
Utilizing protein structure graph embeddings to predict the pathogenicity of

missense variants

Martin Danner1,2, Matthias Begemann1, Miriam Elbracht1, Ingo Kurth1, Jeremias Krause1

1Institute for human genetics and genomic medicine, Medical Faculty, Uniklinik RWTH

Aachen, Pauwelsstrasse 30, Aachen, 52074, North-Rhine-Westphalia, Germany.

2scieneers GmbH, Kantstraße 1a, Karlsruhe, 76137, Baden-Wuerttemberg, Germany.

Correspondence should be addressed to:

Jeremias Krause

Institute for Human Genetics and Genomic Medicine

Medical Faculty, RWTH Aachen University

Pauwelsstrasse 30

D-52074 Aachen

Tel.: +49 241 87012

E-Mail: jerkrause@ukaachen.de

Abstract:

Background: Genetic variants can impact the structure of the corresponding protein, which can

have detrimental e:ects on protein function. While the e:ect of protein truncating variants is

often easier to evaluate, most genetic variants are missense variants. These variants are mostly

single nucleotide variants which result in the exchange of a single amino acid. The e:ect on

protein function of these variants can be challenging to deduce. To aid the interpretation of

missense variants a variety of bioinformatic algorithms have been developed, yet current

algorithms rarely directly use the protein structure as a feature to consider.

Results: We developed a machine learning workflow that utilizes the protein-language-model

ESMFold to predict the protein structure of missense variants, which is subsequently embedded

using graph autoencoders. The generated embeddings are used in a classifier model which

predicts pathogenicity. We provide evidence that the generated graph embeddings improve

classification accuracy of a XGBoost pathogenicity predictor, which should lead to a wide

applicability for human genetic diseases.

Key words: Machine Learning, ProteinGym, XGBoost, Graph Autoencoder, ESMFold, Protein

Structure Prediction

Introduction:

Rare diseases, while individually uncommon, collectively a:ect about 5% of the global

population, or approximately 350 million people 1. With around 70% of these cases involving

children the importance of early diagnosis and treatment cannot be overstated 1. However, the

current average diagnosis time still stands at a distressing 5-7 years 1. Roughly 80% of these rare

diseases have a genetic cause 1. Given the complexity of our genome, with its 3.3 billion bases

and each individual carrying about 3.5 million variants, about 10.000 non-synonymous variants

within the protein-coding region, pinpointing the single disease-causing variant is extremely

challenging 2. This is further complicated by the fact that for the majority of known missense

variants, a frequent cause of disease, the impact on protein function is unclear and the variants

are therefore classified as variants of unknown clinical significance (VUS) 3. This frequently leads

to inconclusive results when genetic testing is performed in a clinical setting 4. To better

characterize missense variants and to eventually enter an age without variants of unknown

clinical significance di:erent strategies have been proposed 5. Ultimately experimental

characterizations might be necessary to achieve this state. However, experimental approaches

are resource and time consuming and consequently don’t o:er promises for scalability in the near

future 6. Therefore, di:erent bioinformatic prioritization strategies have been proposed to narrow

down the number of candidates for experimental follow ups 7,8. Especially machine learning

models o:er a promising avenue for enhancing the process of detecting and prioritizing variants

6,9. Pathogenicity prediction models typically include a range of genomic features, which are

aggregated and delivered to a statistical or machine learning model that performs a classification

or regression task 8. These features can include population metrics (e.g. the population allele

frequency of a variant), evolutionary conservation metrics, the sequence context and epigenetic

data. However, despite the progress in computational prediction strategies (e.g. AlphaFold 10)

three-dimensional data is rarely used. Current models that use this information are either

computationally expensive and bound to structure predictions from specific models

(AlphaMissense 6) or do not use the structure itself, but information derived from this structure

(SIGMA 11, AlphScore 12). Furthermore, in the case of AlphaMissense and AlphScore the models

are only presented with wild type structures during training 6,12. While it has been previously

demonstrated that variant structures predicted by AlphaFold2 don’t always agree with

experimental data 13, models like SIGMA highlight the potential of in silico predicted variant

structures 11. In this study, we introduce a novel machine learning approach that directly leverages

information from in silico predicted protein structures of missense variants and their

corresponding wild-type structures. Importantly, we used ESMFold 14 to predict over 60,000

protein structures to aid this process. In addition, it incorporates features derived from population

genomics to construct a binary classifier for estimating the pathogenicity of missense variants.

We demonstrate the practicality and value of using in silico predicted protein structures, such as

those modeled by ESMFold 14, as an additional feature enriching machine learning approaches.

This study further highlights the potential of machine learning in aiding the diagnosis of rare

diseases.

Materials:

ProteinGym is a large-scale dataset published by Notin et al., that serves as benchmark for

protein design models and fitness predictions, aiming to establish a basis for comparison across

di:erent studies 15. It contains aggregated deep mutational scanning assays and a smaller clinical

dataset, derived from expert curated variant collections. Both sets are available for missense and

indel variants. Additionally, it provides a benchmark board, where di:erent pathogenicity

prediction tools are ranked. For this study, we utilized the clinical substitution dataset, which

contains 63,914 missense variants. The dataset consists of 31,546 variants that are classified as

benign, and 32,638 variants ranked as pathogenic variants. The included variants a:ect 2,525

genes in total. The features included in ProteinGym are the wild type amino acid sequence, the

mutant amino acid sequence, the reference amino acid and the mutant amino acid at the place

of substitution and the protein position of the substitution.

The genome aggregation database (gnomAD) includes information about 16,412,219 missense

variants in its gnomAD v4 release 16. We extracted the population allele frequency from this

release for all variants included in the clinical substitution dataset and merged them with the

features already available in ProteinGym. Additionally, we further enriched the dataset by

gathering the missense observed / expected ratio, obtained from the gnomAD 2.1 release 16.

Methods:

The presented workflow started with a protein language model. ESMFold was used to generate in

silico predictions for the protein structures of the wild types and structures of the variants

contained in the clinical substitution dataset from ProteinGym. ESMFold was selected, because

it provides a much faster folding time and is more portable when compared to AlphaFold2,

although it comes with slightly less accurate predictions. The generated structures were used to

train graph autoencoders 17 in order to generate structural embeddings for both, the wild types

and their corresponding variants. These structural embeddings were then combined with

population metrics and a subset of features contained in ProteinGym. The combined features

were finally used to train a XGBoost 18 model on a binary classification task to predict the

pathogenicity of missense single nucleotide variants. The complete workflow is detailed in figure

1.

Figure 1: Schematic illustration of the machine learning approach workflow. We predicted protein

structures for 63,914 missense single nucleotide variants and their corresponding wild types

using ESMFold. These structures were then converted into numerical representations, so called

embeddings, via a graph autoencoders. Finally, an XGBoost classifier was trained using these

embeddings along with features from gnomAD and ProteinGym.

Protein structure prediction with ESMFold:

To generate the protein structures, we employed the ESMFold model (3B) from Hugging Face 19,

which was utilized to predict the protein structures for both the variants and corresponding wild

types within the ProteinGym dataset. This process was conducted on multiple Virtual Machines

(VMs) within the Azure Machine Learning environment, each equipped with an A100 GPU.

Given the O(n^3) complexity of the ESMFold model, attempting to run inference on larger amino

sequences resulted in memory overflow issues 14. To circumvent this, we divided longer

sequences into smaller subsequences, running the inference on each subsequence individually.

The individual predictions were subsequently stitched together in a post-processing step using

the NumPy library. The resulting protein structures were stored as Protein Data Bank (PDB) 20 files

for subsequent processing and analysis in our study. This strategy allowed us to e:iciently

manage computational resources while generating a comprehensive set of protein structure

predictions for our machine learning approach.

Preparation of Protein Graph Datasets

We transformed the predicted protein structures from ESMFold into graph datasets represented

as PyTorch Geometric Objects 21 using Graphein 22. In more detail two distinct graph datasets were

generated to extract structural embeddings of varying scopes as shown figure 2:

1. An atomic-scoped dataset, where individual atoms are represented by each node, and

covalent edges are based on atomic distances. The node features included the 3D

coordinates and a one-hot encoding of the atom. The min-max scaled atomic distances

were also included as edge features.

2. A residue-scoped dataset, where each node represents a residue in turn depicted by the

alpha carbon and edges signify various interactions – distance based, aromatic, hydrogen

bond, hydrophobic, aromatic sulphur, disulfide, cation pi and peptide_bonds. Node

features included the 3D coordinates, the one-hot encodings of the amino acid and

details about the residue´s presence of a hydrogen bond acceptor/donor.

Both graph datasets, containing wild type and variant structures, were divided into subsets for

training, validation, and testing of the graph autoencoders (GAEs). The division was conducted at

the level of individual structures in a 70% (training), 20% (validation), and 10% (test) ratio.

Figure 2: Protein Structure of A113D (A) consisting of 421 amino acids and its conversion in a

residue-scoped graph representation (B) with 421 nodes and 1136 edges as well its conversion in

an atomic-scoped graph representation (C) with 3274 nodes and 3338 edges. Conversion was

carried out using Graphein.

Structural Embeddings with Graph Autoencoders

1. Two graph autoencoders were designed, one for each graph dataset. Both architectures were

implemented using PyTorch Geometric21 each composed of distinct custom encoders and

the same inner product decoder17. The graph convolutional encoder (GCEncoder), designed

to handle residue-scoped graphs, comprised of graph convolutional network (GCN) layers,

each followed by a layer normalization applied per graph. A rectified linear unit (ReLU)

activation function was applied after each GCN layer, excluding the final one. The node

embeddings from the final GCN layer were pooled using a global mean pooling operation to

obtain a graph-level embedding. To create graph embeddings of dimension 128 two GCN

Layers, for embeddings of dimension 256 three GCN Layers were used.

CBA

2. To accommodate atomic-scoped graphs and incorporate edge features, the simple GCN

layers in the GCEncoder were replaced with message passing neural network (MPNN) layers,

resulting in a new encoder, the MPNNEncoder. The MPNN layers consisted of a GCN for node

features and a linear layer for edge features, facilitating the transformation and integration of

both node and edge information, which enhanced the model's ability to capture more

intricate graph structures. Like the GCEncoder, for each MPNN layer a ReLU activation was

applied followed by layer normalization, except for the final one. The node embeddings from

the final MPNN layer were pooled to achieve a graph-level embedding. To create graph

embeddings of dimension 128 two MPNN Layers, for embeddings of dimension 256 three

MPNN Layers were used.

Figure 3:Schematic reprensentation of the GCEncoder and the MPNNEncoder, created using
torchlens 23.

Irrespective of the encoder type, an inner product decoder was utilized to decode the node embeddings,

or latent variables, into edge probabilities and a probabilistic dense adjacency matrix.

Both graph autoencoders (GAE) were trained to minimize the binary cross-entropy loss for positive edges

and negative sampled edges. Thus, the reconstruction loss was calculated as the sum of the losses for

positive and negative edges. The GAEs were trained over a maximum of 20 epochs using a batch size of

32 and a learning rate of 0.005 with the Adam optimizer. Early stopping was implemented and evaluated

epoch wise. The decision to apply early stopping was based on validation accuracy with a patience

latency of 3 epochs without an increase in validation accuracy. The training, validation, and test data were

loaded using PyTorch's DataLoader21, which provided the data in mini batches during training. After

training, the models were tested using the test data, and the Area Under Curve (AUC) and Average

Precision (AP) scores were reported. Upon completion of training, the entire graph datasets, representing

all predicted protein structures (wildtype and variant structures), were processed through the trained

GAEs. This step enabled us to extract numerical embeddings for both the variant and wildtype structures

across the entire datasets. These embeddings provide a condensed yet comprehensive representation

capturing both local and global information of the protein structures, serving as a crucial input for

subsequent analysis and training of a XGBoost Classifier18.

Setting up a five-fold cross validation:

The total dataset was split into five folds, which were eventually used to set up a five-fold cross

validation. To prevent intergenic data leakage, we ensured that variants of genes present in one

fold did not occur in another fold, which could have resulted in the problematic situation that

variants from the same gene would end up in training, validation and test sets. This step was

critical to ensure that our model's performance evaluation was accurate and not influenced by

any overlapping data between the training, validation and testing phases. While the five folds were

equally sized in terms of genes per fold, genes contained in the ProteinGym clinical substitution

dataset don’t contain the same number of variants and as previously mentioned benign and

pathogenic variants are not equally distributed in the ProteinGym either. This resulted in a slight

class imbalanced folds. To balance out this imbalance, benign and pathogenic variants were

randomly resampled from each fold, to bring all folds to the same variant size and an equal class

distribution. The fold, which would eventually be used as current test set was not resampled, to

avoid distortion of performance metrics which could result from duplicates in the test set.

Implementation and training of a XGBoost classifier:

To predict the pathogenicity of missense single nucleotide variants, we adopted an XGBoost

Classifier 18 using the XGBoost library, a gradient boosting framework renowned for its predictive

accuracy and computational e:iciency. For the training, validation and evaluation we used a five-

fold cross validation. Followingly an XGBoost model was trained and evaluated five times using

the prepared folds. For each training setup an individual data split was performed. The training set

contained three folds and the validation as well as the test set contained one fold. The

hyperparameters of the classifier were optimized using Optuna 24, a hyperparameter optimization

framework. The Optuna 24 hyperparameter optimization was conducted over 100 trials to

determine the optimal set of hyperparameters for the XGBoost18 model. The performance metric

for the optimization was the accuracy of the model, deployed on the hold out validation set. This

optimization was performed individually for each fold-split. Followingly, the five sets of tuned

hyperparameters were averaged and used to train a meta-optimized model on the fivefold splits,

which was used to evaluate the final performance of the classification model. This procedure was

performed for di:erent feature combinations, each with consistent fold-splits. In the first

experiment setup the dataset consisted of various features including encoded amino acid

references, encoded amino acid alternatives, amino acid position, the structural embeddings of

both the variant and wild-type proteins as well as the cosine distance of these structural

embeddings. The target variable was the pathogenicity of the variants, encoded into numerical

form. We repeated this experiment with the same set up, with the exception of the inclusion of the

structural embeddings and the cosine-distance of these structural embeddings, as features, to

examine the added e:ectiveness of three-dimensional-information on a XGBoost 18 classifier. The

final performance of each model was evaluated using the test datasets. The performance of each

model on the test datasets was averaged across the folds and reported in the form of the average

area under the curve of the receiver operating curve (AUROC) 25. Models, their hyperparameters,

and their performance metrics were logged and stored using MLflow 26, a platform for managing

the machine learning lifecycle. This approach allowed us to e:iciently manage, track, and

evaluate the performance of our machine learning models.

Computation of Shapley Values

To understand the feature importance and overall model impact per feature in our XGBoost

Classifiers we computed the SHAP values. The SHAP values were calculated for each fold utilizing

the individual test set in the fivefold cross-validation process. These values were then stacked

across all folds to assess the overall feature importance across the whole dataset. By default, the

SHAP values are computed for each input feature, which in our case corresponded to each

element in our structural embeddings.

Given the additive nature of the SHAP values, we wanted to consider the structural embeddings

as a whole. To achieve this, we summed the SHAP values over each structural embedding space.

This allowed us to obtain a single SHAP value per structure embedding, providing a

comprehensive understanding of the importance of the entire structural embedding in the model.

These steps allowed us to create feature importance plots, which visually represented the

significance and total impact of each feature in the model.

Results:

Pathogenicity Prediction:

To access the value of in silico predicted three-dimensional protein structures for pathogenicity

prediction of missense variants, we trained multiple XGBoost 18 classifiers. Each model was

presented with population metrics and, aside from one exception of one (the minimal model),

was additionally enriched with structural graph embeddings of di:erent abstraction levels. The

performance of all models was subsequently evaluated using the AUROC metric. The individual

plotted ROC-Curves for all classifiers can be seen in figure 4. The AUROC of the classifiers, that

were additionally supplemented with the structural graph embeddings showed a slight, but

consistent tendency towards an increase in performance, as demonstrated by the comparison of

the average AUROCs. The classifier, that was trained and evaluated without the structural graph

embeddings (the minimal model) showed the following AUROC values across the individual folds

[fold1=0.92, fold2=0.92, fold3=0.90, fold4=0.90, fold5=0.89] and a mean AUROC value of 0.906

(standard deviation = 0.011). The overall best performing classifier was the classifier additionally

supplemented with both the graph embeddings on atomic level of abstraction (embedding size =

128) and the graph embeddings on residue level of abstraction (embedding size = 128). It reached

the following AUROC values across the individual folds [fold1=0.93, fold2=0.92, fold3=0.91,

fold4=0.93, fold5=0.93] and a mean AUROC value of 0.924 (standard deviation = 0.009). However,

the di:erence to the second-best preforming model, the classifier supplemented with graph

embeddings on the residue level of abstraction (embedding size = 128), was marginal. This

second-best performing classifier reached the following AUROC values across the individual

folds [fold1=0.93, fold2=0.93, fold3=0.90, fold4=0.92, fold5=0.92] and a mean AUROC value of

0.922 (standard deviation = 0.010).

Figure 4: Side-by-Side comparison of the performance of the di:erent classifier models. (A)

Classifier trained without the graph embeddings. (B) Classifier trained with graph embeddings on

the residue level of abstraction (embedding size 128). (C) Classifier trained with graph

embeddings on the atomic level of abstraction (embedding size 128). (D) Classifier trained with

graph embeddings both on residue level of abstraction (embedding size 128) and atomic level of

abstraction (embedding size 128). (E) Classifier trained with graph embeddings on residue level

of abstraction (embedding size 256). (F) Classifier trained with graph embeddings both on residue

level of abstraction (embedding size 256) and atomic level of abstraction (embedding size 256).

Exploration of diWerent embedding sizes:

As previously stated, and depicted in figure 4, next to di:erent level of abstractions of the protein

graphs, we additionally analyzed whether the embedding size has an impact on the performance

of utilized classifiers. In general, we observed a small yet consistent di:erence in the side-by side

comparison between classifiers on the same abstraction level but di:erent embedding sizes.

Overall, the classifiers trained on smaller embedding size showed an equal or slightly higher mean

AUROC value, when compared to their counterpart trained on larger embeddings sizes. This was

consistently observed in the residue-by-residue comparison (mean AUROC residue 128 = 0.923

standard deviation = 0.010 & mean AUROC residue 256 = 0.916; standard deviation = 0.009), the

atomic-by-atomic comparison (mean AUROC atomic 128 = 0.917; standard deviation = 0.010 &

mean AUROC atomic 256 = 0.917; standard deviation = 0.005) and also in the mixed-by-mixed

comparison (mean AUROC residue 128/ atomic 128 = 0.924; standard deviation = 0.009 & mean

AUROC residue 256 / atomic 256 = 0.918; standard deviation = 0.008). No model trained on the

larger embedding size of 256 outperformed their 128 embedding size counterparts. An overall

comparison in the form of a bar plot can be seen in figure 5.

Figure 5: Bar plot highlighting the AUROC di:erences on the di:erent combinations of level of

abstractions and embedding sizes. Overall, the experiments utilizing smaller embeddings showed

slightly higher AUROC values. The best performing classifier utilized embeddings from both levels

of abstraction, although the di:erence was minimal.

Feature Importance:

To further explore the relevance of graph embeddings for the classification task, we utilized the

individually fold wise trained XGBoost classifiers at the residue level of abstraction (embedding

size = 128) to predict the SHAP values for the hold out test data. We aggregated these SHAP values

for an overall evaluation which can be seen in figure 6. As visualized in figure 6, the allele

frequency is the most influential feature for pathogenicity prediction, which is then followed by

the structural embeddings of the wild-type and mutant structures.

Figure 6: SHAP values displayed as a bee swarm plot (A), highlighting the individual SHAP values.

Additionally, the aggregated SHAP values are displayed as bar plot (B). The allele frequency is the

undisputed most important feature. The graph embeddings are of noticeable importance. The

wild type structures are ranked as more important to the classification task, compared to the

variant structures.

Comparison to previous scores:

ProteinGym is a standardized dataset which can be used to evaluate and compare di:erent

pathogenicity predictors. However, for the clinical substitutions’ dataset no predefined cross

validation folds or train-test splits are available. Additionally, di:erent models evaluated on

ProteinGym are often trained on additional data and data leakage is not always considered,

leading to a leaderboard which overestimates the performance of some classifiers. A comparison

of our best performing XGBoost to other models listed on the ProteinGym leaderboard can be

seen in figure 7.

Figure 7: ProteinGym leaderboard as depicted on the ProteinGym website. Since no standard

procedure is defined for training and evaluation on the clinical substitution dataset, most models

are trained on additional data. Models which were trained on larger datasets e.g. the entirety of

ClinVar which has a large overlap with the clinical substitution dataset leading to di:ering

magnitudes of data leakage are marked with an asterisk (*).

Discussion:

DiWerentiating to existing models:

The demonstrated workflow presents a way to include the three-dimensional structure of proteins

in pathogenicity classification tasks. In principle this agnostic workflow is capable of processing

experimentally determined and in silico predicted structures. Models like AlphaFold2 10 and

ESMFold 14 have made in silico predicted protein structures abundantly available, however these

structures have only been partially used in variant e:ect predictors previously. Previous structural

aware models like those presented by Schmidt et al. and Zhao et al. take structural information

from in silico predicted protein structures from AlphaFold2 into account, however they rely on an

engineered feature extraction process in which biochemical and network features are extracted

and then used to train a classifier model11,12. The presented approach di:erentiates itself from

those previous workflows by replacing the manual feature engineering process with graph

embeddings generated by graph autoencoders, which is compatible with in silico predicted

structures from arbitrary computational modelling approaches and real-world structures.

Further Directions & Limitations:

Due to computational limitations we opted to use the 3 billion parameter ESMFold model,

available on HuggingFace19. Because of the faster inference and smaller computational

requirements, when compared to AlphaFold2, we were able to predict the wildtype and variant

structures for the whole ProteinGym clinical substitution dataset. This however is a possible entry

point for a performance ceiling e:ect, since for ESMFold it has been demonstrated that an

increase in parameter size, results in more accurate predictions. Additionally, since its release,

ESMFold has been describes as slightly less accurate compared to AlphaFold2. This reduced

accuracy might be inherited by the presented classifiers and therefore should be kept in mind as

potential limitation. Additional work is needed in which graph embeddings from structures

generated by di:erent models (in addition to experimentally determined structures) are explored

as input features.

We presented a classifier which utilizes only a small variety of features. Previous pathogenicity

predictors such as CADD 8 often use a larger variety of features such as evolutionary conservation

scores. In further work the utility of these features for the presented workflow should be explored.

Abbreviations

AUROC – Area under the receiving operating characteristic curve

GAE – Graph Autoencoder

GCN – Graph Convolutional Network

MPNN – Message Passing Neural Network

GCEncoder – Graph Convolutional Encoder

MPNNEncoder – Message Passing Neural Network Encoder

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The code to reproduce the presented workflow, which has been presented in a hands on

workshop at the “Applications of AI and Data-Driven Approaches in Structural Biology” workshop,

hosted by the Council of Scientific & Industrial Research - Institute of Genomics and Integrative

Biology (CSIR-IGIB) will be made available upon publication.

Competing interest

No competing interest is declared.

Funding

This research project was funded by the START- Program of the Faculty of Medicine.

References:

1. The Lancet Global Health, null. The landscape for rare diseases in 2024. Lancet Glob.

Health 12, e341 (2024).

2. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

3. Richards, S. et al. Standards and Guidelines for the Interpretation of Sequence Variants:

A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics

and the Association for Molecular Pathology. Genet. Med. O:. J. Am. Coll. Med. Genet. 17, 405

(2015).

4. Sessa, G., Ehlén, Å., Nicolai, C. von & Carreira, A. Missense Variants of Uncertain

Significance: A Powerful Genetic Tool for Function Discovery with Clinical Implications. Cancers

13, 3719 (2021).

5. Fowler, D. M. & Rehm, H. L. Will variants of uncertain significance still exist in 2030? Am.

J. Hum. Genet. 111, 5–10 (2024).

6. Cheng, J. et al. Accurate proteome-wide missense variant e:ect prediction with

AlphaMissense. Science 381, eadg7492 (2023).

7. Ioannidis, N. M. et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare

Missense Variants. Am. J. Hum. Genet. 99, 877 (2016).

8. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the

deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894

(2019).

9. Schubach, M., Maass, T., Nazaretyan, L., Röner, S. & Kircher, M. CADD v1.7: using protein

language models, regulatory CNNs and other nucleotide-level scores to improve genome-wide

variant predictions. Nucleic Acids Res. 52, D1143–D1154 (2024).

10. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596,

583–589 (2021).

11. Zhao, H. et al. SIGMA leverages protein structural information to predict the pathogenicity

of missense variants. Cell Rep. Methods 4, 100687 (2024).

12. Schmidt, A. et al. Predicting the pathogenicity of missense variants using features derived

from AlphaFold2. Bioinformatics 39, btad280 (2023).

13. Buel, G. R. & Walters, K. J. Can AlphaFold2 predict the impact of missense mutations on

structure? Nat. Struct. Mol. Biol. 29, 1–2 (2022).

14. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a

language model. Science 379, 1123–1130 (2023).

15. Notin, P. et al. ProteinGym: Large-Scale Benchmarks for Protein Fitness Prediction and

Design. Adv. Neural Inf. Process. Syst. 36, 64331–64379 (2023).

16. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in

141,456 humans. Nature 581, 434–443 (2020).

17. Kipf, T. N. & Welling, M. Variational Graph Auto-Encoders. Preprint at

https://doi.org/10.48550/arXiv.1611.07308 (2016).

18. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. Preprint at

https://doi.org/10.48550/arXiv.1603.02754 (2016).

19. Wolf, T. et al. HuggingFace’s Transformers: State-of-the-art Natural Language Processing.

Preprint at https://doi.org/10.48550/arXiv.1910.03771 (2020).

20. Burley, S. K. et al. Protein Data Bank (PDB): The Single Global Macromolecular Structure

Archive. Methods Mol. Biol. Clifton NJ 1607, 627 (2017).

21. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library.

Preprint at https://doi.org/10.48550/arXiv.1912.01703 (2019).

22. Jamasb, A. et al. Graphein - a Python Library for Geometric Deep Learning and Network

Analysis on Biomolecular Structures and Interaction Networks. Adv. Neural Inf. Process. Syst. 35,

27153–27167 (2022).

23. Taylor, J. & Kriegeskorte, N. Extracting and visualizing hidden activations and

computational graphs of PyTorch models with TorchLens. Sci. Rep. 13, 14375 (2023).

24. Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: A Next-generation

Hyperparameter Optimization Framework. in Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining 2623–2631 (Association for Computing

Machinery, New York, NY, USA, 2019). doi:10.1145/3292500.3330701.

25. Junge, M. R. J. & Dettori, J. R. ROC Solid: Receiver Operator Characteristic (ROC) Curves

as a Foundation for Better Diagnostic Tests. Glob. Spine J. 8, 424 (2018).

26. Chen, A. et al. Developments in MLflow: A System to Accelerate the Machine Learning

Lifecycle. in Proceedings of the Fourth International Workshop on Data Management for End-to-

End Machine Learning 1–4 (Association for Computing Machinery, New York, NY, USA, 2020).

doi:10.1145/3399579.3399867.

