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Abstract: Categorizing a population into different income classes is important for creating
effective policies and analyzing markets. Our study develops a statistical method based
on a nationwide survey of income distribution. We use these data to create a cumulative
distribution function with a metalogistic distribution and its probability density function.
We propose a new way to divide the population into income classes by using the inflection
points of the probability density function as the class boundaries. As a case study, we apply
this method to income data from Brazil between 2012 and 2022. We identify five income
classes, with both their boundaries and the distribution of the population changing over
time. To check our approach, we calculate the Gini coefficient and find that our results
closely match official figures, with a root mean square deviation of less than 1%. By using
individual income instead of family income, we avoid distortions caused by the fact that
poorer families tend to be larger than wealthier ones. In the end, we identify five main
income classes, with their boundaries shifting each year, reflecting the changing nature of
income distribution in society.

Keywords: complex systems; social phenomena; statistics; inflection points; metalog
distributions; Shannon entropy; Gini coefficients; income classes

1. Introduction
Human societies classify groups based on various criteria, including caste, ethnicity,

or a combination of origin and phenotype. When it comes to economic status, classification
typically divides people into lower, middle, and upper classes. The lower class consists
of those struggling for basic survival, while the upper class includes individuals with
substantial financial resources, ranging from comfortable and stable lives to those with
wealth beyond measure. The middle class falls between these two extremes. The boundaries
between these classes are often arbitrary and can vary from country to country.

Classifying individuals into these categories helps shape strategic state policies and
marketing strategies. Understanding the characteristics of each class is crucial for both ap-
plications. Artificial intelligence is increasingly effective in identifying these characteristics
and preferences. Over time, individuals may move within their original class or transition
to a neighboring class, reflecting changes in their economic status and social mobility.

Income distributions have been studied in many countries [1]. A study of the income
distribution in the USA [2–4] with data provided by the the Internal Revenue Service (IRS)
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and from the US Census Bureau, found that income distribution is exponential for incomes
below USD 120 k per year and that the upper tail of income distribution follows a power
law [5] This two-class model was used to analyze the temporal evolution of the income
classes in the USA during 1983–2001 [6] and, more recently, during 1983–2018 [7].

A new methodology [8], based on the two-class model, was developed to estimate
income distribution while accounting for hidden sources of income, such as retained
earnings. This approach was applied in a case study of the Chilean economy.

Aiming to adapt the National Innovation System (NIS), a mechanism to provide means
to public decision-makers on issues of innovation, knowledge, and economic development
to low- and middle-income countries, a proposal [9] of a qualitative model was validated
in the case of Senegal. A low-income economy, it draws most of its efforts not in terms of
S&T but, more broadly, in its learning policy, its reforms on higher education, or proposals
on entrepreneurship.

An analysis of personal income distribution in Australia from 1899 to 2000 involved
fitting exponential, log-normal, and gamma distributions to data provided by the Australian
Bureau of Statistics [10]. The survey included 14,000 individuals from a total population of
20 million in Australia.

A large study on social stratification, which assumes that a society’s wealth is linked
to the energy available from prehistoric times to today [11], suggests that the dynamics of
social stratification can be seen as a stochastic process following the principle of maximum
entropy [12,13]. The study presents an entropic perspective on wealth.

Much of the analysis made on measuring the inequality of income in a population
uses the Gini coefficient [14–18]. This criterion considers the total income of the population
and how it is distributed. Other criteria are also used, like income tax data and deciles of
mean incomes. But until now, no agreed-upon criteria have been established, aside from
the challenge of obtaining accurate income measures. Yet, it is of central importance to
obtain a reliable representation of the distribution of income to design appropriate new
public policies to correct the existing social inequalities.

Here, we propose an alternative criterion for identifying the existing distinct classes
according to their respective mean incomes. This criterion comes in addition to the other
ones to shed a different light on existing distinct classes and, in particular, to allow a better
shaping of public policies. Our approach relates to specific properties of the cumulative
probability function of the individual income distribution of the population. Our hypothesis
is to associate a change in the slope of the probability density function of monthly income
per capita to a change of social category. Having the associated repartition in classes allows
us to study the crossings between classes boundaries from one year to the next one. This
scheme provides a novel tool to evaluate the efficiency of applied public policies. As a
case study, we applied our criterion to identify income classes in Brazil. Our results show
the existence of five classes, whose boundaries and population change with time. We
analyzed those changes in a period of eleven years, from 2012 to 2022, covering several
presidential terms.

This work subscribes to the field of physics-like modeling of social, economics, and
financial phenomena [19–25].

The remainder of the paper is organized as follows: Section 2 outlines the criterion for
defining class boundaries, describes the use of the metalogistic distribution to fit the cumu-
lative probability function, and provides a preliminary discussion of how Brazilian society
is typically categorized using annual surveys conducted by the Brazilian government. In
Section 3, we apply our criterion to the per capita monthly income distribution data from
Brazilian agencies, covering the period from 2012 to 2022 across four presidential terms. To
validate our quantile probability function, we compute the Gini coefficients for this period.
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Section 4 analyzes our results, examining the flow between classes and changes in their
boundaries. Finally, Section 5 highlights the advantages of our approach and compares our
classifications with those of the Brazilian statistical agency.

2. Materials and Methods
2.1. The Metalog Distribution Method

Let x represent the observable data used to measure the individual’s position in the
social scale, such as individual income. We define the cumulative probability function
(CPF) as y = F(x), where F(x) is the fraction of the population with values below x. Thus
the fraction of the population between x1 and x2 (where x2 > x1) is given by F(x2)− F(x1).
The cumulative probability function satisfies F(0) = 0 and F(xmax) = 1, where xmax is the
maximum observed value within the group.

The quantile probability function (QPF), denoted as Q(y), is defined as the inverse
function of the cumulative probability function F(x). It provides the value of the observable
data corresponding to a given fraction (y) of the population, such that y = F(x), x = Q(y).

For a tiny interval dx corresponding to a tiny interval dy, there exists a function f (x)
that maps one interval into the other: dy = f (x)dx. This function f (x) is the probability
density function (PDF) and represents the likelihood of finding individuals within the
interval between x and x + dx:

f (x) =
dy
dx

=

(
dx
dy

)−1
=

(
dQ(y)

dy

)−1

. (1)

Therefore, as indicated by Equation (1), once the quantile probability function is de-
rived from the survey data, its derivative yields the probability density function of
the distribution.

A sigmoidal distribution with a cumulative probability function y = F(x) is associated
with bell-shaped probability density function (PDF), denoted as f (x). We refer to this PDF
as f (x; µ, s). The function f (x; µ, s) describes the distribution of the observable (variable x)
around x = µ with a spread, s. The probability y of observing a value of x′ ≤ x is

y = F(x; µ, s) =
∫ x

0
f (x′; µ, s)dx′ (2)

Similarly, the probability density function (PDF) for the distribution of variable y is the
derivative of the quantile probability function (QPF) given in Equation (1), which is also
known as the quantile density function (q-PDF).

In this study, we employed the sigmoidal metalogistic probability function (metalog
distribution) [26] due to its flexibility in shaping the distribution. Introduced in 2016, the
metalog distribution has been widely applied across various fields. It extends the logistic
distribution, offering enhanced adaptability for modeling diverse data patterns:

Q(y) = µ + s ln
y

1 − y
, (3)

with a power series expansion for location (µ) and scale parameters (s):

µ = a1 + a4(y − 0.5) + a5(y − 0.5)2 + a7(y − 0.5)3 + a9(y − 0.5)4 + . . .

s = a2 + a3(y − 0.5) + a6(y − 0.5)2 + a8(y − 0.5)3 + a10(y − 0.5)4 + . . . (4)

The expansions in Equation (4) use the property that, for a sigmoidal distribution with
a cumulative probability function y = F(x), the function y is approximately linear in x
within a small neighborhood around x = µ. Alternatively, if we treat µ and s as functions of
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y, they can be expressed as power series expansions around fixed values µ = a1 and s = a2.
This approach serves as the foundation for defining the metalogistic distribution. Note
that Equation (4) do not represent a polynomial expansion of the cumulative probability
function itself; rather, they describe expansions for the location and scale parameters of the
quantile probability function. The fitting parameters a1, a2 . . . are utilized in the expansions
for µ and s. We present these expansions in the following traditional sequence: the first
parameter is for µ, the second and third parameters are for s, the fourth and fifth parameters
are for µ, and from the sixth parameter onward, they alternate between µ and s, continuing
up to the k-th parameter.

We hypothesize that class boundaries are likely indicated by changes in the trend
of the probability density function (PDF), either increasing or decreasing. It is natural to
associate these boundaries with inflection points in the PDF, where the second derivative
of the PDF is zero.

Associating class boundaries with the zeros of the second derivative of the probability
density function (PDF) evokes concepts from the Lee–Yang theory [27,28], which is used
to describe phase transitions in the thermodynamic limit. In this context, the number
of particles and the system volume approach infinity while the particle density remains
finite. A phase transition occurs when there is a sudden change—whether continuous or
discontinuous—in a system property. The Lee–Yang theory links phase transitions to the
zeros of the partition function in the complex plane [29,30].

The PDF is relevant primarily for very dense systems or in the thermodynamic limit
of finite systems. The zeros of the second derivative of the PDF indicate sudden changes—
whether continuous or discontinuous—in the characteristics of classes, thereby establish-
ing the boundaries of these classes on the social scale. The Lee–Yang theory has broad
applications in various fields, including protein folding, complex networks, and percola-
tion [31–39].

2.2. Case Study: Analyzing Brazilian Income Distribution

As a case study, we examine the per capita income distribution in Brazil, a country with
a long history of affirmative action policies. These policies include financial support for
low-income families, preferential admission to public universities, access to public services,
and eligibility for political party candidacies, among other areas. Brazil has had a minimum
income policy for over three decades, with its values and designations varying according
to the ruling party.

In Brazil, social classes are commonly categorized into three broad groups based
on family income: upper class, middle class, and lower class. However, the economic
classification system employed by the Secretariat of Strategic Affairs (SAE) and the Brazilian
Association of Research Companies (ABEP) provides a more detailed breakdown. This
system further divides these broad categories into more specific classifications, denoted by
letters. These classifications are the following:

• Class A: A1, A2.
• Class B: B1, B2.
• Class C: C1, C2.
• Class D.
• Class E.

Among these classifications, Class A1 represents the highest economic status, char-
acterized by superior quality of life and greater purchasing power. In contrast, Class E
signifies the lowest economic status, with lower purchasing power and reduced quality
of life. This classification takes into account factors such as family income, assets, and
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education levels. However, our study focuses solely on income values, excluding other
social parameters.

For consistency, we use the Brazilian national currency as the unit of per capita income
throughout this work. As of 2024, the minimum wage in Brazil is BRL 1412 (approximately
USD 300). However, given the significant presence of the informal labor market in Brazil,
the minimum wage may not fully reflect the economic reality for many individuals.

The Brazilian Institute of Geography and Statistics (IBGE) categorizes social classes
based on monthly family income into five main groups:

• Class A: Above 20 minimum wages (≥BRL 28,240).
• Class B: From 10 to 20 minimum wages (BRL 14,120–BRL 28,240).
• Class C: From 4 to 10 minimum wages (BRL 5648–BRL 14,120).
• Class D: From 2 to 4 minimum wages (BRL 2824–BRL 5648).
• Class E: Up to 2 minimum wages (≤BRL 2824).

The classifications mentioned are purely economic and static, focusing on family
incomes. It is known that the broad category of the lower class generally includes families
with a larger number of members compared to those in the middle and upper classes. In
contrast, our criterion focuses on individual income, allowing a dynamic analysis of class
boundaries. This approach enables us to examine the movement of individuals between
classes and provides a more nuanced understanding of social mobility.

Our case study utilizes data from the Brazilian Institute of Geography and Statistics
(IBGE), the Brazilian agency responsible for collecting and analyzing data to inform gov-
ernmental strategies [40]. Table 1 presents the per capita income distribution derived from
eleven consecutive surveys conducted between 2012 and 2022. The data are categorized by
IBGE into twelve percentiles, each representing 10% of the population, with the exception
of the final two percentiles, which cover the 90–95% and 95–99% ranges. The values in the
columns represent the highest income within each percentile slice.

Table 1. Distribution of monthly per capita income (in Brazilian currency) in 2012–2022, according
to Ref. [40]. The first column shows the interval as a percentage of the total population, while the
subsequent columns display the upper limit of the percentile income for each year of the survey.

Percentile (%) 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

<10 147 167 188 198 197 199 201 211 252 203 298

10–20 229 257 292 306 307 316 334 348 396 356 461

20–30 311 347 387 411 433 451 473 498 527 496 612

30–40 403 452 500 529 552 578 610 650 673 636 798

40–50 507 569 634 672 696 730 773 826 836 813 997

50–60 630 694 756 814 875 933 967 1002 1035 1053 1211

60–70 797 879 976 1029 1082 1130 1211 1282 1263 1273 1506

70–80 1074 1187 1300 1380 1479 1511 1641 1733 1682 1729 2022

80–90 1704 1907 2051 2177 2382 2453 2625 2723 2646 2742 3207

90–95 2688 2990 3236 3353 3714 3821 4067 4209 4082 4297 4948

95–99 6384 7021 7468 7758 8658 9049 9893 10365 9832 10,311 10,853
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The top 1% is not included in the table, as the income distribution in this segment
spans a broad range of values, starting from those listed in the last row of Table 1. This
omission would complete the twelve slices of Brazil’s income distribution. It is important to
note that the table shows the upper per capita income for fixed population fractions. Hence,
if we overlook the gradual increase in population over the eleven-year period, the number
of individuals in each percentile slice remains constant over time.

Table 1 clearly illustrates a striking disparity in income distribution among the popula-
tion. The extent of this income dispersion is so significant that we had to use a logarithmic
scale to ensure a more accurate statistical analysis. Despite Brazil experiencing several
decades without major natural or economic disasters, and remaining unaffected by war
or sudden political upheavals, the income inequality has persisted. This inequality has
endured even as Brazil maintained its position among the world’s top ten largest economies.

Low-income families in Brazil are estimated to number around 30 million out of a total
population of approximately 220 million. These families receive support from various social
programs provided by the Brazilian government, including the Bolsa Família program,
which offers BRL 600 per family, subject to certain conditions. Additional benefits are
provided for each child in the family.

Brazil, a Federative Republic, holds presidential elections every four years. The
election prior to 2012 was held in 2010, covering the presidential term from 2011 to 2015.
The data presented in Table 1 span from 2012 to 2022, encompassing four presidential terms:
2011–2014 under Luiz Inácio Lula da Silva, 2015–2018 under Dilma Rousseff and Michel
Temer, and 2019–2022 under Jair Messias Bolsonaro.

3. Results
3.1. The Metalogistic Distribution

The statistical methodology is explained in detail in Section 2.1. The first step in our
analysis involves obtaining the quantile probability function (QPF) by inverting the data
in Table 1, where y = F(x) and x = Q(y) for y = 10, 20, . . ., along with the corresponding
upper income values for each year. This step results in a list of Q(y) values for the eleven
selected percentiles, which are then used to fit the metalog quantile function.

We fitted the quantile function with trial metalog functions for values of k ranging
from 5 to 10. Table 2 displays the coefficients of the metalog distribution.

Table 2. Coefficients of the µ and s expansion in the metalog distribution.

Order a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

k = 5 6.51 1.45 −2.00 −4.47 10.56

k = 6 6.49 2.85 −2.07 −9.16 11.39 −3.67

k = 7 6.50 −1.27 −2.05 7.66 11.10 10.44 −41.57

k = 8 6.59 6.09 −6.87 −22.13 25.70 −14.37 27.60 13.416

k = 9 6.58 8.05 −15.13 −30.06 59.85 −20.97 46.00 41.79 −85.41

k = 10 6.58 8.58 −15.35 −32.16 60.75 −23.88 52.71 42.539 −87.58 1.803

We employed the mean absolute error (MAE) as the evaluation metric, rather than the
mean squared error (MSE). While MSE penalizes larger errors more severely by squaring
the differences, MAE treats all errors equally by averaging the absolute differences. This
characteristic makes MAE more robust, particularly in datasets where outliers might
disproportionately influence the results.
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Figure 1 presents the MAE for each year from 2012 to 2022, comparing metalog
quantile functions with different numbers of parameters ranging from k = 5 to k = 10.
Each line in the plot represents a different year, with colors and line styles corresponding to
those used in the quantile function plots. This visualization facilitates a detailed assessment
of model performance across various years, allowing for the identification of specific
patterns or anomalies. For our analysis, we chose k = 10 in the statistical treatment. It is
important to note that k represents the number of parameters used in the expansions of µ

and s, not the degree of a polynomial fitting the PDF F(x). The plots in Figure 2 illustrate
the quantile probability functions (QPFs) with a characteristic sigmoidal shape over the
eleven-year period.

Figure 1. Mean absolute error (MAE) for each year from 2012 to 2022, for metalog quantile functions
with different numbers of parameters (from k = 5 up to k = 10).

Figure 2. Quantile probability function of the logarithm of monthly per capita income for the popula-
tion segments in Table 1. The curves are derived from fitting a metalogistic distribution function with
k = 10.
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3.2. The Shannon Entropy and the Gini Coefficients

Any closed macroscopic system when departed from its equilibrium and left alone
tends to recover its equilibrium. In non-equilibrium statistical mechanics, entropy, S(t),
is a function of the probability density that describes the state of a system with weak
interactions, governed by a kinetic equation [13]. This function is well defined and always
increases over time towards the equilibrium, as demonstrated by the Boltzmann H-theorem.
Does the wealth of a human society evolve over a large timescale to an equilibrium? Does
this equilibrium, if existing, support stratification? A profound discussion on the misinter-
pretation of the term “entropy” in social sciences [12] concludes the income distribution
data for USA and Sweden to be consistent with the principle of maximum entropy when
used within the Pareto distribution. A deep analysis of stratification of a society using an
entropic approach [11] treated the energy used of humans in a hunter–gatherer society
represented by a stochastic variable x and a probability density function f (x). The authors
define the income entropy as

Φ = −
∫ I

0
f (x) ln f (x)dx, (5)

where I is th upper value of the random variable x.
On the other hand, a widely used definition of “entropy” in complex systems is the

Shannon entropy, given by
S = ln σ

√
2πe, (6)

where σ is the standard deviation of the distribution, corresponding to the second moment
of the probability density function. Table 3 shows the calculated values of the Shannon
entropy for each year in the period 2012–2022. At this stage, a word of caution is in order
here. Indeed, there is no evidence that the income data we used represent a stochastic
process. The system is not isolated and, thus, does not tend towards equilibrium. Therefore,
Boltzmann’s H-theorem does not apply. Moreover, Shannon’s entropy only serves to
renormalize the width of the distribution. Yet, it could be a measure of how inequalities
increase when they increase.

Table 3. Shannon entropy obtained with the the metalog distribution in Equation (3) with k = 10
fitting the data in Table 1.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Shannon entropy 7.27 6.66 6.04 5.89 8.08 5.68 5.92 4.81 5.04 5.05 4.13

To ensure completeness, we calculated the Gini coefficients using the data in Table 1.
This calculation also serves as a validation criterion for our quantile probability function,
which is used to determine the boundaries between classes.

The Gini coefficient [14] is a well-established measure of income inequality within a
society. Figure 3 illustrates the Lorenz curve, which shows the proportion of total income
earned by a given fraction of the population relative to that fraction. In a perfectly equal
society, the Lorenz curve would be represented by a straight line, L(x) = x. The Gini
coefficient is calculated as the area between the actual Lorenz curve and the line of perfect
equality (depicted in blue), divided by the area under the line of perfect equality. A larger
Gini coefficient signifies greater income inequality.
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Figure 3. The figure presents the average Lorenz curve derived from the metalogistic treatment with
k = 10 for the period 2012–2022. The Gini coefficient associated with this curve is G = 0.528.

In the plot, the horizontal axis represents the variable y used in this work, while the
vertical axis shows the cumulative income percentage of the population, denoted as variable
z. The cumulative income is yet to be calculated. Our analysis provides the cumulative
probability function y = F(x), which gives the percentage of the population earning up
to a given individual income x. Additionally, the inverse function Q(y), or the quantile
probability function, provides the maximum individual income for a given fraction y of the
population. The Gini coefficient is computed as follows:

Step 1 To determine the number of people in an interval dy, we use the follow-
ing expression:

dn = Pdy, (7)

where P represents the total number of individuals in the population.
Step 2 Next, to calculate the total amount of money accumulated by these individuals,

we use
dz = xdn = Q(y)Pdy. (8)

Step 3 The total amount of money accumulated by society can be calculated using the
following expression:

Z = P
∫ 1

0
Q(y′)dy′. (9)

Step 4 The total amount of money accumulated by a fraction y of the population is
given by

z(y) = P
∫ y

0
Q(y′)dy′ (10)

Step 5 The fraction of the total amount of money Z accumulated by a fraction y of the
population, as represented by the Lorenz curve, is given by

z = L(y) =

∫ y
0 Q(y′)dy′∫ 1
0 Q(y′)dy′

. (11)

In a perfectly equal society, the Lorenz curve is linear, represented by L(y) = y. This
corresponds to Q(y) = 1.

The Gini coefficient is calculated as follows:
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G = 1 − 2
∫ 1

0
L(y)dy. (12)

Table 4 displays the Gini coefficients for the period 2012–2022, calculated using our
metalogistic treatment alongside those reported by the World Bank [41]. There is a notable
agreement between the two sets of results, with a root mean square deviation of 0.009,
approximately 1% of the average Gini coefficient over the eleven years. The highest
deviation, 3.6%, occurred in 2021, one year after the COVID-19 pandemic. The alignment of
our results with those in Ref. [41] confirms the accuracy and reliability of our methodology.

Table 4. Gini coefficients calculated after the PDF obtained via the metalogistic distribution from
Table 1.

Year Gini (Our Calculation) Gini (World Bank)

2012 0.535 0.526

2013 0.533 0.521

2014 0.518 0.518

2015 0.523 0.522

2016 0.531 0.524

2017 0.522 0.524

2018 0.536 0.526

2019 0.540 0.543

2020 0.517 0.524

2021 0.539 0.520

2022 0.512 0.523

3.3. Inflection Points of the Metalogistic Probability Density Function

We organized the metalogistic probability density functions (PDFs) according to their
respective presidential terms. Figure 4a illustrates the data for the period from 2012 to 2014.
The plots reveal a concentration of income at higher values, as indicated by the widths and
medians of the distributions.

Figure 4b presents the PDFs for the subsequent term, where no significant differences
in medians and widths are observed. However, there is a noticeable shift in the bump on
the left side of the PDF, which signifies the gradual disappearance of a particular income
class during this period.

It is important to note that the subsequent period, 2019–2022, coincided with and
followed the COVID-19 pandemic. Figure 4c shows a concentration of income shifting to
higher values, reflecting a society in the process of recovery. Additionally, the reappearance
of bumps on the left side of the distribution suggests the emergence of a new income class
during this period.

Figure 5 display the second derivative of the probability density functions (PDFs)
for each year. Ascending rates are represented in blue, while descending rates are shown
in red. The points where the color changes indicate inflection points, which define the
boundaries of income classes in our model.The plots for 2012 (a), 2013 (b), and 2014 (c),
corresponding to the first presidential term, exhibit similar patterns. Although the general
pattern persisted in 2015 (d), significant changes are evident from 2016 (e) to 2018 (g).
This period was marked by events such as the impeachment of the Brazilian President
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in 2016–2017 and the global impact of COVID-19 in 2019 (h). From 2020 (i) to 2022 (k),
the income distribution shifts back to the patterns observed in 2012–2014, with a notable
concentration of income at higher values.

(a) (b) (c)

Figure 4. Metalogistic PDF for the presidential terms: the last three years of 2011–2014 (a), 2015–2018
(b), and 2019–2022 (c).

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 5. Second derivative of the PDF through the years 2012 (a) up to 2022 (k). The ascending PDF
rates are represented in blue, while the descending rates are in red. The points where the curves
change colors show the inflection points that define the boundaries of classes in our model.

4. Discussion
Tables 5 and 6 present the boundary values for different income classes. Based on

the inflection point criterion, we identify five primary classes. Notably, in 2014, Class V is
subdivided into three distinct classes. By 2015, the distribution returns to five classes, with
only minimal adjustments to the lower and upper boundaries.

A notable split in Class V occurs in 2017, which also affects Class IV. By 2018, the
distribution returns to its previous configuration, with overall improvements in income
levels. The data from 2019 reveal another split.

Overall, the data depict a society distributed across five income classes, with noticeable
fluctuations and significant gains observed in each class over the period. Specifically, the
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gains are 217% for Class I, 202% for Class II, 227% for Class III, 127% for Class IV, and 170%
for Class V.

Once the class boundaries are established, we use the quantile probability function
(QPF) to determine the population fraction within each class. The results are detailed in
Tables 7 and 8. Over the eleven-year period, we observe significant shifts among the classes,
indicating notable inter-class migrations. Specifically, between 2012 and 2013, there was a
migration from Class IV downward to Class III and upward to Class V. In 2015–2016, we
saw an upward movement from Classes I, II, and III, alongside a downward shift from
Class V to Class IV. This was followed by a gradual return to the distribution pattern
observed in 2013 by the end of the period.

The bar plots in Figure 6a,b provide a clearer visualization of the data from Tables 5–8.
They illustrate how the class boundaries fluctuate over time and help to infer migration
patterns across these boundaries, as discussed earlier.

Table 5. Upper boundaries of the five income classes (in BRL) for 2012 and 2022, determined using
the inflection points of the second derivatives of the PDF.

Classes 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Class I 178 206 247 250 202 188 229 248 325 334 387

Class I I 261 292 334 354 289 266 334 372 483 768 527

Class I I I 402 492 556 582 486 467 536 672 708 938 914

Class IV 1104 820 847 985 1368 729 1529 1112 1444 1593 1406

Class V 6384 7021 7468 7758 8658 9049 9893 10,365 9832 10,311 10,853

Table 6. Upper boundaries of the Class V subdivisions (in BRL) for 2014, 2017, and 2019, as detailed
in Table 5.

Classes 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Class Va - - 1279 - - 930 - 1615 - - -

Class Vb - - 1679 - - 1377 - 2023 - - -

Class Vc - - 7468 - - 3434 - 10,365 - - -

Class Vd - - - - - 4925 - - - - -

Class Vd - - - - - 9049 - - - - -

Table 7. Percentage of the population in each class for 2012–2022, calculated by integrating the PDF
within each interval specified in Table 5. For Class V, the values represent the sum of its subdivisions
as detailed in Table 8.

Class 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

I 13.22 13.62 14.78 14.08 10.41 9.13 11.89 12.37 14.35 18.35 14.57

I I 10.94 10.54 10.06 10.82 7.95 6.78 8.09 9.37 12.50 29.03 10.16

I I I 15.62 19.32 19.52 18.87 16.08 15.53 14.64 19.26 15.28 8.45 21.13

IV 41.05 23.82 20.25 24.52 43.47 18.32 43.40 23.35 32.92 21.96 21.24

V 18.17 31.70 34.38 30.70 21.08 49.25 20.97 34.65 23.95 21.21 31.89
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Table 8. Population distribution inside the divisions of Class V in 2014, 2017, 2019, according to
Table 7.

Class 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Va - - 14.78 - - 10.74 - 13.57 - - -

Va - - 6.94 - - 16.81 - 6.17 - - -

Vb - - 12.66 - - 16.67 - 14.91 - - -

Vc - - - - - 3.02 - - - - -

Vd - - - - - 2.01 - - - - -

(a) (b)

Figure 6. The bar plots illustrate the distribution of the population across different income classes
(a) and the income thresholds defining each class (b) from 2012 to 2022.

5. Conclusions
We developed a protocol for classifying distinct income categories within a society by

using the inflection points of the probability density function of per capita income to define
class boundaries. Two key observations are noteworthy:

• By using individual income instead of family income, we avoid distortions related to
the fact that poorer families tend to be larger than wealthier ones. This discrepancy
arises from both the higher number of children in poorer families and the broader
definition of “family” in these households compared to wealthier ones.

• The boundaries between income classes vary annually rather than being fixed at
predetermined levels. This variability is illustrated in Table 7, which shows how the
distribution of the population across income classes evolves over time, reflecting the
dynamic nature of societal income distribution.

To compare these classifications with those of IBGE, we need to map the class divisions
from Table 5. For simplicity, we assume a family composition of two members for Classes
A and B, three members for Class C, and four members for Classes D and E. Converting the
income values to per capita figures reveals that IBGE’s Class E encompasses our Classes I, II,
and III. This more detailed subdivision of Class E is considered advantageous for targeting
social programs, aligning with Brazil’s state policies and informal job market dynamics.
At higher income levels, IBGE’s Class C corresponds closely to our Class IV and the lower
part of Class V, while IBGE’s Class B includes the upper portions of both Class IV and Class
V. The top 1% not represented in IBGE’s Table 1 corresponds to Class A, which represents
the wealthiest segment of the Brazilian population.

We can conclude that the criterion for class identification has proven consistent
throughout the period. Applying our classification criterion—based on the zeroes of
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the second derivative of the probability density function—to the income distribution case
study in Brazil shows that the resulting class divisions accurately reflect the dynamics of
Brazilian society over the analyzed period. These findings suggest that our approach is
a robust statistical method for understanding social dynamics and could be effectively
applied to various other studies and surveys.

Author Contributions: Conceptualization, R.B., H.B.d.B.P., M.A.M., I.C.D.C.L., S.G.; methodology,
R.B., H.B.d.B.P., M.A.M., I.C.D.C.L., S.G.; validation, R.B., H.B.d.B.P., M.A.M., I.C.D.C.L., S.G.;
formal analysis, R.B., H.B.d.B.P., M.A.M., I.C.D.C.L., S.G.; writing—original draft preparation, R.B.,
H.B.d.B.P., M.A.M., I.C.D.C.L., S.G.; writing—review and editing, R.B., H.B.d.B.P., M.A.M., I.C.D.C.L.,
S.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data are available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yakovenko, V.M.; Rosser, J.B. Colloquium: Statistical mechanics of money, wealth, and income. Rev. Mod. Phys. 2009, 81, 1703.

[CrossRef]
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