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Abstract—In this work, we present BiM-ACPPO, a bilevel
multi-armed bandit-based hierarchical reinforcement learning
framework for interaction-aware decision-making and planning
at unsignalized intersections. Essentially, it proactively takes the
uncertainties associated with surrounding vehicles (SVs) into
consideration, which encompass those stemming from the driver’s
intention, interactive behaviors, and the varying number of SVs.
Intermediate decision variables are introduced to enable the high-
level RL policy to provide an interaction-aware reference, for
guiding low-level model predictive control (MPC) and further
enhancing the generalization ability of the proposed framework.
By leveraging the structured nature of self-driving at unsignalized
intersections, the training problem of the RL policy is modeled
as a bilevel curriculum learning task, which is addressed by
the proposed Exp3.S-based BiMAB algorithm. It is noteworthy
that the training curricula are dynamically adjusted, thereby
facilitating the sample efficiency of the RL training process.
Comparative experiments are conducted in the high-fidelity
CARLA simulator, and the results indicate that our approach
achieves superior performance compared to all baseline methods.
Furthermore, experimental results in two new urban driving
scenarios clearly demonstrate the commendable generalization
performance of the proposed method.

Index Terms—Autonomous driving, hierarchical reinforcement
learning, bilevel multi-armed bandit, automated curriculum
learning, sample efficiency, generalization.

I. INTRODUCTION

Recently, the autonomous driving community has observed
significant progress and impressive achievements across both
academic research and industry applications [1], [2], [3]. In
contrast to highway driving tasks, the challenges in urban
driving tasks primarily arise from the complexity of the en-
vironment, including uncertain intentions among surrounding
vehicles (SVs), frequent interactions between vehicles, and the
diversity of road layouts [4], [5]. Apparently, inaccurate as-
sessments regarding driving intentions of SVs, such as yielding
or not, could significantly potentially lead to traffic accidents
and congestion, thereby hindering the safe and efficient motion
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of the ego vehicle (EV) [6]. This is particularly evident at in-
tersections, where vehicles originating from diverse directions
are required to swiftly traverse a shared central zone to access
their respective target lanes without collisions. The situation
becomes even more severe in unsignalized intersections which
generally exhibit unpredictable traffic patterns. Because the
EV is required to interact with a varying number of SVs
arriving from diverse directions simultaneously in the ab-
sence of traffic signals. Uncertainties arising from the driving
maneuvers and intentions of SVs present serious safety and
efficiency concerns in the interaction process. This requires
enhancing the capabilities of the EV to prevent potential risks.
In this sense, self-driving at unsignalized intersections requires
advanced decision-making ability and interaction awareness to
interact safely and effectively with SVs exhibiting multi-modal
behaviors.

Rule-based and optimization-based methods are two repre-
sentative approaches for autonomous driving at intersections,
both of which have been extensively studied. In general, rule-
based methods predefine a series of rules about potential
traffic situations for autonomous vehicles to select suitable
behaviors from the rule base. A set of rules is designed to
regulate the order of vehicles to pass through the unsignalized
intersection complying with the law of road traffic safety [7],
[8]. Nevertheless, it is difficult for rule-based approaches to
encompass the entire spectrum of traffic situations, typically
tending to conservative driving behaviors [9]. This could
cause traffic congestion and compromise traffic efficiency.
On the other hand, optimization-based methods formulate the
self-driving tasks as mathematical optimization problems that
minimize a well-designed cost function subject to a set of
constraints [10], [11], [12]. A two-stage optimization approach
is proposed for self-driving tasks at unsignalized intersections
by constructing the crossing problem as a mixed-integer linear
programming and linear programming [13]. Considering the
existence of non-cooperative vehicles, a differential game-
based optimization strategy is proposed to make the con-
trolled vehicle coordinate with non-cooperative SVs [14].
However, these methods are computationally expensive and
time-consuming, and it is difficult to consider unexpected or
rapidly changing traffic scenarios. Furthermore, optimization-
based approaches tend to struggle with poor task efficiency in
complex environments, particularly those involving SVs with
diverse interactive behaviors. This could result in decisions
that are potentially hazardous for autonomous vehicles.

Reinforcement learning (RL) technologies have recently
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shown significant potential in propelling the development of
the autonomous driving community [15], [16], [17]. A multi-
task DQN algorithm is proposed to control the speed of
vehicles to navigate through intersections [18], where the
intersection navigation task is decomposed into several sub-
tasks for the construction of the reward function. However, it
does not consider the difficulty and potential collision risks
of different types of sub-tasks. A social attention module is
incorporated into the RL framework to balance the safety
and efficiency of self-driving at intersections [19]. While
RL-based methods have achieved impressive results at in-
tersection scenarios, most of these works do not consider
vehicle dynamics and driving comfort. To tackle this issue,
a potential solution is to integrate the RL with optimization-
based methods represented by model predictive control (MPC)
[20], [21]. In this sense, the MPC can consider state and
control constraints under the decisions provided by RL. This
solution combines their advantages to establish a hierarchical
framework. A hybrid decision-making algorithm is designed
for autonomous vehicles at intersections [22], where high-
level decisions are derived for the reference of a low-level
planning module. However, its action space only takes several
basic behaviors, which could lead to poor maneuverability.
To enhance the maneuverability of the EV, an intuitive action
space, consisting of velocity and heading angle, is utilized
in [23] for unprotected left-turn tasks. However, the driving
intention of the SVs is assumed to not decelerate or yield to
the EV, which could limit the adaptability of the trained policy
in diverse situations, such as SV driving towards different
lanes and giving way to the EV. Furthermore, this work solely
considers left-turn tasks at unsignalized intersections, which
could limit the generalization ability of the trained policy in
other types of tasks within unsignalized intersections, such
as go-straight and right-turn tasks. Besides, go-straight tasks
at intersections present multiple potential collision points,
thereby posing a challenge to self-driving vehicles.

Additionally, one significant limitation of the RL module
within the hierarchical methods is the poor sample efficiency
when it comes to complex driving environments [24]. The RL
agent necessitates considerable training episodes to achieve
satisfactory performance due to the randomness of exploration.
Therefore, it would be challenging for RL agents to thoroughly
explore the environment and learn effective policies within
limited resources if without suitable guidance. To address
this problem, the environment model is incorporated into the
RL algorithm to enhance the sample efficiency, where virtual
samples are generated to accelerate the training process [25].
However, the effectiveness of the trained policy is heavily
dependent on the accuracy of the model. The performance of
the policy will be severely compromised if there is a significant
discrepancy between the environmental model and the actual
environment. Additionally, directly training the RL agent
within complex environments could result in a solution with
limited driving performance. Curriculum learning technique
provides a promising way to alleviate the above problems [26],
[27]. In [28], a stage-decaying curriculum learning approach
is proposed to guide the training of the RL policy. However,
since the scheduling of curriculum shifts is predetermined

manually, the effectiveness of the training results relies on
expert experience heavily.

To address the above issues, diverse automated curriculum
learning methods have been proposed [29], [30]. An adaptive
curriculum-based method is utilized for training the RL poli-
cies at single-lane intersections, which models various initial
locations of the EV as curriculum features [29]. However,
the adjustment in the importance of curriculum depends on
their respective weights, which could result in delayed or
even potentially failed transitions to curricula with promising
high rewards in the future. In [30], a state drop-out cur-
riculum learning method is developed to learn an RL policy
at unsignalized intersections. It incrementally trains the RL
policy by omitting information about future states throughout
the training process. Nevertheless, these works assume that
SVs will not respond to the behavior of the EV, and their
future trajectories are known to the EV. These simplifications
could jeopardize driving safety and degrade the generalization
ability of RL policies. It is worth noting that human drivers
would demonstrate diverse driving maneuvers according to
the behaviors of SVs in the real world, which is crucial
for achieving safe and efficient interactions. An interactive
planning framework is proposed for the behavior generation
of EV in an intersection scenario [31]. However, this work
only considers the intentions related to the task objectives of
SVs while ignoring their responses to the behaviors of the
EV. Besides, the simple action space impedes the flexible
behaviors of the EV and also the generalization ability into
various driving scenarios. Essentially, as most current studies
do not comprehensively consider the interactive behaviors
of SVs, these simplifications could limit the applicability of
autonomous driving techniques in real-world scenarios.

Therefore, this paper presents a novel bilevel multi-
armed bandit-based automated curriculum PPO (BiM-ACPPO)
framework, which integrates a bilevel multi-armed bandit
(BiMAB) module and a hierarchical RL framework, to im-
prove training efficiency and driving performance. Through the
dynamic assessment and adjustment of the training process, the
RL agent will progressively enhance the self-driving strategy
at unsignalized intersections, starting from simple to more
challenging scenarios. The main contributions are listed as
follows:

• A novel BiM-ACPPO framework is proposed for
interaction-aware decision-making and planning at
unsignalized intersections, which can proactively handle
the uncertainty stemming from the driving intentions of
SVs with multi-modal interaction behaviors and traffic
density. A special action space is utilized to enhance the
generalization ability of the framework.

• A Exp3.S-based BiMAB algorithm is devised for auto-
mated curriculum selection by leveraging the structured
nature of the self-driving tasks at unsignalized intersec-
tions, thereby facilitating efficient sampling and effective
exploration in the RL training process.

• We demonstrate the effectiveness of the proposed ap-
proach in the high-fidelity simulator CARLA. The
BiMAB exhibits appropriate curriculum transition timing
during the training process, and the proposed framework
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achieves superior performance and commendable gener-
alization ability compared to all baseline methods.

The rest of the paper is structured as follows. Section
II presents the problem statement. Section III illustrates the
proposed BiMAB approach and hierarchical RL framework.
Section IV demonstrates the experimental results followed
by pertinent analysis. Finally, Section V summarizes the
conclusion and discusses future works.

II. PROBLEM STATEMENT

A. Problem Statement

In this work, the task scenario is set as a dual-lane unsignal-
ized intersection, which is shown in Fig. 1. The start position
and target position of the EV are generated randomly within
the lower region and the other three regions, respectively,
obeying the traffic rules. A random number of SVs with
diverse interactive styles start from random positions of the
upper, left, and right regions, and they drive towards respective
target lanes simultaneously. The goal is to generate a control
action sequence to guide the EV to safely and swiftly complete
diverse crossing tasks, including unprotected left-turn, go-
straight, and right-turn tasks.

Fig. 1. Overview of the task scenario. The EV is illustrated in red, while
SVs are illustrated in blue. The uncertainties include the task and intention
uncertainty of SVs and the varying number of SVs. All SVs will respond to
the behavior of other vehicles.

In contrast with [29] and [30], the behaviors of all vehicles
within the environment are interdependent, and different SVs
exhibit diverse driving styles, including aggressive, moderate,
and conservative styles. For example, SVs could either yield or
disregard potential collision risks and continue driving when
interacting with other vehicles at conflict points or potential
collision points. Hence, the SVs in the target scenarios demon-
strate multi-modal and interactive behaviors. Additionally,
the number of SVs is also not fixed in diverse scenario
configurations. In this context, the EV is required to complete
various crossing tasks in the environment with the interactive
SVs. Here, we assume that the EV can access the position and
velocity information of SVs, while their goal tasks and driving
intentions are unknown. These configurations inject a signifi-
cant level of randomness into the driving scenarios, rendering
the tasks challenging but close to real-world situations.

B. Vehicle Model

Since the EV drives at low speed in the task scenarios, the
dynamic impact of the vehicle is negligible. Therefore, this
work utilizes the bicycle model [32] to describe the dynamics
of the EV, which is expressed as follows:

ẋ = f(x,u) =


v cos(ψ + δ)
v sin(ψ + δ)

2v
L sin δ
a

 , (1)

where x =
[
x y v ψ

]T
is the state vector of the vehicle

in the global coordinate Wg; x and y denote the X-coordinate
and Y-coordinate position of the center of the vehicle, respec-
tively; ψ and v represent the heading angle and the speed,
respectively; u =

[
a δ

]T
is the control input vector; a and δ

are the acceleration and steering angle, respectively; L is the
inter-axle distance of the vehicle.

C. Model Predictive Control

First, we discretize (1) into the following model:

xk+1 = xk + f(xk,uk) · dk, (2)

where xk and uk represent the state vector and the control
input vector at the time step k; f is the dynamic function; dk is
the sampling interval. Let xg represent the goal state vector for
the EV, which consists of the target location and orientation.
The MPC aims to force the EV system to approach the goal
state vector by solving a standard optimization problem as
follows:

min
x1:N ,u0:N−1

J = J(xN ,xg) +

N∑
J(xk,uk,xg),

s.t. xk+1 = xk + f (xk,uk) dk,

G(x,u) ≤ 0,

H(x,u) = 0,

x0 = x(k),

(3)

where J(xN ,xg) and J(xk,uk,xg) represent terminal cost
and running cost, respectively; N is the length of the horizon;
G(x,u) ≤ 0 and H(x,u) = 0 are inequality constraints
and equality constraints, respectively; x0 is the initial state
of the controlled system in the MPC problem. The control
objective can be achieved by repeating the solving process and
execution in real-time until the system reaches the goal state
xg . For complex and dynamic environments, MPC with fixed
parameters could encounter issues such as high computational
burdens, compromised driving safety, and poor adaptability. In
this work, novel high-level decision variables are introduced
for parameterization of the MPC formulation. Then the output
of the MPC can be modulated to generate diverse behaviors
for the EV to interact with multi-model SVs by leveraging the
decoded value of the high-level decision variables.

D. Learning Environment

In this work, the target tasks can be modeled as a Markov
Decision Process (MDP), where all vehicles are located near
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Fig. 2. Overview of the BiM-ACPPO approach for interaction-aware self-driving at unsignalized intersections with interactive SVs. The EV and SVs are
illustrated in red and blue, respectively. The proposed BiMAB framework models the training process as a bilevel clustered structure. The variables within
the first layer and the second layer, are the number of SVs and the task type of the EV, respectively. The solid car and the semi-transparent cars within the
BiMAB module denote the start position and the target position of the EV, respectively.

the intersection. Here, we express the MDP as a tuple E =
⟨S,A,P,R, γ⟩, where elements S,A,P,R, γ are defined as
follows:

State space S: In this work, S comprises kinematic features
of EV and SVs within the observation range of the EV. The
state matrix at time step k is defined as follows:

Sk =
[
s0k s1k ... s

Nmax
sv

k

]T
, (4)

where Nmax
sv denotes the maximum number of SVs; s0k and

sik (i = 1, 2, ..., Nmax
sv ) represent the state of the EV and the

state of the i-th SV, respectively. Specifically, sik is defined as
follows:

sik =
[
xik yik vik ψi

k

]T
, (5)

where xik and yik represent the X-axis and Y-axis coordinates
of the vehicle i in the world coordinate system, respectively;
vik is the speed of the i-th vehicle; ψi

k denotes the heading
angle of the i-th vehicle.

Action space A: In this work, a multi-discrete action space
including three discrete sub-action spaces is adopted for the
RL agent:

A = {A1, A2, A3} , (6)

where A1, A2, and A3 represent the waypoint sub-action
space, reference velocity sub-action space, and lane change

sub-action space, respectively. The RL agent selects a set
of actions within the A. Then these actions are decoded to
parameterize the low-level MPC to control the EV. Details
will be illustrated in Section III-C.

State transition dynamics P(Sk+1|Sk, ak): It specifies the
changes of environmental state, adhering the Markov property.
It is implicitly defined by the external environment and cannot
be accessed by the RL agent.

Reward function R: Here, we assign a positive reward if
the RL agent finishes a target task to facilitate the improvement
of the RL policy. A negative reward would be assigned if the
agent maintains survival during the task process to incentivize
the RL agent to finish the tasks efficiently. It also penalizes
collisions and frequent lane-changing behaviors. Details will
be introduced in Section III-C.

Discount factor γ: γ ∈ (0, 1) is adopted for accumulated
discount rewards in the future.

III. METHODOLOGY

A. Overview of the Proposed Framework

The workflow of the proposed method is illustrated in Fig. 2.
Specifically, a novel Exp3.S-based BiMAB module is utilized
to select the curricula, which determines the initial settings for
the training environment of the RL agent. Then the RL agent
selects actions based on its observation, which is then decoded
and inputted into the MPC as high-level decision variables
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for parameterization. Subsequently, the parameterized MPC
generates the control inputs based on the defined objective
function and constraints, which are applied to the EV. Relevant
information is recorded in the rollout buffer for updating the
BiMAB policy and the RL policy. Details will be discussed
in the following sections.

B. Exp3.S-based BiLevel Multi-Armed Bandit Algorithm for
Curriculum Learning

Autonomous driving tasks at unsignalized intersections are
typical instances of tasks with clustered structures. The number
of SVs and the type of crossing task are the two main factors
affecting the complexity of self-driving tasks at unsignalized
intersections. The difficulty level increases rapidly as the
number of SVs grows. This is because the EV needs to interact
with SVs coming from various directions simultaneously, and
these SVs have different destinations and driving intentions,
introducing significant uncertainty into the tasks.

Different types of traversal tasks have various levels of
challenge. The right-turn task, which involves completing
a small radius turn along the road boundary and primarily
dealing with the integration of other SVs into the target lane,
is deemed the simplest. The go-straight task requires the EV
to traverse through the central region of the intersection and
potentially interact with SVs from three different directions,
which is more complex than the right-turn task. The left-turn
task, in addition to the challenges present in the go-straight
task, necessitates a change in direction and experiences a
longer distance in the central region, thereby rendering it the
most difficult of the intersection driving tasks. A collision
point analysis for left-turn, go-straight, and right-turn tasks
at a single-lane intersection is shown in Fig. 3. The figure
enumerates the number of collision points for each task when
there is one SV in the scenario. As the number of SVs
and lanes increases, the complexity of collision situations
escalates, leading to a geometric growth in the task difficulty.

(a) SV from the upper
region (L:2; S:1; R:1).

(b) SV from the left re-
gion (L:2; S:2; R:1).

(c) SV from the right
region (L:2; S:3; R:0).

Fig. 3. Potential collision points for EV (red car) crossing the intersection
with the SV (blue car). L, S, and R represent the number of potential collision
points when the EV performs diverse tasks.

The proposed BiMAB module is shown in Fig. 2, which is
used for the allocation of training curricula.

1) Task Decomposition and Bilevel Curriculum Modelling:
Based on the above analysis, we model the training process
of the RL policy at unsignalized intersections as a bilevel
curriculum learning task. Our curriculum set includes Nmax

ss
subsets, which are characterized by a progressively increasing
number of SVs. Each subset consists of Nmax

sc sub-curricula,

representing different task types of EV within the correspond-
ing subset. Specifically, the bilevel curriculum set is expressed
as follows:

Ω = {Ωij |i = 0, 1, ..., Nmax
ss , j = 0, 1, ..., Nmax

sc } , (7)

where i denotes the serial number of the subset, which
is equivalent to the number of SVs within corresponding
curricula; j is the serial number of the sub-curriculum, which
means the type of the driving task, and j = 0, 1, 2 represents a
left-turn task, go-straight task, and right-turn task, respectively.
It is noted that Nmax

sv is equal to Nmax
ss . Within this set, each

subset can be considered as a cluster, and correspondingly,
each sub-curriculum can be regarded as an arm within the
context of the BiMAB problem [33], [34]. Following the above
analysis, the curriculum selection in (7) can be considered as
a sampling process within the BiMAB M, which consists of
Nmax

ss +1 clusters and Nmax
sc +1 arms. Therefore, the BiMAB

agent can derive a sample sequence of clusters and arms over
T episodes for the training of the RL agent:

(CT , AT ) = {(cs,1, as,1), (cs,2, as,2), ..., (cs,T , as,T )} , (8)

where CT and AT are the sampled cluster sequence and arm
sequence across the RL training process, respectively; cs,i and
as,i are the sampled cluster and arm within the BiMAB in
the i-th episode. When an episode ends, the rollout buffer
of the RL agent returns a final reward. Then the BiMAB
agent adjusts the importance weights based on this reward
in conjunction with the historical rewards. Our objective is to
develop an adaptive strategy to maximize payoffs generated
from the sampled cluster and arm sequence (CT , AT ):

wC∗,wA∗ = arg max
wC ,wA,(CT ,AT )

∑T

t=1
r̂(t), (9)

where wC and wA are non-negative importance weight vec-
tors of the clusters and arms in the BiMAB; wC∗ and wA∗

denote the optimal importance weight vectors of the clusters
and arms in the BiMAB; r̂(t) represents the rescaled reward
of the BiMAB, which depends on the reward received from
the RL agent.

2) Exp3.S-based BiMAB Algorithm for Automated Curricu-
lum Selection: For the BiMAB model M constructed before,
the importance weights wC(t),wA(t) and the probability
distributions pC(t),pA(t) are defined as follows:

wC(t) = {wc
i (t)|i = 0, 1, ..., Nmax

ss } ,
pC(t) = {pci (t)|i = 0, 1, ..., Nmax

ss } ,
wA(t) =

{
wa

ij(t)|i = 0, 1, ..., Nmax
ss , j = 0, 1, ..., Nmax

sc

}
,

pA(t) =
{
paij(t)|i = 0, 1, ..., Nmax

ss , j = 0, 1, ..., Nmax
sc

}
.

(10)
In our specific problem, the optimal cluster and optimal arm

change across various stages of the training process due to
the variation in the anticipated rewards, which are related to
task settings and the improvement of the RL policy during
the training process. Drawing inspiration from the Exp3.S
algorithm [35], we can tackle this problem by integrating an
additional ε-greedy factor into the probability update mecha-
nism. This ensures that each cluster and arm maintains a non-
zero probability of selection throughout the training duration.



6

With the importance weights wC(t) and wA(t) determined at
the t-th episode, the sampling probabilities of the i-th cluster
and j-th arm within the i-th cluster can be calculated as
follows:

pci (t) = (1− η)
ew

c
i (t)∑Nmax

ss
k=0 ew

c
k(t)

+
η

Nmax
ss + 1

,

i = 0, 1, ..., Nmax
ss ,

paij(t) = (1− η)
ew

a
ij(t)∑Nmax

sc
k=0 ew

a
ik(t)

+
η

Nmax
sc + 1

,

i = 0, 1, ..., Nmax
ss , j = 0, 1, ..., Nmax

sc ,

(11)

where η is a positive constant that balances the exploitation
of obtained experiences and random exploration. Within the
framework where the task exhibits a clustered structure, the
BiMAB model introduces an equivalent update mechanism for
the clusters. We first derive a cluster sample c(t) at t-th episode
according to the distribution pC(t) as follows:

cM(t) ∼ M(pC(t),pA(t)). (12)

Then the BiMAB agent chooses an arm sample ac(t) for
the RL agent from the sampled cluster cM(t) according to
corresponding possibility distribution pA(t) as follows:

ac(t) ∼ M(pA(t)|cM(t)). (13)

Once the cluster and arm are sampled, the RL environment
is initialized according to the corresponding curriculum set-
tings. The BiMAB agent will obtain a reward rij(t) from the
RL agent when this episode ends. After the RL agent finishes
an episode, receiving a positive reward indicates a successful
interaction with the environment that meets expectations,
whereas receiving a negative reward suggests the occurrence
of undesired events or dangerous situations such as collisions
during that episode. For the RL policy, negative rewards mean
poor performance in that scenario, indicating the need for
further training. Based on the above analysis, it is essential
for the BiMAB module to appropriately modulate the received
negative rewards to facilitate the training of the RL policy. In
this work, the rescaled reward for the BiMAB is defined as
follows: 

r̂i(t) =
rijnorm(t)
pi(t)

,

r̂ij(t) =
rijnorm(t)
pij(t)

,

rijnorm(t) =
2(rmd−k0Rmin(t))

k1Rmax(t)−k0Rmin(t)
− 1,

(14)

where
rmd =

{
rij(t), if rij(t) ≥ 0,
−αmdrij(t), otherwise, (15)

where r̂i(t) and r̂ij(t) represent the rescaled reward for i-th
cluster and corresponding j-th arm within the i-th cluster ob-
tained in t-th episode, respectively; Rmax(t) and Rmin(t) are
the maximum and minimum absolute values of the unscaled
rewards in the history up to the current episode, respectively;
k0, k1, and αmd denote positive constants for the rescaling
procedure. The reward for both cluster and arm that are
not sampled in the t-th episode is 0. Here, we perform an
absolute value operation on the received reward value, aiming
to enable the BiMAB agent to utilize information related to

the courses where the RL policy is currently underperforming.
Additionally, we proportionally scale the normalized reward
rijnorm(t) for the corresponding cluster and arm based on their
selection probability. This allows clusters and arms that could
be optimal but currently have low probabilities to be timely
identified through algorithm updates. Then the importance
weights of i-th cluster, and j-th arm within i-th cluster are
adjusted as follows:

wc
i (t+ 1) = wc

i (t) + αcr̂i(t) + βcWi(t),

wa
ij(t+ 1) = wa

ij(t) + αar̂ij(t) + βaWij(t),
(16)

where Wi(t) =
∑Nmax

ss
i=0 wc

i (t), Wij(t) =
∑Nmax

sc
j=0 wa

ij(t); αc,
αa, βc, and βa are positive constant parameters for adjusting
the growth rate of importance weights of each cluster and each
arm, respectively.

Based on the calculated importance weights, specific cur-
ricula are sampled for training the RL policy. In practical
deployment, due to the inherent randomness of sampling
and the stochastic generation of SVs, it is difficult to avoid
inefficient samples completely during the training process.
To prevent occasional sampling that leads to misestimation
towards the importance of clusters and arms, we utilize a target
BiMAB M̂ to stabilize the update process of BiMAB M.
After receiving the final reward from the RL agent, the target
BiMAB agent updates its parameters based on the rescaled
rewards. Then, after a certain number of curricula are sampled,
the importance weights of the target BiMAB are synchronized
to the BiMAB to proceed with the selection of curricula for
the next phase. Therefore, the update of importance weights
within the BiMAB can be rewritten as follows:

wc
i (t+ 1) =


wc

i (t), if t|NBiMAB ̸= 0,

wc
i (t) +

∑t
k=t−NBiMAB+1(αcr̂i(k)

+βcWi(k)), otherwise,

wa
ij(t+ 1) =


wa

ij(t), if t|NBiMAB ̸= 0,

wa
ij(t) +

∑t
k=t−NBiMAB+1(αar̂i(k)

+βaWij(k)), otherwise,
(17)

where NBiMAB is the update interval for synchronization
between the target BiMAB M̂ and the BiMAB M.

The complete procedure of the proposed Exp3-based
BiMAB algorithm for automated curriculum selection is sum-
marized in Algorithm 1.

C. High-Level PPO for Decision-Making

Within the proposed framework, the RL policy is employed
to generate high-level decision variables, which account for
the trade-off between safety and efficiency throughout the
autonomous driving task process. Specifically, the RL agent
aims to decide a sequence of the intermediate points as the
reference of low-level MPC. We use the notations of subscript
k to represent k-th time step within an episode.

1) Observation and Action Generation: Here, we define the
observations for the RL agent as follows:

Ok =
[
o0
k o1

k ... o
Nmax

sv
k

]T
, (18)
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Algorithm 1: Exp3.S-based BiMAB Algorithm
Input: Curriculum set Ω, BiMAB update frequency

NBiMAB

Output: Selected cluster cM, selected arm ac

1 Initialize the BiMAB and target BiMAB with weights
{wc

i}, {ŵc
i},

{
wa

ij

}
, and

{
ŵa

ij

}
, where

i = 0, 1, ..., Nmax
ss , j = 0, 1, ..., Nmax

sc ;
2 while t ≤ tmax do
3 Compute probability distributions of clusters pc(t)

from (11);
4 Derive a sample cluster cM(t) from (12);
5 Compute probability distributions of arms pC

a (t) in
cluster cM(t) from (11);

6 Derive a sample arm ac(t) from (13);
7 Play arm ac(t) and apply corresponding Ω(t) to

the RL environment for initialization;
8 Receive the terminal reward rij(t) from the RL

agent;
9 Compute the rescaled reward r̂i(t) and r̂ij(t) from

(14);
10 Update the corresponding cluster and arm weight

within the target BiMAB from (16);
11 if t | NBiMAB = 0 then
12 wi(t) = ŵi(t), i = 0, 1, ..., Nmax

ss ;
13 wij(t) = ŵij(t), i = 0, 1, ..., Nmax

ss , j =
0, 1, ..., Nmax

sc ;
14 end
15 end

where o0
k = [x̃0k x̃

0
k v

0
k ψ̃

0
k]

T ; x̃0k and ỹ0k represent the absolute
differences between the current X-axis and Y-axis coordinates
of the EV and these of the goal location, respectively; v0k
denotes the current speed of the EV; ψ̃0

k is the difference
between the current heading angle and the goal heading angle.
oi
k (i = 1, 2, ..., Nmax

ss ) is defined as follows:

ok =
[
dxik dyik dvik dψi

k

]T
, (19)

where 
dxik = clip(|x0k − xik|, 0, 7.5),
dyik = clip(|y0k − yik|, 0, 7.5),
dvik = v0k − vik,
dψi

k = ψ0
k − ψi

k,

(20)

where clip(·) is a clip function to pre-process the correspond-
ing elements to constrain them within a predefined range.

In this work, the RL policy is represented by a neural
network π parameterized by θ. Given the RL observation Ok

at time step k, the action of RL agent is generated by:

aRL
k = πθ(Ok) (21)

The specific definition of the sub-action spaces in (6)
are introduced as follows. The waypoint sub-action space is
defined as:

A1 = {WP0,WP1, ...,WP4} , (22)

where WPi in A1 represents the i-th waypoint, which can be
represented as follows:

WPi = [xWP
i yWP

i ψWP
i ]T , (23)

where xWP
i , yWP

i , and ψWP
i denote the reference information

about the X-axis, Y-axis coordinates, and heading angle of
the waypoint, respectively. Waypoints are provided by a pre-
defined road map and several path-searching methods, such
as A∗ search algorithm. The visualization of the sub-action
space A1 is shown in Fig. 4(a), where the EV drives from the
lower region towards the central zone. A reference waypoint
set is generated using A* search at the beginning of the task.
When the EV is in the lower area, the 5 waypoints closest
to the EV (WP′

i, i = 0, 1, ..., 4) are added to the A1. Before
each decision-making process, the RL agent checks the relative
positions of all waypoints in the reference waypoint set against
the position of the EV, and updates the sub-action space A1.
Specifically, any waypoints located behind the current position
of the EV are removed from the reference waypoint set. Then
the 5 waypoints closest to the EV (WPi, i = 0, 1, ..., 4) in the
new updated reference waypoint set comprise A1. The RL
agent then selects the appropriate action from this updated
sub-action space A1. It is worth noting that both the reference
waypoint set and A1 are consistently checked and updated
throughout the task. Specifically, the first waypoint WP0 is the
waypoint closest to the EV, thereby enabling the functionality
for stopping and yielding. Distant waypoints guide the EV
towards the target position in diverse modes. According to
[36], [37], the maximum reference speed is set to 8 m/s. The
reference velocity sub-action space is defined as:

A2 = {0, 2, 4, 6, 8} , (24)

where the unit of the elements is m/s. The lane change sub-
action space is defined as:

A3 = {−1, 0, 1} , (25)

where −1, 0, and 1 represent left lane change, lane keeping,
and right lane change maneuvers, respectively. The visualiza-
tion of A3 can be referred to in Fig. 4(b). In Fig. 4(b), the EV
detects an SV ahead, so it changes lanes to the left to avoid
a potential collision and prepare for the left-turn maneuver.

By configuring the action space in this manner, the RL agent
is not only equipped with navigation and obstacle avoidance
capabilities but also can be generalized to various driving
scenarios that feature regular road structures and waypoints.

Remark 1: By constructing an action space composed of
(22), (24), and (25), we can facilitate flexible motion pat-
terns for the EV to interact with SVs exhibiting multi-modal
behaviors. When the EV needs to drive towards the target
location rapidly, the RL agent can select the most distant
waypoint and a high reference speed. Conversely, when the EV
requires an emergency brake to yield, the RL agent can choose
the nearest waypoint and a low reference speed. Moreover,
the introduction of a lane-changing sub-action space further
enhances the flexibility of motion for the EV. When the RL
agent decides to change lanes to the left or right, the selected
waypoint will be replaced by the corresponding waypoint on
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(a) Update process of A1. (b) Lane-changing behavior.

Fig. 4. Visualization of designed action space of RL agent.

the adjacent lane. Choosing a closer waypoint on the adjacent
lane indicates an urgent lane change to avoid collisions, while
picking a further waypoint on the adjacent lane means a
smooth lane change for collision avoidance or overtaking.

2) Reward Function: The reward function is crucial for
motivating RL agents to explore the environment. Therefore,
it is essential to design an appropriate reward function that
is able to guide the RL agent to balance driving safety and
efficiency during the training process. Taking into account the
specific characteristics of the target scenarios addressed in this
study, the reward function is designed as follows:

r(k) = rS(IS) + rF(¬IS) + rC(IC) + rTO(ITO)

+ rLC(ILC) + rl,
(26)

where rS and rF denote the rewards for task completion and
failure by the RL agent, respectively; rC, rTO, rLC, and rl
denote the penalty for collisions, time-out situations, lane-
changing behaviors, and surviving in the task, respectively.
Ievent serves as an indicator function, marking the occurrence
of diverse events. It is defined as follows:

Ievent =

{
1, if event occurs,
0, otherwise, (27)

To facilitate curriculum switching, the success reward term
rS is configured to depend on the number of SVs and potential
collision points, which can encourage the RL agent to explore
the tasks with high difficulty levels. To assist the RL agent in
learning from failed episodes, we set the failure reward rF to
be related to the distance dF

e2g of the EV from the goal location
when the episode ends. Furthermore, to improve the interaction
awareness of the RL agent, the penalty for collisions rC is
structured to have a positive correlation with both the speed
of the EV vEV and the count of SVs. Furthermore, the penalty
for lane-changing maneuvers is added to avoid non-compliant
and frequent lane-changing behaviors. Among these reward
terms, the success reward rS, the failure reward rF, and the
collision penalty rC are designed as follows:

rS(IS) = IS · (α1 ·Nsv + α2 ·Npcp),

rF(¬IS) = min(rF,max,¬IS · α3 · dF
e2g

−1
),

rC(IC) = IC · α4 ·Nsv · vEV,

(28)

where Npcp denotes the number of potential collision points;
rF,max is the maximum reward for the failed episodes; αi are

constant parameters, where i = 1, 2, · · · , 4. The remaining
reward terms are assigned constant values.

3) Training with BiM-ACPPO: After sampling a cluster and
a corresponding arm in the BiMAB, the RL agent explores
the environment set by the configuration of the selected
curriculum. Relevant observations, actions, and rewards within
respective episodes are recorded in the replay buffer. Once
a certain number of episodes have been gathered, the RL
policy undergoes training to optimize the cumulative objective
function that is associated with the sequence of sampled
cluster-arm pairs (CT , AT ) as follows:

θ∗ = arg max
θ,(CT ,AT )

J(θ), (29)

where J(θ) denotes the objective function for the RL policy
with parameter θ. Here, the clipped objective function of the
PPO algorithm [38] is utilized for the update of the RL policy:

Jk(θ) = Ek

[
min

(
ρk(θ)Âk, clip (ρk(θ), 1− ϵ, 1 + ϵ) Âk

)]
,

(30)
where ρk(θ) represents the probability ratio of the new policy
to the old policy; Âk denotes the estimator of the advantage
function at time step k; ϵ is the clip parameter. To reduce the
variance of the long-term return estimation, the generalized
advantage estimation (GAE) is adopted. Furthermore, to bal-
ance the exploration and exploitation, and also stabilize the
policy update, a temporary policy network is utilized for the
implementation.

D. Low-Level RL-Guided Model Predictive Control
Upon receiving the current observation, the RL policy

chooses high-level decision variables, which are then decoded
and passed into the low-level MPC to generate control actions.

The MPC is utilized for the motion control of the EV at
the low level of the proposed framework. Typically, MPC
uses the target location as the reference state in the receding
horizons to force the EV to reach its destination swiftly. How-
ever, incorporating highly non-convex and nonlinear collision
avoidance constraints into the MPC formulation is necessary
to ensure the safety of the EV, which significantly increases the
computational burden, especially in complex driving scenarios
such as unsignalized intersections. In this work, we introduce
an intermediate reference state to guide the EV to avoid
collisions, which is determined by RL policy. This replaces the
target location as the reference state of the MPC formulation.
The intermediate reference state vector is defined as follows:

xIMR =
[
xIMR yIMR vIMR ψIMR

]T
(31)

where xIMR and yIMR are the intermediate reference X-axis and
Y-axis coordinates of the EV in the world coordinate system,
respectively; vIMR is the intermediate reference speed of the
EV; ψIMR denotes the intermediate reference heading angle of
the EV. Here, we replace the goal point xg in (3) with the
intermediate point which is determined by the RL agent.

In the proposed framework, the MPC is tasked with tracking
the intermediate reference states generated by the RL policy,
while ensuring both the reduction of vehicle energy consump-
tion and the maintenance of driving comfort. Given the high-
level decision variable xIMR and the current state of the EV



9

xk = [xk yk vk ψk]
T , the autonomous driving task can be

formulated as an MPC problem over the receding horizon N .
Considering the non-holonomic dynamics constraint and box
constraints of the velocity and control commands of the EV,
a nonlinear and nonconvex-constrained optimization problem
can be formulated as follows:

min
x1:N ,u0:N−1

JxN
+

N−1∑
k=0

(Jxk
+ Juk

+ J∆uk
)

s.t. xk+1 = xk + f (xk,uk) dk,

umin ≤ uk ≤ umax,

vmin ≤ vk ≤ vmax,

x0 = xcurrent,

(32)

where

JxN
= (xN − xIMR)

TQx(xN − xIMR),

Jxk
= (xk − xIMR)

TQx(xk − xIMR),

Juk
= uT

kQuuk,

J∆uk
= ∆uT

kQ∆u∆uk,

(33)

where ∆uk = uk−uk−1 is the variation of control commands;
xcurrent represents the current state vector of the EV; Qx,Qu,
and Q∆u are positive semi-definite diagonal weighting matri-
ces for corresponding terms.

The complete procedure of the proposed BiM-ACPPO
framework is summarized in Algorithm 2.

IV. EXPERIMENTS

A. Experimental Setup

In this section, we implement the BiM-ACPPO approach
in two different unsignalized intersections and an overtaking
scenario. The experiments are carried out on the Ubuntu
18.04 system with 2.60GHz Intel(R) Xeon(R) Platinum 8358P
CPU and NVIDIA GeForce RTX 4090 GPU. All self-driving
scenarios involved in experiments are constructed on the
CARLA simulator [39]. Here, we set the Tesla Model 3 as
the self-driving vehicle. The actor-critic architecture is adopted
to implement the proposed method. The action network and
critic network are set as fully connected networks with 2
hidden layers of 256 units and 128 units by PyTorch and
trained with the Adam optimizer. The number of epochs is
set to 20. The learning rate of the action network and critic
network are set to 5× 10−4 and 1× 10−3, respectively. γ is
set to 0.99. The initial weights of BiMAB are set to wc

i (0) =
1,wa

ij(0), i = 0, 1, ..., Nmax
ss , j = 0, 1, ..., Nmax

sc . η is set to
0.2. NBiMAB is set to 1000. The low-level MPC optimization
problem is solved by CasADi [40], with the IPOPT option and
single-shooting approach. The weighting matrices Qx, Qu,
and Q∆u are set to diag ([100, 100, 100, 20]), diag ([10, 10]),
and diag ([1, 1]), respectively. In this work, the proposed
framework is compared with four baseline approaches as
follows:

• Fixed PPO: the RL policy is directly trained by PPO
approach [38] in the target scenario with Nsv = Nmax

sv .

Algorithm 2: BiM-ACPPO
Input: Environmental state Sk, RL policy update

frequency NRL
Output: πθ∗ = f(θ∗)

1 Initialize the policy network and the temporary policy
network with parameter θ0, θt

0;
2 Derive a sample Ω(t) according to Algorithm 1;
3 Initialize the RL environment based on the sampled

curriculum Ω(t);
4 while t ≤ tmax do
5 while not done do
6 RL agent chooses high-level decision variables

from (21);
7 Decode the high-level decision variables to

obtain the intermediate reference vector xIMR;
8 Parameterize the MPC (32) and calculate the

control action;
9 Apply the control action to the EV, obtain the

reward rk(t) and the next state rk+1(t);
10 end
11 Record related information of episodes experienced

by the RL agent, including the history of states,
actions, and rewards;

12 Update the temporary policy network by (29);
13 Feed the reward at the end of the t-th episode to

BiMAB in Algorithm 1;
14 if t | NRL = 0 then
15 Synchronize the parameters of the temporary

policy network to the current policy network;
16 end
17 Derive a sample Ω(t) according to Algorithm 1;
18 Reset the unsignalized intersection based on the

sampled curriculum Ω(t);
19 end
20 Save the final policy network π∗

θ = f(θ∗).

• Random CPPO: the probability distributions of all clus-
ters and arms in the curriculum set are equal.

• Manual CPPO: the RL policy is trained by a simplified
implementation of [28] with a fixed ϵ.

• RD-ACPPO: implementation of the approach in [41] with
MPC as the low-level controller.

For the sake of fairness, we set the clip parameters of all
methods to ϵ = 0.2. The SVs are in built-in autopilot mode
which is provided by the CARLA simulator. We first train the
RL policy in the unsignalized intersection scenario. Then the
test of all trained RL policies at unsignalized intersections with
different numbers of SVs Nsv = 0, 1, ..., Nmax

sv and diverse
driving tasks are conducted.

B. Dual-Lane Unsignalized Intersections
We select a dual-lane intersection from the Town05 map

for the deployment, where the traffic lights are deactivated to
create an unsignalized intersection scenario. In this case, the
maximum number of SVs is set to Nmax

sv = 3. The start and
target positions of the EV and SVs are randomly generated
while complying with traffic rules, as described in Section II.
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(a) First cluster (Nss = 0) (b) Second cluster (Nss = 1) (c) Third cluster (Nss = 2) (d) Fourth cluster (Nss = 3)

Fig. 5. Weight updates of four clusters in BiMAB during the training process.

(a) Arms in first cluster. (b) Arms in second cluster. (c) Arms in third cluster. (d) Arms in fourth cluster.

Fig. 6. Weight updates of three arms in respective clusters during the training process.

TABLE I
SAMPLED TIMES OF CLUSTERS AND ARMS WITHIN BIMAB

Nss 0 1 2 3
Sampled Times 456 536 1291 2718

Nsc 0 1 2 0 1 2 0 1 2 0 1 2
Sampled Times 268 90 98 193 278 65 627 489 175 1788 666 264

1) Training Results: The trend of weight changes for each
cluster (subset) and arm (sub-curriculum) of the BiMAB
within the proposed method during the training process is
illustrated in Figs. 5-6 and Table I. According to Table I, we
can find that the sampling times of the four clusters increase
with the number of SVs throughout the entire training process.
This is because as the number of SVs increases, the difficulty
of the task also increases, requiring more training episodes
for RL agents to learn and update strategies. This process is
automatically assigned through real-time evaluation of the RL
policy during training by BiMAB. Within specific clusters,
the sampling frequency of arms corresponding to left-turn and
go-straight tasks surpasses that of right-turn tasks, and the
difference in sampling frequency increases significantly with
the increase in the number of SVs. This phenomenon occurs
because the first two tasks are more challenging than right-turn
tasks, thereby resulting in such allocation results.

More details about the weight evolutions in BiMAB are
illustrated in Figs. 5-6. It is observable that as training pro-
gresses, the weights in the first layer of BiMAB gradually
shift from cluster Nss = 0 to cluster Nss = 3. This indicates
that BiMAB dynamically assesses the learning progress of
the strategy and executes a timely shift in the curriculum.
Specifically, as the performance of the RL policy improves, the
BiMAB allocates increasingly challenging training episodes to
the RL agent. This strategic allocation enables the RL agent to
master complex driving skills step by step, thereby allowing

it to achieve higher rewards in more challenging scenarios.
Furthermore, because right-turn tasks are relatively simpler
compared to the other two types of crossing tasks, the weights
associated with the arm for right-turn tasks decrease as training
progresses across all clusters. In contrast, the weights for left-
turn and go-straight tasks exhibit diverse trends of change
across different clusters, yet both types of tasks experience
periods of high weight in various stages of training. This
pattern is also evident from Table I, which shows that right-
turn tasks have the fewest training instances. Despite the
potential collision points being equal for both left-turn and
go-straight tasks, the left-turn tasks involve a longer distance
through the central region of the unsignalized intersections,
leading to a higher potential frequency of interaction with SVs.
Consequently, BiMAB allocates a higher number of instances
to left-turn tasks compared to go-straight tasks.

2) Performance Evaluation: To quantitatively compare the
performance of the BiM-ACPPO with the baseline methods,
we conduct tests on RL policies trained by all methods in the
dual-lane unsignalized intersection with the number of SVs
ranging from 0 to 3. Each policy undergoes 100 repeated tests
in each type of crossing task. The test results are summarized
in Table II.

According to this table, it is evident that the proposed
approach achieves the highest success rate in all testing tasks
and settings, although the success rate decreases as the number
of SVs increases. This result indicates the effectiveness of



11

TABLE II
PERFORMANCE COMPARISON AT DUAL-LANE UNSIGNALIZED INTERSECTIONS AMONG DIFFERENT METHODS.

Methods Nsv=0 Nsv=1 Nsv=2 Nsv=3
S(%) C(%) TO(%) S(%) C(%) TO(%) S(%) C(%) TO(%) S(%) C(%) TO(%)

Fixed PPO
Left Turn 98 0 2 76 24 0 64 36 0 36 64 0
Go Straight 92 0 8 79 18 3 72 24 4 48 52 0
Right Turn 100 0 0 98 1 1 98 2 0 96 4 0

Manual CPPO
Left Turn 100 0 0 83 17 0 60 40 0 54 46 0
Go Straight 100 0 0 84 16 0 78 22 0 66 34 0
Right Turn 100 0 0 100 0 0 98 2 0 97 3 0

Random CPPO
Left Turn 100 0 0 82 18 0 66 34 0 44 56 0
Go Straight 100 0 0 84 16 0 70 30 0 62 38 0
Right Turn 100 0 0 100 0 0 96 1 4 0 84 16 0

RD-ACPPO
Left Turn 100 0 0 86 14 0 79 21 0 69 31 0
Go Straight 100 0 0 86 14 0 77 23 0 73 27 0
Right Turn 100 0 0 100 0 0 100 0 0 98 2 0

BiM-ACPPO
Left Turn 100 0 0 94 6 0 85 15 0 80 20 0
Go Straight 100 0 0 93 7 0 87 13 0 84 16 0
Right Turn 100 0 0 100 0 0 100 0 0 100 0 0

Note: S, C, and TO represent success rate, collision rate, and timeout rate, respectively.

BiMAB in improving the training outcomes of the RL policy.
Besides, we can find that the performance of RL policies
trained across various scenario settings generally surpasses that
of Fixed PPO, with RL policies utilizing curriculum learning
outperforming Random PPO. Furthermore, the success rate
of RL policies that automatically allocate curricula based
solely on the number of SVs is higher than that of manually
assigned curricula, while lower than that of proposed BiMAB.
It is noteworthy that the success rate of the RL policy based
on BiMAB significantly exceeds that of RD-ACPPO. This
highlights the efficacy of leveraging the structured nature of
unsignalized intersection tasks for curriculum modeling, as
well as the effectiveness of the Algorithm 1.

Meanwhile, the success rates of BiM-ACPPO in left-turn
and go-straight tasks are similar across different numbers of
SVs, while they are lower than that of right-turn tasks, which
corroborates the analysis presented in Section III-B regarding
the three types of crossing tasks at unsignalized intersections.
This discrepancy is due to the significantly higher number of
potential collision points in the latter two tasks compared to
right-turn tasks, necessitating more interactions with SVs that
exhibit uncertain driving intentions. The complexity of these
interactive processes exponentially increases with the number
of SVs. Additionally, the Fixed PPO policy experiences time-
out results in testing scenarios where the number of SVs
ranged from 0 to 2. This reveals that directly training the RL
agent in complex environments could lead to poor generaliza-
tion to unseen scenarios, while curriculum learning techniques
can assist in enhancing the generalization performance of the
RL policy across different scenario settings.

Among all testing results attained by the BiM-ACPPO
approach, we pick up one result from each of the three
different crossing tasks at the unsignalized intersection for
demonstration. The snapshots of these three examples are
presented in Fig. 7.

• Left-turn task: At 0.4 s, the RL policy outputs an
intermediate waypoint in the left lane to guide the EV
to change lanes in preparation for the left-turn crossing
task. Subsequently, at 2.3 s, the RL policy detects an SV

approaching from the left region to execute a go-straight
crossing task without showing any intention to yield.
Therefore, the RL policy selects the nearest waypoint and
a low reference speed to perform the yield behavior. Once
the SV has passed and is no longer in front of the EV,
the RL policy then chooses a distant waypoint along with
a high reference speed to rapidly direct the EV towards
the target region at 3.2 s. Ultimately, the EV finishes the
left-turn task under the guidance of the RL policy.

• Go-straight task: Because there are no SVs in the central
region, the RL policy chooses a distant waypoint and a
high reference speed as an intermediate point to guide the
EV for rapid transit from 0 s to 2.2 s. At 2.8 s, the RL
policy observes two SVs entering the central region from
the right region, posing a potential collision risk. Thus, it
selects the nearest waypoint and a low reference speed to
prevent potential collisions. Between 2.8 s and 3.9 s, the
two SVs from the right region, with the SV in the right
lane indicating an intent to turn right and the SV in the
left lane showing an intention to yield, prompt the RL
policy to choose a distant waypoint to swiftly guide the
EV through the central region. Finally, the EV completes
the go-straight task.

• Right-turn task: The EV is initialized in the left lane,
with its destination being the left lane of the right region
of the unsignalized intersection. Between 0 s and 1.1
s, the RL policy selects a waypoint in the right lane
to guide the EV to change lanes in preparation for a
right turn. From 2 s to 2.7 s, the RL policy observes the
SVs that come from the left region are at a sufficiently
safe distance, which poses no potential collision risk.
Therefore, it outputs a sub-nearest waypoint to direct the
EV through a tight turn with a small radius into the right
lane of the right region of the unsignalized intersection.
At 4.9 s, the EV successfully enters the target region
under the guidance of the RL policy and changes lanes
to reach its target location.
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(a) Left-turn task. The EV is initialized in the right lane, and its target position is set to the left lane of the left region.

(b) Go-straight task. The EV is initialized in the left lane, and its target position is set to the left lane of the upper region.

(c) Right-turn task. The EV is initialized in the left lane, and its target position is set to the left lane of the right region.

Fig. 7. Key frames of the three demonstrations with our method in an unsignalized intersection within CARLA. The upper and lower side of the sub-figures
shows the third-person views of the EV and the bird-eye views. The green rectangles in the third-person sub-figures denote the intermediate point determined
by the RL policy. The red rectangle and the green rectangles in the bird-eye sub-figures represent the EV and SVs, respectively.

C. Generalization Ability Into New Scenarios

To demonstrate the generalization ability of the proposed
framework, we deploy the RL policies obtained in IV-B to
conduct tests in two new driving scenarios for validation.

1) Zero-Shot Generalization Ability Into Single-Lane
Unsignalized Intersections: In this experiment, we choose
a single-lane unsignalized intersection in the map Town03
of the CARLA simulator as the testing scenario. Other test
settings are similar to dual-lane unsignalized intersections in
Section IV-B. During testing, RL policies trained by Fixed
PPO, Manual CPPO, and Random CPPO are almost incapable
of completing intersection crossing tasks in this new scenario.
Therefore, we present the results of 100 repeated tests on
RD-ACPPO and the proposed framework, which are shown
in Table III.

Since the BiMAB automatically modulates the curricu-
lum in line with the training progress of the RL policy,
it can effectively guide the RL agent towards an enhanced
exploration of the environment. This enables the trained RL
policy to gain an improved comprehension of the environment,
handle uncertainty in the environment well, and demonstrate
enhanced generalization capabilities. Additionally, comprehen-
sive utilization of the inherent task structure at unsignalized in-
tersections within the BiMAB framework facilitates a superior
success rate in the novel single-lane unsignalized intersection
scenarios compared to RD-ACPPO.

2) Few-Shot Generalization Ability Into Overtaking Driving
Scenarios: To further validate the generalization of the pro-
posed method, we also conduct tests on the overtaking task in
an urban driving scenario. Here, we select the long outer ring
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TABLE III
PERFORMANCE COMPARISON AT SINGLE-LANE UNSIGNALIZED INTERSECTIONS AMONG DIFFERENT METHODS.

Methods Nsv=0 Nsv=1 Nsv=2 Nsv=3
S(%) C(%) TO(%) S(%) C(%) TO(%) S(%) C(%) TO(%) S(%) C(%) TO(%)

RD-ACPPO
Left Turn 100 0 0 77 23 0 75 25 0 56 44 0
Go Straight 100 0 0 75 25 0 65 35 0 53 47 0
Right Turn 100 0 0 88 12 0 84 16 0 82 18 0

BiM-ACPPO
Left Turn 100 0 0 91 9 0 85 15 0 80 20 0
Go Straight 100 0 0 96 4 0 89 11 0 82 18 0
Right Turn 100 0 0 100 0 0 100 0 0 97 3 0

Note: S, C, and TO represent success rate, collision rate, and timeout rate, respectively.

Fig. 8. Key frames of the demonstration with our method in the overtaking task. SVs in the left lane and middle lane are set to low-speed mode.

road with 3 lanes in the map Town05 of the CARLA simulator
as the testbed. The RL policy trained by the BiM-ACPPO
approach is fine-tuned and then applied in the constructed
overtaking scenario. Here, we consider 3 SVs with the Tesla
Model 3. All SVs are in built-in autopilot mode and initialized
in random positions. During the fine-tuning stage, a random
number of SVs (Nsv = 0, 1, 2) is set to a low-speed mode
with different speed limits. During the testing phase, several
SVs are randomly set to low-speed mode to block traffic to
verify the overtaking ability of the RL policy. Several SVs are
randomly set to low-speed mode to block traffic to verify the
overtaking ability of the RL policy. We conduct 100 repeated
tests on the proposed framework, which achieves a success rate
of 97%. The results indicate the commendable generalization
ability of the proposed method in overtaking tasks.

Among all the results attained by the proposed method, we
pick up one result for demonstration, which is shown in Fig.
8. In this example, the EV is initialized in the left lane, with
the SVs in the left and middle lanes set to low-speed mode.
Specifically, the speed limits for the SVs on the left and in
the middle are set to 10% and 20% of the normal speed
limit, respectively. Between 0.5 s and 1.3 s, the RL policy
observes that the SV ahead is moving slower than the EV,
prompting it to change lanes to the right at a low reference
speed to guide the EV into the middle lane to achieve safe
and efficient driving behavior. At 1.3 s, the RL agent notices
that the SVs in the left and middle lanes showed no intention
of accelerating, while an SV in the right lane is accelerating.
Therefore, between 1.3 s and 1.8 s, the RL policy guides the
EV to change lanes to the right one. Finally, at 4.4 s, the EV
completes the overtaking task and continues driving forward.

Based on the experimental results, we can observe that
the proposed framework demonstrates commendable general-

ization ability across different test scenarios, which can be
attributed to the design of the overall framework. Firstly, the
automatic curriculum learning mechanism based on BiMAB
enables the RL policy to interact with the environment from
easy to difficult during training, thereby enhancing the training
efficiency and the performance of the trained policy. Secondly,
the introduction of the hierarchical RL structure along with a
multi-discrete action space allows the trained RL policy to
achieve a high success rate and perform well in scenarios not
encountered during training.

V. CONCLUSION

In this work, we present a novel BiMAB-based hierarchical
RL framework for interaction-aware self-driving at unsignal-
ized intersections, which aims to address the uncertainties
arising from multi-modal behaviors and varying number of
SVs. The training problem of the RL policy in target sce-
narios is modeled as a bilevel curriculum learning task and
is addressed by the proposed BiMAB algorithm. Experimen-
tal results demonstrate that our BiMAB could automatically
evaluate the learning progress and adaptively assign suitable
curricula for the RL agent throughout the training process.
Our approach achieves the highest success rates compared
to all baseline methods in statistical testing experiments.
Furthermore, the proposed method showcases commendable
generalization ability in new scenarios. Demonstrations in dif-
ferent driving scenarios highlight the interaction-aware ability
of the proposed method with multi-modal SVs.
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