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Abstract: 

Background: Genetic variants can impact the structure of the corresponding protein, which can 

have detrimental e:ects on protein function. While the e:ect of protein truncating variants is 

often easier to evaluate, most genetic variants are missense variants. These variants are mostly 

single nucleotide variants which result in the exchange of a single amino acid. The e:ect on 

protein function of these variants can be challenging to deduce. To aid the interpretation of 

missense variants a variety of bioinformatic algorithms have been developed, yet current 

algorithms rarely directly use the protein structure as a feature to consider.   

Results: We developed a machine learning workflow that utilizes the protein-language-model 

ESMFold to predict the protein structure of missense variants, which is subsequently embedded 

using graph autoencoders. The generated embeddings are used in a classifier model which 

predicts pathogenicity. We provide evidence that the generated graph embeddings improve 

classification accuracy of a XGBoost pathogenicity predictor, which should lead to a wide 

applicability for human genetic diseases. 

Key words: Machine Learning, ProteinGym, XGBoost, Graph Autoencoder, ESMFold, Protein 

Structure Prediction 

 

 

 

 

 

 

 

 

 

 

 



Introduction: 

Rare diseases, while individually uncommon, collectively a:ect about 5% of the global 

population, or approximately 350 million people 1. With around 70% of these cases involving 

children the importance of early diagnosis and treatment cannot be overstated 1. However, the 

current average diagnosis time still stands at a distressing 5-7 years 1. Roughly 80% of these rare 

diseases have a genetic cause 1. Given the complexity of our genome, with its 3.3 billion bases 

and each individual carrying about 3.5 million variants, about 10.000 non-synonymous variants 

within the protein-coding region, pinpointing the single disease-causing variant is extremely 

challenging 2. This is further complicated by the fact that for the majority of known missense 

variants, a frequent cause of disease, the impact on protein function is unclear and the variants 

are therefore classified as variants of unknown clinical significance (VUS) 3. This frequently leads 

to inconclusive results when genetic testing is performed in a clinical setting 4. To better 

characterize missense variants and to eventually enter an age without variants of unknown 

clinical significance di:erent strategies have been proposed 5. Ultimately experimental 

characterizations might be necessary to achieve this state. However, experimental approaches 

are resource and time consuming and consequently don’t o:er promises for scalability in the near 

future 6. Therefore, di:erent bioinformatic prioritization strategies have been proposed to narrow 

down the number of candidates for experimental follow ups 7,8.  Especially machine learning 

models o:er a promising avenue for enhancing the process of detecting and prioritizing variants 

6,9. Pathogenicity prediction models typically include a range of genomic features, which are 

aggregated and delivered to a statistical or machine learning model that performs a classification 

or regression task 8. These features can include population metrics (e.g. the population allele 

frequency of a variant), evolutionary conservation metrics, the sequence context and epigenetic 

data. However, despite the progress in computational prediction strategies (e.g. AlphaFold 10) 

three-dimensional data is rarely used. Current models that use this information are either 

computationally expensive and bound to structure predictions from specific models 

(AlphaMissense 6) or do not use the structure itself, but information derived from this structure 



(SIGMA 11, AlphScore 12). Furthermore, in the case of AlphaMissense and AlphScore the models 

are only presented with wild type structures during training 6,12. While it has been previously 

demonstrated that variant structures predicted by AlphaFold2 don’t always agree with 

experimental data 13, models like SIGMA highlight the potential of in silico predicted variant 

structures 11. In this study, we introduce a novel machine learning approach that directly leverages 

information from in silico predicted protein structures of missense variants and their 

corresponding wild-type structures. Importantly, we used ESMFold 14 to predict over 60,000 

protein structures to aid this process. In addition, it incorporates features derived from population 

genomics to construct a binary classifier for estimating the pathogenicity of missense variants. 

We demonstrate the practicality and value of using in silico predicted protein structures, such as 

those modeled by ESMFold 14, as an additional feature enriching machine learning approaches. 

This study further highlights the potential of machine learning in aiding the diagnosis of rare 

diseases. 

Materials: 

ProteinGym is a large-scale dataset published by Notin et al., that serves as benchmark for 

protein design models and fitness predictions, aiming to establish a basis for comparison across 

di:erent studies 15. It contains aggregated deep mutational scanning assays and a smaller clinical 

dataset, derived from expert curated variant collections. Both sets are available for missense and 

indel variants. Additionally, it provides a benchmark board, where di:erent pathogenicity 

prediction tools are ranked. For this study, we utilized the clinical substitution dataset, which 

contains 63,914 missense variants. The dataset consists of 31,546 variants that are classified as 

benign, and 32,638 variants ranked as pathogenic variants. The included variants a:ect 2,525 

genes in total. The features included in ProteinGym are the wild type amino acid sequence, the 

mutant amino acid sequence, the reference amino acid and the mutant amino acid at the place 

of substitution and the protein position of the substitution. 

The genome aggregation database (gnomAD) includes information about 16,412,219 missense 

variants in its gnomAD v4 release 16. We extracted the population allele frequency from this 



release for all variants included in the clinical substitution dataset and merged them with the 

features already available in ProteinGym. Additionally, we further enriched the dataset by 

gathering the missense observed / expected ratio, obtained from the gnomAD 2.1 release 16.  

Methods: 

The presented workflow started with a protein language model. ESMFold was used to generate in 

silico predictions for the protein structures of the wild types and structures of the variants 

contained in the clinical substitution dataset from ProteinGym. ESMFold was selected, because 

it provides a much faster folding time and is more portable when compared to AlphaFold2, 

although it comes with slightly less accurate predictions. The generated structures were used to 

train graph  autoencoders 17 in order to generate structural embeddings for both, the wild types 

and their corresponding variants. These structural embeddings were then combined with 

population metrics and a subset of features contained in ProteinGym. The combined features 

were finally used to train a XGBoost 18 model on a binary classification task to predict the 

pathogenicity of missense single nucleotide variants. The complete workflow is detailed in figure 

1. 

 

Figure 1: Schematic illustration of the machine learning approach workflow. We predicted protein 

structures for 63,914 missense single nucleotide variants and their corresponding wild types 



using ESMFold. These structures were then converted into numerical representations, so called 

embeddings, via a graph autoencoders. Finally, an XGBoost classifier was trained using these 

embeddings along with features from gnomAD and ProteinGym. 

Protein structure prediction with ESMFold: 

To generate the protein structures, we employed the ESMFold model (3B) from Hugging Face 19, 

which was utilized to predict the protein structures for both the variants and corresponding wild 

types within the ProteinGym dataset. This process was conducted on multiple Virtual Machines 

(VMs) within the Azure Machine Learning environment, each equipped with an A100 GPU.  

Given the O(n^3) complexity of the ESMFold model, attempting to run inference on larger amino 

sequences resulted in memory overflow issues 14. To circumvent this, we divided longer 

sequences into smaller subsequences, running the inference on each subsequence individually. 

The individual predictions were subsequently stitched together in a post-processing step using 

the NumPy library. The resulting protein structures were stored as Protein Data Bank (PDB) 20 files 

for subsequent processing and analysis in our study. This strategy allowed us to e:iciently 

manage computational resources while generating a comprehensive set of protein structure 

predictions for our machine learning approach. 

Preparation of Protein Graph Datasets  

We transformed the predicted protein structures from ESMFold into graph datasets represented 

as PyTorch Geometric Objects 21 using Graphein 22. In more detail two distinct graph datasets were 

generated to extract structural embeddings of varying scopes as shown figure 2: 

1. An atomic-scoped dataset, where individual atoms are represented by each node, and 

covalent edges are based on atomic distances. The node features included the 3D 

coordinates and a one-hot encoding of the atom. The min-max scaled atomic distances 

were also included as edge features. 

2. A residue-scoped dataset, where each node represents a residue in turn depicted by the 

alpha carbon and edges signify various interactions – distance based, aromatic, hydrogen 

bond, hydrophobic, aromatic sulphur, disulfide, cation pi and peptide_bonds. Node 



features included the 3D coordinates, the one-hot encodings of the amino acid and 

details about the residue´s presence of a hydrogen bond acceptor/donor.   

Both graph datasets, containing wild type and variant structures, were divided into subsets for 

training, validation, and testing of the graph autoencoders (GAEs). The division was conducted at 

the level of individual structures in a 70% (training), 20% (validation), and 10% (test) ratio.  

 

Figure 2: Protein Structure of A113D (A) consisting of 421 amino acids and its conversion in a 

residue-scoped graph representation (B) with 421 nodes and 1136 edges as well its conversion in 

an atomic-scoped graph representation (C) with 3274 nodes and 3338 edges. Conversion was 

carried out using Graphein. 

Structural Embeddings with Graph Autoencoders 

1. Two graph autoencoders were designed, one for each graph dataset. Both architectures were 

implemented using PyTorch Geometric21 each composed of distinct custom encoders and 

the same inner product decoder17. The graph convolutional encoder (GCEncoder), designed 

to handle residue-scoped graphs, comprised of graph convolutional network (GCN) layers, 

each followed by a layer normalization applied per graph. A rectified linear unit (ReLU) 

activation function was applied after each GCN layer, excluding the final one. The node 

embeddings from the final GCN layer were pooled using a global mean pooling operation to 

obtain a graph-level embedding. To create graph embeddings of dimension 128 two GCN 

Layers, for embeddings of dimension 256 three GCN Layers were used.  

CBA



2. To accommodate atomic-scoped graphs and incorporate edge features, the simple GCN 

layers in the GCEncoder were replaced with message passing neural network (MPNN) layers, 

resulting in a new encoder, the MPNNEncoder. The MPNN layers consisted of a GCN for node 

features and a linear layer for edge features, facilitating the transformation and integration of 

both node and edge information, which enhanced the model's ability to capture more 

intricate graph structures. Like the GCEncoder, for each MPNN layer a ReLU activation was 

applied followed by layer normalization, except for the final one. The node embeddings from 

the final MPNN layer were pooled to achieve a graph-level embedding. To create graph 

embeddings of dimension 128 two MPNN Layers, for embeddings of dimension 256 three 

MPNN Layers were used. 

 

Figure 3:Schematic reprensentation of the GCEncoder and the MPNNEncoder, created using 
torchlens 23. 

Irrespective of the encoder type, an inner product decoder was utilized to decode the node embeddings, 

or latent variables, into edge probabilities and a probabilistic dense adjacency matrix. 



Both graph autoencoders (GAE) were trained to minimize the binary cross-entropy loss for positive edges 

and negative sampled edges. Thus, the reconstruction loss was calculated as the sum of the losses for 

positive and negative edges. The GAEs were trained over a maximum of 20 epochs using a batch size of 

32 and a learning rate of 0.005 with the Adam optimizer.  Early stopping was implemented and evaluated 

epoch wise. The decision to apply early stopping was based on validation accuracy with a patience 

latency of 3 epochs without an increase in validation accuracy. The training, validation, and test data were 

loaded using PyTorch's DataLoader21, which provided the data in mini batches during training. After 

training, the models were tested using the test data, and the Area Under Curve (AUC) and Average 

Precision (AP) scores were reported. Upon completion of training, the entire graph datasets, representing 

all predicted protein structures (wildtype and variant structures), were processed through the trained 

GAEs. This step enabled us to extract numerical embeddings for both the variant and wildtype structures 

across the entire datasets.  These embeddings provide a condensed yet comprehensive representation 

capturing both local and global information of the protein structures, serving as a crucial input for 

subsequent analysis and training of a XGBoost Classifier18. 

Setting up a five-fold cross validation: 

The total dataset was split into five folds, which were eventually used to set up a five-fold cross 

validation. To prevent intergenic data leakage, we ensured that variants of genes present in one 

fold did not occur in another fold, which could have resulted in the problematic situation that 

variants from the same gene would end up in training, validation and test sets. This step was 

critical to ensure that our model's performance evaluation was accurate and not influenced by 

any overlapping data between the training, validation and testing phases. While the five folds were 

equally sized in terms of genes per fold, genes contained in the ProteinGym clinical substitution 

dataset don’t contain the same number of variants and as previously mentioned benign and 

pathogenic variants are not equally distributed in the ProteinGym either. This resulted in a slight 

class imbalanced folds. To balance out this imbalance, benign and pathogenic variants were 

randomly resampled from each fold, to bring all folds to the same variant size and an equal class 



distribution. The fold, which would eventually be used as current test set was not resampled, to 

avoid distortion of performance metrics which could result from duplicates in the test set. 

Implementation and training of a XGBoost classifier: 

To predict the pathogenicity of missense single nucleotide variants, we adopted an XGBoost 

Classifier 18 using the XGBoost library, a gradient boosting framework renowned for its predictive 

accuracy and computational e:iciency. For the training, validation and evaluation we used a five-

fold cross validation. Followingly an XGBoost model was trained and evaluated five times using 

the prepared folds. For each training setup an individual data split was performed. The training set 

contained three folds and the validation as well as the test set contained one fold. The 

hyperparameters of the classifier were optimized using Optuna 24, a hyperparameter optimization 

framework. The Optuna 24 hyperparameter optimization was conducted over 100 trials to 

determine the optimal set of hyperparameters for the XGBoost18 model. The performance metric 

for the optimization was the accuracy of the model, deployed on the hold out validation set. This 

optimization was performed individually for each fold-split. Followingly, the five sets of tuned 

hyperparameters were averaged and used to train a meta-optimized model on the fivefold splits, 

which was used to evaluate the final performance of the classification model. This procedure was 

performed for di:erent feature combinations, each with consistent fold-splits. In the first 

experiment setup the dataset consisted of various features including encoded amino acid 

references, encoded amino acid alternatives, amino acid position, the structural embeddings of 

both the variant and wild-type proteins as well as the cosine distance of these structural 

embeddings. The target variable was the pathogenicity of the variants, encoded into numerical 

form. We repeated this experiment with the same set up, with the exception of the inclusion of the 

structural embeddings and the cosine-distance of these structural embeddings, as features, to 

examine the added e:ectiveness of three-dimensional-information on a XGBoost 18 classifier. The 

final performance of each model was evaluated using the test datasets. The performance of each 

model on the test datasets was averaged across the folds and reported in the form of the average 

area under the curve of the receiver operating curve (AUROC) 25. Models, their hyperparameters, 



and their performance metrics were logged and stored using MLflow 26, a platform for managing 

the machine learning lifecycle. This approach allowed us to e:iciently manage, track, and 

evaluate the performance of our machine learning models. 

Computation of Shapley Values 

To understand the feature importance and overall model impact per feature in our XGBoost 

Classifiers we computed the SHAP values. The SHAP values were calculated for each fold utilizing 

the individual test set in the fivefold cross-validation process. These values were then stacked 

across all folds to assess the overall feature importance across the whole dataset. By default, the 

SHAP values are computed for each input feature, which in our case corresponded to each 

element in our structural embeddings. 

Given the additive nature of the SHAP values, we wanted to consider the structural embeddings 

as a whole. To achieve this, we summed the SHAP values over each structural embedding space. 

This allowed us to obtain a single SHAP value per structure embedding, providing a 

comprehensive understanding of the importance of the entire structural embedding in the model. 

These steps allowed us to create feature importance plots, which visually represented the 

significance and total impact of each feature in the model. 

Results: 

Pathogenicity Prediction: 

To access the value of in silico predicted three-dimensional protein structures for pathogenicity 

prediction of missense variants, we trained multiple XGBoost 18 classifiers. Each model was 

presented with population metrics and, aside from one exception of one (the minimal model), 

was additionally enriched with structural graph embeddings of di:erent abstraction levels. The 

performance of all models was subsequently evaluated using the AUROC metric. The individual 

plotted ROC-Curves for all classifiers can be seen in figure 4. The AUROC of the classifiers, that 

were additionally supplemented with the structural graph embeddings showed a slight, but 

consistent tendency towards an increase in performance, as demonstrated by the comparison of 

the average AUROCs. The classifier, that was trained and evaluated without the structural graph 



embeddings (the minimal model) showed the following AUROC values across the individual folds 

[fold1=0.92, fold2=0.92, fold3=0.90, fold4=0.90, fold5=0.89] and a mean AUROC value of 0.906 

(standard deviation = 0.011). The overall best performing classifier was the classifier additionally 

supplemented with both the graph embeddings on atomic level of abstraction (embedding size = 

128) and the graph embeddings on residue level of abstraction (embedding size = 128). It reached 

the following AUROC values across the individual folds [fold1=0.93, fold2=0.92, fold3=0.91, 

fold4=0.93, fold5=0.93] and a mean AUROC value of 0.924 (standard deviation = 0.009). However, 

the di:erence to the second-best preforming model, the classifier supplemented with graph 

embeddings on the residue level of abstraction (embedding size = 128), was marginal. This 

second-best performing classifier reached the following AUROC values across the individual 

folds [fold1=0.93, fold2=0.93, fold3=0.90, fold4=0.92, fold5=0.92] and a mean AUROC value of 

0.922 (standard deviation = 0.010).  

 

 

Figure 4: Side-by-Side comparison of the performance of the di:erent classifier models. (A) 

Classifier trained without the graph embeddings. (B) Classifier trained with graph embeddings on 

the residue level of abstraction (embedding size 128). (C) Classifier trained with graph 

embeddings on the atomic level of abstraction (embedding size 128). (D) Classifier trained with 

graph embeddings both on residue level of abstraction (embedding size 128) and atomic level of 



abstraction (embedding size 128). (E) Classifier trained with graph embeddings on residue level 

of abstraction (embedding size 256). (F) Classifier trained with graph embeddings both on residue 

level of abstraction (embedding size 256) and atomic level of abstraction (embedding size 256). 

Exploration of diWerent embedding sizes: 

As previously stated, and depicted in figure 4, next to di:erent level of abstractions of the protein 

graphs, we additionally analyzed whether the embedding size has an impact on the performance 

of utilized classifiers. In general, we observed a small yet consistent di:erence in the side-by side 

comparison between classifiers on the same abstraction level but di:erent embedding sizes. 

Overall, the classifiers trained on smaller embedding size showed an equal or slightly higher mean 

AUROC value, when compared to their counterpart trained on larger embeddings sizes. This was 

consistently observed in the residue-by-residue comparison (mean AUROC residue 128 = 0.923 

standard deviation = 0.010 & mean AUROC residue 256 = 0.916; standard deviation = 0.009), the 

atomic-by-atomic comparison (mean AUROC atomic 128 = 0.917; standard deviation = 0.010 & 

mean AUROC atomic 256 = 0.917; standard deviation = 0.005) and also in the mixed-by-mixed 

comparison (mean AUROC residue 128/ atomic 128 = 0.924; standard deviation = 0.009 & mean 

AUROC residue 256 / atomic 256 = 0.918; standard deviation = 0.008). No model trained on the 

larger embedding size of 256 outperformed their 128 embedding size counterparts. An overall 

comparison in the form of a bar plot can be seen in figure 5.  



 

Figure 5: Bar plot highlighting the AUROC di:erences on the di:erent combinations of level of 

abstractions and embedding sizes. Overall, the experiments utilizing smaller embeddings showed 

slightly higher AUROC values. The best performing classifier utilized embeddings from both levels 

of abstraction, although the di:erence was minimal.  

Feature Importance: 

To further explore the relevance of graph embeddings for the classification task, we utilized the 

individually fold wise trained XGBoost classifiers at the residue level of abstraction (embedding 

size = 128) to predict the SHAP values for the hold out test data. We aggregated these SHAP values 

for an overall evaluation which can be seen in figure 6. As visualized in figure 6, the allele 

frequency is the most influential feature for pathogenicity prediction, which is then followed by 

the structural embeddings of the wild-type and mutant structures. 

 



 

Figure 6: SHAP values displayed as a bee swarm plot (A), highlighting the individual SHAP values. 

Additionally, the aggregated SHAP values are displayed as bar plot (B).  The allele frequency is the 

undisputed most important feature. The graph embeddings are of noticeable importance. The 

wild type structures are ranked as more important to the classification task, compared to the 

variant structures.   

Comparison to previous scores: 

ProteinGym is a standardized dataset which can be used to evaluate and compare di:erent 

pathogenicity predictors. However, for the clinical substitutions’ dataset no predefined cross 

validation folds or train-test splits are available. Additionally, di:erent models evaluated on 

ProteinGym are often trained on additional data and data leakage is not always considered, 

leading to a leaderboard which overestimates the performance of some classifiers. A comparison 

of our best performing XGBoost to other models listed on the ProteinGym leaderboard can be 

seen in figure 7.  



 

Figure 7: ProteinGym leaderboard as depicted on the ProteinGym website. Since no standard 

procedure is defined for training and evaluation on the clinical substitution dataset, most models 

are trained on additional data. Models which were trained on larger datasets e.g. the entirety of 

ClinVar which has a large overlap with the clinical substitution dataset leading to di:ering 

magnitudes of data leakage are marked with an asterisk (*). 

Discussion: 

DiWerentiating to existing models: 

The demonstrated workflow presents a way to include the three-dimensional structure of proteins 

in pathogenicity classification tasks. In principle this agnostic workflow is capable of processing 

experimentally determined and in silico predicted structures. Models like AlphaFold2 10 and 

ESMFold 14 have made in silico predicted protein structures abundantly available, however these 

structures have only been partially used in variant e:ect predictors previously. Previous structural 

aware models like those presented by Schmidt et al. and Zhao et al. take structural information 

from in silico predicted protein structures from AlphaFold2 into account, however they rely on an 

engineered feature extraction process in which biochemical and network features are extracted 

and then used to train a classifier model11,12. The presented approach di:erentiates itself from 

those previous workflows by replacing the manual feature engineering process with graph 



embeddings generated by graph autoencoders, which is compatible with in silico predicted 

structures from arbitrary computational modelling approaches and real-world structures.  

Further Directions & Limitations: 

Due to computational limitations we opted to use the 3 billion parameter ESMFold model, 

available on HuggingFace19. Because of the faster inference and smaller computational 

requirements, when compared to AlphaFold2, we were able to predict the wildtype and variant 

structures for the whole ProteinGym clinical substitution dataset. This however is a possible entry 

point for a performance ceiling e:ect, since for ESMFold it has been demonstrated that an 

increase in parameter size, results in more accurate predictions. Additionally, since its release, 

ESMFold has been describes as slightly less accurate compared to AlphaFold2. This reduced 

accuracy might be inherited by the presented classifiers and therefore should be kept in mind as 

potential limitation. Additional work is needed in which graph embeddings from structures 

generated by di:erent models (in addition to experimentally determined structures) are explored 

as input features. 

We presented a classifier which utilizes only a small variety of features. Previous pathogenicity 

predictors such as CADD 8 often use a larger variety of features such as evolutionary conservation 

scores. In further work the utility of these features for the presented workflow should be explored.  
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