
Deep Overlapping Community Search via Subspace Embedding
Qing Sima

1
, Jianke Yu

2
, Xiaoyang Wang

1
, Wenjie Zhang

1
, Ying Zhang

2
, Xuemin Lin

3

1
University of New South Wales, Sydney, Australia

2
University of Technology Sydney, Sydney, Australia

3
Shanghai Jiao Tong University, Shanghai, China

{q.sima,xiaoyang.wang1,wenjie.zhang}@unsw.edu.au,{jianke.yu@student,ying.zhang}@uts.edu.au,xuemin.lin@sjtu.edu.cn

ABSTRACT
Overlapping Community Search (OCS) identifies nodes that inter-

act with multiple communities based on a specified query. Existing

community search approaches fall into two categories: algorithm-

based models and ML-based models. Despite the long-standing

focus on this topic within the database domain, current solutions

face two major limitations: 1) Both approaches fail to address per-

sonalized user requirements in OCS, consistently returning the

same set of nodes for a given query regardless of user differences.

2) Existing ML-based CS models suffer from severe training effi-

ciency issues. In this paper, we formally redefine the problem of

OCS. By analyzing the gaps in both types of approaches, we then

propose a general solution for OCS named Sparse Subspace Filter
(SSF), which can extend any ML-based CS model to enable person-

alized search in overlapping structures. To overcome the efficiency

issue in the current models, we introduce Simplified Multi-hop

Attention Networks (SMN), a lightweight yet effective community

search model with larger receptive fields. To the best of our knowl-

edge, this is the first ML-based study of overlapping community

search. Extensive experiments validate the superior performance

of SMN within the SSF pipeline, achieving a 13.73% improvement

in F1-Score and up to 3 orders of magnitude acceleration in model

efficiency compared to state-of-the-art approaches.

1 INTRODUCTION
Identifying a closely interrelated community based on a query node

is a long-standing focus within the database domain, facilitating

various applications, including fraud detection [10, 30] and recom-

mender systems [14, 18]. Existing Community Search (CS) models

can be categorized into algorithm-based and ML-based approaches.

Algorithm-based models define a community as a cohesive group

of nodes [11, 15, 37], while ML-based approaches are task-driven

which define communities using labels, or node types [6, 14, 18, 44].

Leveraging predictive capabilities, ML-based models identify a set

of nodes closely related to the query sharing the same label [14].

However, these models cannot be extended to Overlapping Commu-

nity Search (OCS). Therefore, this paper aims to develop efficient

ML-based community search models for overlapping community

structures, addressing the limitations of existing methods.

Overlapping community structure allows each node to interact

with multiple communities, each exhibiting distinct characteristics

such as sizes, levels of cohesiveness, and attribute patterns [4, 13, 53].

This complexity raises a key challenge in OCS: how do we prioritize

or rank communities when a query node belongs to multiple at

once? Given the diversity in user interests, it becomes crucial to

offer users the flexibility to personalize their search by selecting

which target communities they wish to focus on. Existing methods

often fall short by returning the same community for a given query,

KG          AI           DB          DM

Simon

Research interest: DB

Cathy

Research interest: AI

Elmer

Research interest: AI4DB

Figure 1: Different users are expecting different communities
given the same query node

ignoring the differences in user preferences. Therefore, enabling the

interactive selection of target communities is essential to ensuring

the results align with user requirements.

Figure 1 shows a toy example of citation networks, where nodes

represent papers and edges denote citation relationships. The colors

on the nodes indicate community affiliations, with multi-colored

nodes representing papers overlapping multiple domains. Commu-

nity search can serve as a tool that recommends related papers based

on a user’s current reading, i.e., the query node. The right part of

the figure demonstrates how different users with distinct research

interests seek personalized community recommendations based on

the same query node 𝑣𝑞 . Simon, Cathy, and Elmer have different

research interests: DB, AI, and AI4DB, respectively. Each subgraph

highlights a set of nodes belonging to a domain, represented by

the underlying color. For example, users interested in the DB do-

main, like Simon, will specifically search for blue nodes. Particularly,

Elmer’s interest in AI4DB represents an intersection between multi-

ple communities, requiring the model to identify nodes that fall into

both target communities: AI and DB. Hence, it is essential to allow

users to select target communities addressing their personalized

needs. Compared to disjoint community search [14, 24, 30], Over-

lapping Community Search (OCS) is a more challenging problem

and has not received much attention in existing ML-based literature.

The study of OCS yields potential benefits across various applica-

tions. For example, it enables the precise extraction of fraudulent

entities from multiple communities [52], the discovery of literature

in the cross-domain [40], and the recommendation of products to

the most valuable community [32].

Existing solutions. Popular algorithm-based approaches employ

different structural constraints to measure subgraph cohesiveness,

such as 𝑘-core [11, 15, 37], 𝑘-truss [1, 2, 21], and 𝑘-clique [4, 46,

53]. Algorithm-based overlapping community search models are

designed to discover multiple subgraphs containing the query node,

eachmeeting a certain level of cohesiveness requirements [4, 13, 53].

However, these models struggle to assign predictive labels like “DB”

to each node, assuming all returned communities carry the same

ar
X

iv
:2

40
4.

14
69

2v
3 

 [
cs

.S
I]

  9
 J

an
 2

02
5



Algorithm-based OCS Learning-based CS

(a) Identifying communities based on 
predefined rules, e.g., 4-cliques 

(b) Identifying communities based on 
overall node similarity. 

(c) Overlapping community should be 
able to return an individual community

(d) What about the intersection set of 
various community combinations?

vq vq
vq

vq
vq

Figure 2: Challenges in existing approaches and user expec-
tation given datasets with overlapping communities

semantics [14]. In addition, these approaches only capture linear

attribute-wise patterns and tend to measure structural cohesiveness

and attribute homogeneity independently [24].

Comparatively, ML-based community search models are task-

orientated and identify communities by prior knowledge learned

from limited labels [14, 24, 30, 45]. Current models are mainly built

with Graph Neural Networks (GNNs) to learn node representa-

tions for online searching [16, 26, 41, 50], such as ICS-GNN [14],

QDGNN [24] and COCLEP [30]. These models have two main

phases, including offline training and online searching. The offline

training stage focuses on learning representative node embeddings

from a subset of labeled data. Online searching algorithms utilize

pairwise GNN scores (probabilities) [14, 24] or node similarity [30]

against the query to identify communities. However, current ML-

based approaches primarily focus on disjoint community search,

ignoring the nature that nodes tend to demonstrate various commu-

nity affiliations. Therefore, twomainmotivations exist for designing

an efficient and effective ML-based approach for OCS.

Motivation 1.How to search for customized communities under over-
lapping community structures? Although extensive work has been

conducted, the aforementioned methods failed to address specified

user requirements. Given the same query, both types of models

consistently return the same set of nodes for different users [14, 25].

Figure 2(a) demonstrates the community identification process of

an algorithm-based approach. Given the query 𝑣𝑞 and a cohesive-

ness constraint, such as 4-clique [4], algorithm-based OCS models

will return the highlighted communities by identifying two dis-

tinct subgraphs defined by 4-clique. This approach assumes that

all cliques in the returned set share the same semantics, leading to

two issues. First, the models fail to distinguish nodes from different

cliques, requiring manual intervention. Additionally, cohesive sub-

graphs are unaware of downstream labels, and since not all nodes

in the clique share the same label, the models struggle to exclude

irrelevant nodes.

ML-based CS models measure the overall node similarity guided

by node labels [14, 24, 30]. As illustrated in Figure 2(b), given the

query 𝑣𝑞 , it tends to return nodes that exhibit higher similarity levels

(𝑣1, 𝑣2, 𝑣3). It is observable that the returned nodes will have closer

embeddings by sharing at least two common communities with the

query (each returned node shares at least two colors). To control

the size of the returned set, these models utilize a threshold to gate

the level of similarity [24, 30]. In this example, a relaxed threshold

might include the entire graph, as all nodes share at least one label

with the query shown in Figure 1. Thus, both algorithm-based OCS

and ML-based CS failed to identify user-specified communities.

Motivation 2. How to design an efficient and effective model frame-
work for ML-based OCS? Current ML-based models suffer from

severe training efficiency issues. COCLEP [30] uses graph partition

techniques to improve the model training efficiency. However, this

approach has drawbacks such as loss of global context, boundary is-

sues, and data imbalance. Moreover, the complexity of overlapping

community structures necessitates a model that favors high-order

awareness, requiring it to gather messages from large receptive

fields. Therefore, designing an efficient model framework with

larger receptive fields remains a significant challenge.

Define ML-based OCS. By identifying challenges when applying

the existing model to overlapping communities, we redefine the

OCS problem within the deep learning context. A well-trained OCS

model should account for each user’s specific interests, guiding the

community search to identify personalized communities. Therefore,

an ML-based OCS model needs first to predict the potential labels

for the query node. It then allows users to interactively select the

relevant labels as the target, thereby restricting the search to nodes

within the specified target community to fulfill user requirements.

In contrast to the expected community identified by existing

approaches illustrated in Figure 2(a) and 2(b), a qualified OCS model

should be able to effectively retrieve those four pure communities

individually, as depicted in Figure 2(c). For example, the model

should only return the blue node-set representing papers related

to the DB domain, i.e., the target community. This further raises

a more challenging question, named Overlapping Communities

Intersection Search (OCIS), illustrated in Figure 2(d). What if a user

is interested in multiple domains?

For example, in citation networks (e.g., Figure 1), a researcher

might seek papers that lie at the intersection of multiple prominent

fields, such as AI and DB. Given the vast number of papers in both

fields, retrieving all papers from each domain would be overwhelm-

ing. The target is to narrow the search to find papers that cover

both fields, meeting the researcher’s need for cross-domain insights

and resulting in a more focused and relevant set of results. Similarly,

in social networks, community intersection search helps identify

users with overlapping interests or affiliations. For instance, if a

user engages in both technology and entrepreneurship communi-

ties, they can serve as a query to find others with similar profiles.

When explicit labels are not available, the model can use predicted

memberships from shared connections and attributes to identify

relevant users, enabling more personalized recommendations and

deeper insights into the network.

To solve OCIS, a possible brute-force approach is first to iden-

tify all the target communities separately and then calculate their

intersections. However, this transforms the task into an exhaus-

tive enumeration of communities, which is impractical due to the

high computational cost. This paper proposes a general solution to

2



tackle the OCS problem. The technique developed is also effective

for the OCIS scenario without the requirement of enumerating all

communities, reducing the computational overhead.

Our solution. In this paper, we introduce a subspace community

embedding technique called Sparse Subspace Filter (SSF) to tackle

the challenge of identifying and segregating nodes with overlap-

ping community affiliations. SSF is a general technique that can

extend any existing ML-based model primarily built for the dis-

joint community search problem to OCS. Moreover, to address the

limitations in previous approaches, we replace the existing model

with a novel framework named Simplified Multi-hop Attention

Network (SMN), which significantly improves the model training

speed while preserving high-order awareness.

Sparse Subspace Filter. SSF aims to learn a sparse matrix, represent-

ing each community by a sparse embedding. This technique enables

node embeddings to fall into multiple subspaces simultaneously,

effectively identifying the target set under overlapping community

structures. When searching for a target community, the learned

sparse community embeddings are used as a basis vector to project

nodes into the underlying subspace. The community search is then

conducted exclusively within the target subspace. The proposed

technique also extends any ML-based CS model to the scenario

with multiple target communities, using the union subspace to rep-

resent the intersection of communities. SSF efficiently identifies the

intersection between communities without the need to enumerate

the entire graph for community affiliations.

Lightweight model framework, SMN. To address the challenges in

existing ML-based CS models, we propose a novel model named

SMN. By proving the training inefficiency in the popular graph-

query frameworks, SMN adopts a simplified model structure to

alleviate the burden. Moreover, as an OCS model needs a larger re-

ceptive field to capture high-order patterns, SMN uses an advanced

hop-wise attention mechanism to cover higher-hop neighborhoods

while preventing the model from oversmoothing.

Contributions. The main contributions of this paper are summa-

rized as follows:

• To the best of our knowledge, we are the first to investigate

the problem of overlapping community search in the ML-

based scenario.

• A general solution, named SSF, is then proposed, which is

effective in finding a pure community as well as handling

the intersection scenario.

• Moreover, we introduce a Simplified Multi-hop Attention

Network (SMN), which is efficient in model training while

capturing high-order patterns.

• Extensive experiments on 9 overlapping and 4 disjoint com-

munity datasets show that our model can achieve an aver-

age F1-Score improvement over state-of-the-art methods of

13.73% and 7.62%, respectively. Additionally, our approach

enhances model training efficiency by 3 orders of magni-

tude and online query efficiency by 2 orders of magnitude.

2 RELATEDWORK
Algorithm-based community search. The community search

problem is widely studied in the literature and can find many

applications. Different cohesiveness metrics are leveraged, such

as 𝑘-core [15, 37, 39], 𝑘-truss [1, 2, 21], and 𝑘-clique [4, 46, 53],

which efficiently identify communities based on the graph struc-

ture. Moreover, researchers conduct studies on attributed graphs

and extend their analysis by incorporating attribute constraints

alongside structural considerations to identify a set of nodes with

similar attributes [7–9, 35]. Additionally, several studies have fo-

cused on discovering communities that contain multiple query

nodes [2, 20, 21, 37]. Given a set of query nodes, the studies aim

to find a densely connected subgraph that contains all the query

nodes. For example, CTC [21] and FirmTruss [2] are designed to

search for the community including all the query nodes while satis-

fying different constraints, e.g., closest truss and firm truss. These

studies are orthogonal to our research, focusing on overlapping

communities and personalized community search. Algorithm-based

OCS [4, 13, 53] enable the query node to possess multiple commu-

nity affiliations with equivalent levels of cohesiveness, such as

being part of two subgraphs that fulfill 𝑘-clique constraints. How-

ever, these models often return all communities containing the

query nodes without the ability to focus on a specific community.

Nonetheless, the lack of label awareness hampers these models’

capacity to identify and separate nodes from distinct communities.

GNN-based community search. GNN and its variants have

achieved considerable success in graph analytic tasks, including

node classification [16, 26] and subgraph mining [42, 43]. The GNN

model learns from predefined ground truth, effectively capturing

patterns from node attributes while considering diverse graph struc-

tures simultaneously. In addition, advanced models have been intro-

duced to improve model expressiveness and efficiency [41, 49, 50].

Recently, GNN-based community search models have attracted in-

creasing attention due to their flexible structure constraints and

expressive power. These models can distinguish nodes from dif-

ferent communities by balancing the contribution from both the

topological structure and the nodes’ attributes. Deep CS models

are trained using prior knowledge, making their assumptions more

realistic than traditional approaches. A community is identified

by a group of nodes sharing similar patterns in attributes and

topological structures. ICS-GNN [14] introduces an online deep

community search model using a vanilla GCN model. The model

is transductive, conducting training and online querying within

the identified candidate subgraph. QDGNN [24] employs an offline

setting by training the model on a fixed training set and inferring

the model onto the unseen test set. The model extends to an attrib-

uted community search by adopting an attribute encoder to identify

a group of nodes that contain a set of attributes. ALICE [45] fo-

cuses on attributed community search by combining a candidate

subgraph extraction phase using density sketch modularity. The

model follows the query-graph encoder frameworks and adopts a

cross-attention encoder to control the interaction. COCLEP [30]

follows the framework of QDGNN and conducts semi-supervised

training by leveraging contrastive learning techniques. The model

uses a hypergraph as an augmented graph and propagates infor-

mation using GCN and Hyper GNN [12]. However, current models

have struggled to adapt to the overlapping community search, often

encountering issues with oversmoothing and slow training.

3



3 PRELIMINARIES
3.1 Problem Definition
Let 𝐺 = (𝑉 , 𝐸) be an undirected graph with a set 𝑉 of nodes and a

set 𝐸 of edges. Let 𝑛 = |𝑉 | and𝑚 = |𝐸 | be the number of nodes and

edges, respectively. Given a node 𝑢 ∈ 𝑉 , 𝑁 (𝑢) = {𝑣 | (𝑢, 𝑣) ∈ 𝐸} is
the neighbor set of 𝑢. The adjacency matrix of 𝐺 is denoted as 𝑨 ∈
{0, 1}𝑛×𝑛 , where 𝑨𝑖, 𝑗 = 1, if (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸, otherwise 𝑨𝑖, 𝑗 = 0. 𝑿 =

{𝒙1, 𝒙2, ..., 𝒙𝑛} is the set of node features and 𝒙𝑖 represents the node
features of 𝑣𝑖 . Given a query node 𝑞, the CS problem aims to find a

𝑘-sized set of nodes containing the query from𝐺 while maximizing

the GNN score or node similarity against the query [14, 24, 30].

Under overlapping community structures, each node 𝑢 belongs to

more than one community, i.e., 𝑢 ∈ C𝑢 = {𝐶𝑧1

𝑢 ,𝐶
𝑧2

𝑢 , ...,𝐶
𝑧𝑖
𝑢 }, where

C𝑢 is the set of communities contains 𝑞, and 𝑧𝑖 ∈ 𝑍 is the label

of a community. Users are allowed to select a target community

label 𝑡 ∈ 𝑍 to guide the community search. Following the existing

definition of community search in ML-based models [14, 24, 30],

we define OCS as below:

Definition 3.1 (Overlapping Community Search, OCS).

Given a graph 𝐺 , a query node 𝑞, a community size 𝑘 , and a tar-
get community label 𝑡 ∈ 𝑍 , OCS aims to identify a 𝑘-sized query-
dependent group of nodes𝑉𝑐 that are closely intra-related. This group
satisfy 𝑉𝑐 ⊆ 𝐶𝑡𝑞 and |𝑉𝑐 | = 𝑘 , where 𝐶𝑡𝑞 is the true community associ-
ated with the target label 𝑡 .

Under this definition, the user is only interested in a single com-

munity, i.e., the target community. However, as discussed, due to the

complexity of overlapping structures, describing the desired group

using a single target community might not be adequate. Defining a

more refined community by considering the intersection of multi-

ple target groups is often preferable. Therefore, we extend OCS by

introducing the following definition to enhance flexibility.

Definition 3.2 (Overlapping Communities Intersection

Search, OCIS). Given a graph 𝐺 , a query node 𝑞, a community
size 𝑘 , and multiple target community labels 𝑻𝒒 = {𝑡1, 𝑡2, ..., 𝑡𝑖 } ∈ 𝑍 ,
OCIS aims to search for the user-specified intersection set 𝑉 ′𝑐 of size 𝑘
such that 𝑉 ′𝑐 ⊆ ˆ𝑪𝑞 , where ˆ𝑪𝑞 = 𝑪𝑡1𝑞 ∩ 𝑪𝑡2𝑞 ∩ ... ∩ 𝑪𝑡𝑖𝑞

Within this definition, the intersection of multiple communities

represents a refined community that is valuable to end users. It is

worth mentioning that employing a brute-force approach, which

involves enumerating all nodes for community prediction and then

joining multiple communities to determine the intersection, is an

impractical strategy. Therefore, we aim to efficiently identify the

intersection without enumerating the dataset. In the literature,

some studies have focused on discovering communities that contain

multiple query nodes, e.g., [21, 24]. In datasets with overlapping

labels, this problem can transition into a single-target or multi-

target community search. If the input nodes share one or more

community memberships, those communities become the targets.

In cases where no common community exists, techniques such as

majority voting can be used to identify the target community. As

a result, the proposed OCS and OCIS methods can be seamlessly

extended to scenarios involving multiple query nodes.

In this paper, the overlapping community search task operates

in a semi-supervised framework. Commencing with a graph repre-

sented as 𝐺 (𝑉 , 𝐸), the model is trained on a small fraction of the

dataset (10% or less). Given a graph 𝐺 , we aim to design a model

and a search algorithm to handle both OCS and OCIS. The model

should be efficient while capable of handling high-order patterns.

3.2 Graph Convolutional Network
Graph Convolutional Network (GCN) [26] is the most commonly

employed variant of GNN, leveraging a low-pass filter (the first-

order adjacency matrix) to gather information solely from its neigh-

bors rather than all local nodes. The propagation process is repre-

sented as Equation 1:

𝑯 (𝑙+1) = 𝜎 (�̄�−
1

2 ¯𝑨�̄�−
1

2 𝑯 𝑙𝑾𝑙 ), (1)

where 𝑯 𝑙 is the hidden state from the 𝑙 layer, �̄� is the normalized

degree matrix which is a diagonal matrix of node degree,
¯𝑨 is the

adjacency matrix with self-loop,𝑾𝑙
is the learnable weight matrix

and 𝜎 is an activation function.
¯𝑨𝑯 𝑙 demonstrates how a node

aggregates information from its one-hop neighbors. The activation

functions add non-linearity between layers and prevent multiple lin-

ear functions from collapsing into a single one. Common activation

functions include ReLU(·), sigmoid(·), and LeakyReLU(·). Loss is
computed by comparing the model output with the ground truth

and using backpropagation to update model parameters iteratively.

In contrast to other deep learning models, a deeper GCN does

not enhance its expressiveness. With each additional layer, the

receptive fields of the GCN expand by one hop. Deeper models lead

nodes to aggregate information from the entire graph, diminishing

its ability to distinguish nodes, known as oversmoothing [29].

4 SUBSPACE COMMUNITY EMBEDDING: A
GENERAL SOLUTION FOR OCS

This section introduces the subspace community embedding tech-

nique, a general solution extending any ML-based CS model to OCS.

We then propose the SMN in Section 5 as the backbone model to

solve existing models’ challenges.

Sparsity plays a crucial role in enhancing machine learning mod-

els across various applications. It benefits various areas such as

subspace clustering [3, 5, 23, 31, 33], sparse training [22, 38], and

sparse feature selection [27, 51]. Inspired by this concept, we in-

troduce a subspace embedding technique named Sparse Subspace

Filter (SSF). SSF trains node embeddings to align closely with their

corresponding community embeddings, minimizing Euclidean and

cosine distances within the subspace. This method effectively ap-

proximates community representations, enhancing the model’s

accuracy and relevance in OCS. The sparse subspace filter is ini-

tialized as a trainable matrix with (𝑠, 𝑐) dimensions, where 𝑠 is the

dimension of the output embeddings, and 𝑐 denotes the number of

communities. In the following, we detail our approach by answering

the following questions.

What roles does SSF play in our model? SSF plays two roles

in the model, including a filter of the model classifier during the

offline training and the basis matrix to guide the community search

during the online searching.

Offline training. In the training phase, the model clusters nodes

from the same community into a subspace, allowing the trained SSF

to function as a basis matrix representing all community subspaces.

As illustrated in Figure 3(a), SSF represented by 𝑺 ∈ R𝑠×𝑐 is a sparse
4



Random Model

Classification LossSpatial LossL1 Penalty Loss

(a) Sparse Subspace Filter (SSF) Pipeline (b) Subspace Mapping

Z

X
Y

Target:          DB

Figure 3: Subspace community embedding via the sparse
subspace filter
matrix with elements drawn from a Bernoulli variable. The black

color demonstrates 1 at the underlying position, and the white de-

notes 0. By performing the element-wise product with the classifier

matrix𝑾𝒄 , it gates the weight in the classifier, promoting sparsity.

Given node embeddings learned by a random model, the gated

classifier linearly transforms the node embeddings H𝑠 ∈ R𝑛×𝑠
into the likelihoods of community affiliation. As the columns in

the classifier approximate the embeddings for the corresponding

community, SSF ensures that each community embedding is related

to only a subset of elements in the node embedding. Hence, SSF

projects community embeddings into distinct subspaces. This de-

sign facilitates overlapping structures as a node embedding with

full space covering multiple subspaces simultaneously.

Online searching. During online searching, the underlying columns

of SSF can map nodes into the user-selected subspace. Figure 3(b)

illustrates how subspace mapping benefits the overlapping com-

munity search. For example, if the target domain is the database

(DB), node 𝑣1 will be identified as a noise node as it does not have a

blue color. However, 𝑣𝑞 and 𝑣1 may appear similar in the full space

because they share two common labels, making them indistinguish-

able. By projecting all nodes into the subspace representing DB, 𝑣1

is positioned far from 𝑣𝑞 because the elements of its embedding that

do not relate to DB are converted to 0, effectively distinguishing it

from nodes within that domain. This enhances the model’s ability

to differentiate nodes based on community relevance.

How are the objective functions designed to train SSF? To
make sure the SSF is well-trained to facilitate the overlapping com-

munity search, we adopted three objective functions.

L1-penalty term. To induce sparsity while ensuring the objective

function is differentiable, we train SSF as the real-valued parameters.

We then perform a maximum-likelihood (ML) draw by thresholding

the values at 0.5 to sparse the SSF. The L1-penalty term is stated as

Equation 2 to ensure the model is in favor of a sparse SSF.

ˆ𝜃, Φ̂ = arg min

𝜃,Φ
(ℓ (𝑦 | 𝜃,Φ, 𝑦) + 𝜆 ∥Φ∥) , ∥Φ∥ =

𝑠∑︁
𝑖=1

𝑐𝑖∑︁
𝑗=1

𝑆𝑖, 𝑗 , (2)

where 𝜃 and Φ are the parameters that minimize the loss function,

and Φ is the penalty term regulate by ℓ1 on elements in SSF. The

regularization term is scaled by 𝜆 to control the level of sparsity.

The L1-penalty term ensures that the model is in favor of spar-

sity, facilitating the model to learn community embeddings falls

in different subspaces. This ensures that large communities have a

loose constraint in estimating node affiliations, suggesting a higher

probability of demonstrating high similarity to node embeddings.

Classification loss. As mentioned in the definition, due to the query

in OCS carrying various semantics, the OCS model should first

predict the community affiliations, then allow the user to customize

their target community. Hence, we adopt a classification loss to

supervise the model performance on community prediction. Under

overlapping structures, as each node denotes more than one com-

munity affiliation, the model tends to suffer the positive-negative

imbalance issue. Where most nodes belong to a small fraction of

the possible communities, implying the positive samples will be

much less than the negative samples. To address this issue, we adopt

the ASL loss [34] to assign different exponential decay factors to

positive and negative samples. A general form of a binary loss per

label, L, is given by Equation 3:

L𝑐 = −𝑦L+ − (1 − 𝑦)L−, (3)

where L+ and L− are the positive and negative loss parts. Com-

paratively, ASL loss is defined as Equation 4:{
L+ = (1 − 𝑝)𝛾+ log(𝑝)
L− = (𝑝𝑚)𝛾− log(1 − 𝑝𝑚),

(4)

where 𝑝𝑚 = max(𝑝 − 𝑚, 0) is a shifted probability, monitoring

𝑝 to get L− = 0 when 𝑝 < 𝑚, (𝛾+, 𝛾−) are focusing parameters

for positive and negative samples, respectively. ASL balances the

contribution from positive and negative samples through a soft

threshold (𝛾+, 𝛾−) and a hard threshold (probability margin𝑚). As

depicted in Figure 3, the node embeddings H𝑠 perform a matrix

multiplication with the gated classifier𝑾 ′𝑐 to generate the output

logit. The classification loss is calculated by comparing the output

logit with the ground truth labels. This loss effectively groups the

node embeddings from the same community.

Spatial loss. Furthermore, a spatial loss function is introduced to

supervise the subspace mapping, ensuring nodes only fall into the

subspaces representing their community affiliations. For nodes be-

longing to a community, their embeddings should be close to their

community in the underlying subspace. Hence, two distancemetrics

are employed to monitor it, including Euclidean distance and cosine

similarity. The loss is primarily generated on the non-zero elements

related to each underlying subspace to accommodate overlapping

community structures. Therefore, we filter node embeddings by the

basis vector of each column in SSF before measuring the distance.

Discrepancies against zero-like elements in SSF are not penalized,

given their potential contribution to other communities. The sig-

moid functions are then applied to the distance and similarity to

derive the likelihood of nodes belonging to each community. This

output is averaged into the final spatial distance as Equation 5.

𝑫 =
1

2

(𝜎 (−dist(𝒉𝑣,𝑾 ′𝑐 )) + 𝜎 (sim(𝒉𝑣,𝑾 ′𝑐 )), (5)

where 𝜎 represents a sigmoid function, 𝑾 ′𝑐 represents the gated

model classifier, and 𝒉𝑣 ∈ H𝑠 is the final embeddings. dist(·) and
sim(·) represent the Euclidean distance and the cosine similarity,

respectively. Similar to the classification loss, we compute the ASL

5



Classification Loss

Spatial Loss

L1 Penalty TermAttention weights

Multi-hop Processing Layer Multi-head FilterHop-wise Attention

Propagation Stage Subspace EmbeddingPreprocessing

Multichannel Inputs

vqvq

Figure 4: The architecture of SMN

for the spatial loss Ls against the ground truth as Equation 6:

Ls =

𝜂∑︁
𝑣=1

𝐴𝑆𝐿(𝒅𝑣,𝒚𝑣), (6)

Therefore, the final loss function is defined as follows:

L =
1

2

( Lc

𝛿2

𝑐

+ Ls

𝛿2

𝑠

) + 𝜆 ∥Φ∥ , (7)

where 𝛿 is a parameter the model trains to balance the above two

loss functions. In the experiments, we observe that this fused loss

function stabilizes the model performance.

5 SIMPLIFIED MULTI-HOP ATTENTION
NETWORK (SMN)

This section elaborates on the design details of the proposed SMN,

which is a lightweight model with large receptive fields. We first

introduce the overall framework of SMN to establish a compre-

hensive understanding as depicted in Figure 4. As the subspace

community embedding is already illustrated in Figure 3, in this

section, we present the model by mainly focusing on the model

preprocessing and propagation phase.

5.1 Framework
Figure 4 presents the framework of SMN, which consists of three

main components, including preprocessing, propagation, and sub-

space community embedding. We prove that the existing widely-

used query encoder is not gaining model expressive power but

slowing down the training process, detailed analysis disclosed in

Section 7. Hence, we removed the query encoder for model effi-

ciency. In addition, we adopted a simplified framework to further

improve the training speeds. This framework removes activation

functions between layers and aggregates multi-hop neighborhood

messages during preprocessing instead.

In the preprocessing stage, SMN generates multichannel inputs

by stacking messages from different hops. The 𝑘-th channel repre-

sents the feature matrix with (𝑘 − 1) hops awareness. Aggregating
neighborhood information during preprocessing eliminates the

need for expensive message-passing during the model propagation.

Hence, the model training speeds are further accelerated.

The propagation stage consists of three layers: a multi-hop pro-

cessing layer, a hop-wise attention layer, and a multi-head filter

layer. The multi-hop processing layer inputs the original features

from each hop to linearly transform the multi-hop messages. The

messages are then fused into single-channel messages through a

hop-wise attention layer. The resulting outputs are further trans-

formed through a multi-head filter layer, yielding the final embed-

dings. The hop-wise attention mechanism assigns decaying weights

to messages from various hops based on their contributions. This

design effectively addresses the oversmoothing issue, enhancing

model high-order awareness to facilitate overlapping community

search. The final embeddings are then fed into SSF, learning sub-

space community embedding for OCS.

5.2 SMN: Preprocessing and Propagation
Preprocessing. The preprocessing stage can be split into aggrega-

tion and normalization.

Aggregation. Inspired by the works [19, 47, 49], SMN removes the

non-linear activation functions during aggregation to improve the

model training speed. As proved by Wei et al. [48], linear propaga-

tion performs similarly to non-linear propagation, especially when

graph structures are more informative compared to node attributes.

A two-layer GCN can be represented as Equation 8:

𝒁 = softmax( ˆ𝑨 × ReLU( ˆ𝑨𝑿𝑾 (0) )𝑾 (1) ), (8)

where 𝒁 is the final output, softmax is a classifier that maps the

probability of nodes belonging to different classes. ReLU(·) is the
activation function to provide nonlinearity to the model.

ˆ𝑨 denotes

the degree normalized adjacent matrix, 𝑿 is a matrix of node fea-

tures and 𝑾 is a learnable matrix. 𝑾0𝑾1
represents the weight

for different layers of the networks. By removing the activation

functions, SMN can be represented as Equation 9:

𝒁 = softmax( ˆ𝑨 × ( ˆ𝑨X𝑾 (0) ))

= softmax( ˆ𝑨2𝑿𝑾 (0) ) .
(9)

Since the computation of
ˆ𝑨2𝑿 is equal to a preprocessing step, the

level of the parameter is the same as a logistic regression model.

However, this simplified framework faces an obvious limitation:

by aggregating the neighborhood message, the node features will

6



(a) 1-hop with self-loop (b) 2-hop with self-loop (c) 3-hop with self-loop

(d) 1-hop no self-loop (e) 2-hop no self-loop (f) 3-hop no self-loop

Figure 5: Self-loop oversmooth messages received
quickly become indistinguishable. Therefore, this limits the model

to a relatively low-hop awareness and harms OCS.

Instead of directly using
ˆ𝑨𝑘𝑿 as input, SMN iteratively stacks

adjacency matrices from different hops
ˆ𝑨0, ˆ𝑨1, ... ˆ𝑨𝑘 , and gen-

erates multichannel inputs by assigning node features such as

𝑿 , ˆ𝑨𝑿 , ... ˆ𝑨𝑘𝑿 . The 𝑘-th channel represents the node feature ma-

trix with a 𝑘 − 1 hop receptive field. By aggregating neighborhood

information during preprocessing, SMN eliminates the necessity of

a GCN layer but employs a fully connected layer instead.

Normalization. In degree normalization, the adjacency matrix of

GCN is normalized as
ˆ𝑨 = �̄�−

1

2 ¯𝑨�̄�−
1

2 , where
¯𝑨 = 𝑨 + 𝑰 and 𝑰

is the identity matrix, representing each node in 𝑨 to add a self-

loop by 𝑨 + 𝑰 before normalization. The self-loop avoids the loss

of self-features during aggregation. In contrast, SMN specifically

removes the self-loop for two reasons: First, SMN takes the input

of
˜𝑨0𝑿 , ˜𝑨1𝑿 , ... ˜𝑨𝑘𝑿 , where

˜𝑨0𝑿 = 𝑿 is the initial features matrix

which prevents the loss of the self-features. Furthermore, removing

the self-loop reduces redundancy during message passing and fur-

ther differentiates messages collected from each hop. Thus, degree

normalization in SMN is depicted in Equation 10:

˜𝑨 = 𝑫−
1

2 𝑨𝑫−
1

2 , (10)

where 𝑨 and 𝑫 represent the adjacency and the degree matrices

without self-loop.

Figure 5 illustrates the comparison of adjacency matrices with

and without self-loops. It shows that adding self-loops leads to a

notable acceleration in graph exploration, causing oversmoothing

within three hops. Adversely, removing self-loops leads to a better

contrast across the adjacency matrices among various hops. It can

be seen that the Figure 5(d) (1-hop no self-loops matrix) primarily

focuses on direct neighbors, presented as the matrix’s top-right

and bottom-left corners. In contrast, the 2-hop matrix (Figure 5(e)

emphasizes neighbors with a 2-hop distance (top-left and bottom-

right corners), ignoring the 1-hop neighborhood. By comparing

the Figure 5(c) and 5(f), removing self-loops effectively slows down

the oversmoothing progress while enabling the proposed attention

mechanism to capture unique patterns from various hops.

Propagation: hop-wise attention. The hop-wise multi-head at-

tention mechanism regulates the aggregation of messages from

various hops, enabling the model to capture higher-order patterns

Algorithm 1: Preprocessing and SMN propagation

Input :Feature matrix 𝑿 , the adjacency matrix
˜𝑨, the number of hops 𝑘 ,

the sparsity rate 𝑟

Output :Model output O, final embeddings H𝑠 , learned sparse subspace

filter 𝑺

1 ˜𝑨 = 𝑫−
1

2 𝑨𝑫−
1

2 ;

2 H = { ˜𝑨0𝑿 , ˜𝑨1𝑿 , ..., ˜𝑨(𝑘−1)𝑿 };
3 for each 𝑯𝑖 ∈ H do
4 𝑯𝑖 = 𝜎 (𝑾 𝑙𝑯𝑖 ) ;
5 𝜶𝑖 = softmax(𝑎 (𝑯0,𝑯𝑖 ) ) ;
6 end for
7 H = AGG(𝜶𝑖𝑯𝑖 ), for 𝑖 = 0, ..., 𝑘 − 1 ;

8 H𝑠 = 𝜎 (𝑾𝑟 H ) ;
9 Initialize the subspace filter 𝑺 ;

10 𝑾 ′
𝒄 = ApplySparsity(𝑺,𝑾𝒄 ) ;

11 O = H𝑠 ×𝑾 ′
𝒄 ;

12 return O,H𝑠 , 𝑺 ;

while mitigating the oversmoothing effect. SMN first applies a multi-

hop processing layer to transform the initial features linearly to

obtain sufficient expressive power. Here, the weight matrix𝑾𝑙
is

shared across nodes and hops.We then perform self-attention on the

hidden state to compute the attention coefficients as Equation 11:

𝒆𝒊 = 𝑎(𝑾𝑙𝑯0,𝑾
𝑙𝑯𝑖 ), ∀𝑖 ∈ [0..𝑘]

= (−→𝒂 𝑇𝑾𝑙𝑯0 + −→𝒂 𝑇𝑾𝑙𝑯𝑖 ),
(11)

where 𝒆𝒊 indicates the importance of𝑯𝑖 the ith-hop features toward
𝑯0 the zero-hop (self-features matrix).

−→𝒂 is a shared attention

mechanism
−→𝒂 ∈ R𝑑 ′ , and 𝑘 is the number of hops. To fuse the

message from different hops, the coefficients are first activated by

a LeakyReLU [41], which improves stability by allowing a small

gradient for negative inputs, and then normalized by the softmax

as Equation 12. The obtained final weights 𝜶 weighted sum the

multi-hop feature matrices into a single channel.

𝜶𝑖 =
exp

(
LeakyReLU

(
𝒆𝒊

))
∑
𝑗∈[0..𝑘 ] exp

(
LeakyReLU

(
𝒆𝒋

))
.

(12)

To further improve the performance, we observe that multi-head

attention is beneficial in stabilizing the performance. Similar to

the graph attention networks [41], multiple independent attention

mechanisms are applied to the hidden state, and the output of each

head is further concatenated into the final output. The model uses

the multi-head filter 𝑾𝑟
to fuse the output from different heads

into final embeddings as Equation 13:

H𝑠 = 𝜎

(
𝑾𝑟

(ww𝐼𝑖=1

𝐾∑︁
𝑘=0

𝜶 𝑖
𝑘
𝑾𝑙𝑯𝑘

))
, (13)

where 𝐼 is the number of heads and 𝐾 is the number of hops. The

dimension of the final outputH𝑠 is a hyper-parameter that matches

the dimensions of the subspace community embeddings.

The algorithm for SMN propagation is presented in algorithm 1.

Lines 1-2 represent the preprocessing stage, stacking aggregated fea-

tures from different hops. Lines 3-8 describe the model propagation

stage. The preprocessed features are linearly transformed by𝑾𝑙

and then fused by the weight from hop-wise attention. The fused

hidden state is then transformed by𝑾𝑟
. Lines 9-11 describe the sub-

space embeddings. This hop-wise attention mechanism enhances

7



SMN’s flexibility by attending to broader receptive fields, capturing

the unique graph structure across different real-life datasets.

6 ONLINE SEARCH PHASE
This section provides the design details for extending the current

ML-based model’s online search phase [24, 30] to OCS. We then

analyze the feasibility of applying the proposed method to OCIS to

identify the intersection of multiple targets effectively.

6.1 Overlapping Communities Search (OCS)
Leveraging the subspace community embedding technique, we first

extend the naive top-𝑘 similarity search to an OCS named Sub-Topk.

Considering Sub-Topk’s limitations, we proposed a spatial-aware

algorithm called subspace cohesive community search (Sub-CS).

Sub-Topk. We first propose Lemma 6.1 states that the classifier𝑾 ′𝑐
gated by SSF approximates community embeddings in overlapping

community structures. Based on this result, we initiate a similarity-

based approach called Sub-Topk to identify a query-dependent

community. The algorithm takes the query nodes and the test set

as input, mapping all nodes to the target subspace by performing

an element-wised dot product against the basis vector.

Lemma 6.1 (Sparse Classifier Approximates Global Cen-

troid of Communities). Given a set 𝑋 𝑗 = {𝑥1, 𝑥2, ..., 𝑥 |𝑁 𝑗 | } of
node embeddings in R𝑠 that belong to community 𝑗 , and a classifier
vector𝑤 𝑗 ∈ 𝑾 ′𝑐 . Through the learning process,𝑤 𝑗 will converges to
the centroid 𝜇 𝑗 of community 𝑗 defined by:

𝜇 𝑗 =
1

|𝑁 𝑗 |
∑︁
𝑥𝑖 ∈𝑋 𝑗

𝑥𝑖 .

Proof. The updated rule for using gradient descent is given by:

𝑤 𝑗 ← 𝑤 𝑗 + 𝛼
∑︁
𝑖∈𝑁 𝑗

𝑥𝑖 · (𝑦𝑖 𝑗 − 𝜎 (𝑥⊤𝑖 𝑤 𝑗 )),

where 𝑦𝑖 𝑗 is the indicator function, 𝜎 is the activation function, and

𝛼 is the learning rate. As the model learns, the predicted probabili-

ties 𝜎 (𝑥⊤
𝑖
𝑤 𝑗 ) approach the true class labels 𝑦𝑖 𝑗 , reducing the term

𝑦𝑖 𝑗 − 𝜎 (𝑥⊤𝑖 𝑤 𝑗 ) to a small error 𝜖𝑖 𝑗 near zero. Δ𝑤 𝑗 = 𝛼
∑
𝑖∈𝑁 𝑗

𝑥𝑖𝜖𝑖 𝑗 ,

with 𝜖𝑖 𝑗 trending towards zero as classification accuracy improves.

Assuming 𝜖𝑖 𝑗 becomes negligible, the updates to𝑤 𝑗 become smaller,

stabilizing 𝑤 𝑗 around a vector that maximizes the sum of projec-

tions of 𝑥𝑖 on𝑤 𝑗 . This stabilization point is given by:

lim

𝜖𝑖 𝑗→0

𝑤 𝑗 ≈
∑
𝑖∈𝑁 𝑗

𝑥𝑖

|𝑁 𝑗 |
≈ 𝜇 𝑗 .

□

A well-trained SSF functions as a subspace community embedding,

effectively filtering out noisy nodes. This subspace mapping segre-

gates the target community from overlapping communities.

Example 6.1. For a node 𝑣 with a feature vector x =

[0.82, 0.11,−0.69,−1.3, 0.03], there are two distinct communities with
basis vectors e.g., 𝑺1 = [1, 0, 1, 1, 0], 𝑺2 = [0, 1, 0, 0, 1]. The projections
are computed as follows:

𝑥 ′
1
= 𝑥 ⊙ 𝑺1 = [0.82, 0,−0.69,−1.3, 0],

𝑥 ′
2
= 𝑥 ⊙ 𝑺2 = [0, 0.11, 0, 0, 0.03] .

Algorithm 2: Cohesive community search (Sub-CS)

Input :Graph𝐺 , Query 𝑣𝑞 , final embeddings H𝑠 , learned sparse

subspace filter matrix 𝑺 , community size 𝑘 , similarity threshold 𝑙

Output :Community C𝑞

1 H𝑠 = SubspaceMapping(H𝑠 , 𝑺𝑞 ) ;
2 C𝑞 = {𝑞};
3 for each 𝑣 encountered in𝐺 sorted by similarity against 𝑞 do
4 Add 𝑣 to C𝑞 if |C𝑞 | < 𝑘 ;

5 𝑥 = mean(H𝑠 [𝑖 ] ), 𝑖 ∈ C𝑞 ;

6 𝑷 = sim(C𝑞 , 𝑥 ) ;
7 Find a node 𝑣′ ∈ C𝑞 with 𝑷 [𝑣′ ] smallest in C𝑞 ;

8 if 𝑣′ = 𝑞 then break;

9 if sim(𝑣,𝑞) <= 𝑙 then break;

10 𝒑𝑣 = sim(𝑣, 𝑥 ) ;
11 if 𝒑𝑣 > 𝑷 [𝑣′ ] then
12 C𝑞 .remove(𝑣′ ) ; C𝑞 .add(𝑣) ;
13 𝑥 = mean(H𝑠 [𝑖 ] ), 𝑖 ∈ C𝑞 ;

14 end if
15 end for
16 return C𝑞 ;

The vector 𝑥 ′
1
is likely to demonstrate higher similarity with nodes

in the subspace defined by 𝑺1, compared to a lower probability with
nodes in subspace 𝑺2. Therefore, the subspace mapping effectively
filters out irreverent nodes during the search.

Sub-CS. While Sub-Topk effectively segregates unrelated nodes, it

operates under an unrealistic assumption that the query node is

always at the centroid of the community. Inspired by the idea of

spatial-aware community search [11, 15], we further introduce a

subspace-aware community search (Sub-CS) to identify a densely

interrelated community in the latent space, allowing a shift in the

community centroid. The algorithm aims to locate a community

with a small “radius” in the subspace. Subspace cohesiveness im-

plies that the identified community shouldminimize the community

radius in the latent subspace, with distance measured by cosine

similarity. Sub-CS explores top-k nodes demonstrating the high-

est similarity to the query as the initial community; by traversing

through the dataset following a descending order of node similarity,

Sub-CS updates the community to maximize the group similarity.

Let 𝑣𝑞 denote the query node, and C0 represent the initial com-

munity. Compute the centroid 𝑥 of C0 as the mean of the nodes

embeddings in C0, i.e., 𝑥 = 1

|C0 |
∑
𝑣∈C0

𝑥 , where 𝑥 is the embed-

ding vector of node 𝑣 . Subsequently, we evaluate each node 𝑣 in C0

against 𝑥 using cosine similarity. Replace the least similar node 𝑣 ′

with a new encountered node 𝑣𝑖 if 𝑣𝑖 exhibits higher similarity as

Equation 14:

C𝑖+1 =

{
C𝑖 \ {𝑣 ′} ∪ {𝑣𝑖 } if cos(𝑥𝑖 , 𝑥) > cos(𝑥 ′, 𝑥),
C𝑖 otherwise.

(14)

This process continues and recomputes the centroid if the com-

munity is updated. The algorithm terminates if the query node be-

comes the least similar node or the early stop condition is reached.

The early stop controls the node similarity against the query, pre-

venting the final community from including dissimilar nodes. In

the experiment, we set the threshold at 2 × 𝑘 nodes, which means

that the algorithm will only consider nodes with top-2𝑘 similarity.

The details are illustrated in algorithm 2. The Lemma 6.2 states

that the community results in a decreasing radius by interactively

removing the least similar node measured by cosine similarity.

8



Lemma 6.2 (The Smallest Radius in Embedding Space). Let
C𝑖 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} be a set of points in R𝑠 is the embeddings of
nodes in a identified community. Let 𝑥 = 1

𝑚

∑𝑚
𝑖=1

𝑥𝑖 be the centroid
of these nodes. Assume 𝑥 ′ ∈ C𝑖 is the node with the minimum cosine
similarity to 𝑥 , and 𝑥𝑚+1 ∉ C𝑖 , having cos(𝑥, 𝑥𝑚+1) > cos(𝑥, 𝑥 ′).
When 𝑥 ′ is replaced by 𝑥𝑚+1, resulting in a new centroid 𝑥 ′, then:

𝑚∑︁
𝑖=1

cos(𝑥 ′, 𝑥𝑖 ) >
𝑚∑︁
𝑖=1

cos(𝑥, 𝑥𝑖 ).

Proof. Given 𝑥 = 1

𝑚

∑𝑚
𝑖=1

𝑥𝑖 is the centroid, the new centroid

after replacing 𝑥 ′ with 𝑥𝑚+1 is: 𝑥 ′ = 𝑥 − 1

𝑚𝑥
′ + 1

𝑚𝑥𝑚+1 . Define 𝑥
∗ =

𝑥 − 1

𝑚𝑥
′
as the centroid after removing 𝑥 ′. Given cos(𝑥, 𝑥𝑚+1) >

cos(𝑥, 𝑥 ′), we have: cos(𝑥∗+ 1

𝑚𝑥
′, 𝑥𝑚+1) > cos(𝑥∗+ 1

𝑚𝑥
′, 𝑥 ′) . Since

cos(𝑥 ′, 𝑥 ′) = 1 and for any 𝑥𝑚+1 ≠ 𝑥 ′, cos(𝑥 ′, 𝑥𝑚+1) < 1, it follows

that: cos(𝑥∗, 𝑥𝑚+1) > cos(𝑥∗, 𝑥 ′) . As 𝑥∗ represents all other nodes
in the community excluding 𝑥 ′, the similarity of the new centroid

𝑥 ′ with each 𝑥𝑖 increases:

cos(𝑥 ′, 𝑥𝑖 ) =
(𝑥 − 1

𝑚𝑥
′ + 1

𝑚𝑥𝑚+1) · 𝑥𝑖
∥𝑥 − 1

𝑚𝑥
′ + 1

𝑚𝑥𝑚+1∥∥𝑥𝑖 ∥
.

Summing these,

∑𝑚
𝑖=1

cos(𝑥 ′, 𝑥𝑖 ) is greater than

∑𝑚
𝑖=1

cos(𝑥, 𝑥𝑖 ),
proving Lemma 6.2. □

In OCS, cosine similarity, despite not being a metric space, offers

key advantages for our task. Since nodes often belong to multi-

ple communities, their feature vectors may have smaller values,

and the magnitude can vary significantly between popular (multi-

community) and less popular nodes. By emphasizing directional

alignment rather than magnitude, cosine similarity allows us to fo-

cus on the structural similarity of nodes within a target community.

This approach effectively handles variations in node popularity,

enabling better identification of nodes aligned with the target com-

munity regardless of their overall influence in the network.

6.2 Overlapping Communities Intersection
Search (OCIS)

In OCIS, SMN provides enhanced flexibility to end users by allowing

the selection of multiple communities as the target and returning

only to their intersection. The brute-force approach identifies all

target communities and determines their intersection by examining

common nodes. However, this method leads to high computation

overhead, as it requires enumerating the entire dataset for commu-

nity prediction, followed by intersection-finding operations. This

process is equivalent to solving a community detection problem,

which becomes time-consuming when handling large graphs, espe-

cially when the target result involves only a small subset of nodes.

Leveraging subspace embedding techniques, SMN efficiently iden-

tifies the intersection while avoiding computational wastage. The

rationale is that nodes in the intersection set should exhibit closer

relationships with all community embeddings involved. Lemma 6.3

states that if nodes demonstrate high similarity in two subspaces,

they will also be similar in their unioned space.

Lemma 6.3 (Cosine Similarity Preserved in Unioned Sub-

space). Given 𝑘 communities, each represented by a distinct sub-
space 𝑺𝑖 where 𝑖 ∈ {1, 2, . . . , 𝑘}. Define the unioned subspace 𝑈 as

𝑈 =
⋃𝑘
𝑖=1

𝑺𝑖 . If two nodes 𝑥1 and 𝑥2 demonstrate high cosine similar-
ity in each distinct subspace 𝑺𝑖 , then 𝑥1 and 𝑥2 will also demonstrate
substantial cosine similarity in the unioned subspace𝑈 .

Proof. Let 𝑥
(𝑖 )
1

and 𝑥
(𝑖 )
2

be the representations of 𝑥1 and 𝑥2 in

the subspace 𝑺𝑖 . Since 𝑥1 and 𝑥2 demonstrate high cosine similarity

in subspaces 𝑺𝑖 , we have: cos(𝑥 (𝑖 )
1
, 𝑥
(𝑖 )
2
) = 𝑥

(𝑖 )
1
·𝑥 (𝑖 )

2

∥𝑥 (𝑖 )
1
∥ ∥𝑥 (𝑖 )

2
∥
≈ 1 ∀𝑖 ∈

{1, 2, . . . , 𝑘}. Since 𝑥𝑈
1
· 𝑥𝑈

2
is the sum of the dot products in each

subspace 𝑺𝑖 : 𝑥𝑈
1
·𝑥𝑈

2
=

∑𝑘
𝑖=1

𝑥
(𝑖 )
1
·𝑥 (𝑖 )

2
. Given that cos(𝑥 (𝑖 )

1
, 𝑥
(𝑖 )
2
) ≈ 1,

we have: 𝑥
(𝑖 )
1
· 𝑥 (𝑖 )

2
≈ ∥𝑥 (𝑖 )

1
∥∥𝑥 (𝑖 )

2
∥ ∀𝑖 ∈ {1, 2, . . . , 𝑘}. Therefore:

𝑥𝑈
1
· 𝑥𝑈

2
≈

𝑘∑︁
𝑖=1

∥𝑥 (𝑖 )
1
∥∥𝑥 (𝑖 )

2
∥ ≈ ∥𝑥𝑈

1
∥∥𝑥𝑈

2
∥ .

This shows that if 𝑥1 and 𝑥2 demonstrate high cosine similarity in

each distinct subspace 𝑺𝑖 , they will also demonstrate substantial

high cosine similarity in the unioned subspace𝑈 . □

7 THEORETICAL ANALYSIS
Analysis of the query-graph encoder. We first present a theoret-

ical analysis explaining why the widely used query-graph encoder

frameworks in ML-based approaches [24, 30] cause computational

overhead leading to 𝑂 ( |𝑉 |2) training time complexity.

Lemma 7.1 (Time Complexity of theQuery-Graph Encoder

Framework). Fusing the hidden states of both encoders’ output at
each layer will lead to 𝑂 ( |𝑉 |2) time complexity in model training.

Proof. Given that the query encoder processes each node indi-

vidually, similar to Stochastic Gradient Descent (SGD), the train-

ing will involve |𝑉 | batches, each sized as 1. The time complex-

ity is 𝑂 (1) for each batch, and for the entire training set, it is

|𝑉 | ×𝑂 (1) = 𝑂 ( |𝑉 |). The graph encoder processes the full graph

each time with a single batch sized |𝑉 |. The time complexity is

𝑂 ( |𝑉 |) for each batch, and for the entire training set, it remains

𝑂 ( |𝑉 |) = 1 ×𝑂 ( |𝑉 |). When the two encoders are fused, there are

|𝑉 | batches, each sized as (1, |𝑉 |). This means that for each node

processed by the query encoder, the graph encoder processes the

entire graph. Consequently, the total time complexity for each batch

increases to |𝑉 |, which results in |𝑉 | ×𝑂 ( |𝑉 |) = 𝑂 ( |𝑉 |2). □

Hence, the query-graph encoder framework is the primary rea-

son for the slow training issues in existing CS models. Moreover,

while this framework is claimed to capture both local and global

information, it primarily affects the gradient descent optimization.

Ultimately, this impact averages out over the training, behaving

similarly to standard SGD as shown in Lemma 7.2.

Lemma 7.2 (The optimization is Eqivalence to SGD). Let 𝜃
be the parameter vector of a neural network trained using a query-
graph encoder where 𝑄 (𝑣𝑖 ) adjusts 𝜃 locally for each node 𝑣𝑖 and
𝐺 (𝐺) provides global adjustments based on the entire graph 𝐺 . The
cumulative effect of these adjustments over multiple training epochs
is equivalent to the effect of Stochastic Gradient Descent (SGD) on 𝜃 .

Proof. The local adjustments by 𝑄 (𝑣𝑖 ) for each node and the

global adjustments by 𝐺 (𝐺) can be formally expressed as:

𝜃 ← 𝜃 − 𝜂
(
∇𝐿

local
(𝑄 (𝑣𝑖 ), 𝜃 ) + ∇𝐿global (𝐺 (𝐺), 𝜃 )

)
,

9



where 𝜂 is the learning rate, and ∇𝐿
local

and ∇𝐿
global

are the gradi-

ents of the loss functions localized to𝑄 (𝑣𝑖 ) and globalized to𝐺 (𝐺),
respectively. In traditional SGD, parameter updates are influenced

by the gradient of the loss function evaluated at different subsets

of the data. Over many iterations, this results in:

𝜃 ← 𝜃 − 𝜂 1

𝑛

𝑛∑︁
𝑖=1

∇𝐿
local
(𝑄 (𝑣𝑖 ), 𝜃 ),

where 𝑛 is the total number of nodes. Given the high frequency of

updates involving every node 𝑣𝑖 and the entire graph 𝐺 , the effects

of 𝑄 (𝑣𝑖 ) and𝐺 (𝐺) fusion leading each parameter update by 𝑄 (𝑣𝑖 )
is averaged with updates induced by 𝐺 (𝐺):

𝜃 ← 𝜃 − 𝜂
(

1

𝑛

𝑛∑︁
𝑖=1

∇𝐿
local
(𝑄 (𝑣𝑖 ), 𝜃 ) + ∇𝐿global (𝐺 (𝐺), 𝜃 )

)
.

This aligns with the principle of SGD, which states that the aggre-

gate update is the average of the updates across all data points. □

SMN time complexity analysis. We provide detailed considera-

tions for bothmodel training and community identification, address-

ing preprocessing and query time complexities, respectively. The

feature processing adopts 𝑘-hop operations in the preprocessing

stage, contributing𝑂 ( |𝑉 |3 ×𝑘). The subsequent multi-hop process-

ing layer involves 𝑂 ( |𝑉 | × 𝑑 × ℎ), where 𝑑 is the initial feature di-

mensions, and ℎ is the hidden dimensions. Notably, for vanilla GNN

models, the aggregation process with 𝑂 ( |𝑉 |3 × 𝑘) happens during
the model training. This slows down the model training speed due

to repetitive propagation and backpropagation operations. Compar-

atively, the above preprocessing only operates once before training,

avoiding expensive overhead during the training. The multi-hop at-

tention introduces𝑂 ( |𝑉 | × 𝑖 ×ℎ) complexity, where 𝑖 is the number

of heads. Hop-wise addition and weighted average fusion will take

𝑂 ( |𝑉 |). As these operations will be run for 𝑘 time, the total time

complexity for the multi-hop processing and multi-hop attention

layers is𝑂 (𝑘×|𝑉 |×ℎ×(𝑑+𝑖)). Themulti-head filter and SSF transfor-

mation will take𝑂 ( |𝑉 |×ℎ×𝑠) and𝑂 ( |𝑉 |×𝑠×𝑐). Where 𝑠 represents

the dimensions of SSF and 𝑐 is the number of communities. The

model is trained by t epochs. Therefore, the total time complexity

for SMN training is𝑂 ( |𝑉 |3×𝑘+(|𝑉 |×𝑡×(ℎ×𝑘×(𝑑+𝑖)+𝑠×(ℎ+𝑐)))).
For Sub-Topk, applying the target SSF to map node features

and computing cosine similarity against the query node will take

𝑂 ( |𝑉 | × ℎ). To get the top 𝑘 similarity, will take 𝑂 ( |𝑉 | × 𝑙𝑜𝑔(𝑘)),
where 𝑘 is the community size. Therefore, the total time complexity

for Sub-Topk will be 𝑂 ( |𝑉 | × (ℎ + 𝑙𝑜𝑔(𝑘))).
For Sub-CS, applying the target SSF to map node features will

take𝑂 ( |𝑉 |×ℎ). To get the top 𝑘 similarity, will take𝑂 ( |𝑉 |×𝑙𝑜𝑔(𝑘)),
where 𝑘 is the community size. To update the centroid will take

𝑂 (𝑘2 ×ℎ). Therefore, the total time complexity will be𝑂 ((𝑘2 ×ℎ) +
|𝑉 | × (ℎ + 𝑙𝑜𝑔(𝑘))).

8 EXPERIMENTS
In this section, we conduct experiments on 13 datasets to demon-

strate the effectiveness and efficiency of the proposed techniques

from 5 perspectives. We first report the model performance on

OCS and OCIS to demonstrate the effectiveness in overlapping

Table 1: Dataset statistics

Dataset # Nodes # Edges # Com # Feat OR MLA

Overlap

FB-0 185 645 3 224 0.188 3

FB-107 418 4,815 4 576 0.02 2

FB-348 207 2,716 4 161 0.744 4

FB-414 108 954 2 105 0.065 2

FB-686 159 1,607 6 63 0.698 6

Chemistry 35,409 157,358 14 4,877 0.25 13

CS 21,957 96,750 18 7,793 0.275 13

Engineering 14,927 49,305 16 4,839 0.272 12

Medicine 63,282 810,314 17 5,538 0.365 16

Disjoint

Cora 2,708 5,429 7 1,433 - -

Citeseer 3,312 4,732 6 3,703 - -

Pubmed 19,717 44,338 3 500 - -

Reddit 232,965 114M 41 602 - -

community structures. Then, we illustrate the efficiency compar-

ison to show the superiority of SMN in both model training and

query processing. Thirdly, we compare the model performance in

disjoint datasets to show that even though the SMN and SSF are

primarily built for OCS, they can also effectively handle disjoint

community search. Subsequently, we conduct the ablation study to

analyze the contribution of each building block. Finally, we provide

hyper-parameters analysis to reveal insights into model parameters.

8.1 Experimental Setup
Datasets. We use 13 datasets to evaluate the performance of SMN,

including 9 datasets with overlapping community structures and

4 datasets demonstrating disjoint structures. Datasets statistics

are reported in Table 1. Facebook [28] is a social network dataset

that contains five ego networks. Chemistry, Computer Science,

Medicine, and Engineering are co-authorship networks constructed

using data from the Microsoft Academic Graph (MAG)
1
. Cora,

Citeseer, and Pubmed are citation networks with details disclosed

on Relational Dataset Repository
2
. Reddit [17] is an online forum

where nodes are posts, and edges are comments from the same user.

Overlap Ratio (𝑂𝑅 = 1

𝑛

∑𝑛
𝑖=1
I( |𝐿𝑖 | > 1)) and Max Label Affiliations

(𝑀𝐿𝐴 = max ( |𝐿𝑖 |)) measure how overlap the dataset is.

Data splitting. By following the popular semi-supervised set-

tings [49], SMN uses 10% or less labeled data during the training to

mitigate the human effort on labeling. In citation networks, a stan-

dard splitting is applied [19], utilizing only 20 samples from each

community, accounting for less than 2% of the total data. For the

Facebook, Reddit, and MAG datasets, the splitting ratio is 10:10:80.

The training set is exclusively used to compute the loss and update

model parameters. During validation, the parameters are frozen,

and the test set remains untouched to prevent information leakage.

Baseline models. We compare the performance of SMN against

three algorithm-based methods (𝑘-clique [4], CTC [21], and 𝑘-core

based [37]) and three SOTA GNN-based models (ICS-GNN [14],

QDGNN [24], and COCLEP [30]). GNN-based models are all pri-

marily focused on disjoint community structure. ICS-GNN shares

the same configuration as the proposed SMN, identifying a 𝑘-sized

community. QDGNN and COCLEP identify communities by train-

ing a threshold to measure GNN score and similarity. We extend

their configuration to a 𝑘-sized community search by selecting

1
https://www.microsoft.com/en-us/research/project/open-academic-graph/

2
https://relational.fit.cvut.cz/

10



Table 2: SMN performance in overlapping community search

Task Overlapping Community Search, OCS Overlapping Communities Intersection Search, OCIS

Metric Model k-clque CTC k-core

ICS

GNN

QD

GNN

COC

LEP

SMN

Topk

SMN

CS

k-clque CTC k-core

ICS

GNN

QD

GNN

COC

LEP

SMN

Topk

SMN

CS

Ave+

F1

FB0 0.2478 0.2588 0.2423 0.7058 0.6710 0.2424 0.7427 0.7630 0.0572 0.0622 0.0551 0.6122 0.5982 0.6667 0.6547 0.7147 35%

FB107 0.2781 0.3024 0.2537 0.6835 0.6361 - 0.9035 0.9103 0.0712 0.0829 0.0609 0.5127 0.5760 - 0.7520 0.6520 46%

FB348 0.1543 0.1366 0.1443 0.8041 0.7338 0.6907 0.8517 0.7913 0.0916 0.0949 0.0840 0.7508 0.7316 0.6822 0.8114 0.8031 39%

FB414 0.2882 0.3119 0.2718 0.7941 0.6923 0.7286 0.8745 0.9006 0.0798 0.0907 0.0681 0.4107 0.4813 0.2080 0.7493 0.7533 45%

FB686 0.0947 0.0881 0.1013 0.6366 0.6006 0.6512 0.6776 0.7075 0.0691 0.0825 0.0615 0.4077 0.4351 0.4201 0.4958 0.5966 32%

ENG 0.0471 0.0529 0.0553 0.6680 0.7422 0.1530 0.8172 0.7618 0.0471 0.0529 0.0553 0.6406 0.6792 0.1659 0.8096 0.7973 52%

CS 0.0395 0.0433 0.0408 0.6187 0.5878 0.1400 0.8301 0.8242 0.0395 0.0433 0.0408 0.6426 0.6472 0.1507 0.7383 0.7504 53%

CHEM 0.0594 0.0615 0.0623 0.5732 0.6151 0.1812 0.8585 0.8487 0.0594 0.0615 0.0623 0.6047 0.6940 0.2199 0.8734 0.8758 59%

MED - 0.0503 0.0622 0.6630 0.5704 0.1628 0.8416 0.8540 - 0.0503 0.0622 0.6760 0.6927 0.1651 0.8405 0.8514 53%

JAC

FB0 0.1972 0.2115 0.1903 0.5446 0.5049 0.1379 0.5907 0.6168 0.0559 0.0609 0.0538 0.6022 0.5811 0.5172 0.6500 0.7080 34%

FB107 0.2386 0.2768 0.2048 0.5192 0.4664 - 0.8783 0.8913 0.0709 0.0827 0.0606 0.5113 0.5760 - 0.7520 0.6520 49%

FB348 0.1116 0.0940 0.1128 0.6724 0.5796 0.5275 0.7417 0.6547 0.0874 0.0924 0.0771 0.6649 0.6447 0.5460 0.7233 0.7157 36%

FB414 0.2538 0.2931 0.2294 0.6585 0.5294 0.5731 0.7769 0.8191 0.0795 0.0903 0.0673 0.3987 0.4680 0.2080 0.7380 0.7420 45%

FB686 0.0661 0.0599 0.0728 0.4669 0.4292 0.4828 0.5124 0.5474 0.0641 0.0796 0.0554 0.3623 0.4002 0.2793 0.4645 0.5597 29%

ENG 0.0260 0.0296 0.0311 0.5015 0.5901 0.0828 0.6908 0.6152 0.0260 0.0296 0.0311 0.6259 0.6634 0.0917 0.7799 0.7659 49%

CS 0.0224 0.0249 0.0233 0.4479 0.4162 0.0753 0.7096 0.7009 0.0224 0.0249 0.0233 0.6124 0.6244 0.0839 0.7101 0.7206 51%

CHEM 0.0349 0.0363 0.0369 0.4017 0.4442 0.0996 0.7522 0.7372 0.0349 0.0363 0.0369 0.5744 0.6728 0.1298 0.8403 0.8392 58%

MED - 0.0288 0.0368 0.4959 0.3990 0.0886 0.7266 0.7453 - 0.0288 0.0368 0.6404 0.6472 0.0933 0.7946 0.8054 52%

NMI

FB0 0.1788 0.1245 0.2069 0.1535 0.2007 0.1029 0.3182 0.2905 0.1788 0.1245 0.2069 0.2117 0.2021 0.1673 0.5212 0.5418 25%

FB107 0.3790 0.5479 0.2054 0.1590 0.2794 - 0.6176 0.5937 0.3790 0.5479 0.2054 0.1554 0.2043 - 0.6395 0.6197 31%

FB348 0.3338 0.4700 0.3321 0.4626 0.4155 0.2345 0.5301 0.6550 0.3338 0.3380 0.3321 0.2023 0.1760 0.0771 0.3829 0.3582 17%

FB414 0.3695 0.4281 0.4250 0.4449 0.3914 0.3189 0.5669 0.6186 0.3695 0.4281 0.4250 0.3529 0.4286 0.1375 0.6318 0.6325 24%

FB686 0.2862 0.2790 0.2225 0.2047 0.2864 0.1773 0.4040 0.3777 0.2862 0.2790 0.2225 0.2474 0.2662 0.2608 0.4723 0.4495 17%

ENG 0.0424 0.0545 0.0687 0.3201 0.4550 0.0325 0.5803 0.4810 0.0424 0.0545 0.0687 0.3094 0.4986 0.0333 0.7696 0.7590 48%

CS - 0.0377 - 0.2936 0.2983 0.0097 0.5954 0.6033 - 0.0377 - 0.2985 0.4734 0.0047 0.6891 0.7043 47%

CHEM 0.0393 0.0396 0.0411 0.2745 0.2961 0.0297 0.6546 0.6405 0.0393 0.0396 0.0411 0.2636 0.4930 0.0107 0.7028 0.6896 54%

MED - 0.0556 0.0430 0.3916 0.2744 0.0746 0.6419 0.6726 - 0.0556 0.0430 0.3806 0.4606 0.0303 0.6728 0.6876 49%

 FB0  FB107  FB348  FB414  FB686  citeseer  cora  pubmed  reddit chem cs eng med

101

102

103

104

Tr
ai

ni
ng

 T
im

e

QDGNN COCLEP SMN

(a) Efficiency results of the training phase

 FB0  FB107  FB348  FB414  FB686  citeseer  cora  pubmed  reddit chem cs eng med

10 3

10 2

10 1

100

Qu
er

y 
Ti

m
e

QDGNN
COCLEP

Sub-CS
Sub-Topk

(b) Efficiency results of the query phase

Figure 6: Efficiency evaluation of different datasets (in seconds)

the top-𝑘 nodes with the highest GNN score or similarity. The

hyper-parameters settings are the same as in their original paper.

Query setting. In the experiment, all query nodes are randomly se-

lected to prevent potential bias. The community size 𝑘 is dependent

on users, which can differ among datasets. In OCS, we set 30 as the

community size for Facebook, 150 for Cora, Citeseer and Pubmed,

and 1000 for MAG and Reddit. In OCIS, as the intersection set is

smaller in size, we use 𝑘/5 as the community size, where 𝑘 is the

community size of the underlying dataset in OCS.

Evaluation metrics. The evaluation of identified communities is

conducted through two performance metrics: F1-Score [14, 24], Jac-

card similarity (JAC) [30], and overlapping NMI [36]. The F1-Score

balances precision and recall, offering a measure of how well the

identified community matches the ground truth. JAC evaluates the

overlap between the predicted and true communities by comparing

the intersection over the union of the two sets. NMI focuses on the

alignment between predicted and true overlapping communities,

capturing the amount of shared structural information between

them. The true data is established as the target community label,

with the labels of the identified nodes serving as the predicted

data. To evaluate the efficiency, the model training time and online

querying time are recorded across different models. All results are

averaged across 50 randomly selected queries to ensure the quality

of the evaluation process.

Implementation details. SMN is constructed with 16-hop recep-

tive fields, 128 hidden dimensions, and two heads for multi-head

attention, using a 64-dimensional SSF. Model training involves

a learning rate of 0.02 with 100 and 300 epochs for disjoint and

overlapping datasets. Due to its size, SMN is configured with 4-

hop receptive fields for MAG and Reddit, while the other hyper-

parameters remain the same. The experiments are run on a machine

with Intel Xeon 6248R CPU, Nvidia A5000 GPU, and 512GBmemory.

The code is available at anonymous Github
3
.

8.2 Overlapping Community Search
Model effectiveness. Table 2 illustrates the model performance

on overlapping community datasets. The comparison is between

baseline models, SMN (Sub-Topk), and SMN (Sub-CS) on the Face-

book and MAG datasets. Missing results in 𝑘-clique and COCLEP

are either caused by out-of-memory or failure to assign nodes to

3
https://anonymous.4open.science/r/SMN-86B4/

11



Table 3: SMN performance (F1-Score) in Disjoint community search

Datasets 𝑘-clque CTC 𝑘-core ICSGNN QDGNN COCLEP SMN

Cora 0.2941 0.3179 0.309 0.7787 0.7208 0.2516 0.8866
Citeseer 0.2951 0.281 0.3081 0.7679 0.7486 0.3944 0.7698
Pubmed 0.5121 0.5427 0.5586 0.8065 0.7999 0.5153 0.8255
Reddit - 0.1271 0.2681 0.7374 0.8273 - 0.9433

any community affiliation. The 𝐴𝑣𝑒+ represents the average per-
formance improvement compared to the proposed SMN against all

baseline models. In OCS, instead of selectively choosing a single

community as the target, we use each community from the pre-

dicted list as the target and report the average performance to avoid

bias. In OCIS, we use the full label list of the query as the target

set and search for nodes that fall in at least all target communities,

where more affiliations are not punished. Among the 9 datasets,

Sub-CS demonstrates the best performance on 5 and 6 datasets for

OCS and OCIC, respectively. Sub-Topk achieves the best results

for others. Notably, the algorithm-based models generate compara-

tively low performance in F1, JAC, and NMI, respectively. This is

mainly caused by the fact that those models are not task-driven

and fail to predict the ground truth label.

In the OCS task, the ML-based models exhibit lower performance

on the MAG datasets compared to the Facebook datasets. This dis-

crepancy is primarily due to the size and complexity of the datasets.

As shown in Table 1, the MAG datasets have relatively lower OR

and higher MLA, indicating a higher variance in label distribution.

For instance, in the Chemistry dataset, 75% of nodes belong to only

one community, while the most popular nodes are associated with

up to 13 communities. Despite this significant label variance, the

proposed SMNmaintained stable and superior performance, achiev-

ing 𝐴𝑣𝑒+ improvement of 59%, 58%, and 54% in F1, JAC, and NMI,

respectively. These results demonstrate the model’s robustness and

effectiveness in handling overlapping community structures.

When extending to OCIS, we used the query’s full label set

as the target community set. In datasets like Chemistry, popular

query nodes may be linked to as many as 13 communities, creating

a unique challenge that can lead to out-of-sample issues. These

issues may hinder the model’s ability to identify 𝑘 nodes that all

meet the specific criteria. As shown in Table 1, baseline models

experience a significant performance drop when applied to OCIS,

whereas SMN demonstrates relatively stable performance across

most datasets, with only a slight decline in F1-Score compared to its

performance in OCS. This highlights SMN’s superiority in handling

these more complex scenarios.

F1 and JAC focus on the exact matching of each node’s predic-

tion, while NMI emphasizes the similarity between the predicted

community and the ground truth community. Despite these differ-

ences, the experiment shows similar trends across all three metrics.

On average, our proposed SMN model surpasses the best baseline

in OCS by 13.50% and in OCIS by 13.96% based on F1-Score, and by

19.19% and 19.95% respectively in terms of NMI. This highlights the

effectiveness of SMN in handling diverse community search tasks.

Model training efficiency. Figure 6(a) depicts model training time

comparison. The reported training time for SMN includes times for

both preprocessing and model training. As ICS-GNN operates in

an online setting and is trained and tested on candidate subgraphs,

its training time is not included. Notably, QDGNN and COCLEP

exhibit significantly longer training time. When training for the

 FB0  FB107  FB348  FB414  FB686  mag_eng  mag_cs  mag_chem  mag_med0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

w/o spatial loss
w/o class loss

w/o ssf
w/o multihop

w/o ssf & multihop
full model

Figure 7: Ablation study
small Facebook datasets by 300 epochs, QDGNN and COCLEP take

over 1,000 seconds, whereas SMN requires less than 10 seconds. On

the large and densely connected dataset (Reddit), training SMN for

100 epochs takes only 7.6 seconds, compared to QDGNN’s 11,055.1

seconds, and COCLEP runs out of memory (OOM). These results

empirically demonstrate the efficiency of the proposed lightweight

SMN and support Lemma 7.1. The proposed model framework

accelerates model training by 2 orders of magnitude on average

and achieves up to 3 orders of magnitude on large graphs such as

Reddit and MAG-Medicine.

Online query efficiency. Figure 6(b) shows online query perfor-

mance. QDGNN exhibits slow querying speed due to its reliance

on BFS as the backbone algorithm. Overall, Sub-Topk achieves the

best results, surpassing the existing best one by 2 orders. Sub-CS

demonstrates superior efficiency on smaller datasets compared to

COCLEP but slows down on larger datasets due to the necessity of

recomputing the centroid each time the community is updated, mak-

ing it sensitive to community size. The trade-off between Sub-Topk

and Sub-CS suggests that Sub-CS is preferable due to its accuracy

for complex tasks like OCIS, where the required community size is

small. However, for the tasks favoring efficiency with large com-

munity sizes, Sub-Topk will be preferred.

8.3 Disjoint CS and Ablation Study
Disjoint community search. In this section, we report themodel’s

performance on datasets with disjoint communities to further evalu-

ate its effectiveness. Themodel performance with Sub-CS in disjoint

community datasets is presented in Table 3. Although SMN is pri-

marily designed for OCS, it outperforms SOTA models in disjoint

community search. SMN consistently achieves superior results com-

pared to all baseline models, showcasing an average improvement

of 7.62% across 4 datasets. This enhancement is primarily due to

the hop-wise attention mechanism and the proposed search algo-

rithm, which leverage high-order patterns captured from a larger

model receptive field. The results prove the effectiveness of SMN

in learning representative node embeddings.

Ablation study. In this section, we investigate the effectiveness

of components employed by SMN and SSF in Figure 7 to illustrate

the contribution of each design. We conduct the ablation study

toward three loss functions, SSF, multi-hop attention, and the full

model. Overall, the full model achieves the most stable and superior

performance across 9 datasets, while the model without SSF and the

multi-hop attention shows the worst performance (mostly below

0.50 F1-Score). We notice that the model without classification loss

also performs well in the Facebook datasets. This trend is due to

Facebook datasets being smaller in size, which makes performing

the classification less challenging. On average, the spatial loss func-

tions and the SSF contribute the most to the model performance,

showing improvements of 7.68% and 6.37%.

12



 cora  citeseer  pubmed  FB0  FB107  FB348  FB414  FB686
0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

hop = 2
hop = 4

hop = 8
hop = 10

hop = 16
hop = 20

hop = 25
hop = 32

hop = 42
hop = 64

(a) F1-Score by varying hop number
 reddit eng cs chem med

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

comm_size = 200
comm_size = 300
comm_size = 400

comm_size = 500
comm_size = 600
comm_size = 700

comm_size = 800
comm_size = 900
comm_size = 1000

(b) F1-Score by varying community size
 cora  citeseer pubmed  reddit  FB0  FB107  FB348  FB414  FB686 eng cs chem med

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

Lambda = 0.005
Lambda = 0.01

Lambda = 0.02
Lambda = 0.05

Lambda = 0.1
Lambda = 0.5

(c) Varying 𝜆 in the soft sparse filter

 cora  citeseer pubmed  reddit  FB0  FB107  FB348  FB414  FB686 eng cs chem med
0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

Sparsity = 0.3
Sparsity = 0.4

Sparsity = 0.5
Sparsity = 0.6

Sparsity = 0.7
Sparsity = 0.8

(d) Varying sparsity rate in the hard sparse filter
 FB0  FB107  FB348  FB414  FB686 eng cs chem med

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

alpha=0.5, gamma=0
alpha=0.5, gamma=1

alpha=0.75, gamma=0
alpha=0.75, gamma=1

alpha=0.75, gamma=2
alpha=0.75, gamma=3

(e) F1-Score by varying 𝛼 and 𝛾
 FB0  FB107  FB348  FB414  FB686 eng cs chem med

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

gamma_p=1, gamma_n=0
gamma_p=2, gamma_n=1

gamma_p=3, gamma_n=2
gamma_p=4, gamma_n=3

gamma_p=5, gamma_n=3
gamma_p=5, gamma_n=4

(f) F1-Score by varying 𝛾+ and 𝛾−

Figure 8: Hyper-parameter analysis
8.4 Hyper-parameter Analysis
In this section, we conduct various experiments on OCS to test the

sensitivity of hyper-parameters. The study contains six experiments,

covering parameters such as the number of hops, community sizes,

𝜆, 𝛼 , and 𝛾 . Hyper-parameters are tuned using grid search.

Varying hop number. In Figure 8(a), we assess the model’s per-

formance by varying hop numbers, which determine the model

receptive fields. This experiment evaluates the model’s capability

of capturing high-order patterns and robustness of oversmooth-

ing. SMN demonstrates a stable and slightly increasing trend as

the number of hops increases. Notably, GNN models tend to suffer

from oversmoothing, generally limiting the receptive fields to 3

hops. This proves that SMN benefits from higher-order receptive

fields by mitigating the oversmoothing effect.

Varying community size. In Figure 8(b), we evaluate the effect of

varying community sizes on the model’s F1-Score. The community

sizes tested range from 200 to 1000 in increments of 100. This exper-

iment evaluates the model’s sensitivity to community size, where

smaller communities represent a less challenging task compared

to larger ones. The results indicate that the model’s performance

slightly decreases as the community size increases. This demon-

strates the model’s effectiveness in identifying large communities,

as it maintains a high F1-Score even with larger community sizes.

Varying 𝜆 in the soft sparse filter. In Figure 8(c), we evaluate

the performance of the model by varying the parameter 𝜆 in the

soft sparse filter. 𝜆 is utilized to control the sparsity level in the

regulation term in Equation 2. The values of 𝜆 tested are 0.005, 0.01,

0.02, 0.05, 0.1, and 0.5. The figure shows that the impact of 𝜆 varies

across different datasets. The model performance is more sensitive

to the 𝜆 values for the datasets with overlapping communities.

Varying sparsity rate in the hard sparse filter. Figure 8(d)

presents the evaluation results of the model by varying sparsity

rates in the hard sparse filter. Unlike using 𝜆 to control the sparsity,

the hard filter directly zeroes out elements with lower absolute

weights in the model classifier based on a predefined sparsity rate.

Similar to the findings in above, disjoint datasets do not benefit sig-

nificantly from sparsity adjustments, whereas the optimal sparsity

settings in overlapping datasets are highly dataset-specific.

Varying 𝛼 and 𝛾 . In Figure 8(e), we analyze the effect of varying

𝛼 and 𝛾 on the model’s performance. Here, 𝛼 controls the balance

between different loss components, and 𝛾 influences the overall

weight of the focal losses. The results reported for 𝛼 are 0.5 and 0.75,

and for 𝛾 are 0, 1, 2, and 3. This shows that different combinations

of 𝛼 and 𝛾 yield varying F1-Score across datasets.

Varying 𝛾+ and 𝛾− . Figure 8(f) explores the impact of varying

𝛾+ and 𝛾− on the model’s F1-Score. These parameters control the

influence of positive and negative samples in the training process as

shown in Equation 4. The values tested include combinations such

as (𝛾+ = 1, 𝛾− = 0), (𝛾+ = 3, 𝛾− = 2), and (𝛾+ = 5, 𝛾− = 3). The
results indicate that different settings of 𝛾+ and 𝛾− can significantly

affect performance. For example, higher values of both 𝛾+ and 𝛾−

generally lead to better F1-Score in the MAG-Chem and MAG-CS

datasets. Conversely, a more balanced setting is preferable in others.

9 CONCLUSION AND FUTUREWORK
This paper studies community search in complex network struc-

tures, particularly the challenging domain of overlapping commu-

nities (OCS). A general solution of OCS named SSF is proposed,

accompanied by a Simplified Multi-hop Attention Network (SMN).

The model enables effective exploration of the overlapping com-

munity structure within networks. Extensive experiments on 13

real-world datasets prove the superiority of SMN compared to the

state-of-the-art approaches across various dimensions, including

model effectiveness, training efficiency, and query efficiency. In

real-world applications, graphs can be extremely large and evolve

over time. One potential limitation of our model is its scalability, as

computing high-order adjacency matrices is space-intensive. Future

work could focus on optimizing space complexity and improving

scalability for large graphs. Additionally, incorporating real-time

updates to handle dynamic communities would allow the model to

adapt as the network evolves, capturing real-time patterns.

13



REFERENCES
[1] Esra Akbas and Peixiang Zhao. 2017. Truss-based community search: a truss-

equivalence based indexing approach. Proceedings of the VLDB Endowment 10,
11 (2017), 1298–1309.

[2] Ali Behrouz, Farnoosh Hashemi, and Laks VS Lakshmanan. 2022. FirmTruss

Community Search in Multilayer Networks. Proceedings of the VLDB Endowment
16, 3 (2022), 505–518.

[3] Jinyu Cai, Jicong Fan, Wenzhong Guo, Shiping Wang, Yunhe Zhang, and Zhao

Zhang. 2022. Efficient deep embedded subspace clustering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1–10.

[4] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online

Search of Overlapping Communities. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. Association for Computing

Machinery, 277–288.

[5] Ehsan Elhamifar and René Vidal. 2013. Sparse subspace clustering: Algorithm,

theory, and applications. IEEE transactions on pattern analysis and machine
intelligence 35, 11 (2013), 2765–2781.

[6] Shuheng Fang, Kangfei Zhao, Guanghua Li, and Jeffrey Xu Yu. 2023. Community

search: a meta-learning approach. In IEEE 39th ICDE. 2358–2371.
[7] Yixiang Fang, CK Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective community

search for large attributed graphs. Proceedings of the VLDB Endowment (2016).
[8] Yixiang Fang and Reynold Cheng. 2017. On attributed community search. In

International Workshop on Mobility Analytics for Spatio-temporal and Social Data.
1–21.

[9] Yixiang Fang, Reynold Cheng, Yankai Chen, Siqiang Luo, and Jiafeng Hu. 2017.

Effective and efficient attributed community search. The VLDB Journal 26 (2017),
803–828.

[10] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. The
VLDB Journal 29 (2020), 353–392.

[11] Yixiang Fang, ZhengWang, Reynold Cheng, Xiaodong Li, Siqiang Luo, JiafengHu,

and Xiaojun Chen. 2018. On spatial-aware community search. IEEE Transactions
on Knowledge and Data Engineering 31, 4 (2018), 783–798.

[12] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-

pergraph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 33. 3558–3565.

[13] Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. 2016. Top-k overlapping

densest subgraphs. Data Mining and Knowledge Discovery 30 (2016), 1134–1165.

[14] Jun Gao, Jiazun Chen, Zhao Li, and Ji Zhang. 2021. ICS-GNN: lightweight

interactive community search via graph neural network. Proceedings of the VLDB
Endowment 14, 6 (2021), 1006–1018.

[15] Tao Guo, Xin Cao, and Gao Cong. 2015. Efficient algorithms for answering the

m-closest keywords query. In Proceedings of the 2015 ACM SIGMOD international
conference on management of data. 405–418.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017).

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017).

[18] Farnoosh Hashemi, Ali Behrouz, and Milad Rezaei Hajidehi. 2023. CS-TGN: Com-

munity Search via Temporal Graph Neural Networks. In Companion Proceedings
of the ACM Web Conference. 1196–1203.

[19] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[20] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

K-Truss Community in Large and Dynamic Graphs. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data. Association for

Computing Machinery, 1311–1322.

[21] Xin Huang, Laks VS Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Ap-

proximate Closest Community Search in Networks. Proceedings of the VLDB
Endowment 9, 4 (2015).

[22] Ajay Kumar Jaiswal, Haoyu Ma, Tianlong Chen, Ying Ding, and Zhangyang

Wang. 2022. Training your sparse neural network better with any mask. In

International Conference on Machine Learning. PMLR, 9833–9844.

[23] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid. 2017. Deep

subspace clustering networks. Advances in neural information processing systems
30 (2017).

[24] Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, and Junzhou Huang.

2022. Query driven-graph neural networks for community search: from non-

attributed, attributed, to interactive attributed. Proceedings of the VLDB Endow-
ment 15, 6 (2022), 1243–1255.

[25] Junghoon Kim, Siqiang Luo, Gao Cong, and Wenyuan Yu. 2022. DMCS: Density

modularity based community search. In Proceedings of the 2022 International
Conference on Management of Data. 889–903.

[26] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with

Graph Convolutional Networks. (2016).

[27] Ismael Lemhadri, Feng Ruan, Louis Abraham, and Robert Tibshirani. 2021. Las-

sonet: A neural network with feature sparsity. Journal of Machine Learning
Research 22, 127 (2021), 1–29.

[28] Jure Leskovec and Julian Mcauley. 2012. Learning to discover social circles in

ego networks. Advances in neural information processing systems 25 (2012).
[29] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deepgcns:

Can gcns go as deep as cnns?. In Proceedings of the IEEE/CVF international
conference on computer vision. 9267–9276.

[30] Ling Li, Siqiang Luo, Yuhai Zhao, Caihua Shan, Zhengkui Wang, and Lu Qin.

2023. COCLEP: Contrastive Learning-based Semi-Supervised Community Search.

IEEE 39th ICDE (2023).

[31] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma.

2012. Robust recovery of subspace structures by low-rank representation. IEEE
transactions on pattern analysis and machine intelligence 35, 1 (2012), 171–184.

[32] Siwei Liu, Zaiqiao Meng, Craig Macdonald, and Iadh Ounis. 2023. Graph neural

pre-training for recommendation with side information. ACM Transactions on
Information Systems 41, 3 (2023), 1–28.

[33] Vishal M Patel and René Vidal. 2014. Kernel sparse subspace clustering. In 2014
ieee international conference on image processing (icip). 2849–2853.

[34] Tal Ridnik, Emanuel Ben-Baruch, Nadav Zamir, Asaf Noy, Itamar Friedman,

Matan Protter, and Lihi Zelnik-Manor. 2021. Asymmetric loss for multi-label

classification. In Proceedings of the IEEE/CVF international conference on computer
vision. 82–91.

[35] Jingwen Shang, Chaokun Wang, Changping Wang, Gaoyang Guo, and Jun Qian.

2020. An attribute-based community search method with graph refining. The
Journal of Supercomputing 76 (2020), 7777–7804.

[36] Oleksandr Shchur and Stephan Günnemann. 2019. Overlapping Community

Detection with Graph Neural Networks. Deep Learning on Graphs Workshop,
KDD (2019).

[37] Mauro Sozio and Aristides Gionis. 2010. The Community-Search Problem and

How to Plan a Successful Cocktail Party. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. Association
for Computing Machinery, 939–948.

[38] Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. 2017. Training

sparse neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition workshops. 138–145.

[39] Xingyu Tan, Jingya Qian, Chen Chen, Sima Qing, Yanping Wu, Xiaoyang Wang,

andWenjie Zhang. 2023. Higher-Order Peak Decomposition. In Proceedings of the
32nd ACM International Conference on Information and Knowledge Management.
4310–4314.

[40] Kai-Yu Tang, Ching-Yi Chang, and Gwo-Jen Hwang. 2023. Trends in artificial

intelligence-supported e-learning: A systematic review and co-citation network

analysis (1998–2019). Interactive Learning Environments 31, 4 (2023), 2134–2152.
[41] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. GRAPH ATTENTION NETWORKS. stat 1050
(2018), 4.

[42] Hanchen Wang, Rong Hu, Ying Zhang, Lu Qin, Wei Wang, and Wenjie Zhang.

2022. Neural subgraph counting with wasserstein estimator. In Proceedings of
the 2022 International Conference on Management of Data. 160–175.

[43] H Wang, D Lian, Y Zhang, L Qin, and X Lin. 2021. GoGNN: Graph of graphs

neural network for predicting structured entity interactions. (2021).

[44] Jianwei Wang, Kai Wang, Xuemin Lin, Wenjie Zhang, and Ying Zhang. 2024.

Efficient Unsupervised Community Search with Pre-trained Graph Transformer.

arXiv preprint arXiv:2403.18869 (2024).
[45] Jianwei Wang, Kai Wang, Xuemin Lin, Wenjie Zhang, and Ying Zhang. 2024.

Neural Attributed Community Search at Billion Scale. Proceedings of the ACM
on Management of Data 1, 4 (2024), 1–25.

[46] Yue Wang, Xun Jian, Zhenhua Yang, and Jia Li. 2017. Query optimal k-plex based

community in graphs. Data Science and Engineering 2 (2017), 257–273.

[47] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. 2021. Dissecting

the diffusion process in linear graph convolutional networks. Advances in Neural
Information Processing Systems 34 (2021), 5758–5769.

[48] Rongzhe Wei, Haoteng Yin, Junteng Jia, Austin R Benson, and Pan Li. 2022. Un-

derstanding non-linearity in graph neural networks from the bayesian-inference

perspective. Advances in Neural Information Processing Systems 35 (2022), 34024–
34038.

[49] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying Graph Convolutional Networks. In Proceedings of
the 36th International Conference on Machine Learning (Proceedings of Machine
Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97.

6861–6871.

[50] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful

are Graph Neural Networks? (2018).

[51] Le Yang, Haojun Jiang, Ruojin Cai, Yulin Wang, Shiji Song, Gao Huang, and Qi

Tian. 2021. Condensenet v2: Sparse feature reactivation for deep networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

14



3569–3578.

[52] Jianke Yu, Hanchen Wang, Xiaoyang Wang, Zhao Li, Lu Qin, Wenjie Zhang,

Jian Liao, and Ying Zhang. 2023. Group-based fraud detection network on e-

commerce platforms. In Proceedings of the 29th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining. 5463–5475.
[53] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. 2017. Index-

based densest clique percolation community search in networks. IEEE Transac-
tions on Knowledge and Data Engineering 30, 5 (2017), 922–935.

15


	Abstract
	1 Introduction
	2 related work
	3 Preliminaries
	3.1 Problem Definition
	3.2 Graph Convolutional Network

	4 Subspace Community Embedding: A General Solution for OCS
	5  Simplified Multi-hop Attention Network (SMN)
	5.1 Framework
	5.2 SMN: Preprocessing and Propagation

	6 Online Search Phase
	6.1 Overlapping Communities Search (OCS)
	6.2 Overlapping Communities Intersection Search (OCIS)

	7 Theoretical Analysis
	8 Experiments
	8.1 Experimental Setup
	8.2 Overlapping Community Search
	8.3 Disjoint CS and Ablation Study
	8.4 Hyper-parameter Analysis

	9 Conclusion and Future Work
	References

