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ABSTRACT 31 

Natural populations often encounter heightened risks of extinction due to mismatches 32 

between their inherent traits and the ecological contexts they inhabit. These risks amplify 33 

with the ongoing degradation of wild habitats and climatic shifts. Recognizing that not all 34 

populations can prevent extinction independently, several methods have been theoretically 35 

proposed to protect vulnerable populations using external interventions. Yet, these methods 36 

are under-explored in spatially structured populations, or metapopulations, and remain 37 

untested in the presence of potential census inaccuracies. In this study, we assessed six 38 

population stability methods, previously validated in isolated populations, comparing their 39 

efficacy in metapopulations, using comprehensive biologically realistic simulations. We 40 

employed a recognized composite index to compare the performance of the population 41 

stability methods based on their stability outcomes and associated implementation costs. Our 42 

evaluations encompassed a range of ecological conditions, factoring in population growth 43 

rate, capacity, and migration patterns, inclusive of both symmetric and asymmetric migration. 44 

Without external interventions, we observed unique dynamics across these conditions, each 45 

with differing extinction susceptibilities. Remarkably, to decrease extinction probabilities to a 46 

specified threshold, the Adaptive Limiter Control method was consistently superior 47 

irrespective of the original dynamics. Conversely, for curbing population size fluctuations, 48 

the Lower Limiter Control emerged as the most potent, trailed closely by the Adaptive 49 

Limiter Control and Both Limiter Control methods. Importantly, these method rankings 50 

remained consistent even amidst varying census uncertainties. Our results offer a foundation 51 

for developing policies and conservation strategies with specific actionable 52 

recommendations, particularly in the management of natural populations facing extinction 53 

risks.  54 
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1. Introduction 59 

Complex temporal fluctuations in population size are a ubiquitous phenomenon in nature 60 

(Lundberg et al. 2000; Clark and Luis 2020). While external environmental factors are known 61 

to induce such fluctuations (Borowsky 1971), it's the intricate interplay between the life-62 

history of resident populations and local environmental conditions that ultimately shapes 63 

these temporal dynamics (Gamelon et al. 2017; Tung et al. 2019). Over time, some 64 

populations may exhibit diminishing magnitudes of fluctuation, harmonizing their life-65 

histories with environmental cues, but not all populations demonstrate such resilience. If 66 

these fluctuations intensify or sustain at elevated levels, populations can undergo frequent 67 

declines, amplifying their risk of extinction (Escudero et al. 2004; Smith and Meerson 2016). 68 

Hence, devising strategies to stabilize these vulnerable populations has been at the forefront 69 

of research for ecologists, conservation biologists, and biological population managers for 70 

many years. 71 

In the past three decades, theoretical propositions have introduced several methods to 72 

stabilize such inherently extinction-prone populations (McCallum 1992a; Corron et al. 2000; 73 

Hilker and Westerho� 2005; Dattani et al. 2011; Sah et al. 2013a; Tung et al. 2014). These 74 

methods, commonly referred to as population control or stability methods, primarily operate 75 

by modulating population size — either by externally adding individuals or strategically 76 

removing them based on current census size. Their practical applicability is a key advantage, 77 

allowing deployment in actual biological populations without exhaustive knowledge of the 78 

underlying dynamics or system parameters, which is in contrast to the chaos-control methods 79 

proposed to stabilize chaotic non-linear dynamics earlier (Andrievskii and Fradkov 2003; 80 

Fradkov and Evans 2005). Despite these advantages, the widespread adoption of population 81 

stability methods in conservation has been limited. One major factor for this reluctance stems 82 

from the observation that, with a couple of exceptions (Dey and Joshi 2013; Sah et al. 2013a), 83 



most methods have been explored solely in case of single, isolated populations (Corron et al. 84 

2000; Hilker and Westerho� 2005; Dattani et al. 2011; Tung et al. 2014). 85 

However, in natural settings, populations are seldom isolated. Organisms of a species 86 

typically do not occupy a shared space or pool resources uniformly. Instead, more commonly, 87 

groups of individuals of a species inhabit distinct, spatially dispersed habitats. Should these 88 

habitats fall within an organism's range of movement, migration or dispersal (used 89 

interchangeably here) becomes commonplace. These networks of spatially distributed 90 

populations, interconnected by such migrations, are termed spatially structured populations or 91 

'metapopulations'. Insights from studying population stability methods in single isolated 92 

populations prove inadequate for understanding metapopulation dynamics. This is primarily 93 

because, migration within a metapopulation between the constituent subpopulations plays a 94 

major role in shaping the dynamics and stability of metapopulations (Gyllenberg et al. 1993; 95 

Stacey et al. 1997; Hanski 1998; Dey and Joshi 2006). 96 

Migration modalities, driven by factors such as food foraging, mate-seeking, or habitat 97 

preference, and shaped by the connectivity and migratory tendencies of local populations, 98 

play a crucial role in population dynamics. From a population dynamic perspective, 99 

emigration can alleviate resource competition within a subpopulation, while immigration can 100 

exacerbate it, increasing vulnerability to extinction. On the other hand, immigration can 101 

rejuvenate a locally extinct population, eliminating the need for external intervention. 102 

Therefore, the migration intricately influences local dynamics and, by extension, overall 103 

metapopulation fluctuations (Gyllenberg et al. 1993; Stacey et al. 1997). Prior research has 104 

shown that both low and high migration rates can differentially modulate metapopulation 105 

stability, even under uniform environmental conditions across subpopulations (Dey and Joshi 106 

2006). Thus, extrapolating findings from spatially unstructured populations to 107 

metapopulations becomes inadequate. 108 



In this context, our study introduces a simulation framework to explore performance of six 109 

stability methods (mathematical formulations in Table S1) in metapopulations consisting of 110 

two subpopulations connected via migration with varying characteristics. By introducing 111 

combinations of intrinsic growth rate and carrying capacity parameters, we have constructed 112 

diverse ecological scenarios (exact descriptions in Table S2) to evaluate the efficacy of the 113 

population stability methods through biologically realistic simulations. For this comparison, 114 

we used an established statistic (following Tung et al. 2014) that combines measures of 115 

various aspects of population stability with the costs associated with the implementation of 116 

the stability methods. Furthermore, we assessed the relative performance of these population 117 

stability strategies in the presence of three distinct census inaccuracies: white noise, 118 

overestimation, and underestimation—a pertinent aspect that has often been overlooked 119 

(Supplementary section 4).  120 



2. Materials and Methods 121 

2.1. Spatial structuring and population growth model 122 

We adopted a metapopulation framework comprising two subpopulations interconnected 123 

through migration. For our study, all metapopulations were treated as homogeneous, ensuring 124 

identical environmental conditions across both subpopulations. Various migration rates and 125 

environmental characteristics differentiated our treatment groups (refer to Table S2). We used 126 

a popular population growth model, Ricker map (Ricker 1954), to model the dynamics of 127 

each subpopulation. Mathematically this map is given as Nt+1 = Nt exp(r(1-Nt/K)); where r, K 128 

and Nt denote intrinsic growth rate, carrying capacity and population size at time t, 129 

respectively. The popularity of this model stems from its intuitive formulation (May and 130 

Oster 1976), and the fact that it can be derived from the first principles as long as the 131 

individuals of the concerned population are distributed randomly over space and undergoing 132 

scramble competition (Brännström and Sumpter 2005). As these properties are rather 133 

common in biology, Ricker map has been implemented to capture empirical dynamics of 134 

species across diverse taxa, including bacteria (Ponciano et al. 2005), fungi (Ives et al. 2004), 135 

ciliates (Fryxell et al. 2005), insects (Dey and Joshi 2006) and fishes (Ricker 1954). Thus, 136 

outcomes of simulations utilizing this model are anticipated to be broadly generalizable.    137 

2.2. Replications, initial conditions and reset 138 

In order to obtain a generalizable output, we considered 70 replicates for each treatment 139 

group, and thus all demographic or population dynamic matrices in the figures were 140 

presented as average (±SEM) over all these replicates. At the beginning, time-series for all 141 

replicates in all the treatment groups were initiated with 20 individuals in each subpopulation. 142 

Whenever population size of the entire metapopulation became zero, we reset population size 143 

of each of the subpopulations to eight (following Dey and Joshi 2006). 144 



2.3. Biologically realistic assumptions 145 

We incorporated a number of biologically realistic features in our simulations. Firstly, in 146 

order to account for the fact that organisms come in whole numbers, we rounded off all 147 

outputs of the Ricker model, the number of migrants and the number of individuals to be 148 

introduced to or removed from the system as prescribed by the control methods, to their 149 

nearest integer values. Secondly, empirically obtained timeseries are typically short and it is 150 

rarely possible to exclude transients from them prior to analysis. In order to keep a parity 151 

with that, we decided to consider the transients in our study by restricting our analysis for the 152 

first 50 generations of population growth time-series, instead of studying the steady states of 153 

a system. Thirdly, stochastic noise is ubiquitous in any quantitative aspect of biology and it is 154 

known that disregarding this noise may have significant impact on, inter alia, the outcome of 155 

theoretical studies involving stabilizing populations through external perturbations (Dey and 156 

Joshi 2007). To reflect this, we introduced noise in the growth rate and carrying capacity 157 

values for each subpopulation at each iteration. A number was picked using a uniform 158 

random number generator from U(-0.2, 0.2), and added to the regime-specific value of r as 159 

suggested by the Table S2. Similarly, the value of carrying capacity was picked using the 160 

uniform random number generator from U(0.9×K, 1.1×K), where K is the regime-specific 161 

value of carrying capacity. The values of the noise are at par with the previous studies on 162 

extinction prone populations (Tung et al. 2014). Fourthly, whenever population size becomes 163 

very low, the risk of extinction in the next generation increases significantly due to various 164 

reasons including stochastic death of the breeding individuals, or all breeding individuals 165 

being of same sex. We implemented this possibility of stochastic extinction by assuming that 166 

there is 50% chance of extinction if subpopulation size goes below 4 (following Dey and 167 

Joshi 2006; Tung et al. 2014). 168 

2.4. Measures of stability and synchrony in unperturbed populations 169 



Prior to comparing the control methods, we first studied the dynamics of the unperturbed 170 

populations of all the twelve metapopulation regimes. For this, we measured two aspects of 171 

demographic stability for each metapopulation in our analysis - Constancy and Persistence 172 

Stability (Grimm and Wissel 1997). Constancy, as the name indicates, refers to how 173 

unchanging or constant the size of a population is. In other words, the less the size of a 174 

population fluctuates, the more stable it is in terms of constancy. We measured constancy 175 

stability using Fluctuation Index (henceforth, FI; Dey and Joshi 2006), which is formulated as 176 

�|Nt+1-Nt| ⁄ (N�×T), where Nt is the population size after perturbation (if applicable) at time t, 177 

N� is the average population size over T generations. Thus, the lower the FI is, the higher is 178 

the constancy stability.  179 

In contrast, persistence can be said to be the resistance of a population to extinction or the 180 

converse of the propensity of a population to go extinct, which is quantified by computing 181 

extinction probability (henceforth, EP) = E/T, where E is the number of extinction events in T 182 

number of generations.  183 

Additionally, we measured genetic stability of the metapopulations by computing their 184 

effective population size (EPS). This is computed as the harmonic mean (Allendorf et al. 185 

2012) of post-perturbation (if applicable) population size, i.e. mathematically, EPS = 186 

T/�(1/Nt), where T is the length of the timeseries and Nt is breeding population size at the tth 187 

generation. 188 

Synchrony between the subpopulations of a metapopulation is quantified by computing the 189 

cross-correlation coefficient at lag zero of the first-differenced time series of log-transformed 190 

values of the two subpopulation sizes (Bjørnstad et al. 1999; Dey and Joshi 2006). 191 

2.5. Population stability methods 192 



For this comparative analysis, we considered six population stability methods - Constant 193 

Pinning (CP, McCallum 1992b; Parthasarathy and Sinha 1995; Solé et al. 1999), Lower Limit 194 

Control (LLC, Hilker and Westerho� 2005), Adaptive Limiter control (ALC, Sah et al. 195 

2013a), Upper Limit Control (ULC, Hilker and Westerho� 2005), Target Oriented Control 196 

(TOC, Dattani et al. 2011), and Both Limit Control (BLC, Tung et al. 2014). These methods 197 

were chosen because they are implementable in real biological settings (Gusset et al. 2009), 198 

well studied theoretically (McCallum 1992b; Solé et al. 1999; Hilker and Westerho� 2005; 199 

Dattani et al. 2011; Tung et al. 2014), and been validated empirically (Dey and Joshi 2007, 200 

2013; Sah et al. 2013a; Tung et al. 2016a,b). Additionally, efficiency of these six methods 201 

had recently been compared in spatially-unstructured populations (Tung et al. 2014), which 202 

can be contrasted qualitatively with the results we obtain in the context of spatially-structured 203 

populations in this study. Outcomes of these two studies together will provide us a wholistic 204 

picture of stabilizing extinction-prone populations. Mathematical formulation of the six 205 

methods and corresponding control parameter values are presented in Table S1. A more 206 

detailed description of these methods can be found elsewhere (Tung et al. 2014). 207 

2.6.The comparative framework 208 

After implementing the methods on our spatially-structured simulation framework, we first 209 

tested the performance of the methods by measuring two aspects of population stability – 210 

constancy and persistence, over a range of control parameters (ranges can be found in Table 211 

2). Promisingly, similar to the analysis of spatially-unstructured populations, we also have 212 

observed that any level of constancy and persistence stability can be achieved in case of two-213 

patch metapopulations by varying the control parameters of all six methods. However, in 214 

order to reach a specific level of stability in one aspect of stability the methods varied 215 

substantially in their performance for the other aspect of stability and/or costs incurred in 216 

terms of external perturbation needed to reach this level of stability. 217 



So, in order to compare the effectiveness of these methods at a common level, we decided to 218 

look at the performance of the methods in order to achieve 50% reduction of fluctuation 219 

index (i.e., improvement of constancy stability) and 50% reduction of extinction probability 220 

(i.e., improvement of persistence stability), separately. For each of these two scenarios, we 221 

compared the methods using an established composite performance score (Tung et al. 2014) 222 

and a novel robustness index of the performance of the methods against noise in census 223 

count.  224 

2.7.Composite Performance Score 225 

Composite performance score (CPS) or composite index (following Tung et al. 2014), gives 226 

equal weightage to the effort magnitude and effective population size and the other stability 227 

value (i.e., extinction probability when analysing for 50% reduction of fluctuation index, and 228 

vice versa). Here, effort magnitude (EM) can be translated as the ‘cost’ of applying a certain 229 

control method to the metapopulation and computed as � |at-bt| ⁄ (N�×T), where, bt and at 230 

denote population size before and after applying the control method, and N� denotes the 231 

average population size over T generations. 232 

The scales of the components of CPS, or “component indices” (CI), are different. This would 233 

bias our comparison by giving more weightage to CIs with values a higher scale. To alleviate 234 

this bias, the value for each of the CIs for each method was divided by the highest of that 235 

index amongst all methods. This way, the scaled value of all the CIs remained between 0 to 1. 236 

It is also noted that although a lower value of CIFI/EP (component index for FI or EP) and 237 

CIEM (component index for EM) are desirable for better performance of a method, for CIEPS 238 

(component index of effective population size), a higher value will denote better 239 

performance. Thus, we computed composite performance index as, CIFI/EP + CIEM + (1- 240 



CIEPS), and overall, the lower the composite score for a method is, the better it works in 241 

stabilising the regime in question. 242 

For Lr populations, we found that the metapopulations were extremely persistent stable, i.e., 243 

they had negligibly low EP even without any external perturbations (refer to Section 3.1). 244 

Therefore, we felt that including CIEP in the calculations for composite performance score for 245 

50% reduction in FI in Lr regimes would unnecessarily bias the results by reflecting a 246 

method’s ability of solving a problem (i.e., extinction) that was not there. Therefore, we 247 

decided to not include CIEP in the calculation of composite performance score for reducing FI 248 

by 50% in Lr regimes.  249 

2.8. Robustness Analysis 250 

A notable challenge with external perturbation-based control methods is the need for precise 251 

census counts in each generation when introducing or removing individuals, with the 252 

exception of the constant pinning method. In natural settings, obtaining an exact animal count 253 

is nearly impossible. Typically, only an estimate of the census size is achieved, which can 254 

lead to overestimations or underestimations of the actual population size per generation. The 255 

impact of such census errors on the efficacy of control methods remains unexplored. To 256 

address this, we conducted a CPS-based comparison incorporating varying levels of white 257 

noise in census values. This allowed us to simulate random overestimations or 258 

underestimations in each generation. We varied the noise level from 0 to 50% in increments 259 

of 5%. Hence, the perceived population size used for implementing control methods was 260 

defined as: actual population size ± (noise level × actual population size). Control methods 261 

were applied based on this potentially erroneous population size. Subsequently, we calculated 262 

the "robustness index" to evaluate the impact of the error. This index was computed as the 263 

mean of (composite_score_with_error – composite_score_without_error)^2  for each noise 264 



level, serving as a measure of dispersion around the no-error composite performance score. In 265 

addition, factors like weather conditions, landscape characteristics, and vegetation density 266 

can influence the accuracy of population estimates with specific biases. To capture this, we 267 

considered two types of errors: positive noise (overestimating population) and negative noise 268 

(underestimating population). For each error type, rates ranged from 0 to 0.5 in increments of 269 

0.05, enabling us to track the composite index's trajectory against error rates. Although 270 

component indices were derived from the averages of 70 replicates, minor differences in 271 

composite scores emerged in repeated runs of the same code. To address this, we computed 272 

the composite scores 20 times, using the average of these scores to represent the composite 273 

index in our graphical representation. The results for these can be found in Supplementary 274 

Figures S8 - S13.  275 



3. Results and Discussion 276 

3.1 Dynamics of the unperturbed regimes 277 

Initially, we evaluated the dynamics of unperturbed metapopulation regimes – those not 278 

subjected to any population stability methods – to establish a baseline for subsequently 279 

comparing the efficacy of various population stability strategies. For this purpose, we 280 

estimated two aspects of demographic stability – constancy and persistence – as well as 281 

genetic stability by computing effective population size for all 12 regimes (Figure 1). This 282 

analysis reveals how these stability aspects are influenced by the complex interplay of 283 

intrinsic growth rate, carrying capacity of the constituent subpopulations, and migration rate 284 

between the subpopulations. Additionally, this analysis serves as a vital reference point for 285 

understanding the efficacy of population stability methods in these specific metapopulation 286 

regimes. 287 

Population size fluctuation index and extinction probability values as a measure of inverse of 288 

constancy and persistence stability respectively of the unperturbed dynamics clearly 289 

suggested that the regimes with high intrinsic growth rate and low carrying capacity (i.e. 290 

HrLk regimes) exhibited the most unstable metapopulation dynamics (Figure 1a-1d). The 291 

instability in these dynamics stems from overcrowding due to high intrinsic growth rates, 292 

further aggravated by limited resource availability due to the low carrying capacities of these 293 

regimes. This led to overutilization of resources, resulting in characteristic ‘boom-bust 294 

dynamics’ with significant population fluctuations and a heightened risk of extinction 295 

(Grimm and Wissel 2004; Tung et al. 2014; Figure S1). These regimes experienced severe 296 

population bottlenecks nearly every alternate generation, resulting in relatively poor genetic 297 

stability, as indicated by low effective population sizes (Figure 1e-1f). Interestingly, this 298 

study also showed that this pattern remained consistent regardless of the high or low level of 299 



migration and whether the nature of migration between the subpopulations is symmetric or 300 

asymmetric (comparing Figure 1a and Figure 1b; comparing Figure 1c and Figure 1d).  301 

Regimes characterized by high intrinsic growth rates and high carrying capacities, termed 302 

HrHk regimes, emerged as the subsequent most unstable scenarios, as indicated by their high 303 

fluctuation indexes, implying low constancy stability (Figure 1a, 1b). Notably, though these 304 

regimes exhibited 'boom-bust dynamics' (Figure S1), their high carrying capacities resulted in 305 

a significantly reduced frequency of population size reaching zero, as evidenced by their 306 

relatively low extinction probabilities (Figure 1a, 1b; also see Tung et al. 2014). Despite 307 

reaching higher population sizes due to their ample carrying capacities, these regimes did not 308 

necessarily see an increase in effective population size (Figure 1e, 1f). This is attributed to 309 

the substantial fluctuations in population size and that the calculation of effective population 310 

size is more adversely impacted by smaller population values (Allendorf et al. 2012). 311 

An intriguing characteristic of HrHk regimes, especially those with symmetric migration, is 312 

the observed difference in metapopulation constancy stability between low and high 313 

migration levels (Figure 1a). Metapopulation with low migration level exhibited substantially 314 

lower fluctuation index i.e. greater constancy stability than those with high migration, 315 

although constancy of the constituent subpopulations was comparable. This apparent 316 

discrepancy is resolved when we look into the level of synchrony between the constituent 317 

subpopulations and found that synchrony level was much lower in metapopulations with low 318 

migration level i.e. in case of HrHkLm regime compared to metapopulations with high 319 

migration level i.e. in case of HrHkHm regime. This result captured previously reported out-320 

of-phase dynamics of coupled unstable populations seen both theoretically (Gyllenberg et al. 321 

1993b; Doebeli 1995; Amarasekare 1998; Kendall and Fox 1998; Ylikarjula et al. 2000; 322 

Briggs and Hoopes 2004; Dey and Joshi 2006; Abbott 2011; Dey et al. 2014) and empirically 323 

(Lecomte et al. 2004; Dey and Joshi 2006; Sah et al. 2013b; Mueller and Joshi 2020).  324 



Similarly, in metapopulations with low intrinsic growth rates, we observed enhanced 325 

constancy stability, which correlates with a lower synchrony level between subpopulation 326 

dynamics, especially in scenarios of low symmetric migration (as seen in the comparison of 327 

fluctuation index and synchrony plots for LrLkLm vs LrLkHm, and LrHkLm vs LrHkHm, 328 

Figure 1a, 1g). Comparing both constancy and persistence stability, metapopulations with 329 

low intrinsic growth rate (Lr regimes) were found to be more stable demographically 330 

compared to the regimes with high intrinsic growth rate i.e. Hr regimes. The contrast is more 331 

prominent in terms of persistent stability, as irrespective of the level and nature of migration, 332 

metapopulations with Lr regimes rarely incurred extinction (Figure 1c-1d). However, it is 333 

noteworthy that despite enhanced demographic stability, genetic stability of LrLk regimes is 334 

not high. This is primarily because these regimes tend to maintain low population sizes due to 335 

their lower carrying capacities and growth rates, making them more vulnerable to inbreeding 336 

depression and loss of genetic diversity.  337 

In stark contrast, LrHk regimes exhibited more stable dynamics with significantly higher 338 

average population sizes, leading to considerably larger effective population sizes (Figure 1e-339 

1f). This divergence highlights the complex relationship between demographic and genetic 340 

stability in metapopulations, influenced by intrinsic growth rates and carrying capacities.  341 

Additionally, our study showed that the stability properties of metapopulations with 342 

asymmetric migration lie between those of the two symmetric cases (Figure 1). This result is 343 

in contrast to the notion that metapopulations with asymmetric migration rate are more stable 344 

(Doebeli 1995; Ylikarjula et al. 2000). Instead, it aligns with more recent research suggesting 345 

that the relative stability of metapopulations with asymmetric migration is contingent on 346 

specific contextual factors (Dey et al. 2014). 347 



Taken together, the 12 regimes considered in this study, each with their unique combinations 348 

of demographic and genetic stability attributes, provide a robust framework for analyzing the 349 

effectiveness of population stability methods across a range of scenarios. This comprehensive 350 

approach allows us to synthesize the results within a consistent comparative framework, 351 

thereby facilitating the derivation of broader conclusions about population stability strategies 352 

in diverse ecological contexts. 353 

 354 

3.2 Comparing the control methods for inducing desired constancy stability 355 

To assess the relative performance of the control methods on a common platform, we first 356 

computed composite performance score (following Tung et al. 2014) for each of the methods 357 

in each regime separately. This score integrated other stability measures, such as extinction 358 

probability and effective population size, along with a metric for implementation effort, in 359 

order to diminish population size fluctuation to 50% of the unperturbed scenario, thereby 360 

improving constancy stability. As the extinction probabilities for Lr populations were found 361 

to be negligible (Figure 1c-1d), we excluded the extinction probability component from the 362 

calculation of composite scores in Lr regimes. This approach was adopted based on previous 363 

findings that, while all methods can independently promote various stability aspects, they 364 

often entail trade-offs in terms of other stability facets or require significant implementation 365 

efforts (Tung et al. 2014, 2016a,b). For a comprehensive assessment, we calculated these 366 

composite scores for each method across all 12 regimes. In this scoring system, a lower 367 

composite score indicates a more favourable performance, reflecting a method's efficacy in 368 

enhancing stability with minimal trade-offs and effort. 369 

Our findings indicate that the effectiveness of control methods in metapopulations is context-370 

dependent, with no single method proving universally optimal across all regimes. This aligns 371 



with previous observations in spatially unstructured populations (Tung et al. 2014). However 372 

interestingly, our comparative analysis revealed a common trend for the regimes with low 373 

intrinsic growth rate (i.e. Lr regimes). In these regimes, lower limiter control (LLC), adaptive 374 

limiter control (ALC) and both limiter control (BLC) demonstrated similar composite scores 375 

and consistently outperformed other methods. These are closely followed by target-oriented 376 

control (TOC) and upper limiter control (ULC), in the order of performance. Constant 377 

pinning (CP) method performed consistently worst in all six scenarios. The reason behind this 378 

trend became clear when we checked the individual components – effective population size 379 

and effort magnitude that constituted the composite score in these scenarios (Figure S2-S4). 380 

LLC, ALC, and BLC achieved effective population sizes that were comparable and only 381 

lower than those induced by the CP method. Although CP had the potential to maximize 382 

effective population size across the regimes, its high implementation costs, as evidenced by 383 

substantial effort magnitude, made it the least favourable option. In contrast, LLC, ALC, and 384 

BLC struck a balance, attaining moderate effective population sizes with reasonable level of 385 

implementation efforts to become the best performing methods in these regimes.   386 

In HrLk regimes, LLC stood out as the superior method compared to others. It paralleled 387 

ALC in enhancing effective population size. However, LLC surpassed ALC in reducing 388 

implementation effort and extinction probability, establishing itself as the most effective 389 

method in these scenarios. While ULC and BLC proved more efficient in mitigating 390 

extinction risks, their higher implementation costs and lower effective population sizes 391 

negatively impacted their overall rankings according to the composite scores. On the other 392 

hand, in HrHk regimes, BLC demonstrated superior efficacy, successfully eliminating 393 

extinction risks while achieving an optimal balance between effort and effective population 394 

size.     395 

 396 



3.3 Comparing the control methods for inducing desired persistence stability 397 

In our subsequent analysis, we focused on the performance of control methods in reducing 398 

the extinction probability to 50% of the corresponding unperturbed scenario. Since Lr 399 

regimes infrequently experience extinction, this analysis was restricted to Hr regimes. Here, 400 

the composite performance score was derived from the fluctuation index, effective population 401 

size, and the magnitude of implementation effort (following Tung et al. 2014). 402 

We found that ALC was the most effective method across all Hr regimes (see Figure 3), 403 

closely followed by LLC, BLC, and CP. In contrast, ULC and TOC were less effective in 404 

addressing extinction risk. It appears that methods designed to prevent population size from 405 

dropping below a certain threshold – whether constant (as in CP, LLC and BLC) or variable 406 

(as in ALC) – are more successful in enhancing a population's resistance to extinction. In 407 

contrast, the methods that involve culling individuals to counter overpopulation, i.e., TOC 408 

and ULC, do not seem to make the metapopulation more persistent.   409 

Interestingly, although we found that ALC performed the best in terms of inducing desired 410 

persistence stability in all the regimes, analysis of the components of composite score 411 

revealed that it becomes the best through distinct routes (Figure S5-S7). In case of the most 412 

unstable HrLk regimes, when migration rate between the subpopulations was low (i.e. for 413 

HrLkLm regime), CP induces the maximum effective population size followed by LLC, ALC 414 

and BLC. But CP did that at the cost of a large effort magnitude leading to its poor 415 

performance rank based on composite score. Among LLC, ALC and BLC, ALC performed 416 

the best with respect to curbing population size fluctuation at the cost of minimum effort 417 

magnitude, leading it to the best metapopulation stability method in this regime. In scenarios 418 

with high migration rate between the subpopulations i.e. in HrLkHm regime, effort 419 

magnitude for LLC was minimum but this led to very low effective population size and 420 



thereby compromising its performance score. Other trends were similar, and overall ALC 421 

become the best performing method. While migration between the subpopulations was 422 

asymmetric i.e. in HrLkLmHm regime, effort magnitude incurred by ALC to reach the 423 

desired level of persistence stability was actually the maximum, but as this method was 424 

excellent in simultaneously improving constancy stability and genetic stability, it became the 425 

best performing method with lowest overall composite score. While carrying capacity was 426 

high, ALC reduced population size fluctuation and increased effective population size to the 427 

maximum extent with moderate effort magnitude. While LLC and BLC also performed well, 428 

they fell short in terms of one or more components of the composite performance score. 429 

To offer a comprehensive overview of the efficacy of six population stability methods in 430 

achieving target levels of constancy and persistence stability, we have compiled a summary 431 

table that aggregates the rankings for each method across all evaluated regimes (Table S3). 432 

Our consolidated findings indicate that the Lower Limiter Control (LLC) method delivers 433 

consistent results in attaining the desired level of constancy stability, while the Adaptive 434 

Limiter Control (ALC) method stands out as the most effective for achieving the desired level 435 

of persistence stability. These results provide actionable insights for population ecologists 436 

and conservation biology practitioners, without going into the details of the specific regime 437 

conditions, aiding in the formulation of intervention strategies in case of spatially-structured 438 

populations.  439 



3.4 Comparing robustness of the control methods against census noise 440 

To evaluate the robustness of stability methods against variations in census accuracy, we 441 

compared the composite performance scores of these methods across a spectrum of white 442 

noise levels in population census counts. This approach addresses a significant concern in 443 

implementing external perturbation methods: the need for precise census counts of the target 444 

species, which may not always be readily available. We specifically analysed the impact of 445 

census noise on achieving the above-mentioned desired levels of constancy and persistence 446 

stability. 447 

In scenarios focused on enhancing constancy stability, particularly within low intrinsic 448 

growth rate regimes (i.e., Lr regimes), the performance of most methods was comparable and 449 

robust, with the exception of ULC (Figure 4; Supplementary Figure S8). Combining their 450 

overall performance with resistance to census noise, LLC, ALC, and BLC emerged as the 451 

most promising methods in these regimes. Whereas, in HrLk regimes, LLC, ALC, and TOC 452 

demonstrated greater robustness to census noise. Consequently, LLC stood out as the most 453 

promising method in these settings. For HrHk regimes, LLC, TOC, BLC when migration rate 454 

is low between the subpopulations, ALC, TOC when migration rate is high between the 455 

subpopulations and LLC, ALC, TOC and BLC when migration rate is asymmetric between 456 

the subpopulations performed the better against census noise. Thus, combining performance 457 

of the methods and their robustness against census noise, BLC stood out to be promising in 458 

these regimes, although one needs to note that it is less robust to census noise when migration 459 

rate is high between the subpopulations. 460 

When focusing on inducing persistence stability to a desired level, ULC performed poorly for 461 

HrLk regimes. Other methods performed similarly. In case of asymmetric migration between 462 

the subpopulations ALC performed the best, closely followed by TOC (Figure 5; 463 



Supplementary Figure S9). Whereas, all methods performed well in HrHk regimes, ALC 464 

being good consistently. Thus, considering both performance and robustness to census noise, 465 

ALC was identified as the most effective method in these regimes.  466 

In order to present a comprehensive evaluation of the resilience of the six control methods to 467 

census inaccuracy in presence of white noise, we aggregated the rank of robustness indices of 468 

these methods for inducing both constancy and persistence stability into a summarizing table 469 

(Table S4). This analysis offers a broad view of each method's resilience to noise-induced 470 

variability, independent of specific ecological regime parameters. When focusing on attaining 471 

a target level of constancy stability, our results indicate a notable parity in performance 472 

among all methods except for the Upper Limiter Control (ULC), which exhibited subpar 473 

robustness. Conversely, in the pursuit of persistence stability, the Target-Oriented Control 474 

(TOC), Adaptive Limiter Control (ALC), Lower Limiter Control (LLC), and Constant 475 

Pinning (CP) methods demonstrated marginally superior resilience, in descending order of 476 

effectiveness.  477 

Performance of ALC was found to be rather resilient in the presence of a range of intensities 478 

of positive (i.e. overestimation; Supplementary Figure S10-S11) and negative (i.e. 479 

underestimation; Supplementary Figure S12-S13) noise to census. Composite score of ULC 480 

methods was found to be the most variable across ranges of noise intensities. Notably, the CP 481 

method, which is theoretically independent of population census data, was expected to excel 482 

irrespective of census noise levels. However, contrary to expectations, CP did not surpass 483 

other methods in terms of composite score performance even in the presence of census noise.  484 



Conclusion 485 

In conclusion, our comprehensive analysis of six methods for stabilizing metapopulation 486 

dynamics, along with their robustness against census noise, reveals significant insights into 487 

the complex interplay of demographic, genetic, and migration-related factors in population 488 

stability. In comparing control methods, no single approach emerged as universally superior 489 

across all regimes. However, in order to induce constancy stability to a desired level, lower 490 

limiter control (LLC), adaptive limiter control (ALC), and both limiter control (BLC) proved 491 

most effective in Lr regimes. LLC excelled in HrLk regimes by balancing efficacy and effort, 492 

and BLC was the method of choice in HrHk regimes for its ability to eliminate extinction 493 

risks effectively. Remarkably, ALC stood out for inducing persistence stability across all 494 

regimes, achieving the best performance through distinct pathways in different migration 495 

scenarios. Our findings underscored the importance of considering the specific aspects of 496 

stability when selecting and implementing stabilization methods. Furthermore, our analysis of 497 

robustness against census noise highlights the practicality of these methods in real-world 498 

scenarios, with LLC, ALC, and BLC showing promising results in various regimes. This 499 

study not only contributes to our understanding of metapopulation dynamics but also offers 500 

practical guidance for selecting appropriate stability methods in varied ecological contexts. It 501 

highlights the need for a nuanced, context-specific approach when implementing population 502 

stability strategies for effective ecological management and conservation efforts. 503 
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  619 



Figure Legends 620 

Figure 1. Unperturbed Metapopulation Dynamics. This figure presents various indices of 621 

population dynamics across 12 distinct regimes. Indices for subpopulations and the overall 622 

metapopulation are displayed separately, with the left set of graphs (a, c, e, g) illustrating 623 

symmetric migration scenarios and the right set (b, d, f, h) depicting asymmetric migration. 624 

The indices detailed include: Fluctuation Index (FI) in (a) and (b), highlighting dynamic 625 

variability; Extinction Probability (EP) in (c) and (d), with Lr regimes displaying negligible 626 

to zero EP; Effective Population Size (EPS) in (e) and (f), representing genetic diversity; and 627 

Synchrony between subpopulations in (g) and (h). Standard error was used as error bars. For 628 

some cases, error bars are too small to be visible. 629 

 630 

Figure 2. Composite Performance Scores for 50% Reduction in Fluctuation Index. 631 

Presented here are the composite performance scores for six population control methods 632 

evaluated across 12 distinct regimes, with the objective of achieving a 50% decrease in 633 

Fluctuation Index to promote constancy stability. Atop each bar, the numerical annotations 634 

represent the performance ranking of the method, with a lower composite score denoting a 635 

superior rank. Standard error is depicted as the error bars; however, in certain instances, the 636 

error bars are too small to be visible. 637 

 638 

Figure 3. Composite Performance Scores for 50% Reduction in Extinction Probability. 639 

Presented here are the composite performance scores for six population control methods 640 

evaluated across six regimes, with high intrinsic growth rate (i.e. Hr regimes) while achieving 641 

a 50% decrease in Extinction Probability to promote persistence stability. Atop each bar, the 642 

numerical annotations represent the performance ranking of the method, with a lower 643 



composite score denoting a superior rank. Standard error is depicted as the error bars; 644 

however, in certain instances, the error bars are too small to be visible. 645 

 646 

Figure 4. Robustness Indices for Population Stability Methods While Inducing 647 

Constancy Stability Under Varying White Noise Levels. This figure displays the 648 

robustness indices of six population stability methods evaluated across 12 distinct regimes 649 

tasked with inducing constancy stability, specifically a 50% reduction in the Fluctuation 650 

Index, in the presence of different intensities of white noise affecting population size 651 

estimates. The robustness index is determined by the average squared deviation between 652 

composite scores obtained under various white noise levels and that derived in the absence of 653 

noise. This metric evaluates the consistency of each method's performance in the face of 654 

census accuracy. To present the complete data range within one frame, a discontinuous Y-655 

axis has been employed. Numerical annotations above each bar indicate the method's 656 

robustness rank, with lower scores corresponding to higher robustness against noise. Standard 657 

errors are represented by error bars. In certain instances, the error bars are too small to be 658 

visible. 659 

 660 

Figure 4. Robustness Indices for Population Stability Methods While Inducing 661 

Persistence Stability Under Varying White Noise Levels. This figure displays the 662 

robustness indices of six population stability methods evaluated across six regimes with high 663 

intrinsic growth rate i.e. Hr regimes aimed to induce persistence stability, specifically a 50% 664 

reduction in the Extinction Probability, in the presence of different intensities of white noise 665 

affecting population size estimates. The robustness index is determined by the average 666 

squared deviation between composite scores obtained under various white noise levels and 667 



that derived in the absence of noise. This metric evaluates the consistency of each method's 668 

performance in the face of census accuracy. To present the complete data range within one 669 

frame, a discontinuous Y-axis has been employed. Numerical annotations above each bar 670 

indicate the method's robustness rank, with lower scores corresponding to higher robustness 671 

against noise. Standard errors are represented by error bars. In certain instances, the error bars 672 

are too small to be visible. 673 












