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Abstract 1 

1. Automated invertebrate classification using computer vision has shown significant 2 

potential to improve specimen processing efficiency. However, challenges such as 3 

invertebrate diversity and morphological similarity among taxa can make it difficult to 4 

infer fine-scale taxonomic classifications using computer vision. As a result, many 5 

invertebrate computer vision models are forced to make classifications at coarser levels, 6 

such as at family or order. 7 

2. Here we propose a novel framework to combine computer vision and bulk DNA 8 

metabarcoding specimen processing pipelines to improve the accuracy and taxonomic 9 

granularity of individual specimen classifications. To improve specimen classification 10 

accuracy, our framework uses multimodal fusion models that combine image data with 11 

DNA-based assemblage data. To refine the taxonomic granularity of the model’s 12 

classifications, our framework cross-references the classifications with DNA 13 

metabarcoding detections from bulk samples. We demonstrated this framework using a 14 

continental-scale, invertebrate bycatch dataset collected by the National Ecological 15 

Observatory Network. The dataset included 17 taxa spanning three phyla (Annelida, 16 

Arthropoda, and Mollusca), with the finest starting taxonomic granularity of these taxa 17 

being order-level. 18 

3. Using this framework, we reached a classification accuracy of 79.6% across the 17 taxa 19 

using real DNA assemblage data, and 83.6% when the assemblage data was “error-free”, 20 

resulting in a 2.2% and 6.2% increase in accuracy when compared to a model trained 21 

using only images. After cross-referencing with the DNA metabarcoding detections, we 22 
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improved taxonomic granularity in up to 72.2% of classifications, with up to 5.7% 23 

reaching species-level. 24 

4. By providing computer vision models with coincident DNA assemblage data, and 25 

refining individual classifications using DNA metabarcoding detections, our framework 26 

has the potential to greatly expand the capabilities of biological computer vision 27 

classifiers. This framework allows computer vision classifiers to infer taxonomically 28 

fine-grained classifications when it would otherwise be difficult or impossible due to 29 

challenges of morphologic similarity or data scarcity. This framework is not limited to 30 

terrestrial invertebrates and could be applied in any instance where image and DNA 31 

metabarcoding data are concurrently collected.  32 



3 

 

1. Introduction 33 

Computer vision has the potential to transform invertebrate ecology by automating estimations  34 

of invertebrate abundance, biomass, and diversity (Høye et al., 2021; Schneider et al., 2022). 35 

However, accurately classifying invertebrate species using computer vision is challenging. This 36 

is partly due to the sheer diversity of invertebrates, as there are an estimated 7.5 million (~1.5 37 

million named) terrestrial invertebrates species globally (Stork, 2018). This has led most 38 

invertebrate classification models to opt for coarser taxonomic granularity (e.g. order-level 39 

instead of species-level classifications) with relatively few unique classification groups (usually 40 

<50; (Ärje et al., 2020; Blair et al., 2022; Schneider et al., 2022). However, ecology studies can 41 

involve hundreds or thousands of species, which poses a challenge for simpler machine vision 42 

techniques.  43 

One way computer vision models have overcome the challenge of handling many thousands or 44 

millions of classification labels is by including additional data modalities such as contextual 45 

metadata (e.g. collection location) in computer vision models. The mobile app iNaturalist uses 46 

this spatiotemporal data in combination with user-submitted photos to classify nearly 80,000 taxa 47 

across the tree of life (Leary et al., 2023). Other studies conducted on a smaller scale have also 48 

found substantial improvements to classification accuracy with multimodal models that include 49 

both metadata and images compared to image-only models (Berg et al., 2014; Terry, Roy and 50 

August, 2020; Blair et al., 2022). However, despite the potential improvements in accuracy, 51 

there are several pitfalls to consider when including spatiotemporal metadata in a computer 52 

vision model. For one, spatiotemporal metadata is a lagging indicator of species habitat 53 

occupancy (i.e. the presence or absence of a species at a given place and time), and as such it is 54 

susceptible to data drift over time (Friedland, 2024). That is, spatiotemporal distributions of taxa 55 



4 

 

change over time, but computer vision models can only learn from past data. Unless a computer 56 

vision model is updated frequently with more recent data, the species range distributions it has 57 

learned may quickly become outdated. Finally, when dealing with many machine learning 58 

classes, spatiotemporal metadata does not solve the challenge of gathering enough training data 59 

to sufficiently train a computer vision model (Beery, Van Horn and Perona, 2018; Beery et al., 60 

2020). In short, studies that incorporate spatiotemporal metadata have shown that supplemental, 61 

non-visual data can improve ecological computer vision models, but spatiotemporal metadata 62 

itself has several potential drawbacks. In this study, we leverage an alternative data stream that 63 

does not pose the same challenges associated with spatiotemporal metadata: DNA 64 

metabarcoding. 65 

DNA metabarcoding is an established tool in ecological research that allows for multiple species 66 

to be identified from a single sample using high-throughput sequencing (Deiner et al., 2017; Liu 67 

et al., 2020; Taberlet et al., 2012). Using this method, DNA can be collected from the 68 

environment (eDNA) or from preservative media (e.g. ethanol in insect bycatch samples), 69 

sequenced, and then used to infer ecological metrics such as species richness and community 70 

composition (Wood et al., 2017; Marquina et al., 2019; Weiser et al., 2022). Due to its improved 71 

cost-effectiveness, DNA metabarcoding is becoming more frequently used in large-scale studies 72 

where traditional morphological identification techniques cannot keep up financially or 73 

logistically (Liu et al., 2020). However, despite being an excellent tool for detecting occurrence 74 

at fine taxonomic granularity (even below species-level; Stewart & Taylor, 2020; Wilcox et al., 75 

2015), DNA metabarcoding cannot be used to reliably estimate species abundance or biomass 76 

(Bista et al., 2018; Lamb et al., 2019). Instead, eDNA metabarcoding is more suitable for binary 77 

presence/absence detections of species. Additionally, while DNA metabarcoding is generally 78 
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reliable for taxonomic identifications, it is not exempt from false positive and false negative 79 

detections (Guillera‐Arroita et al., 2017). Some examples of how this may occur include DNA 80 

contamination and primer mis-priming (false-positives), or DNA degradation and insufficient 81 

sampling effort (false-negatives) (Guillera‐Arroita et al., 2017; Liu et al., 2020). Therefore, 82 

while DNA metabarcoding offers considerable advantages for biodiversity assessment (e.g., 83 

species inventories, species richness) its limitations often necessitate the use of complementary 84 

indicators such as visual observations for other metrics (e.g., abundance, biomass) (Schneider et 85 

al., 2022). 86 

Given DNA metabarcoding’s ability to produce reliable fine-scale community composition data, 87 

and computer vision’s ability to measure abundance and biomass at coarse taxonomic 88 

granularity, several studies have called for a synergistic classification pipeline that takes 89 

advantage of the strengths of each tool (Badirli et al., 2023; Schneider et al., 2022; Sys et al., 90 

2022). In theory, such a pipeline could leverage DNA metabarcoding’s fine taxonomic 91 

granularity against computer vision’s ability to infer specimen-level characteristics (identity, 92 

morphology, etc.) to make ecological inferences that would not be possible using either data 93 

stream on their own. DNA might also be a favourable alternative to spatiotemporal metadata, as 94 

it is a more direct and coincident indicator of species habitat occupancy, likely making it more 95 

resistant to data drift over time (Taberlet et al., 2018). Despite the potential benefits of 96 

multimodal image-DNA classification models for ecological research, few studies have explored 97 

this approach. Additionally, proposed hybrid classification pipelines either leave the DNA and 98 

image data streams separate (Sys et al., 2022), or sequence specimens individually, and thus do 99 

not take advantage of metabarcoding’s ability to process bulk samples (Badirli et al., 2023).  100 
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Here we present a novel approach for identifying and classifying invertebrate taxa which 101 

integrates DNA metabarcoding and computer vision. The objective of this hybrid approach is to 102 

improve the accuracy and taxonomic granularity of computer vision classifications by adding 103 

concurrent community assemblage data derived from DNA metabarcoding into a bulk specimen 104 

classification pipeline (Figure 1). The combination of DNA and image data occurs twice 105 

throughout the pipeline: first during classification inference in the computer vision model, and 106 

then again as a post-processing step for the model’s classifications. While developing this 107 

approach, we ask two primary questions: (1) How does error in DNA metabarcoding data affect 108 

the accuracy of the computer vision classification model? (2) What are the strengths and 109 

limitations of different taxonomic granularity refinement methods? In addition to the case study 110 

we present here, we have also developed a GitHub repository to allow this framework to easily 111 

be adapted to other study systems (Blair, 2024).   112 
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 113 
Figure 1: Our framework for combining computer vision and DNA metabarcoding to improve the 114 

accuracy and taxonomic granularity of classifications. (a) Images and DNA metabarcoding data are 115 

collected concurrently from bulk samples. (b) Images and DNA assemblage data are used as input for a 116 

multimodal classification model. The features of the image input are extracted using a convolutional 117 

neural network. The DNA assemblage data provides presence/absence information for the model’s known 118 

classes and is input as a binary vector into a dense neural network. The image features and the DNA 119 

features are concatenated and processed to produce a final classification. (c) By interpreting the DNA 120 

metabarcoding detections hierarchically and cross-referencing them with the model’s classifications, the 121 

taxonomic granularity of the classifications can be refined.  122 

2. Methods 123 

2.1 Data collection 124 

2.1.1 Specimen collection 125 

Each year, the National Ecological Observatory Network (NEON) performs standardized pitfall 126 

trap array sampling across the United States, including Alaska, Hawaii, and Puerto Rico 127 

(Hoekman et al. 2017). The focal taxa of the pitfall trap array project are ground beetles 128 

(Coleoptera: Carabidae), which are collected, identified, and counted by NEON staff members 129 
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once every two weeks during the growing season (defined as “the weeks when average minimum 130 

temperatures exceed 4 ℃ for 10 days and ending when temperatures remain below 4 ℃ for the 131 

same period”, Kaspari et al., 2022). The remaining pitfall trap contents are set aside as 132 

‘Invertebrate Bycatch’ and archived in 95% ethanol-filled 50 mL falcon tubes. Hereon, a single 133 

collection period from a pitfall trap plot is referred to as a “sampling event”. 134 

The invertebrate bycatch specimens used in this research were taken from 56 NEON trap plots 135 

from 27 sites (usually two plots per site; Figure 2, Figure S.1). Generally, we used three 136 

sampling events per plot, selected at the beginning, middle, and end of each site's growing 137 

season. This resulted in a total of 150 sampling events. All sampling events used here were 138 

collected in 2016 and processed in 2019. The focus of this project was to classify the invertebrate 139 

bycatch, so ground beetles and non-invertebrate specimens were not considered. 140 
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 141 
Figure 2: Map of the 27 NEON sampling sites used in this study. The sites are labelled with their 142 

abbreviated names.  143 

2.1.2 Imaging 144 

The contents of each 50mL falcon tube were spread out across a 20.32 cm ✖ 30.48 cm (8” ✖ 145 

12”) white ceramic tile and photographed at a resolution of 729 pixels per mm2, as described by 146 

Weiser et al., 2021 (Figure S.2). Using the FIJI implementation of ImageJ (Schindelin et al., 147 

2012), each specimen was detected and cropped to its bounding box to produce a final image. 148 

2.1.3 DNA extraction and metabarcoding 149 
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The DNA metabarcoding data used in this study was collected for Weiser et al., 2022, which 150 

used the same sampling events described in Section 0. In brief, DNA metabarcoding was 151 

conducted on a per-tube basis (Figure S.1). Ethanol from each falcon tube was filtered 152 

individually (i.e., one filter per tube) and DNA was extracted from the filters using established 153 

protocols (Weiser et al., 2022). The cytochrome c oxidase I (COI) barcode region (141-254 base 154 

pairs) was then amplified using a two-step polymerase chain reaction (PCR) protocol and 155 

sequenced on an Illumina MiSeq. Three COI primers were used: 157, LCO, and Lep (Rennstam 156 

Rubbmark et al., 2018; Hajibabaei et al., 2019; Weiser et al., 2022). Sequences were clustered 157 

into Operational Taxonomic Units (OTUs) and each OTU was assigned a taxonomic 158 

classification using NCBI BLASTn (Altschul et al., 1990) and Integrated Taxonomic 159 

Information System (ITIS) (U.S. Geological Survey, 2013). Only sequences with ≥ 97% 160 

similarity between the OTU consensus sequence and the BLASTn search were used. See Weiser 161 

et al., 2022 for the full DNA extraction and metabarcoding methods. 162 

In total, across all sampling events, there were 10,212 DNA metabarcoding detections. To align 163 

the DNA data with the imaging data, we removed any DNA detections from sampling events not 164 

included in the image dataset, as well as duplicate detections (i.e. multiple detections of the same 165 

taxon in a single sampling event, for example due to amplification using multiple primers). This 166 

yielded a final DNA metabarcoding dataset with 3,361 detections and 1,212 unique taxa, 167 

primarily consisting of family (369 detections; 85 unique), genus (468 detections; 183 unique), 168 

and species-level (2,471 detections; 922 unique) detections.  169 

https://www.zotero.org/google-docs/?broken=F9T13l
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2.2 Data and labelling 170 

2.2.1 Computer vision class labels 171 

The taxonomic scope of the image and DNA metabarcoding data spanned three invertebrate 172 

phyla: Annelida, Arthropoda, and Mollusca. The specimen images were labelled by a single 173 

technician to the best of their ability (as described in Blair et al., 2022). The final labels used for 174 

our study ranged from order to phylum-level. Classes with a taxonomic granularity coarser than 175 

order-level but with no subtaxa present in the dataset (e.g. Phylum: Annelida) were included. 176 

Specimens labelled as nested classes at a taxonomic granularity coarser than order-level 177 

(Phylum: Arthropoda, Class: Insecta, and Class: Arachnida) were excluded. Classes with fewer 178 

than 100 specimens in the dataset were also excluded. This resulted in a final image dataset with 179 

a total of 36,988 specimens across 17 classes (13 orders and one subclass, class, subphylum, and 180 

phylum; Figure 3).  181 
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 182 

Figure 3: Collage of photographs of all invertebrate classes used in the training dataset (n = 17). The 183 

taxonomic granularity of the classes ranges from order to phylum. Specimens were cropped from their 184 

original photographs, and the background was removed. Relative scale of each specimen is conserved.  185 
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2.2.2 Hierarchical labels 186 

Hierarchical labels containing taxonomic information at multiple levels and were assigned to 187 

images and sampling events. Image-based hierarchical labels contained information at six levels 188 

from phylum to order-level for individual specimens (Table 1). DNA-based hierarchical labels 189 

contained information at 13 levels from phylum to species for all DNA detection in each 190 

sampling event (Table 2). The levels in the DNA-based hierarchical labels were phylum, 191 

subphylum, class, subclass, superorder, order, suborder, infraorder, superfamily, family, 192 

subfamily, genus, and species. We used these labels as part of the taxonomic granularity 193 

improvement process detailed in Section 2.5.  194 

Table 1: Three examples image-based hierarchical labels (a,b,c). (a) The hierarchical label for Blattodea 195 

with all taxonomic levels between phylum and order filled. (b) Some taxa do not have names for every 196 

taxonomic sub-level. In these cases, the name from the preceding, finer-grain level is used. In this 197 

example, Coleoptera does not belong to any superorder, so “Coleoptera” is used as a placeholder 198 

superorder name. (c) Classes with a taxonomic granularity above order-level used indeterminate (“indet.”) 199 

labels at all remaining taxonomic levels. In this example, “Annelida indet.” is used for all levels below 200 

phylum. 201 

Example Phylum Subphylum Class Subclass Superorder Order 

(a) Arthropoda Hexapoda Insecta Pterygota Polyneuroptera Blattodea 

(b) Arthropoda Hexapoda Insecta Pterygota Coleoptera Coleoptera 

(c) Annelida Annelida 

indet. 

Annelida 

indet. 

Annelida 

indet. 

Annelida indet. Annelida 

indet. 

  202 
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Table 2: Simplified example of a DNA multi-class hierarchical label for a sampling event. Our DNA 203 

hierarchical labels used 13 taxonomic levels from phylum to species, but for the sake of space only major 204 

taxonomic levels are shown here.  205 

Phylum Class Order Family Genus Species 

Arthropoda 

Insecta 

Diptera Culicidae 

Aedes A. vexans 

Culex C. salinarius 

Orthoptera Gryllidae Gryllus G. veletis 

Arachnida Araneae Lycosidae Schizocosa S. humilis 

2.2.3 Binary assemblage data 206 

Two sets of binary assemblage data were recorded for each sampling event: one using detections 207 

from the image labels and one using detections from the DNA class labels. DNA class labels 208 

were based on the same 17 classes used by the computer vision model, and followed the same 209 

naming scheme described in Section 0. The assemblage data was multi-hot encoded 210 

(Goodfellow, Yoshua and Courville, 2016). That is, each sampling event was assigned a 17 211 

element long binary vector where each element corresponded to a computer vision class. If the 212 

class was detected in the sampling event, its element was assigned a score of 1, whereas it was 213 

assigned a score of 0 if it was not detected. This data was used as input for some classification 214 

models described in Section 0. 215 

2.3 Training and testing data split 216 

Quasi-replication occurs in machine learning datasets when the same or very similar data occur 217 

in both the training and testing datasets. This violates the assumption of independence between 218 

training and testing data and should be avoided to make valid inferences on the test data. The 219 
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DNA-based assemblage data presented a quasi-replication risk, as specimens from the same 220 

sampling event would have the same assemblage data. To avoid quasi-replication, we split the 221 

training and testing such that all specimens from a given sampling event were only included in 222 

either the training or testing data. We set our target training:testing ratio to 85:15, and we 223 

randomly added sampling events to the test dataset until the test dataset contained >15% of the 224 

total number of specimens. The final train:test split was 31,381: 5,617 specimens and 122:28 225 

sampling events. 226 

2.4 Classification models 227 

The objective of all the classification models was to accurately classify the class labels of 228 

individual specimen photos. Classification masks (Section 0) and data fusion approaches 229 

(Section 0) were used to assess how classification accuracy changes when DNA-based 230 

assemblage data was added to the specimen classification pipeline. Performance of each 231 

classification model was assessed using the original image labels as a ground truth. All code 232 

required for running these models can be found in the “Model_Scripts” subdirectory of our 233 

GitHub repository (Blair, 2024). 234 

2.4.1 Baseline model 235 

To evaluate model performance in the absence of DNA-based assemblage data, we trained a 236 

ResNet-50 (He et al., 2016) as a baseline model using only image data. The model was pre-237 

trained using the ImageNet weights from He et al. (2016), and then fine-tuned using the NEON 238 

invertebrate bycatch image data. The ImageNet classification layer was removed and replaced 239 

with a new classification layer for our 17 classes.  240 
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2.4.2 Classification masks 241 

2.4.2.1 Naïve mask 242 

For our first experiment in combining the image and DNA-based assemblage data, we used what 243 

we call a “naïve mask” on the baseline model’s test data softmax classification layer outputs. 244 

Using the naïve mask, the softmax layer values for each test data specimen were multiplied by 245 

their sampling event’s binary DNA-based assemblage data. Thus, any classes not detected by the 246 

DNA metabarcoding in a given sampling event had their respective softmax values set to 0, 247 

whereas the remaining classes were unaffected. After applying the mask, the class label with the 248 

highest softmax value was used as the classification for a given specimen. 249 

2.4.2.2 Weighted mask 250 

“Hard” masks like the naïve mask, which set the softmax values of undetected classes to 0, 251 

assume the DNA metabarcoding data is error-free. However, in reality, DNA metabarcoding can 252 

have false positive and/or false negative detections (Taberlet et al., 2018). To create a “softer” 253 

version of the naïve mask, we also created a “weighted mask”, which allows classes not detected 254 

by the DNA metabarcoding to still be classified. 255 

The weights for the weighted mask were calculated using the DNA’s true positive rate 256 

(precision) and false negative rate (1 - recall) for each class. The DNA metabarcoding precision 257 

and recall were calculated by comparing the DNA-based assemblage labels to the image-based 258 

assemblage labels, using the image-based assemblage labels as a ground truth. To create the 259 

weighted mask, we assigned a class’s precision for positive DNA detections, and the class’s false 260 

negative rate for negative detections. The application of the weighted mask was the same as the 261 



17 

 

naïve mask: The softmax values for each test data specimen were multiplied by their sampling 262 

event’s weighted mask values, and the new top-1 class was used as the classification. 263 

2.4.2.3 Image-based mask 264 

To simulate a scenario where the DNA detections were in perfect alignment with the image-265 

based detections, we applied the image-based binary assemblage data to the softmax values of 266 

the baseline model. We did this to provide an upper-bound for the classification mask accuracy, 267 

and to understand how DNA detection accuracy impacts specimen classification accuracy when 268 

using classification masks. 269 

2.4.3 Multimodal fusion 270 

To allow the classification models to learn patterns from the DNA data, we trained multimodal 271 

models that combined images with binary DNA-based assemblage data using intermediate fusion 272 

(Boulahia et al., 2021) (Figure 4). In these multimodal models, the image and assemblage data 273 

for a given specimen were fed to the model separately. The images were fed through the ResNet-274 

50 architecture, ultimately producing a flat feature layer. DNA-based assemblage data was paired 275 

with individual specimens based on their sampling event (the same approach as the classification 276 

masks described in Section 2.4.2). This data is fed through a single fully-connected layer. The 277 

flattened image layer and fully-connected DNA-based assemblage layer were then concatenated 278 

(i.e. fused) and passed through another fully-connected layer before reaching the final 279 

classification layer.  280 

To understand the effect that DNA detection accuracy has on classification performance, we ran 281 

three versions of the multimodal model using different types of assemblage data as input: (1) 282 
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using the DNA-based assemblage data, (2) using the image-based assemblage data, and (3) using 283 

‘zero-filled’ assemblage data (all values in the assemblage data are set to zero). In all three 284 

experiments the training and testing datasets used the same assemblage data type (i.e. DNA-285 

based, image-based, or zero-filled). All three experiments used the same overall model 286 

architecture as described in Figure 4. The purpose of the image-based assemblage experiment 287 

was to simulate the results of a model where the DNA detections perfectly aligned with the 288 

ground truth labels. The purpose of the zero-filled assemblage experiment was to control for 289 

differences in model architecture when comparing the multimodal models to models trained 290 

without DNA-based assemblage data, as the zero-filled data would provide no informative value 291 

to the model. The zero-filled assemblage data had the same dimensions as the other assemblage 292 

data (17 values for each sampling event). 293 

 294 

Figure 4: The described classification model architecture that combines image data with DNA-based 295 

binary assemblage data. Images are fed through ResNet convolutional layers to produce a flat feature 296 

layer, and DNA assemblage data produces a fully connected dense layer. The flat layer and dense layer 297 

are then concatenated and passed through one more dense layer before final classification in the softmax 298 
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layer. The visual proportions of each layer have been simplified to ease interpretation and are not meant 299 

to be interpreted as 1:1 representations of the exact layer sizes. 300 

2.5 Refining taxonomic granularity using DNA-based assemblage data 301 

To take advantage of the relatively fine taxonomic granularity of the raw DNA detections 302 

compared to the computer vision classes, we refined the taxonomic granularity of the DNA 303 

fusion model classifications by cross-referencing them with the DNA detections. In cases where 304 

the model classifications and DNA detections agreed on the presence of a class, the granularity 305 

of the classification improved until the number of subtaxa detected by the DNA metabarcoding 306 

was greater than 1 or the granularity reached species-level, as that was the finest granularity 307 

reported by the DNA (Figure 5a,b). In cases where the model classifications and DNA detections 308 

disagreed on the presence of the class classified by the model, we implemented two methods 309 

which we call “model-biased” and “DNA-biased”. The model-biased method is simple. In cases 310 

where the model and DNA metabarcoding disagreed, the model classification remained 311 

unchanged (Figure 5c). When using the DNA-biased method, we compared the hierarchical label 312 

of the classified specimen to the hierarchical labels of the sampling event as determined by the 313 

DNA metabarcoding (Figure 5d, Table 1,   314 
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Table 2). Starting from the original classification level, we coarsened the granularity of the label 315 

until an agreement between the model and DNA metabarcoding was reached. The taxonomic 316 

name at this level became an intermediate label, and the taxonomic granularity of the label was 317 

refined until the number of subtaxa detected by the DNA metabarcoding was greater than 1 or 318 

the granularity reached species-level. 319 

All code required for running these methods can be found in the “Granularity_Refinement” 320 

subdirectory of our GitHub repository (Blair, 2024). 321 

 322 
Figure 5: Four methods of changing a label’s granularity using DNA detections. (a,b) When the 323 

classification label and DNA detections are in agreement about the presence of a class, granularity will be 324 

refined until the number of subtaxa detected by the DNA metabarcoding is > 1 or the classification 325 

reaches species level. (c) Under the model-biased approach, when the classification label and DNA 326 

metabarcoding do not agree on the presence of a class, the classification label remains unchanged. (d) 327 

Under the DNA-biased approach, when the classification label and DNA metabarcoding do not agree on 328 

the presence of a class, the granularity of the classification label is coarsened until a DNA detection for 329 

the class is found (“intermediate label”). The granularity of the intermediate label is then refined using the 330 

same rules as (a,b).  331 
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3. Results 332 

3.1 DNA metabarcoding precision and recall 333 

To generate the weights for the weighted mask, we calculated the DNA-based assemblage data’s 334 

precision and recall for each class using the image-based assemblage data as the ground truth. 335 

This calculation only included sampling events from the training dataset. Across the 17 predicted 336 

classes, recall ranged from 0.905 to 0.000, with an average recall of 0.570. The weight for a 337 

negative detection was 1 - recall, so negative detection weights ranged from 1.000 to 0.095, with 338 

an average of 0.430. Two classes (Opilioacarida and Zygentoma) were never detected by the 339 

DNA. Across the 15 classes detected by the DNA, the average precision was 0.761. The 340 

precision and recall values per class are reported in Table S.1. 341 

3.2 Classification accuracy 342 

Compared to the baseline model, the DNA assemblage fusion model improved accuracy by 2.2% 343 

(79.6% vs 77.4%; Table 3). However, the DNA assemblage fusion model’s accuracy was 1.0% 344 

lower than the zero-filled model’s accuracy (80.6%). This suggests that some of the performance 345 

improvements seen in the fusion models could come from changes to the model architecture. The 346 

naïve classification mask recorded the lowest classification metrics, with an accuracy 22.6% 347 

below the baseline model (54.8%), and a top-3 accuracy of only 64.0%.  348 

Experiments with image-based assemblage data performed better, with the fusion model 349 

reaching an average accuracy of 83.6% and a balanced accuracy (i.e. macro-averaged recall) of 350 

0.713 (Table 4). The image-based naive mask accuracy was 25.8% better than the DNA-based 351 
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naive mask, and 3.2% better than the baseline model. It also had the highest top-3 accuracy 352 

across all experiments at 93.2%. 353 

Table 3: Performance metrics for experiments trained using DNA-based assemblage data, other than the 354 

baseline model, which was trained only using images, and the ‘zero-filled’ experiment, which replaced all 355 

assemblage data values with zero to control for the impact of model architecture. Underlined scores 356 

indicate they are the highest for a given metric.  357 

Experiment Accuracy Balanced Accuracy Top-3 Accuracy 

Baseline 0.774 0.674 0.952 

Naive mask 0.548 0.509 0.640 

Weighted mask 0.764 0.666 0.950 

Fusion (DNA) 0.796 0.680 0.957 

Fusion (zero-filled) 0.806 0.670 0.952 

Table 4: Performance metrics for the image-based assemblage data experiments. These experiments used 358 

binary assemblage data taken from the ground truth specimen labels. Underlined scores indicate they are 359 

the highest for a given metric. 360 

Experiment Accuracy Balanced Accuracy Top-3 Accuracy 

Mask 0.806 0.690 0.959 

Fusion 0.836 0.713 0.963 

3.3 Taxonomic granularity 361 

Of the DNA fusion model classifications, 68.2% (3833/5617) were present in their 362 

corresponding sampling event’s DNA assemblage data. Nonetheless, both approaches for 363 

handling disagreements between the DNA and classification model (model-biased or DNA-364 

biased) improved the average taxonomic granularity of the classifications (Figure 6). Despite 365 

starting with no classifications finer than order-level, the DNA-biased approach resulted in 5.7% 366 

of classifications improving to species-level and the model-biased approach resulted in 5.1% of 367 

the classifications improving to species-level. The DNA-biased approach was more effective 368 
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overall at refining the granularity of classifications, with 72.2% of classifications becoming finer 369 

than their original classification, and 43.1% reaching at least family-level. In the model-biased 370 

approach, 51.7% of classifications improved their granularity, and 31.0% reached family-level or 371 

lower. When looking exclusively at classifications where the DNA assemblage data and fusion 372 

model classifications agreed on the presence of a class, 7.5% reached species level, 45.4% 373 

reached family-level or lower, and 75.7% became finer than their original classifications. Both 374 

the DNA-biased and model-biased approaches produced 89 unique final labels (Table S2). 375 
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 376 

Figure 6: Sankey diagrams showing the change in taxonomic granularity before (left) and after (right) 377 

cross-referencing labels with the DNA detections. (a) DNA-biased approach. (b) Model-biased approach. 378 

(c) Results when the model classification and DNA detections agree on the presence of the labelled class.  379 
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4 Discussion 380 

Here we show that combining concurrent DNA-based assemblage data with computer vision can 381 

improve the accuracy and taxonomic granularity of computer vision classifications. Unlike most 382 

classification pipeline enhancements which only focus on improving the ability to classify 383 

classes on which it was trained (“known classes”), this approach adds the ability for the pipeline 384 

to infer classifications beyond the model’s usual taxonomic scope (“unknown classes”). To 385 

thoroughly explore the benefits and implications of this hybrid approach, we focused on the 386 

following two research questions.  387 

4.1 How does DNA metabarcoding accuracy affect specimen classification accuracy? 388 

The effect of metabarcoding accuracy on classification accuracy differed between the 389 

classification masks and the multimodal fusion models, illuminating a key difference between 390 

them: classification masks (as used in this study) do not take class co-occurrence into 391 

consideration, whereas the multimodal models do. Put another way, in a classification mask the 392 

only factor that directly influences the weight given to a class is the presence or absence of the 393 

class itself. Conversely, the neural networks of multimodal fusion models—with their fully-394 

connected structure—allow the presence or absence of all classes to holistically influence each 395 

class’s classification probability. This allows the model to use patterns of class co-occurrence to 396 

inform its classification decisions.  397 

The different mechanisms used by classification masks and multimodal models are best 398 

demonstrated in Table 4, where the assemblage data was derived from the ground-truth image 399 

labels. In the classification mask, the model’s original classifications were exclusively based on 400 

image data, and any classifications that did not match their respective assemblage data were 401 
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reclassified as the class with the highest softmax score that was present in the specimen’s 402 

assemblage. Given that the assemblage data was derived from the ground truth labels, this mask 403 

acted as a sieve that filtered out any classes that could not possibly be the correct classification 404 

based on the assemblage data. As a result, it could only have a positive impact on accuracy. 405 

However, despite this, the fusion model still scored higher on all three metrics measured (top-1 406 

accuracy, balanced accuracy, and top-3 accuracy). This implies that the fusion model was not 407 

just using the assemblage data as a filter, but that it provided additional contextual information 408 

(such as class co-occurrence or class exclusion) that further improved accuracy. Thus, due to the 409 

fusion model’s ability to holistically evaluate occurrence data, and as illustrated through its 410 

superior performance compared to classification masks even under ideal conditions, multimodal 411 

fusion models are likely to be preferable in most use cases. This conclusion is reinforced by the 412 

results of Table 3, where both naïve and weighted masks showed negative effects on all 413 

classification performance metrics when the DNA-based assemblage data contained substantial 414 

amounts of error. 415 

4.2 What are the strengths and limitations of each granularity refinement method? 416 

Here we proposed two approaches for cross-referencing DNA metabarcoding data to achieve the 417 

novel ability of refining the taxonomic granularity of computer vision classifications. The two 418 

approaches differ in how they resolve disagreements between the detections of the DNA 419 

metabarcoding and computer vision classifications, with the model-biased approach favouring 420 

the computer vision classifications, and the DNA-biased approach favouring the DNA 421 

detections. As such, each approach has its own set of advantages and limitations.  422 
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Through the ability to coarsen granularity before refining it, the DNA-biased method can make 423 

classifications outside of the taxonomy of the original classification model (Figure S.3). 424 

Explained another way, the model-biased approach and traditional hierarchical classifiers (e.g. 425 

Badirli et al., 2023) can only adjust classifications “vertically” (i.e. to supertaxa or subtaxa of the 426 

original classifications), but the DNA-biased approach can also adjust classifications “laterally” 427 

to out-of-distribution taxa through a combination of classification coarsening and refining. 428 

Classification of out-of-distribution taxa is usually only possible using feature embedding 429 

learning methods such as zero-shot learning (Badirli et al., 2021). An illustrative example of this 430 

comes from the DNA-biased approach’s detection of taxa within the insect order Psocodea (e.g. 431 

Valenzuela flavidus; Table S.2). As Psocodea was not included as a class in our model, and our 432 

model’s finest taxonomic granularity was order-level, Psocodea’s branch of the taxonomy was 433 

only accessible through a “lateral” taxonomic adjustment (Figure S.3). As such, it was only 434 

detected by the DNA-biased approach, and not the model-biased approach (Table S.2). In theory, 435 

this extends the range of possible classifications to the full taxonomic scope of the genetic 436 

reference database being used (e.g. GenBank, Barcode of Life, etc.) (Ratnasingham and Hebert, 437 

2007; Sayers et al., 2024). In practice, it is likely best to self-impose limits on how much the 438 

DNA-biased method can coarsen granularity. In our case we limited ourselves to phylum, as we 439 

were only interested in classifications within our three focal phyla.  440 

While it does not have the same potential taxonomic scope of the DNA-biased approach, an 441 

advantage of the model-biased approach is that the taxonomic granularity of the final 442 

classification cannot be coarser than the original classification. Applied to the DNA fusion model 443 

classifications, 9.9% of all classifications became coarser when the DNA-biased method was 444 

used (Figure 6). While the DNA-biased method classified more specimens at family-level or 445 
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finer (43.1% vs 31.0%), the ability to coarsen granularity resulted in more classifications above 446 

order-level (11.7% vs 6.4%). 447 

Even when granularity does not reach species, classifications that match with the DNA-based 448 

assemblage data still provide more information than what is typically output from a classification 449 

model. This is because we can also see the number and identity of subtaxa that the specimen 450 

could be according to the DNA metabarcoding detections. For example, if the DNA 451 

metabarcoding detected three species of the cricket genus Gryllus in a sample, we could say the 452 

label of a specimen that would otherwise be classified simply as “Gryllus indet.” is actually one 453 

of three possible species of Gryllus, as detected by the DNA metabarcoding (e.g. G. 454 

pennsylvanicus, G. rubens, or G. veletis). This might also be useful for future developments to 455 

these methods, as the number of subtaxa detected by the DNA metabarcoding could be used to 456 

inform clustering algorithms that separate the specimens into morphotaxa.  457 

Of course, the granularity of classifications matters little if they are not accurate. A caveat of our 458 

study is that we cannot verify the accuracy of granularity-refined classifications, as they are at 459 

lower taxonomic levels than our ground truth (human-classified) labels. However, we know that 460 

our classification models were more accurate than the DNA assemblage data when compared to 461 

our ground-truth labels. Thus, the DNA-biased method of refining granularity will likely add 462 

more error to the classifications than the model-biased approach. When deciding between the 463 

two methods, this is likely to be a determining factor: does the computer vision model or DNA 464 

metabarcoding contain more error?  465 
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4.3 Caveats and areas for future exploration 466 

In an applied context, we cannot definitively conclude that image-DNA fusion models as we 467 

present here improve specimen classification accuracy. This is primarily due to the high rates of 468 

disagreement (or “error”) between our DNA metabarcoding detections and image-based 469 

detections. When comparing our three fusion experiments, the zero-filled experiment had a top-1 470 

accuracy 1.0% higher than the DNA-based assemblage data experiment, but 3.0% less than the 471 

image-based assemblage data experiment. This suggests that in an ideal situation where the 472 

DNA-based assemblage data has low amounts of error (i.e. it is more similar to the image-based 473 

assemblage data), image-DNA fusion models will positively impact classification accuracy. 474 

However, when the DNA-based assemblage data contains substantial error, differences in 475 

performance between the baseline and fusion models likely arise from changes in the model’s 476 

architecture. 477 

Reconciling genetic-based and morphology-based data—the two chief methods for invertebrate 478 

biodiversity monitoring—is a pressing need as previous studies have shown that assemblages 479 

determined by visual classification usually differ from assemblages determined using DNA 480 

metabarcoding. For example, Emmons et al. (2023) found that NEON benthic macroinvertebrate 481 

samples classified by taxonomists only shared 59% of order-level detections with DNA 482 

metabarcoding data derived from homogenized blends of the same samples. Marquina et al. 483 

(2019) also found that different DNA sampling protocols can produce inconsistent assemblage 484 

data, as DNA metabarcoded from ethanol vs homogenized blends of the same samples yielded 485 

significantly different assemblage data, with both methods detecting taxa not detected by the 486 

other. For the image-DNA fusion methods we propose here to be maximally effective, advances 487 
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will need to be made in DNA metabarcoding methodology to limit false positive and false 488 

negative detections. 489 

Beyond DNA metabarcoding accuracy, there are likely other factors that can impact the efficacy 490 

of our methods, such as assemblage homogeneity and assemblage specificity. Assemblage 491 

homogeneity refers to the variation among assemblages. For example, the zero-filled assemblage 492 

experiment used data that was completely homogenous, as every sampling event had the same 493 

assemblage data. Assemblage specificity refers to how many unique classes are detected within a 494 

sample. A maximally specific assemblage would only detect one class as present, while a 495 

minimally specific assemblage would detect every class as present. Reducing assemblage 496 

homogeneity and increasing assemblage specificity should yield models with greater 497 

classification performance. This is because heterogeneity is required for learnable patterns to 498 

emerge in the data, and increased specificity allows more classes to be filtered out by the model. 499 

This is partially demonstrated by comparing the results of Blair et al. (2020) to the results we 500 

present here. In their study, which built classification models for NEON’s carabid beetles, the 501 

authors applied classification masks to their models based on the detected ground beetle 502 

assemblages at each sampling site. On average, 2.93 out of 25 potential species (11.7%) were 503 

detected per site, resulting in an accuracy improvement of 10.9% (84.7% → 95.6%) after 504 

applying the classification masks. Comparatively, our image-based assemblages detected an 505 

average of 9.09 out of 17 potential classes (53.5%) per sampling event. When compared to the 506 

baseline model, this resulted in an accuracy improvement of 3.2% when using the classification 507 

mask and 6.2% in the fusion model (Table 3, Table 4). Thus, methods to reduce assemblage 508 

homogeneity (e.g. finer-grain class labels) and increase assemblage specificity (e.g. fewer 509 
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specimens per sample) will likely increase the efficacy of image-DNA metabarcoding fusion 510 

classification pipelines. 511 

4.4 Broader applications and implications 512 

In this study, we used assemblage data derived from DNA metabarcoding to improve computer 513 

vision classifications of terrestrial invertebrates. However, our general framework could be 514 

applied to any study system where images and DNA metabarcoding data are collected 515 

concurrently. Given that computer vision and DNA metabarcoding are emerging technologies in 516 

ecological research, the number of research systems that include one or both is increasing 517 

(Pichler and Hartig, 2023; Shea et al., 2023). Projects that use both computer vision and DNA 518 

metabarcoding also span a wide range of fauna and ecosystems, including freshwater, marine, 519 

and terrestrial vertebrates (Takeuchi et al., 2021; Mas-Carrió et al., 2022; Holm et al., 2023). By 520 

leveraging the strengths of computer vision and DNA metabarcoding, our framework could 521 

enhance the capabilities of projects like these. 522 

Our framework is composed of two primary modules—a multimodal classification model and a 523 

classification granularity refinement method—which can be used and modified independently of 524 

each other. Our multimodal model requires image data and assemblage data, but the assemblage 525 

data does not need to be derived from DNA. In this study we conducted experiments where the 526 

DNA-derived assemblage data was substituted with image-derived assemblage data. Likewise, 527 

assemblages derived from other sensor data (acoustic, lidar, etc.) could also be used (Gasc et al., 528 

2015; Kaplan et al., 2015; Wedding et al., 2019). Conversely, our classification granularity 529 

refinement method requires DNA metabarcoding data and individual specimen classifications, 530 

but the specimen classifications do not need to be derived from a computer vision model. We 531 
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encourage future studies to explore different variations and combinations of the modules we 532 

present here. 533 

Our framework’s ability to refine classification granularity, which is typically not possible in 534 

computer vision, could improve the feasibility of building broad-scope, fine-grain classification 535 

models (e.g. models spanning entire classes or phyla and capable of producing species-level 536 

classifications). This typically requires vast amounts of training data, as training examples need 537 

to be provided for every species. Using the approach that we present here, classifiers could be 538 

trained at coarser taxonomic levels such as order or family and still have the potential to produce 539 

species-level classifications. This would decrease the number of classes in the model, and thus 540 

data needed to train it, by orders of magnitude. Hence, the synergy between DNA metabarcoding 541 

and computer vision outlined in this study paves the way for new possibilities in computer vision 542 

classification of taxa, with the potential for improved accuracy and granularity with far less data 543 

dependency.  544 
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