakly trained humans

To put network performance into perspective, we conducted a small pilot study in
which 14 human participants were asked to estimate body mass from images. Both
leaf-cutter ant experts (those who self-declared to work regularly with leaf-cutter ants),
and non-experts were included. To reduce task complexity, the body weight estimation
task was implemented in form of a 5-class classification problem, again with classes
that ranged from [1,50]mg, and class centres that were equi-distant in log10-space.
To compare human and network performance more directly, we trained 5-class clas-
sifier networks, identical to the original 20 class classifier, bar the adjusted classifier
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Fig. 4 Synthetic data moderately increases the ability of networks to retain qualitative performance
in Out-Of-Distribution (OOD) data. Performance comparison of a 20-class classifier trained with
Class-Relationship Aware Label Smoothing (CRALS) on OOD data. (A & B) show parity plots of
the model trained on real data only. (C & D) show the parity plots of the same model, augmented
with synthetic samples from the combined ”synth standard” and “synth simple” dataset. Data points
represent the prediction mode per unique individual.

head. Human participants generally performed similar or slightly worse than the best
implemented networks in terms of qualitative and quantitative accuracy; experts per-
formed consistently better than non-experts (Fig. 6A-C). In light of the small sample
size, neither human bias nor accuracy can be reliably estimated. Wilson reported an
accuracy of 90% on a classification task with 24 classes, almost seven times higher
than the best human performance in this study, relative to a random guess [14] ( [see
also 45]). It is unclear to what extent this difference in performance stems from sheer
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Fig. 5 Full-frame detection and weight estimation in principle provides access to contextual informa-
tion, and may thus improve prediction performance. However, estimation performance of the detector
deteriorates drastically on Out-Of-Distribution (OOD) data, indicating that the strong performance
may be the result of overfitting. The top row shows confusion matrices for the best 20 class classifier
(label smoothing applied, σ = 4, trained on mixed MultiCamAnts and all synthetic data) for (A)
the within-distribution validation split of the MultiCamAnts dataset; (B) Test A; and (C) Test B
OOD datasets, respectively. Both the qualitative and quantitative accuracy are worse on OOD data
(MAPE in VAL = 36.35%, Test A = 65.3%, Test B = 49.0%; SRCC in VAL = 0.915, Test A =
0.886, Test B = 0.775). The bottom row shows confusion matrices for a 20 class detector trained on
equivalent full-frame mixed real and all synthetic data; (D) shows the within-distribution validation
split of the MultiCamAnts dataset; (E) and (F) are for Test A and B, respectively (MAPE in VAL =
45.5%, Test A = 93.3%, Test B = 133.9%); SRCC in VAL = 0.916, Test A = 0.670, Test B = 0.730).

training, innate skill, or from richer contextual information: Wilson observed forag-
ing workers in their natural environment for prolonged periods, and had an extensive
physical look-up table at hand. In contrast, human participants only received a sin-
gle low-resolution cropped image. We thus stress that we do not claim that the pilot
study provides a reasonable indication of the upper limit of human performance; we
do however believe that it supports both the weaker conclusion that the task itself is
hard, and that the networks are able to learn a considerable amount from the training
data provided.

In an effort to understand the limits to both human and network performance further,
it is instructive to inspect image samples that were frequently classified correctly or
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Fig. 6 (A) The best networks achieved similar or better performance than humans on the unseen
validation data, and on Test A & B. (B) The best networks consistently achieved lower MAPEs
in Test data. (C) A collection of image samples that were typically classified correctly by human
annotators, compared with the classification of the best performing 5-class classifier. (D) A collection
of image samples that were frequently classified incorrectly by human annotators, compared with
the classification of the best performing 5-class classifier. Note that the computational models have
seen substantially more training samples; combined with the small number of human participants
(n = 14), this pilot study only provides a rough estimate of human performance that indicates the
difficulty of reference-free weight estimation.

incorrectly, respectively (Fig. 6D-E). Human participants and network variants strug-
gled with similar images: workers that were largely out-of-focus, the general presence
of image noise, unusual poses, or deviations from top-down perspectives that distort or
obscure morphological landmarks such as head widths or leg lengths all rendered the
inference problem harder. A notable exception to this rule appear to be images of the
very smallest ant workers, on which networks performed poorly, but humans often did
well, likely because they (correctly) inferred that the low magnification and high noise
imply a small animal size (Fig. 6 D, top-row, Test A, class 0). Although the same may
be expected for networks, this is exactly one of the principal advantages of synthetic
data, because it can bypass such generally undesired biases. Irrespective of prediction
quality, the main difference between human and computational classification lies else-
where: Human annotators took on average six seconds to classify an image sample,
whereas the trained models can perform about 1000 times as many predictions in the
same time; they thus vastly outperform humans in terms of speed.

Conclusion and Outlook

Inspired by the work of E.O. Wilson, who trained himself to estimate leaf-cutter ant
worker body mass by eye [14], the aim of this work was to investigate the possibility
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to infer ant body mass from reference-free images using deep convolutional neural
networks. Because size-differences in leaf-cutter ants are associated with differences
in shape, this aim is achievable in principle.

Despite relatively large amounts of training data, and the exploration of diverse
inference approaches, the performance of even the best networks remained below the
self-reported accuracy of E.O. Wilson; it was, however, comparable to that of human
annotators that have had less dedicated and extensive training. Irrespective of these
differences, the best networks had a size-independent relative error of about 30%,
which may well be good enough for many purposes. The key advantage of the auto-
mated approaches presented here is their vastly superior speed; any loss in accuracy
can likely be balanced by an increase in sample size, so that statistical power remains
sufficient. Indeed, given that Atta trails readily contain thousands of individuals,
automated mass-estimation may well be the only realistic and affordable option to
obtain data on size-frequency distributions at the required scale. Where higher accu-
racy is needed, the most effective route may be the provision of an absolute scale, as
done in previous related work [2, 3, 7]. Worker size can then be measured directly
from the images, e. g., through body length or pixel number, with either pose estima-
tors [54–56] or binary masks [2, 4, 5], respectively. However, for all its advantages,
this approach is not without problems: parallax errors can only be managed through
tight control of recording conditions, so reducing flexibility; and key body markers
may often be occluded, be it by leaf-fragments carried, or by other individuals that
cross paths on busy foraging trails. Notwithstanding these difficulties, deep learning-
based reference-free weight estimation has the potential to become a valuable asset in
behavioural research on leaf-cutter ants and other polymorphic insects. Ample oppor-
tunity for algorithmic improvement exists, and the presented inference approaches
present a promising step towards more nuanced, efficient, and non-intrusive methods
in the study of fascinating social organisation of complex insect societies.

Apart from its potential practical application in leaf-cutter ant research, our work
yielded insights of relevance for reference-free weight estimation more broadly. First,
and perhaps unsurprisingly, contextual information appeared to improve prediction
performance. As a result, detectors that work on images that contain multiple individ-
uals appeared to generally outperform networks that infer mass from image cut-outs.
Second, class-aware label-smoothing as a regularisation technique can help reduce
over-fitting during training time, and increase correlation between different perfor-
mance metrics. Third, the addition of synthetic data can improve network robustness,
i. e. inform the training of networks which generalise better to unseen scenarios [see
also 45], here, specifically regarding a network’s ability to rank-order individuals by
size but less in absolute accuracy terms. Fourth, the choice of performance metric
is not trivial, and standard parameters such as the MAPE can introduce significant
biases. Others have therefore recommended to select models based on their R2

[57]; future work will have to carefully and systematically address the problem of
performance metric and model selection in effectively ordinal classification tasks.

14



Methods

This study aims to use deep learning-based computer vision approaches for automated
body weight estimation of leaf-cutter ant workers. To this end, training and bench-
mark datasets were curated, inference approaches implemented, and their performance
evaluated. In addition, a small study with human participants was conducted to pro-
vide an indication of baseline performance. These essential methodological aspects are
described in detail below.

Datasets

Training and benchmark datasets

Three datasets were curated (Fig. 1): (1) a complex multi-animal dataset, recorded
with three different synchronised cameras, from three different perspectives, on
five different backgrounds, and with varying degrees of leaf clutter (MultiCa-
mAnts, Fig. 1A-C); (2) a simpler single-animal test dataset, recorded with two
different cameras, from two different perspectives, and on neutral background
(Test-A, Fig. 1D-F); and (3) a top-down multi-animal dataset, recorded with a
machine-vision camera, oriented top-down above a busy ant foraging trail (Fig. 1G-
I). All cropped-frame training and benchmark datasets are available via Zenodo
(https://zenodo.org/records/11167521). For full-frame datasets, please contact the
corresponding author.

(1) The MultiCamAnts recordings served as the primary dataset. Three cameras—a
Nikon D850 with a Nikkor 18-105 mm lens, a OAK-D machine vision camera, and
a Logitech C920—were used to record images of ants that moved inside an acrylic
container that served as recording arena (250 mm x 150 mm x 90 mm). Videos were
time-synchronised by triggering a Nikon SB-700 AF Speedlight Flash Unit, once
before animals were placed into the arena, and then again after 10,000 frames had
been captured; these two time points were used to synchronise the videos using After
effects (CC version 2023, Adobe Inc.). The visual appearance was varied by exchang-
ing the arena background, and by scattering leaf-fragments, such as to emulate the
appearance of foraging trails (see Fig 1 C).

Five sets of 20 ant workers were taken from the foraging containers of a mature labo-
ratory colony of Atta vollenweideri (Forel 1893) leaf-cutter ants, housed in a climate
chamber at 25◦C and 60% humidity; individuals were weighed with a precision scale
(OBX-223 Ohaus Explorer Precision Balance, ± 0.1 mg resolution), and sampling
continued until representative specimens for each of 20 body mass “classes” had been
collected; class centres were chosen such that they were approximately equidistant in
log10-space, and covered the weight range [1, 50]mg (see Fig. 7 B). 20 ant workers at
a time were then placed into the recording arena for each background, and in order of
ascending body mass; subsequent identification was thus possible without application
of physical markers.
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A total of 10,000 frames were captured for each of five recordings; one for each back-
ground, and each with a different set of 20 individuals. These frames were subsequently
annotated with OmniTrax, a deep learning-driven multi-animal tracking add-on for
Blender [46]. Using user-guided semi-automatic tracking, all top-down recordings from
the Oak-D camera were annotated. Subsequently, using a custom python script, the
camera projections of the remaining views were solved, and the extracted homography
was used to translate top-down tracks into the adjacent video perspectives. A total
of 150,000 samples were labelled, exported and converted into the format required by
the respective inference method (section 2). weight estimation via detections takes full
frames as input, which was facilitated with custom data parsers. Classification and
regression, in turn, operate on cropped frames that contain only the focal individual.
Cropped frames with customisable aspect ratio and resolution were exported from
OmniTrax via dedicated functionality; class and identity information were encoded in
the filename. For full frame samples used to train detectors, a YOLO-formatted text
file was generated for each frame containing the location, bounding box dimensions,
and class of all visible animals. 3 times 5× 10,000=150,000 samples for each of 20
individuals lead to a total of 3,000,000 cropped images. The first 80% (2,500,000) of
these images were used as training-, and the final 20% (500,000) images as validation
data. Splits were fixed to avoid inflation of validation scores, as can occur when
training and test sets contain time-adjacent frames that are visually similar.

(2) In order to curate dataset Test-A, a camera rig was built around an ultra-fine
scale(OBX-223 Ohaus Explorer Precision Balance, ± 0.1mg precision. Fig. 1 D-E).
131 ants were chosen at random from the colony feeding box, leading to a weight
distribution that roughly resembles that of natural foraging parties, ranging from
0.5 to 25 mg. Individuals were placed, one at a time, into a Petri dish with a white
background, centred on the scale. They were then filmed with a Nikon D7000 DSLR,
equipped with a micro Nikkor 105 mm lens facing downward, and a Logitech C920,
fastened to a custom-built mount and oriented with a 30° angle relative to the vertical
(Fig. 1 D). Images were captured from both cameras, using a custom python script,
leveraging OpenCV [58] and libgphoto2; scale readings were recorded manually. Each
camera captured 20 images per individual, with a low sampling frequency of 0.33Hz,
chosen to increase the postural variation across images of the same individual. The
resulting dataset contained 4,944 cropped monochromatic image samples; about 300
images were discarded because individuals were entirely out of focus, or had unrulily
escaped the recording set-up.

(3) A Test-B dataset (see 1 G-H) was curated to obtain crowded images, resembling
the conditions on a busy foraging trail. An OAK-D machine vision camera was
positioned above a custom-built acrylic container (280 mm x 280 mm x 90 mm), con-
nected in-between the laboratory colony and a foraging box via a system of flexible
PVC tubes (diameter 2 cm). Footage was recorded with a frame rate of 30 fps, and
for a period of 20 minutes, during which the colony was actively foraging on bramble
leaves provided in the foraging box. Because leaf-cutter ant workers were allowed to
enter and exit the container throughout the recording period ad libitum, body masses
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needed to be determined by manual worker extraction, and subsequent weighing with
the Ohaus precision scale. One at a time, 154 individuals were weighed in this way,
and semi-automatically tracked in-post for ∼ 200 frames, using OmniTrax [46]. A
total of 30,526 cropped RGB frame patches were extracted using OmniTrax.

Synthetic datasets

A large and varied synthetic dataset, consisting of computer-generated images, was
produced to augment the training split of MultiCamAnts, in the hope to increase
network robustness on Out-Of-Distribution data [45]. Synthetic data were gener-
ated with replicAnt, a computational pipeline implemented in Unreal Engine 5 and
Python [45]. replicAnt takes textured and rigged 3D models as an input, and places
simulated populations of these models into complex, procedurally generated envi-
ronments. From these environments, computer-annotated images can be exported,
which can then be used as training data for machine-learning based computer vision
applications, including classification, detection, tracking, 2D and 3D pose-estimation,
and semantic segmentation.

To provide the required 3D input models, 20 worker ants, distinct from those used in
the MultiCamAnts recordings 2) but with comparable size range, were sampled from
the laboratory colony (see Supplementary Table S1). Specimens were sacrificed via
freezing to produce “digital twins” with the open-source photogrammetry platform
scAnt [44]. Specimens were prepared such that they were biting down on either a
needle or thin PLA filament, so that their mandibles did not touch or overlap; this
facilitated separate movement of the mandibles at a later stage (see below). Specimens
were pinned in an upright position akin to their natural stance, and left to dry at room
temperature for at least one week prior to scanning. This drying step ensured that the
joints had sufficiently stiffened to prevent movement during scanning. Specimens were
scanned with the scAnt hardware configuration described in Plum and Labonte 2021,
the code version from the May 2023 (dev branch, and the default masking parameters
of an improved stacking routine (https://github.com/PetteriAimonen/focus-stack).
Specimens lighter than 4 mg were digitised using a 75 mm MPZ Computar lens, and
a custom-built focus extension tube (see [44] for details); all other specimens were
scanned using a 35 mm MPZ computar lens and a 5 mm C-mount extension ring. All
processed models are available via Zenodo (https://zenodo.org/records/11167946)

All scans were performed with a colour-coded 5× 5× 5mm cube in view to enable
colour calibration, and accurate re-scaling of the resulting 3D models. Scans were
photogrammetrically reconstructed with 3DF Zephyr lite (v2023.03) at the highest
level of detail, and with photo-consistency meshing enabled to retain fine structural
details. It is not trivial to quantify photogrammetric reconstruction accuracy. As an
approximate guide, scAnt can resolve step-changes in height of about 100 µm with an
error of around 10%, and is better than 5% for steps of 500 µm [44].

Reconstructed textured meshes were exported as FBX files, and subsequently
imported into Blender 3.2, to complete basic mesh cleaning (see [44]), and to apply
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a standardised armature (see [45]; Fig. 7 D). The rigged mesh was retopologised to
decrease the number of vertices from > 100, 000 to ∼ 10, 000, substantially reducing
the subsequent computational load. The rigged and retopologised models were then
scaled to their original size, using the colour-coded cube as reference, and the appear-
ance of image textures was unified using histogram equalisation (fig 7 C). All models
were then brought into replicAnt using the send2Unreal plug-in.

Within replicAnt, two large synthetic datasets were produced, referred to in the
following as ”synth-standard” and ”synth-simple”, respectively. For both datasets,
synthetic populations of 200 individuals were spawned; 10 from each original model.
Within each of the 20 size classes, a randomised scale variation of 10% was applied,
so that adjacent weight classes did not overlap in absolute scale. Synth-standard
used the ”plants” environment provided with replicAnt to facilitate a complex scene
generation with plant asset scatterers [45]. The resulting image samples were highly
cluttered, and often included individuals spawned across multiple layers with respect
to the camera plane. Synth-simple, on the other hand, used the default generation
environment within replicAnt 1.0, with 70% of the asset scatterers removed to pro-
duce simple, dominantly planar scenes. The resulting samples were thus closer in
appearance to the inference cases, albeit with greater variation in background mate-
rials and levels of occlusion. 100,000 image samples were generated for each dataset.
replicAnt ’s multi-class YOLO parser was used to export full-frame samples, and a
custom-written second parser produced 128× 128 px cut-out samples for every animal
in every synthetically generated frame. These cut-outs were re-scaled when animals
occupied a larger area to ensure that the entire animal was visible, and the subject
class was encoded in the filenames. Individuals that occupied small fractions of the
cut-out were centred, and basic up-sampling was applied such that the larger side of
the bounding-box corresponded to at least 10% of either the width or height of the
cropped image. A simple conversion script automatically sorted samples into discrete
size folders, using the class information provided in the file name, and so produced
the file-structure required by TensorFlow.dataset (see below).

All custom tools used in the curation and generation of real and synthetic data are
open source, and accessible on GitHub (https://github.com/FabianPlum/WOLO).

Inference approaches

Three inference approaches were explored: image patch regression, image patch classi-
fication, and simultaneous localisation and classification on full frames (detection). All
combinations of real and synthetic training samples were tested for each inference type
(see Supplementary Table S2). Regression is arguably the most natural implementa-
tion of the mass-estimation problem, but suffered from prediction bias (see results).
Classification appeared less prone to such bias, but comes at the cost of a minimal
error defined by the difference between ground truth sample vs class-centre mass. Both
regression and classification work on cropped-frame samples, returned by a separate
localiser at inference time, and thus require intermediate processing steps that slow
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Fig. 7 To increase network robustness and generalisability, real datasets were augmented with two
synthetic datasets, computer-generated with replicAnt [45]. (A) 20 “digital twins” of leaf-cutter ant
workers across the mass-range [1, 50]mg were created with scAnt [44], an open-source photogramme-
try platform (see Supplementary Table 1). The 20 workers were selected to approximately match the
20 class-centre body masses chosen for the classifier. For 20-class weight classification, each individ-
ual model represented one class; for 5-classification, four individuals were grouped to form one class.
(B) To remove colour variation caused by subtle differences in imaging conditions, colour-histogram
equalisation was performed for all texture maps, using a custom-script written in python. (C) All ant
models were then retopologised and rigged in Blender (3.2), and ported to (D) replicAnt in Unreal
engine, where a low polygonal collision mesh was computed, and the sample randomisation proce-
dure configured. A digital population, comprising 200 individuals that differed in scale, hue, contrast,
and saturation, formed the basis for (E) two synthetically generated datasets: a simplified (top) and
a standard (bottom) pipeline that spawned plant assets. (F) 100,000 procedurally generated and
automatically annotated full-frame examples were exported for each dataset. (G) Cropped training
samples were extracted from the original full-frame samples using a custom-written parser.

down inference. Detection enables simultaneous localisation and classification of mul-
tiple individuals in a full-frame and thus avoids this problem; the network really only
looks once. Full-frame detection and classification in a single pass is not only signifi-
cantly faster, it also provides a network with the ability to learn from contextual scene
information; the downside is the increased demand for GPU RAM (VRAM) when
running inference on footage with high resolution and small individual occupancy.
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Regression

Regression was performed on 128× 128× 3 image samples (resolution in x, resolu-
tion in y, colour channels), cropped such that the thorax of the target animal was
located in the image centre (Fig. 8A). A headless Xception Net with frozen weights,
pre-trained on the ImageNet (v2017) dataset, served as a feature extractor [47]. Its
outputs were fed into two fully connected layers with 4096 nodes each, using ReLU as
the activation function (see Fig 8 B). The final output came from a single node, which
was normalised to a range between [0, 1] at training time, and then re-mapped to the
original mass range to extract network predictions (see Supplementary Table S1).

The Mean Squared Error (MSE) was set as the loss function, i. e. networks were
trained to minimise the absolute prediction error:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (1)

Here, n is the sample number, yi is the prediction, and ŷi the ground truth. A reason-
able alternative is to minimise the relative error, which was realised by additionally
training networks with log10-transformed body masses (Fig. 8D).

Classification

Classification was performed as regression, with the sole difference that the network
output is now formed by a classifier head with SoftMax activation instead of a single
node. Two classifiers were trained, one with 20 classes and one with 5. 20 classes were
chosen to roughly match the discretisation used by Wilson [14]; and 5 classes provide a
point of comparison to human performance on the training data used in this study (see
below). In both cases, classes span the weight range [1, 50]mg, and class centres were
chosen such that class-centre mass were approximately equi-distant in log10-space.
Both classifiers were implemented in Tensorflow (v2.9.1), and trained for 50 EPOCHS
with the Adam optimiser [48], using one-hot cross-entropy as the loss function. A key
difference between classification and regression is that all classification errors are equal.
To render categorical classification more similar to ordinal regression, we implemented
a simple class relationship-aware Gaussian label smoothing algorithm. Unlike default
one-hot encoding, the label smoothing method lifts the activation of adjacent classes
to the target class µ, according to a normalised Gaussian distribution with standard
deviation σ (see 8 D). The normalised activation y(x) of each output node is defined
as:

y(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )2 1∑n

t=1 y(t)
(2)

Label smoothing thus penalises incorrect predictions into a target class with a class-
centre mass close to the ground truth less than an incorrect prediction into a class
far away from it; classification is, in a sense, rendered more similar to discretised
regression. Classifiers were trained with either default one-hot encoded labels, or class
relationship-aware Gaussian label smoothing with σ = (0.5, 1, 2, 4).
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Detection

Detection was performed on full-frame samples, using a YOLOv4 network pretrained
on the COCO dataset with an input resolution of 800× 800× 3 (see Fig 8 F). The
standard YOLOv4 training pipeline implemented in darknet was used, with anchors
adjusted to allow for detections of both small and large individuals in the same
frame [53]. As for classification, the class granularity was either 20 or 5 (see Fig 8
H). Networks were trained for a total of 40,000 iterations, with a decrease in learning
rate after 32,000 and 36,000. Although it is best practice to train for at least as many
iterations as there are unique training samples (or ≥ 2000 iterations per class), loss
usually plateaued after approximately 30,000 iterations.

As the out-of-distribution test datasets A and B consisted entirely of cropped frames,
the network input resolution was decreased to 128× 128× 3. Where the cropped
image contained multiple individuals, we used the class prediction with the highest
confidence, within 10% of the image centre, as the networks’ classification output
(Fig. 8 I).

Across all three inference approaches, a total of 98 networks were trained and
evaluated.

Performance evaluation

Ideal mass-estimation is accurate, precise and unbiased. Qualitatively accurate net-
works retain body mass rank order across individuals, and quantitatively accurate
networks predict absolute body masses that are close to the ground truth, i. e. they
have a small relative error; precise networks provide consistent predictions across dif-
ferent images of the same individual; and unbiased networks have an accuracy and
precision that does not vary with ground truth body mass.

Accuracy

Prediction accuracy was assessed on the body mass predictions averaged across all
frames of the same individual. The appropriate metric of central tendency differs
between regressors, which output continuos variables, and classifiers, which return
categorical variables. To account for this difference, regressor accuracy is assessed on
arithmetic means, and classification accuracy is assessed on modes.

Qualitative accuracy is assessed through the correlation between the rank order of
estimated vs ground truth body masses, appropriately quantified via Spearman’s
Rank Correlation Coefficient (SRCC). The SRCC is defined as the Pearson correlation
coefficient φ between the rank variables R(X) and R(Y ):

SRCC = φ(R(X), R(Y )) =
cov(R(X), R(Y ))

σR(x)σR(Y )
(3)
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Fig. 8 Schematic overview of deep neural network architectures and training paradigms.
The top half of the figure depicts cropped-frame classification and regression; the bottom half shows
the information flow in the integrated detector. (A) 128× 128 pixel cropped-frame samples were
extracted from annotated images, real or synthetic, and fed into (B) a headless Xception Net, pre-
trained on the ImageNet dataset. Two fully connected 4,096 node layers followed, and fed into (C)
either one of two classifier or a regressor head. The heads and previous fully connected layers were
trained individually, using cross entropy-loss for the classifier, and Mean Squared Error (MSE) for the
regressor (see Supplementary Table S2 for details). (D) The relationships between classes at training
time were encoded by assigning either default one-hot encoded, or custom class-aware Gaussian label
smoothing to the classifier’s output layer. Label smoothing introduces a differential penalty for mis-
classification as a function of the distance between ground truth and assigned class, and thus penalises
assigning a class 1 worker into class 5 more than assigning the same worker into class 2. (E) Output
activations for the regressor were normalised at training time, and labels were log10-transformed to
minimise relative error. (F) Full-frame inference was conducted with a detector that returned both the
image bounding box and class of individuals simultaneously. The original frames were down-sampled
to 800× 800 pixel and passed to a YOLOv4 network. The network was pre-trained on the COCO
dataset and (H) two different levels of class granularity were trained to retrieve (J) detections at both
full-frame and cropped resolution. (I) At test time, the network trained on full-frames can also be
used on cropped samples (such as in Test A and Test-B, see 1), by lowering the network input resolu-
tion to fit the cropped sample. Only detections within 10% of the image centre were considered, and
non-maximum suppression was used to retrieve only the class with the highest activation prediction.

Here, X and Y are the absolute ground truth and predicted body masses, respec-
tively, cov(R(X), R(Y )) is the covariance, and σR(x) and σR(Y ) are the standard
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deviations of the rank variables, respectively. The SSRC can fall anywhere between
[-1, 1]; a SRCC of unity implies perfect qualitative accuracy, a SRCC of zero implies
no association between ranks, and negative unity indicates perfect inverse association.

Quantitative accuracy is assessed with the Mean Absolute Percentage Error (MAPE;
also sometimes referred to as Mean Absolute Percentage Deviation (MAPD)):

MAPE =
1

n

n∑
i=1

(
|yi − ŷi|

ŷi
) (4)

Here, n is the sample size, yi is the estimated mass, and ŷi is the ground truth mass.
A regressor with perfect quantitative accuracy scores a MAPE of 0, and misclassify-
ing a 1mg as a 1.5mg worker results in a MAPE of 50%—the same as misclassifying
a 10 mg as a 15 mg worker. However, classifying a 1mg worker as a 10mg worker
is associated with a MAPE ten times larger than classifying a 10worker as a 1mg
worker. From these examples thus emerges a caveat that requires comment: because
the MAPE quantifies relative instead of absolute errors, it penalises asymmetrically.
As a consequence, unless the networks achieve high prediction confidence, they may
learn to favour the prediction of small over large body masses, so leading to prediction
bias and ultimately potentially even model collapse [57, 59, 60]; this is the main reason
that MAPE was not used as a loss function during training, though training on log10-
transformed data likely suffers from the same problem. Because the MAPE is defined
with respect to the ground-truth value, but classification only returns class centres,
classifiers carry an unavoidable inherent error associated with mass discretisation: a
classifier with perfect accuracy does not achieve a MAPE of zero, but a MAPE that
depends on the distribution of ground truth weights within each class. For the Multi-
CamAnts dataset, this error, referred to as MAPEideal, is 6.14% and 22.75% in the
validation data for 20-class and 5-class inference approaches, respectively. The natural
classifier accuracy metric is not a MAPE, but the categorical classification accuracy:
the ratio between the number of correct classifications divided by the total number
of classifications. In other words, all mis-classifications are treated identically, regard-
less of the relative error they carry. Performance evaluation then depends on class
number: A 20-class classifier with 20% accuracy classifies every 5th sample correctly
and is thus five times better than random class allocation; a 5-class classifier with the
same accuracy, in turn, is no better than a random guess. In order to compare the
categorical accuracy of classifiers and regressors, the regressor output was translated
into a 20-class classification output by assigning each prediction the closest equivalent
class centre in linear space. In the interest of simplicity, categorical accuracy is only
reported in the supplementary information.
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Precision

Network precision is assessed as the variation of weight predictions across frames of the
same individual; it is thus also a metric for the stability of predictions. For regressors,
prediction precision is assessed through the coefficient of variation (CoV):

CoV (Y ) =
1

n

n∑
i=1

σi

µi
(5)

here, Yij are the j predictions for individual i, and σi and µi are the standard devia-
tion and mean respectively. For direct comparison to a classifier, the mean is replaced
by the mode prediction. Note, however, that as the standard deviation is dependent
on the mean, this provides a less than ideal ground for direct comparison.

For classifiers, an equivalent metric is not obvious, and it would be most natural to
quantify precision via the categorical accuracy defined above, but this time evalu-
ated on a per-individual basis instead of on prediction modes. As a simple means of
gauging classifier Prediction Stability (PS) independently of classifier accuracy, we
quantify the precision not as the number of correctly predicted classes divided by the
number of all samples, but as the average number of samples assigned to the predic-
tion mode ỹi, divided by all predictions mi of the same individual i across frames j.
Note, however, that as for a direct accuracy comparison, class granularity affects the
lower precision bound and inflates results for coarser classifiers.

PS(Y ) =
1

n

n∑
i=1

1

mi

m∑
j=1

pij (6)

pij =

{
1 if yij = ỹi

0 if yij ̸= ỹi
(7)

Bias

There is no a priori reason to assume that networks are unbiased, i. e., that their accu-
racy is independent of the ground truth mass. To quantify network bias, we evaluated
the SRCC between the ground truth mass and the MAPE. SRCCacc scores close to
zero indicate a predictor with unbiased accuracy; values close to 1 or −1, in turn, indi-
cate a systematic increase or decrease in prediction accuracy with ground truth mass.
To provide an accuracy-bias hybrid metric, we further evaluated the coefficient, R2,
with respect to the parity line, yp = yt:

R2 = 1−
∑

(yi − ŷi)∑
(yi − ȳi)

(8)

Unless stated otherwise, the R2 is reported on log10-scaled data. A perfect network
scores an R2 of unity; any value between [0, 1] indicates that either the network
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lacks accuracy, carries bias, or both; and a negative value indicates that the network
predictions is worse than the sample mean. We do however only report these metrics in
the appendices, due to the added difficulty of interpretation and refrain from making
comparative claims in the main text.

Human performance

In order to provide an approximate performance baseline, we asked both colleagues
with and without experience in leaf-cutter ant research to participate in a weight
estimation study. A total of 14 people participated in this exercise; all results were
anonymised (See Supplementary Table S3).

A simple online survey was designed to measure human performance on the 5-
class cropped-frame weight estimation task (Fig. 9); the survey was implemented in
SoSciSurvey [61]). Participants were first briefed on the purpose of the study and the
upcoming task; they then agreed to the study conditions, and self-declared whether
they work regularly with leaf-cutter ants. Next, participants were shown a simple task
description. Akin to the way Wilson [14] used a physical lookup table, participants
were shown a digital lookup table as a guide (Fig. 7 and Fig. S 9 B-D). Every partic-
ipant was initially shown 20 training examples in randomised order; after providing
an answer, the correct size class was revealed. The 20 images were sampled from each
size class of the original MuliCamAnts training split (see Fig 1 A-C), ensuring that
each class was represented equally. After the training phase followed a test phase,
during which randomly sampled cropped-frames from the MuliCamAnts validation
split, and from Test A and Test B were shown—10 from each dataset for a total of 30
test samples. At this stage, no further feedback was provided, and all answers were
recorded for later evaluation. In the evaluation of human performance, we distinguish
only between experts and non-experts, i. e. we neglect potential differences in perfor-
mance on different test data sets, due to sample size restrictions.

A full split of all dataset combinations, network training strategies, and com-
prehensive performance evaluation on all validation and test data is provided in
Supplementary table 2.
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[34] Püffel, F., Roces, F., Labonte, D.: Strong positive allometry of bite force in leaf-
cutter ants increases the range of cuttable plant tissues. Journal of Experimental
Biology 226(13) (2023) https://doi.org/10.1242/jeb.245140

[35] Burd, M.: Variable load size-ant size matching in leaf-cutting ants,Atta colom-
bica (Hymenoptera: Formicidae). Journal of Insect Behavior 8(5), 715–722 (1995)
https://doi.org/10.1007/BF01997240

[36] Billick, I.: The relationship between the distribution of worker sizes and new
worker production in the ant Formica neorufibarbis. Oecologia 132(2), 244–249
(2002) https://doi.org/10.1007/s00442-002-0976-7

[37] Imirzian, N., Puffel, F., Labonte, D.: 3d shape analysis of polymorphic leafcut-
ter ant mandibles. In: INTEGRATIVE AND COMPARATIVE BIOLOGY, vol.
62, pp. 152–152 (2023). OXFORD UNIV PRESS INC JOURNALS DEPT, 2001

28

https://doi.org/10.1242/jeb.245140
https://doi.org/10.1007/BF01997240
https://doi.org/10.1007/s00442-002-0976-7


EVANS RD, CARY, NC 27513 USA
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Supplementary information

Survey - Human weight estimation

A B

C D

E F

Fig. 9 Main pages of a survey designed to measure human performance on 5-class weight
estimation tasks. (A) Welcome page introducing the participant to the study and prompting them
to agree to the study conditions, as well as declare themselves either an expert or non-expert by
selecting whether or not they regularly work with leaf-cutter ants. (B) Task description: This page
outlines the weight estimation task, explaining what type of images will be prompted, and how the
participant is supposed to enter their answer; it also explains the differences between the training and
testing phases of the survey. (C-D) Example pages from the training phase after the participant has
made a correct or incorrect selection respectively. (E) This page is prompted after the participant has
completed their training. (F) In the testing phase, no further feedback is provided after each estimate
has been made.
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Augmenting real annotated data with synthetic samples
improves network robustness

The large volume of hand-annotated data—up to 2.5 million samples in cropped
inference approaches—sufficed to train models that achieved good performance on
the validation data. These models consequently benefited only little from the addition
of synthetic training data (see 10); in some cases, the inference performance even
slightly decreased, likely reflecting “beneficial” overfitting to the within-distribution
validation case.

Synthetic data did however make inference more robust (see 10, B,C,H,I): the net-
works that did best on Out-Of-Distribution (OOD) data were trained on a mixture
of real and synthetic data (see Fig. 7; MAPE scores were lower, potentially due to
a more favourable distribution of weight classes in the out-of-distribution data. see
10 F as well as section 2). This effect was particularly evident for recordings from
cluttered environments (Fig. 10, B,C,H,I), and mirrors similar results in earlier work,
which suggested that synthetic data can help to embed a subject-specific understand-
ing into the networks [45]. In the context of body mass inference, a key strength of
synthetic data is that it can be generated such that size-related differences in cropped
image occupancy or compression artefacts are entirely avoided, so preventing net-
works from learning to infer size from these artefactual features, which would impede
generalisation.
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Fig. 10 Augmenting training data with synthetic samples improved network robustness.
Representative examples of different weight inference strategies, including a 20-class classifier (no
label smoothing), a regressor trained with MSE loss, and a 5 class detector, which all benefited from
synthetic data. The addition of synthetic data had only small effects on performance on validation
data (A,D,G), but their strength became apparent in out-of-distribution examples. (A) Accuracy of
networks on unseen validation samples (see 1 A), and a confusion matrix for the 5-class detector.
(B) Synthetic data increased accuracy for all networks on out-of-distribution data, and most notably
for the detector. (C) Confusion matrices of the detector on Test-B footage, trained without (left)
and with (right) synthetic data. (D) MAPE scores of networks on unseen validation samples and the
class-wise MAPE scores of the 20-class classifier on the same data (lower is better). (E) MAPE scores
on out-of-distribution test data changed little upon the addition of synthetic data. (F) Class-wise
MAPE scores on Test-B with the 20-class classifier remain elevated. (G) R2 scores of networks on
unseen validation samples (see 1 A), and a parity plot showing the grouped predicted vs ground truth
weight of the regressor for all individuals. (H) The R2 score is elevated in all examples, indicating
that the addition of synthetic data brings the estimates closer to the respective ground truth values
in unseen conditions. (I) Prediction vs ground truth plots of the regressor for Test A data.

Gaussian label smoothing can improve network precision and
robustness.

One hot-encoded labels are a sensible choice for categorical inference tasks. How-
ever, classes in discretised weight inference retain an ordinal characteristic, so that
not all classification errors are equal. Consequently, penalising incorrect classification
into adjacent classes less can avoid overfitting, and increases the correlation between
performance metrics in out-of-distribution data (see table 1). The 5-class classifier,
trained on mixed MultiCamAnts and synth-simple data with class relationship-aware
Gaussian label smoothing with σ = 2, achieved the highest overall accuracy of 47.3%
on out-of-distribution data. There also appeared to be a systematic decrease in the
CoV, indicating increased classification precision. The best smoothing parameter σ
varied with the number of classes; for 5 class models, the activation profile became
flat, and performance in fact decreased for σ > 2 (see Table 1).

Coarser classification approaches outperform deep regressors.

Classifiers and detectors usually outperformed regressors, even in regression centred
evaluation metrics such as MAPE or R2 (see table 2). Careful comparison of classifier
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Table 1 Performance of 5 and 20 class classifiers trained with class relationship-aware Gaussian label
smoothing. All networks were trained with mixed datasets containing the default real 1 (A-C) and the
simple synthetic dataset 7 (A-C), comprising 2.5 million and 910,000 samples respectively. MAPE,
accuracy, Coefficient of Variation (CoV), and R2 are reported on validation data (500,000 unseen
samples collected across the camera perspectives and background textures depicted in 1 (A-C)), and
on out-of-distribution datasets A and B, comprising 4,944 and 30,526 samples respectively (see 1
(D-I).) Label smoothing increased both robustness and precision, as evident in increased performance
metrics on out of distribution data, and a reduction of the CoV.

Validation scores combined scores on Test A and B

classes sigma SRCC ↑ MAPE ↓ acc. ↑ CoV ↓ SRCC ↑ MAPE ↓ acc. ↑ CoV ↓

5 0∗ 0.840 73.3 0.610 0.718 0.732 67.7 0.401 0.560
0.5 0.872 54.3 0.622 0.714 0.774 61.3 0.410 0.565
1 0.923 42.2 0.595 0.632 0.738 55.2 0.424 0.553
2 0.903 53.0 0.544 0.515 0.626 60.5 0.436 0.480
4 0.851 78.6 0.453 0.436 0.444 70.8 0.415 0.413

20 0∗ 0.888 41.9 0.420 0.784 0.686 56.0 0.105 0.622
0.5 0.885 39.5 0.413 0.776 0.590 54.0 0.133 0.545
1 0.861 56.6 0.383 0.717 0.714 60.3 0.115 0.608
2 0.872 37.8 0.319 0.747 0.653 73.2 0.109 0.533
4 0.915 36.4 0.241 0.619 0.831 57.2 0.126 0.477

∗ using default one-hot encoding without label smoothing.

and regressor performance requires to take into account that the baseline performance
varies with class number: A 5-class classifier with an accuracy of 40% performs twice
as well as a random guess, but a 20-class classifier with the same performance is eight
times better than random.

Table 2 Inference performance with different class granularities. All networks were trained with mixed
datasets containing the default real training 1 (A-C) and the simple synthetic dataset 7 (A-C),
comprising 2.5 million and 910,000 samples respectively. MAPE, accuracy, Coefficient of Variation, and
R2 are reported on validation data (500,000 unseen samples collected across the camera perspectives and
background textures depicted in 1 (A-C)), and averaged performance on out-of-distribution datasets A
and B, comprising 4,944 and 30,526 samples respectively (see Fig 1 (D-I).) We find that coarser class
granularity often positively affects the resulting performance

Validation scores combined scores on Test A and B

type SRCC ↑ MAPE ↓ acc. ↑ CoV ↓ SRCC ↑ MAPE ↓ acc. ↑ CoV ↓

CLASS 5 (σ = 1) 0.923 38.9 0.598 0.611 0.759 55.1 0.446 0.519
CLASS 20 (σ = 4) 0.929 35.1 0.255 0.615 0.818 56.4 0.131 0.490

REG MSE 0.810 165.4 0.113 0.313 0.743 105.8 0.135 0.297
REG MSE LOG 0.886 95.8 0.135 0.353 0.868 68.0 0.107 0.324

DETECT 5 0.896 57.2 0.708 0.589 0.687 59.4 0.289 0.607
DETECT 20 0.892 60.1 0.546 0.583 0.609 112.2 0.067 0.664
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Lower size-classes disproportionately affect MAPE scores

Regardless of inference approach, loss function, and label transformation technique
employed, lower size classes disproportionately affect the overall MAPE scores, as
evident from inspection of the class-wise MAPE (see 11, as well as appendix 2), which
was typically between 3 to 10 times higher for the smallest classes, even for overall
well performing inference approaches.

In addition to the size-dependence inherent in the definition of the MAPE score (see
methods), the presence of larger individuals occluding the target animal in the same
cropped frame likely inflates the error further. If inference approaches are selected
according to the lowest MAPE, then a method that systematically underestimates
body mass will do better than a method that systematically overestimates it: the
MAPE favours models that underpredict the target distribution because it assigns
more weight to data points with smaller ground truth values in the denominator,
making these points more influential [59, 60]. Various additions have been suggested
to counter act this property such as dividing the absolute error by the average of
the predicted and ground truth value instead of the ground-truth alone [60] or by
log-transformation of the MAPE [59], and may be explored in future work.

Classi�cation, 5 - classClassi�cation, 20 - classRegression, MSE log-transformed labels Detection, 5 - class
confusion matrix confusion matrix confusion matrix confusion matrix
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Fig. 11 Weight estimation performance of classifiers, regressors and detectors. Accuracy
on unseen validation data increases from left to right; all networks were trained on a mix of real and
synthetic data. (A) A regressor, trained with log-transformed labels achieved a categorical accuracy
of 0.135; (C) The 20-class classifier trained with class relationship-aware Gaussian label smoothing
(σ = 0.5), achieved an accuracy of 0.420; (E) A 5-class classifier, trained with class relationship-aware
Gaussian label smoothing (σ = 2), achieved an accuracy of 0.538; and (G) a 5-class detector, trained
with default labels, achieved an accuracy of 0.708. The associated MAPE scores are nevertheless high,
at (B) 95.8; (D) 25.9; (F) 59.9; and (H) 57.2 respectively, likely because identical absolute weight
errors lead to large relative errors for small weight classes, which skew the MAPE score
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