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U
nderstanding the computational princi-
ples of the brain and replicating them
on neuromorphic hardware and modern

deep learning architectures is crucial for
advancing neuro-inspired AI (NeuroAI). Here,
we develop an experimentally-constrained
biophysical network model of neocortical
circuit motifs, focusing on layers 2-3 of the
primary visual cortex (V1). We investigate
the role of four major cortical interneuron
classes in a competitive-cooperative compu-
tational primitive and validate these circuit
motifs implemented soft winner-take-all
(sWTA) computation for gain modulation,
signal restoration, and context-dependent
multistability. Using a novel parameter
mapping technique, we configured IBM’s
TrueNorth (TN) chip to implement sWTA
computations, mirroring biological neural
dynamics. Retrospectively, we observed a
strong correspondence between the biophysi-
cal model and the TN hardware parameters,
particularly in the roles of four key inhibitory
neuron classes: Parvalbumin (feedforward in-
hibition), Somatostatin (feedback inhibition),
VIP (disinhibition), and LAMP5 (gain nor-

malization). Moreover, the sparse coupling
of this sWTA motif was also able to simulate
a two-state neural state machine on the TN
chip, replicating working memory dynamics
essential for cognitive tasks. Additionally,
integrating the sWTA computation as a pre-
processing layer in the Vision Transformer
(ViT) enhanced its performance on the
MNIST digit classification task, demonstrat-
ing improved generalization to previously
unseen data and suggesting a mechanism akin
to zero-shot learning. Our approach provides
a framework for translating brain-inspired
computations to neuromorphic hardware,
with potential applications on platforms like
Intel’s Loihi2 and IBM’s Northpole. By
integrating biophysically accurate models
with neuromorphic hardware and advanced
machine learning techniques, we offer a
comprehensive roadmap for embedding
neural computation into NeuroAI systems.

Keywords: Biophysics of neocortical compu-
tation, IBM’s TrueNorth neuromorphic chip,
Winner-take-all, Brain-inspired computing, Vision
Transformers, Domain generalization, and NeuroAI.



Introduction

Recent advances in machine learning and computa-
tional neuroscience have significantly accelerated
the progress toward the development of synthetic
cognitive agents with artificial general intelligence
(AGI). Vision transformers (Dosovitskiy et al. [2020])
and natural language models (Shanahan et al. [2023])
have achieved notable success in image recognition
and natural language processing. However, despite
surpassing human performance in specific tasks like
chess (Campbell et al. [2002]) and Go (Silver et al.
[2017]), AI systems still encounter significant chal-
lenges when learning in novel environments. These
systems require substantially more computational
resources and annotated data than biological brains.
This disparity may also arise from fundamental
differences in how artificial and biological neural
networks process information. In this work, we
investigate the potential of reverse-engineering the
brain’s computational principles and integrating
them into AI systems. This exploration aligns with
the core tenet of the NeuroAI approach (Zador et al.
[2023]), aiming to bridge the existing gap between
artificial and biological intelligence.

The execution of cognitive behavior in the
brain relies on the ability to select actions based
on external stimuli and context (Dayan [2008]).
In animals, the learning of state-dependent senso-
rimotor mappings (Asaad et al. [2000], Banerjee
et al. [2020], Xu et al. [2022], Condylis et al. [2020])
is primarily mediated by the neocortex, which
facilitates cognition through computations enabled
through its modular, laminar microcircuits. These
microcircuits consist of excitatory and inhibitory
neurons, including four major inhibitory classes —
parvalbumin (PV), somatostatin (SST), vasoactive
intestinal peptide (VIP), and Lamp5 (Rudy et al.
[2011], Tremblay et al. [2016]). These interneurons
play a crucial role in regulating state-dependent
computations, performing tasks such as arithmetic,
logical operations, timing, and gain modulation
(Fishell and Kepecs [2020], Kepecs and Fishell [2014],
Ferguson and Cardin [2020], Niell and Scanziani
[2021]). Importantly, these four inhibitory neuron
classes are conserved across cortical regions and
species (Pfeffer et al. [2013], Campagnola et al.
[2022]), indicating that their computational logic is
generalizable for diverse high-order tasks, including
motor execution and working memory.

Several key candidate computational princi-

ples have been proposed to elucidate neocortical
function, including normalization (Carandini and
Heeger [2012]), dynamic field theory (Schöner and
Spencer [2016]), attractor networks (Vyas et al.
[2020]), predictive coding (Keller and Mrsic-Flogel
[2018]), Bayesian inference (Bastos et al. [2012])
and winner-take-all (WTA) computations (Douglas
and Martin [2007]). However, direct evidence at
the level of microcircuit and biological hardware
implementation remains limited. Among these,
the WTA mechanism is amenable to neocortical
architecture and combines key elements of these
various computational approaches. By employing
competitive-cooperative dynamics, the WTA mech-
anism facilitates selective amplification and noise
minimization, thus enhancing signal restoration
(Douglas and Martin [2007]). These characteristics
resemble signal processing in both primary sensory
and motor cortices, where superficial pyramidal
neurons receive sparse and weak thalamic inputs that
require amplification to extract relevant information
(Balcioglu et al. [2023], Lien and Scanziani [2018],
Bopp et al. [2017], Binzegger et al. [2004]). Conse-
quently, the WTA mechanism may be a fundamental
computational strategy employed by cortical circuits
and represent a ubiquitous computational strategy
implemented by the neocortex.

In addition, WTA models show considerable
promise for neuromorphic hardware (Mead, 1990;
2023), especially in energy-efficient, real-time
processing (Chicca et al. [2014], Qiao et al. [2015],
Indiveri and Sandamirskaya [2019]). To execute
such computations in silico, IBM’s TrueNorth (TN)
chip offers a tractable platform for integrating
brain-inspired principles. For example, it features
a reconfigurable, asynchronous, multi-core digital
architecture optimized for real-time, ultra-low-power,
event-driven processing with physical neurons
(Modha et al. [2023], Merolla et al. [2014], Neckar
et al. [2018]). As a result, TN is especially well-suited
for implementing brain-like computations (Indiveri
and Sandamirskaya [2019]). While prior research has
focused on leveraging statistical relationships among
neuronal populations to emulate biological circuits
on TrueNorth hardware (Imam [2021]), developing
generalizable techniques for integrating diverse
biophysical and theoretical models remains an open
challenge. In this work, we demonstrate that by
employing biophysically realistic computational
principles, parameters of IBM TrueNorth - such
as thresholds, leak rates, and crossbar weights,
can be modeled to reflect those found in cortical



microcircuits. By utilizing this approach, TrueNorth
(TN) hardware can be programmed to perform com-
putations analogous to those observed in simplified,
biologically realistic V1 cortical circuit motifs, that
may potentially underlie key V1 functions such as
orientation and direction tuning (Rossi et al. [2020],
Niell and Stryker [2008], Douglas and Martin [2007],
Hubel and Wiesel [1962].

Our goal here was not to build an exhaustive
model of V1, such as that outlined in Billeh
et al. [2020], but rather to design a simplified,
generalizable circuit motif that validates the
core computational principles utilized in cortical
processing. The retrospective analysis confirmed
that the optimal parameters for configuring TN
hardware to display sWTA dynamics closely aligned
with the primary functions of different interneuron
classes. Furthermore, our findings demonstrated that
hardware-optimized abstractions could effectively
replicate biological circuits. Finally, to test the
functionality of this approach, we investigated
whether integrating this hardware-constrained
sWTA computation could be utilized to implement
a neural state machine for working memory or to
enhance the performance of state-of-the-art deep
learning models such as Vision Transformers (ViT).
For the former, we successfully achieved persistent
activity in the TN hardware by leveraging sparsely
coupled sWTA motifs, a critical requirement for
instituting working memory. Additionally, when
this approach was applied as a pre-processing layer
into the ViT architecture, we observed a substantial
increase in classification accuracy for previously
unseen test data. Together these results suggest that
adapting biophysical principles to neuromorphic
chips may offer a promising pathway for NeuroAI
performance.

Results

Our objective is to extract general principles of
neocortical function, such as soft Winner-Take-All
(sWTA), and implement them efficiently on neuro-
morphic hardware. By leveraging the hardware’s
parametric constraints, we aim to apply these
simplified neocortical computations to enhance
working memory capabilities. This approach not
only mimics brain-like processing but also has the
potential to improve AI models’ performance across
various machine learning tasks, bridging the gap
between neuroscience and artificial intelligence.

Biophysical model implementation of neocor-
tical circuit motifs

Sensory information processing in primary sensory
cortices, such as V1 relies on pyramidal neurons in-
tegrating bottom-up signals with top-down feedback
from higher-order visual areas. Key components in
this process include recurrent excitation, feedforward
and feedback inhibition, disinhibition, and divisive
normalization. These functions are primarily
mediated by parvalbumin (PV), somatostatin
(SST), vasoactive intestinal peptide (VIP), and
lysosomal-associated membrane protein 5 (LAMP5)
interneurons, respectively, working together to
selectively amplify thalamic inputs (Reinhold et al.
[2015], Reinhold et al. [2015], Pfeffer et al. [2013],
Lien and Scanziani [2013]). Mouse V1 exhibits
strong recurrent connections among layer 2/3 (L2/3)
pyramidal neurons (Ko et al. [2011], Harris and
Mrsic-Flogel [2013], Rossi et al. [2020]), with PV
interneurons providing local feedforward inhibition
and SST interneurons delivering global feedback
inhibition targeting axon initial segments and
L2/3 dendrites (Schneider-Mizell et al. [2021],
Atallah et al. [2012], Naka et al. [2019], Adesnik
and Scanziani [2010]). VIP interneurons modulate
feedback inhibition (Karnani et al. [2016], Pfeffer
et al. [2013]), while LAMP5 cells regulate top-down
and bottom-up signals through normalization
(Ibrahim et al. [2021], Huang et al. [2023], Malina
et al. [2021], Hartung et al. [2024]).

Consistent with earlier studies, our experimental
data confirmed that L2/3 pyramidal neurons receive
strong inhibition during bottom-up sensory input
stimulation in V1 (Supplementary Fig. 1A-C). To
dissect the specific contributions of PV and SST
interneurons, we employed optogenetics in PV-Cre
and SST-Cre mice and analyzed how their activation
modulated the current-frequency (f/I) response of
L2/3 pyramidal neurons (Supplementary Fig. 1D-F).
Additionally, top-down auditory cortex inputs,
which primarily convey contextual information, were
found to target Lamp5 expressing neurogliaform
interneurons (Supplementary Fig. 1G-J). Though
not explicitly tested, we modeled Lamp5-mediated
global inhibition via volumetric transmission
(Ibrahim et al. [2021], Huang et al. [2023]) af-
fecting L2/3 pyramidal neurons. Finally, VIP
interneurons, although not directly included, likely
modulated SST-mediated inhibition through dis-
inhibition (Karnani et al. [2016], Pfeffer et al. [2013]).



Next, we built a biophysically detailed network
model in the NEURON simulation environment
to validate whether the simplified cortical circuit
motifs obtained from V1 indeed implemented
sWTA computations. To do this, we incorpo-
rated excitatory and inhibitory cell types with
diverse spiking patterns in a conductance-based
Hodgkin-Huxley network model (Supplementary Fig.
2A-D). Synaptic parameters were constrained by
our experimental data (Supplementary Fig. 1F).
Poisson-modulated excitatory synaptic inputs were
used to assess the input-output (IO) function of L2/3
pyramidal neurons under PV and SST inhibition
(Supplementary Fig. 2A). Synaptic weights were
tuned to match experimentally observed inhibitory
postsynaptic potentials, adjusting the pyramidal
neuron f/I curve (Supplementary Fig. 2D-F). SST
inhibition primarily influenced the slope of the IO
function, while PV inhibition altered the offset (Sup-
plementary Fig. 2E-F). Lamp5-mediated volumetric
inhibition was represented as non-specific inhibition
across pyramidal neuron dendrites, achieved by
reducing both SST and recurrent excitatory weights.
Notably, although VIP inhibition was not explicitly
modeled, its effects were captured by reducing SST
weights.

Based on experimental data, we developed a
generalized cortical microcircuit model comprising
10 pyramidal neurons, 10 PV interneurons, 1 SST
interneuron, and 1 Lamp5 interneuron, with their
biophysical properties constrained by our mouse
V1 physiology data (Figure 1A). We examined
the computational behavior of this model under
Poisson-modulated excitatory synaptic inputs
mimicking thalamic activity, where stronger inputs
were selectively amplified, and weaker inputs
suppressed (Figure 1B). Stronger thalamic inputs
represent a tuned orientation or direction informa-
tion carried to L2/3 pyramidal neurons in V1. The
soft winner-take-all (sWTA) mechanism enables
neural circuits to prioritize the strongest input by
balancing competitive and cooperative interactions.
Non-linear amplification of stronger inputs, coupled
with suppression of weaker ones, forms the core
of sWTA computations. Consistent with previous
findings (Douglas et al. [1995], Somers et al. [1995],
Reinhold et al. [2015]), our model reproduces these
dynamics through recurrent excitation and lateral
feedback inhibition (Figure 1B-C). Using this model,
we assessed how various interneuron populations
contribute to sWTA computations, focusing on
their role in enhancing responses to strongly

stimulated neurons (Pyr 4) while suppressing
weaker responses (Pyr 1-3, 5-7; Figure 1C). By
modulating the conductances of PV, SST, VIP, and
Lamp5 interneurons within physiological ranges,
we quantified their influence on pyramidal neuron
dynamics (Figure 1D-E). PV and SST inhibition in-
dependently shaped the width and gain of the sWTA
function, while Lamp5-mediated inhibition primarily
adjusted gain (Figure 1F). VIP-mediated disinhibi-
tion was examined by reducing SST synaptic weights.

We computed a selectivity index to evaluate
the network’s ability to suppress weaker inputs while
amplifying stronger ones. This index, calculated
as the difference in pyramidal neuron responses to
closely tuned inputs, revealed that recurrent excita-
tion, along with PV and SST inhibition, is crucial
for maintaining high selectivity (Supplementary Fig.
2G-I). Lamp5 inhibition modulates gain, preserving
tuning specificity while enabling flexible responses
to factors like attention and locomotion (Ferguson
and Cardin [2020], Bugeon et al. [2022]). Our model
replicates key features of cortical circuits, showing
both linear gain scaling and non-linear selectivity.
These dynamics are governed by the balance
between excitatory and inhibitory synaptic weights
and the feedback inhibition threshold, modulated
by network activity. Deviations from optimal
weights diminished sparsity by amplifying secondary
inputs (Figure 1G-I). Linear gain modulation
enhanced weak thalamic inputs (Oldenburg et al.
[2024], Sievers et al. [2024], Lien and Scanziani
[2018], Lien and Scanziani [2013]), while non-linear
computations such as signal restoration for sharply
tuned, noise-embedded inputs (Figure 1G-H) —
aligned with in vivo observations. Furthermore,
the model captures hysteresis and multistability,
enabling the circuit to amplify relevant inputs based
on initial conditions or contextual cues (Figure 1I).

In summary, our model provides a biophysi-
cal foundation for a simplified and generalized
computational mechanism, such as soft Winner-
Take-All (sWTA), which may represent a universal
computation in sensory cortices (Douglas and
Martin [2007], Niell and Stryker [2008]), that might
contribute to orientation and direction tuning in the
visual cortex (Hubel and Wiesel [1962]), angular
whisker tuning in the barrel cortex (Lavzin et al.
[2012]), and frequency tuning in the auditory cortex
(Kato et al. [2017]).



Mapping neocortical algorithms onto IBM
TrueNorth neuromorphic hardware

A few years ago, IBM released their neuromorphic
TrueNorth (TN) chip, offering a reconfigurable,
asynchronous, multi-core digital architecture ideal
for implementing brain-inspired computations. We
aimed to program the TN chip to implement a
simplified sWTA computational primitive, inspired
by the neocortex. A key challenge was that TN’s
neural dynamics were governed by parameters such
as thresholds, leaks, and crossbar weight that did
not directly align with biophysical or artificial
neural network models. Notably, these strongly
resemble gain modulation regulated by the four
interneuron types considered in the biophysical
modeling described previously.

To implement an sWTA computation, we de-
veloped an automated gain-matching technique to
match TN network dynamics to the biophysical
model, enabling accurate parameter mapping
(Appendix A1). Initially, we created an abstract
rate-based model that mimicked the input-output
(IO) function of the biophysical neurons. We then
derived constraints to map these dynamics onto
the TN hardware, producing a linear threshold
response that closely approximated the physiological
behavior of cortical neurons (Figure 2A-C). Inputs
to the TN network were generated by configuring
the on-chip neurons within neurosynaptic cores
to produce a range of frequencies (Figure 2D-E).
This allowed us to match the TN network’s IO
gain to the abstract model (Figure 2F). Using
contraction theory (Rutishauser and Douglas [2009];
Appendix A2), we derived optimal TN parameters,
enabling us to implement all sWTA operations,
as we performed in our biophysical analysis of V1
processing, including signal restoration, hysteresis,
and multi-stability (Figure 2G-I).

After programming the TN chip to perform
sWTA computations, we retrospectively compared
TN parameters such as thresholds and leaks with
those in our biophysical model. The optimized
TN parameters closely aligned with the functions
of the excitatory-inhibitory balance observed in
the biophysical model (Supplementary Fig. 2E-F).
Specifically, TN parameters such as threshold and
leak mirrored the roles of PV and Lamp5-mediated
inhibition in the biophysical model (Supplementary
Fig. 3A-C). Moreover, the TN neurons replicated the
recurrent excitation and global feedback inhibition

motifs found in cortical circuits, mirroring the
effects of SST interneurons on pyramidal neuron IO
functions, as well as the role of VIP interneurons in
disinhibiting this population (Figure 2E). Notably,
the parameters derived using our gain-matching
technique closely resembled those observed in
experimentally constrained models of neocortical
circuits across all conditions, highlighting the fidelity
of TN hardware in simulating cortical computations
(Supplementary Fig. 3D-F).

While our initial efforts efficiently mapped
the sWTA computations in rate mode, we extended
the method to implement population-level sWTA
networks in spiking mode configuration (Figure
2J). This configuration, tested on a population of
10 excitatory neurons gated by shared inhibition,
allowed us to translate rate-based computations
into spiking dynamics, better reflecting neocortical
organization. Under optimal conditions, the TN
network’s dynamic range during sWTA closely
matched the firing rates of cortical neurons in
V1 (Figure 2K-L). We evaluated whether the TN
network in spiking mode could implement sWTA
computations under noisy conditions, simulating
biological variability (Figure 2K-L). The noise was
controlled using a parameter called threshold mask
noise (TMN), which emulated spontaneous cortical
activity. At TMN values up to 10, synaptic and spik-
ing variability resulted in stable network dynamics
that supported sWTA operations (Supplementary
Fig. 3G-H). This demonstrated that TN spiking
networks remain stable in noisy environments and
avoid synchrony driven by inhibition. Without
inhibition, excitatory activity would increase
exponentially; however, when inhibitory neurons are
activated, their gain is tuned to stabilize excitatory
activity. This balance between positive and negative
feedback forms an attractor state.

We next aimed to demonstrate a practical
use case for sWTA circuit motifs in hardware
applications, specifically by implementing a neural
state machine (NSM). We hypothesized that NSMs
could serve as foundational elements for complex
cognitive tasks in robotics, and will benefit from the
energy-efficient framework of sWTA networks. A
key aspect of cognitive function is working memory,
which allows for the retention of cue information
even in the absence of stimuli, enabling appropriate
action selection based on environmental cues. NSMs
with working memory encode stimuli as distinct
states, transitioning between them to support



context-dependent tasks (e.g., Fuster and Alexander
[1971], Wang [2001], Harvey et al. [2012]). Previous
studies have shown that sparsely coupled sWTA
motifs can sustain persistent activity (Neftci et al.
[2013], Rutishauser and Douglas [2009]). Given
the conserved use of circuit motifs across cortical
areas, we hypothesized that this sWTA architecture
would efficiently support working memory. To
implement stable attractor states, TN hardware
parameters were tuned to balance positive and
negative feedback as outlined in Neftci et al. [2013]
to avoid inhibition-mediated synchrony, which is
critical for maintaining persistent activity in an
NSM using spiking dynamics. We tested whether
these motifs could facilitate action selection in
response to environmental cues while retaining
information in their absence. Our results showed
that TN neurosynaptic cores, initially designed
for sensory sWTA, could be effectively repurposed
for NSM implementation. Using sparsely coupled
sWTA motifs, we achieved persistent activity in TN
hardware, with time constants that aligned closely
with experimental data.

We then evaluated the ability of this architec-
ture to implement a two-state NSM. Transitions
between states S1 and S2 were driven by input
signals (X, Y) and regulated by pointer neurons
(P12, P21) within the sparsely coupled sWTA motif
(Supplementary Figure 4A-C). This configuration
generated stable sWTA dynamics and persistent
attractor states (Neftci et al. [2013]; Appendix
A2). Consistent with previous findings, gamma
coupling through bidirectional excitatory weights
in TN hardware sustained persistent activity even
without external input. When noise was introduced,
it disrupted synchronous firing but optimizing
gamma coupling maintained stable persistence (Sup-
plementary Fig. 4D). By fine-tuning the coupling
strength, we identified the minimal gamma required
for maintaining persistent activity across varying
noise levels. Striking this balance was critical for
stability, especially when environmental cues were
unreliable. We further confirmed the stability of
attractor states by removing one transition input,
demonstrating that the circuit continued to sustain
activity (Supplementary Fig. 4E).

In summary, we developed a two-state NSM
where transitions were governed by input signals
and the current state (Supplementary Fig. 4F).
The sWTA dynamics facilitated smooth state
transitions within a finite state automaton (FSA)

framework. Efficiency analysis revealed that both
time and energy in TN hardware scaled linearly
with the number of states and computational load,
contrasting with the quadratic scaling observed
in Compass simulations. Notably, runtime on TN
hardware was independent of firing rates, synapse
activity, and neuron counts, with asynchronous state
updates (Supplementary Fig. 4G-H; Appendix A3).
This underscores the efficiency of neuromorphic
hardware in implementing NSMs, supporting higher
cognitive functions.

Neocortex-inspired WTA implementation for
Artificial Intelligence applications

Performance boost in Image Classifi-
cation: Finally, we tested whether incorporating
a pre-processing WTA layer into deep learning
models, such as Vision Transformers (ViTs),
could enhance performance on real-world vision
tasks. Specifically, we explored the role of sWTA
computations in spatial feature extraction for object
classification tasks. We developed a novel neural
layer inspired by the hardware-constrained sWTA
motif and integrated it into the conventional ViT
architecture to assess its impact on classifying
unseen digit datasets. This approach (Appendix A4)
leveraged sWTA as a pre-processing layer to reduce
redundancies and enhance contrast in visual inputs.
A sliding window-based computation (Figure 3A)
was employed for feature amplification, minimizing
domain shifts (Figure 3B). This allowed parameters
extracted by the TN hardware constraints to execute
sWTA computations using recurrent excitation and
lateral inhibition across pixels. In this setup, the
patch with the highest variance, or ”winner patch,”
received the highest normalized value, while other
patches were scaled accordingly. The selection of
the ”salient” patch size was optimized to maintain
stable circuit dynamics in line with TN hardware
parameters.

We next evaluated domain generalization to
assess the ability of the sWTA model to adapt
to unseen data distributions — an ideal test
for mimicking the brain’s ability to generalize
across diverse sensory inputs and maintain robust
performance in novel environments. We trained the
ViT model, with and without the WTA layer (Figure
3C), on a single source domain, and then tested its
performance on unseen target domains. Significant
improvements were observed across all source/target
combinations (Figure 3D). Beyond ViT, similar



Table 1: Comparison of classification accuracy between WTA-based DNN architectures (Vision Transformer, Ef-
ficientNet, CapsuleNet, MobileNet, and ResNet) and source-only models trained on the MNIST (M),
MNIST-M (MM), SVHN (S), and USPS (U) datasets with respective combinations as highlighted on top of
each column. The top panel shows the performance of the models without adding the WTA layer whereas
the bottom panel shows the performance boost by adding the WTA layer to the network architectures. The
models are tested on completely ’unseen’ target datasets. (bold-red indicates the best and bold-black
indicates the 2nd best)

Source-only Models M→U U→M S→M M→S M→MM MM→M
ViT 75.0 72.0 66.6 22.0 42.0 98.3
EfficientNet 77.9 50.7 61.4 18.6 18.8 95.0
CapsuleNet 96.4 87.2 58.1 11.8 22.5 98.4
MobileNet 84.4 60.0 72.2 22.4 33.9 97.3
ResNet 82.5 58.5 63.4 27.2 38.2 97.4

ViT+WTA 84.26 78.0 73.6 52.7 70.0 98.1
EfficientNet+WTA 83.5 74.2 69.1 19.6 48.8 96.3
CapsuleNet+WTA 94.1 87.8 75.9 32.1 57.2 98.6
MobileNet+WTA 82.5 70.9 73.5 40.5 73.4 97.8
ResNet+WTA 82.8 66.0 71.2 27.7 70.2 97.8

performance gains were observed in EfficientNet
(Tan and Le [2019]), CapsuleNet (Sabour et al.
[2018]), MobileNet-V2 (Sandler et al. [2018]), and
ResNet-50 (He et al. [2016]), where the WTA layer
enhanced the models’ ability to learn generalizable
features, improving domain shift robustness in
object recognition tasks for MNIST and other digit
datasets (Table 1). Figure 3B illustrates how the
WTA layer reduces domain shift, showing high
similarity across sample images post-processing.
These results were achieved without intensity-based
augmentation, using only geometric augmentations.
EfficientNet, MobileNet, and ResNet-50 were
initialized with pre-trained ImageNet weights
(Russakovsky et al. [2015]). Supplementary Figures
5A-B present train/loss curve examples for ViT and
CapsuleNet, while Supplementary Table 2 details
model architectures and training settings. Table 1
summarizes the results, with Supplementary Table
1 showing performance improvements compared to
state-of-the-art models. We also compared the WTA
layer’s ability to minimize domain shift against
traditional pre-processing techniques such as Local
Response Normalization (LRN) Krizhevsky et al.
[2017], Local Contrast Normalization (LCN) Placidi
and Polsinelli [2021] and Z-score normalization.
Supplementary Figure 6A provides qualitative
comparisons, while Supplementary Figure 6B
visualizes UMAP embeddings of MNIST and

MNIST-M datasets post-normalization. Our WTA
implementation significantly minimized domain shift
(Supp Fig. 6B), leading to a marked improvement
in classification accuracy (0.7) on unseen test data
compared to baseline techniques (Supp Fig. 6C).

Performance boost in Image Segmen-
tation: Lastly, we evaluated our approach in a deep
learning model for the challenging task of natural
image segmentation. Similar to the results seen in
image classification, incorporating the sWTA layer
into the RefineNet architecture Lin et al. [2017]) with
ResNet-101 significantly improved performance in
semantic segmentation. This underscores the broad
applicability of our approach across various vision
tasks. The model was trained on the Cityscapes
dataset (Cordts et al. [2016]), consisting of 2,975
daytime driving images, and tested on 50 coarsely
annotated Nighttime Driving dataset (Dai and
Van Gool [2018]) (Figure 3E). We employed the
same training setup, using a dynamic learning rate
of 0.1 with stochastic gradient descent (SGD) on an
RTX A6000 GPU and a batch size of 6. Performance
was measured using mean Intersection over Union
(mIoU).

Notably, adding the WTA layer to RefineNet
achieved performance on par with nighttime driving
data using only source-trained models (Figure 3F).



Table 2: Segmentation performance on Nighttime Driving ( Dai and Van Gool [2018]), reported as mIoU scores.
WTA-RefineNet outperforms other methods trained only on daytime data and has a competitive performance
to methods also using nighttime images

Method Nighttime Driving (mIOU)

RefineNet Lin et al. [2017] 34.1
W-RefineNet Lin et al. [2017]
(pre-trained RGB weights of Resnet on ImageNet)

34.6

RefineNet-AdaBN Lin et al. [2017] 36.3
WTA-RefineNet
(pre-trained RGB weights of Resnet on ImageNet)

36.5

Table 2 highlights the performance improvements
in RefineNet for natural image segmentation tasks,
with and without the sWTA layer, demonstrating its
robustness in handling domain shifts. Supplementary
Fig. 7 shows qualitative results for the nighttime
dataset, comparing performance with and without
the WTA layer.

In conclusion, implementing sWTA motifs as
a layer in various deep learning architectures
substantially improves their performance. Using the
competitive-cooperative dynamics of biologically
inspired WTA mechanisms as a preprocessing layer
creates a synergy between biological principles
and artificial neural networks. Our WTA-inspired
layer enhances performance in real-world tasks like
image classification and segmentation by acting as
an adaptive filter that sharpens focus on the most
relevant features while reducing noise and irrelevant
information.

Discussion

The overall goal of this study was threefold:
First, to validate that computational principles,
such as winner-take-all (WTA), are implemented
by neocortical circuit motifs by delineating the
contribution of four major cardinal interneuron
classes in biophysical models. Second, to emulate
WTA computational primitives and extend them to
construct neural state machines on IBM’s TrueNorth
(TN) neuromorphic hardware. Third, to integrate
hardware-derived parametric constraints into deep
learning models, such as Vision Transformers,
demonstrating that biological principles can enhance
performance and reduce training sessions through
zero-shot learning. Figure 4 shows the block diagram
architecture of our proposed framework.

Our gain-matching technique allows for the
emulation of any neural network architecture and
computational principle on neuromorphic hardware,
similar to previous studies on analog systems (Neftci
et al. [2011]). This work builds on prior neural
computation research that has applied sWTA
networks to object recognition (Yuille and Grzywacz
[1988]; Riesenhuber and Poggio [1999]; Erlhagen and
Schöner [2002]), attention (Itti et al. [1998]; Deco
and Rolls [2005]), orientation selectivity (Ben-Yishai
et al. [1995]; Somers et al. [1995]), decision making
(Amari and Arbib [1977]) and sparse coding (Rozell
et al. [2008]). Notably, our proposed framework
(Figure 4) can be easily adapted for next-generation
neuromorphic platforms like Braindrop (Neckar et al.
[2018]), IBM’s Northpole (Modha et al. [2023]), and
Intel’s Lohi2 (Davies et al. [2021]). Facilitating a
direct translation of computational insights from
theoretical neurobiology to hardware and AI systems.

Building on prior studies, we demonstrate that
generic circuit motifs used for sensory computations
can be adapted to implement working memory for
cognitive decision-making tasks on TN neuromorphic
hardware (Rutishauser and Douglas [2009], Neftci
et al. [2013]). This multiplexing of sensory and
decision-making computations is both hardware-
friendly and efficient, with computation time and
energy scaling linearly with the number of states
or computational load. Our approach provides a
scalable solution for mapping large state machines,
outperforming current Long Short-Term Memory
(LSTM) models. While the components in LSTM
architectures scale quadratically with the number of
states, our method scales linearly, offering a more
efficient alternative. Future research could inves-
tigate the role of specific interneurons and circuit



motifs beyond sensory regions, potentially reveal-
ing principles for context-dependent decision-making.

Our framework can also be extended to mimic
dendritic computation in cortical neurons and
implement dendrocentric learning rules (Boahen
[2022]), such as BCM plasticity (Bienenstock et al.
[1982]), spike-timing dependent plasticity (STDP;
Bi and Poo [1998]), and non-Hebbian behavioral
time-scale plasticity (BTSP; Bittner et al. [2017]).
These principles could inspire better hardware
design for constructing self-learning AI cognitive
agents with behavioral flexibility akin to that of
animals. In this study, we focused on implementing
aspects of the primary visual cortex within Vision
Transformers and deep learning models. Future work
could extend this framework to other cortical regions
involved in sensory processing and decision-making.
Together by implementing realistic biophysical
models to neuromorphic systems we are able to
improve AI networks, providing a key step towards
fostering NeuroAI development.
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Methods

Animals: All experimental procedures were
approved by and conducted in accordance with
Harvard Medical School and The Australian
National University Institutional Animal Care and
Ethics Committee.

Viral injections and Whole-cell patch-
clamp recordings: For labeling bottom-up
sensory input and top-down contextual inputs,
AAV1-hSyn-hChR2(H134R)-EYFP-WPRE-hGH
(ChR2) was injected in either the contralateral
visual cortex (or visual thalamus, dLGN) and
primary auditory cortex respectively (Honnuraiah
et al. [2024]; Godenzini et al. [2021]). Ipsilateral
eye input is stimulated by contralateral V1, and
contralateral eye input is stimulated by dLGN
stimulation (Honnuraiah et al. [2024]). For PV and
SST inhibition experiments, Cre-dependent ChR2
(AAV1-EF1a-DIO-hChR2(H134R)-EYFP-WPRE-
hGH) was injected in the binocular visual cortex of
the transgenic mice expressing Cre in either PV or
SST. Three to four weeks after viral injection mice
were deeply anesthetized with isoflurane (3% in
oxygen) and immediately decapitated. Slice prepa-
ration protocols and the experimental recordings
are explained in detail in this study (Honnuraiah
et al. [2024]). All recordings were made in the
current-clamp using a current clamp BVC-700A
amplifier (Dagan Instruments, USA). Data was
filtered at 10 kHz and acquired at 50 kHz by a Mac-
intosh computer running Axograph X acquisition
software (Axograph Scientific, Sydney, Australia)
using an ITC-18 interface (Instrutech/HEKA,
Germany). Hyperpolarizing and depolarizing
current steps (200 pA to +600 pA; intervals of 50
pA) were applied via the somatic recording pipette
to characterize the passive and active properties
of neurons. Brain slices were bathed in gabazine
(10 µM) to block inhibition mediated by GABA-A
receptors. Other pharmacological agents used in
these experiments included tetrodotoxin (TTX;
1 µM) and 4-aminopyridine (4-AP; 100 µM), as



noted in the Results. For photo-stimulation of
ChR2-expressing neurons and axon terminals, a
470 nm LED (Thorlabs) was mounted on the
epi-fluorescent port of the microscope (Olympus
BX50) allowing wide-field illumination through the
microscope objective. The timing, duration, and
strength of LED illumination were controlled by the
data acquisition software (Axograph).

Computational Modeling: We conducted
biophyscial modeling using the NEURON 8.2
simulation environment (Carnevale and Hines [2006],
Hines and Carnevale [1997]), with an integration
time constant of 25 µs. The active and passive
properties of the model were optimized to match
the experimental recordings (Supp Fig 1). We set
the passive parameters as follows: Internal/axial
resistance (Ri/Ra) to 150 Ω.cm, membrane re-
sistance (Rm) to 30 KΩ.cm2, capacitance (Cm)
to 1 µF/Cm2 and resting membrane potential
(Vm) to -75 mV. All neurons were simplified
and implemented as a “ball and stick” model
consisting of a somatic compartment (dimensions:
Length=50 µm; diameter=50 µm) and a single
dendritic compartment (dimensions: Length=100
µm; diameter=1 µm). Dendritic compartments
were passive and were not adjusted for spines in the
interneuron population but were adjusted for spines
in pyramidal neurons by scaling the Cm by 2 and
Rm by 0.5. Active conductances were included in
the somatic compartment to mimic the regular firing
pattern of pyramidal neurons, fast-spiking pattern
of PV, burst-spiking for SST, and delayed spiking
from the Lamp5. Active ion-channel distribution
and its conductance values are obtained from our
previous study (Soldado-Magraner et al. [2020]). A
synapse was modeled as a co-localized combination
of NMDA and AMPA receptor currents. A default
value of NMDAR:AMPAR ratio was set at 1.5.
All the values related to synaptic parameters were
obtained from our previous study (Honnuraiah and
Narayanan [2013], Testa-Silva et al. [2022]).

Rate-based abstract neural network model:
We developed a simplified abstract model to reduce
computational demands and extract the principles
from detailed biophysical network models. We
have used a rate-based approach to model neuronal
activity. We approximate the neuronal activation by
a linear-threshold function that describes the output
action potential discharge rate of the neuron as a
function of its input Bauer et al. [2014]. This type of
neuronal activation function is a good approximation

to experimental and biophysical observations of the
frequency of action potential discharge to synaptic
or current inputs. The change in activity of a neuron
is modeled as the summation of synaptic input with
a decay of the current activity. The dynamics of the
activity of the rate-based neurons implemented are
given below:

η
∂exct

∂t
= −exct+ α[exct]+ − β1[inhb]

+ + I (1)

η
∂inhb

∂t
= −inhb+ β2[exct]

+ (2)

exct+ = max(ext, 0) (3)

inhb+ = max(inhb, 0) (4)

Where, [exct]
+ is excitatory neuron activity, [inht]

+

is inhibitory neuron activity, and τ is the neuronal
time constant, α, β1, and β2 are synaptic weights
(Figure 2B).

The implementation of the computational primitives
obtained from the biophysical models in the
rate-based abstract models was crucial. This is
because it provided analytically tractable solutions
for the dynamics of neural activity. The analytical
solution was later used to derive constraints for
the TN hardware parameters as explained in the
Appendix A2.

IBM TrueNorth hardware and Compass
software emulator: The IBM TN neuromorphic
chip is composed of 64×64 (4096) digital neurosy-
naptic cores tiled in a 2-D array, containing an
aggregate of 1 million neurons and 256 million
synapses. Each core implements 256 neurons
single-compartment leaky-integrate-and-fire neurons
which could be operated in either rate or spike
mode configuration. Each core is supported by a
256×256 crossbar synapse array, and communication
circuits to transfer spike trains. The crossbar array
is flexible and can be configured freely. Each row
of the crossbar corresponds to an axon of the
neuron represented by horizontal lines which could
be driven by any on-chip neurons. Inputs to the
cores are generated by configuring the on-chip
neurons to generate various frequencies either in
rate or spike mode. Each column corresponds to
a dendrite of that particular neuron represented
by a horizontal line. A connection between an
axon and a dendrite is a synapse and is organized
into a synaptic crossbar (Supplementary Figure
4A). A peripheral memory core is located at the
intersection of each row and a column, and the



binary value stored in the core represents whether
or not a connection exists between the particular
axon-dendrite pair. Therefore, each neuron can be
configured to receive up to 1024 synaptic inputs
(through its dendrite) depending on the crossbar
value and the activity of the axons. TN operates in
a mixed asynchronous–synchronous approach. All
the communication and control circuits operate in
asynchronous design while computations are done
in synchronous design. Since TN cores operate
in parallel and are governed by spike events, it is
natural to implement all the routing mechanisms
asynchronously. All the core computations must
finish with finish in the current tick which spans 1
ms. Compass is the software emulator to program
and simulate the full 4096 neurosynaptic cores and
the digital asynchronous–synchronous design ensures
one-to-one compass to TN correspondence (Akopyan
et al. [2015] Merolla et al. [2014]).

Vision Transformer (ViT) architecture:
Inspired by the original transformer (Vaswani [2017])
architecture for Natural Language Processing, ViT
(Dosovitskiy et al. [2020]) is a self-attention-based
architecture. It works as follows: the input image
is distributed into N (flattened 2D) patches (where
we keep N=6 for the MNIST experiments) and
linear embeddings of these patches are fed as an
input to the encoder of the trained ViT. The
image patches of digits are embedded as tokens.
The encoder block has several multi-headed layers
with self-attention along with a normalization
layer at the start of each layer. Furthermore,
a Multi-Layer Perceptron (MLP) with a single
hidden layer is used as a classification head that pre-
dicts the object categories present in the input image.

WTA implementation in ViT: We present
a Winner-Take-All (WTA) approximation as a
neuro-inspired layer in the Vision Transformer (ViT)
architecture. Inspired by distinctive properties of
cortical circuits in the mammalian visual cortex,
this layer captures the neural signal regulation
characteristics. A defining feature of these neurons
lies in their ability to intricately capture and encode
the contrasting elements and structural nuances of
visual stimuli. This capability is reflected in the
variable neural firing sequence of the neurons that
WTA emulates, aligning closely with the varying
contrasts present in the stimuli. This results in a
more refined and contextually aware representation,
which is particularly beneficial in object classifi-
cation contexts where adaptability and nuanced

understanding of visual stimuli are crucial. Mathe-
matical implementation is described in Appendix A4.

MobileNet with WTA: Developed for em-
bedded devices such as mobile phones, etc.,
MobileNet-v2 (Sandler et al. [2018]) is successfully
reducing the number of parameters by depth-wise
separable convolutions, while keeping the accuracy
comparable to the state-of-the-art. We initialized
the weights of MobileNet-V2, trained on ImageNet,
and added the WTA layer to the model.

EfficientNet with WTA: EfficientNet-B0
(Tan and Le [2019]) is used with pre-trained weights
for ImageNet. It is pre-trained to classify 1000
image classes and trained on more than a million
images. We initialized the convolution layers with
the pre-trained model weights. We added the WTA
layer after the input layer into the model.

ResNet with WTA: Among different vari-
ants of ResNet, we select ResNet-50 (He et al.
[2016]), which contains 50 neural network layers.
The introduction of skip connections reduces the
problem of vanishing gradient and also ensures that
the higher layers do not perform any worse than
the layers before by learning the identity function.
Similar to the other models above, we are initializing
the weights with the pre-trained model on ImageNet
and including the WTA layer after the input layer
in the model architecture.

CapsuleNet with WTA: Unlike other Con-
volutional Neural Network (CNN) architectures,
CapsuleNet (Sabour et al. [2018]) applies pattern
matching by decomposing the hierarchical repre-
sentations of the input features. The eventual
representation of this network is supposed to be
invariant to the view-angle of the input samples.
One of the major differences between a typical CNN
and CapsuleNet is the output of the individual
units in their architecture. While the output of a
single neuron in a CNN is mostly a scalar value, it
is a vector in the case of CapsuleNet. Similar to
the ViT, we include the WTA layer as an initial
layer in the CapsuleNet architecture to make it
robust for domain adaptation tasks for digit datasets.

RefineNet with WTA: RefineNet (Lin et al.
[2017]) is a versatile multi-path refinement network
that leverages all the information gathered during
the down-sampling process to facilitate high-
resolution prediction through long-range residual



connections. This approach enables the deeper
layers, which capture high-level semantic features, to
be directly refined using fine-grained features from
earlier convolutions. The individual components of
RefineNet employ residual connections following
the identity mapping principle, enabling efficient
end-to-end training. In our experiments, we used
pre-trained RGB weights of ResNet on ImageNet
for training and testing RefineNet with and without
adding a WTA layer.

MNIST and digit datasets: For the do-
main generalization task, we utilized a suite of
digit datasets that included the MNIST, SVHN,
USPS, and MNIST-M (LeCun et al. [2010], Netzer
et al. [2011], Hull [1994], Ganin et al. [2016]). Each
dataset was split into 70-20-10 train, val, and test
splits.
MNIST dataset, introduced by LeCun et al.

[2010], is one of the most widely used datasets for
handwritten digit classification. It contains a total of
70,000 grayscale images of handwritten digits. Each
image is of size 28x28 pixels, and the dataset has
been instrumental in benchmarking various machine
learning algorithms.
SVHN (Street View House Numbers)

dataset, presented by Netzer et al. [2011] is a real-
world image dataset obtained from house numbers
in Google Street View images. It comprises over
600,000 digit images. Specifically, it contains 73,257
digits for training, 26,032 digits for testing, and an
additional 531,131 somewhat less difficult samples
that can be used as extra training data. This dataset
challenges models with recognizing digits in more
complex and varied scenarios compared to the con-
trolled environment of MNIST.
USPS (United States Postal Service)

dataset, introduced by Hull [1994] is another hand-
written digit dataset used for text recognition re-
search. It contains 9,298 16x16 grayscale images of
handwritten digits. The dataset was derived from
scanned mail and has been a staple in the handwrit-
ten digit recognition field.
MNIST-M dataset, presented in the work

by Ganin et al. [2016], is a modified version of
the original MNIST dataset. It was created by
overlaying MNIST digits onto patches randomly
extracted from color photos of the BSDS500 dataset
(Arbelaez et al. [2010]), resulting in a blend of
digits and colored backgrounds. The MNIST-M
dataset contains 149,002 images. This combination
introduces additional challenges due to the color
and texture variations in the background, making

it a valuable dataset for studying domain adaptation.

For domain generalization tasks, these datasets are
particularly valuable because they offer variations in
terms of image quality, resolution, and real-world
applicability. The diversity in these datasets,
ranging from clean handwritten digits to digits
in natural scenes, challenges models to generalize
well across different domains. This makes them
ideal benchmarks for evaluating the robustness
and adaptability of machine learning algorithms,
especially in scenarios where the training and test
data distributions differ significantly.

Natural image dataset: To explore the ef-
fect of WTA for segmentation tasks on natural
images, we select a cityscape Cordts et al. [2016]
data for training and nighttime driving Dai and
Van Gool [2018] dataset for testing. This evaluation
aims to test the robustness of the model against
day-to-night time domain shifts.

Appendix

0.1 Emulating Cortical Neuron Physiology
in TN Hardware

We have derived a relationship between the param-
eters of the COMPASS neurons in order to obtain
the desired dynamic range, shown below:

∆r =
fmax
out − fmin

out

fmax
in − fmin

in

(5)

W 1
syn =

∆r

Nsyn
(6)

∥W̃ij∥max
min = α ·W 1

syn (7)

λl =
∥W̃ij∥max

min ·Nsyn

∆r
(8)

Here,
∆r = Dynamic range of the neuron,
W 1

syn = Sensitivity of single weight,
Nsyn = Total number of synapses,
W̃ij = Crossbar synaptic weight,
∥W̃ij∥max

min = Range of the crossbar weight,
λl = Leak parameter of the TN neuron.
The threshold (λl) of the COMPASS neuron is
decided based on the desired dynamic range and
the total number of synapses (Nsyn), such that the
sensitivity of a single synapse is preserved while
setting up the actual crossbar synaptic weights (W̃ij).



For example, let us assume that we want to
set the parameters of a COMPASS neuron that
receives 10 synaptic inputs and has a dynamic range
of 1 (Λr). If all of the synaptic weights are equal,
then each synapse will have an impact factor of 0.1
(W 1

sym) and we want a range of 50 for the crossbar

synaptic weight (∥W̃ij∥max
min ). Then, according to the

above equations, the threshold should be set to 2.

λl =
∥W̃ij∥max

min ·Nsyn

∆r

=
10 · 10
50

Thus, by using this relation, we can set the
parameters of the TN neuron to obtain any behavior
within the physiological range that closely matches
the cortical neurons. TN simulation results below
verifying the above relation and to understand the
role of synaptic weight on the transfer function.

We tuned the feedback and feedforward inhi-
bition of the model to match the impact of PV
and SST activation on the pyramidal neuron.
The subtractive inhibition is obtained by tuning
the threshold (θ) value. The divisive inhibition
is implemented by tuning the crossbar synaptic
weight (W̃ij) to negative values and leak parameter
value (λl). Subtractive inhibition is implemented
by tuning the threshold value of the TN neuron.
The TN simulation results were verified with a
conductance-based model implemented in NEURON.

We have derived a relationship between the
parameters of the TN neurons to incorporate
biophysically plausible excitatory and inhibitory
synaptic interaction as shown below: ∆r = Dynamic
range of the Neuron.
Nsyn = Total number of synapses.
Next = Excitatory synapses.
Ninh = Inhibitory synapses.

W̃ext = Crossbar excitatory weight.

∥W̃ext∥max
min = range of the excitatory weight.

W̃inh = Crossbar inhibitory weight.

∥W̃inh∥max
min = range of the inhibitory weight.

λl = leak of the TN neuron.

∥λl∥max
min =

∥W̃ext∥max
min

(
Next
Ninh

)
− 1 if Ninh ̸= 0

2 · (W̃max
ext − 1)

(
∆r

Nsyn

)
if Ninh = 0

where, ∥W̃ext∥max
min = λl·∆r

Nsyn

Thus, by appropriately tuning the parameters of
the TN neuron {α, λl, W̃ij} we can achieve the de-
sired, biophysically realistic synaptic integration that
closely matches the cortical neurons.

0.2 Automated Parameter Mapping to TN
parameters

TN neurons are configured to operate as linear thresh-
old units (in rate-based mode) as described in the
previous section. Based on this linear operation, we
can estimate the role of the self-excitatory feedback
connection on the transfer function, according to
the equation below: fout = output firing rate; fin =
Input rate; λl = Leak of TN neuron.

fout =
w

λl
(fin − θ) +

α

λl
· fout

fout

(
1− α

λl

)
=

w

λl
· fin −

(
w

λl
− θ

)
gain =

fout
fin

=
w

λl − α

Based on the linear operation, we can estimate the
role of the recurrent excitatory and inhibitory feed-
back connection on the transfer function, according
to the equation below:

fout = (
w

λl
) · fin + (

α

λl
) · fout − (

β1.β2
λl

) · fout (9)

fout

(
1− α

λl
+

β1.β2
λl

)
=

w

λl
· fin (10)

gain =
fout
fin

=
w

λl − α+ β1.β2
(11)

The effect of leak and threshold on the transfer func-
tion is quantified and the relationship between the
parameters is shown below: fout = output firing rate;
fin = Input rate; θ = Threshold, λl = Leak of TN
neuron and σ =Sign of Leak.

fout =

(
w

1− σλ

)
· fin +

(
α

1− σλ

)
· fout

−
(

β1β2
1− σλ

)
· fout − (Ω[θ, w] · θ)

(12)

fout·
(
1− α

(1− (σλ))
+

β1β2
1− σλ

)
=

(
w

1− σλ

)
· fin − (Ω[λ,w] · λ)

(13)



fout =

(
w

1− (α+ σλ) + β1β2

)
· fin

−
(

Ω[θ, w] · θ
1− (α+ σλ) + β1β2

) (14)

gain =

(
w

1− (α+ σλ) + β1β2

)
(15)

Ω[θ, w] =

{
fmax
out,θ=0−fmax

out,θ=1

gain if θ < int
(
w
2

)
0 otherwise

(16)

To achieve winner-take-all behavior, the parameters
have to satisfy certain constraints imposed by Con-
traction analysis shown below: αm; β1m; β2m =
parameters in programming platform. αc; β1c; β2c
= parameters in TN. For the programming model,
the parameters must satisfy the following criteria:

0 < αm < 2
√
βm
1 · βm

2 (17)

0 < βm
1 (18)

0 < βm
1 · βm

2 < 1 (19)

The optimal solution in the programming environ-
ment’s parametric space satisfying the above condi-
tions is:

αm = 1.2, βm
1 = −3, βm

2 = 0.25 (20)

Now, using these parameters we can obtain the
corresponding Truenorth/Compass parameter
values according to the equation we have derived
that maps the parameters from the programming
platform to TrueNorth/Compass space, shown below:

|βc
1 · βc

2 − αc| = wc (1− αm + βm
1 · βm

2 )− θc (21)

Substituting the values, we obtain the corre-
sponding optimal TrueNorth/Compass parameters
that satisfy the contraction analysis criteria in
TrueNorth/Compass space:

αc = 22, βc
1 = −7, βc

2 = 1, θc = 20, wc = 10
(22)

We plug in the above values in the
TrueNorth/Compass circuit shown in Figure
2 and verify if the following WTA functional
characteristics are satisfied:

1. Non-linear signal amplification (winner selec-
tion). (Validated in Figure 2G)

2. Robustness and signal restoration (broadly
tuned inputs). (Figure 2H)

3. Dynamic switching and multi-stability. (Vali-
dated in Figure 2I)

Thus, by appropriately tuning the parameters of
the TN neuron {α, λl, W̃ij} we can achieve the de-
sired, biophysically realistic synaptic integration that
closely matches the cortical neurons.

0.3 Hardware load analysis

Computation load = C(N)× numTicks

C(N) = I(N) +O(N)

C(N) = Number of Connector pins

I(N) = Number of Input pins

O(N) = Number of Output pins

0.4 Mathematical formulation of WTA in ViT

To mathematically implement the WTA layer, we
process an input image I ∈ RW×H×C , where W ,
H, and C represent its width, height, and channel
count, respectively. Our goal is to form a domain-
independent representation, denoted as IG. The
image I is segmented into patches of size s, repre-
sented as P = {ps1 , ps2 , . . . , psn}, where each patch
p of size s encircles a pixel k at coordinates i, j. For
each patch, its mean µps and standard deviation σps
are calculated to construct IG:

σps =

 1

s2

∑
i,j∈p,s

(kij − µps)
2

1/2

, (23)

where:

µps =
1

s2

∑
i,j∈p,s

kij

z = max{σps1 , σps2 , . . . , σpsn} (24)

IG =
σps
z

(25)
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Figure 1: Biophysical implementation of experimentally validated neocortical circuit motifs using a conductance-based
neural network model. A) Canonical neocortical circuit motif implemented using a conductance-based
Hodgkin-Huxley neuron network model consisting of 10 pyramidal neurons, 10 PV interneurons providing
feedforward and local feedback inhibition, and one common inhibitory neuron by LAMP5 for contextual
modulation and one SST interneuron providing lateral inhibition. Sensory input is Poisson modulated
excitatory synaptic inputs with varying frequencies. B) Computational primitives implemented by the
neocortical circuit motifs performing non-linear input amplification, selective suppression, and soft-winner
take-all (sWTA) computation. The contribution of various circuit elements like distinct interneurons: PV,
SST, and LAMP5 mediated inhibition and recurrent excitation to sWTA computation is shown in various
colors. Gaussian fits of the data points are used to extract quantifiable parameters such as mean and width.
C) Voltage traces of representative pyramidal neurons receiving the highest (in green) and next to highest
(in pink) input shown during various conditions: without recurrent excitation (black), with recurrent
excitation and PV plus SST inhibition (magenta) along with LAMP5 inhibition (orange), and only SST
(red) and only PV inhibition (cyan). D-F) Impact of modulating distinct inhibition on the computational
primitives implemented by the circuit motifs in (A). Varying PV inhibitory conductance from 1-6 nS with
a fixed SST inhibition of 1.5 nS along with recurrent excitation (D). Varying SST inhibitory conductance
from 1-6 nS with a fixed PV inhibition of 1.5 nS along with recurrent excitation (E). Varying LAMP5
inhibitory conductance from 1-6 nS with an SST and PV inhibition along with recurrent excitation (F).
G-I) Verification of sWTA properties such as nonlinear amplification and signal restoration for sharply
(G) and broadly (H) tuned inputs. Multistability and signal invariance for broadly (I) tuned inputs for
suboptimal (blue, red) and optimal (magenta) parameters are derived from our proposed method.
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Figure 2: Configuring IBM TN neuromorphic hardware to implement neocortical circuit motifs and computational
primitives. A) Left: Simplified biophysical circuit implementation (excitatory neurons in red; lateral
inhibition in blue). Right: Transfer function of the L2/3 pyramidal neuron when stimulated with Poisson
input. Stimulus frequency is varied between 5 to 50 Hz (in steps of 5 Hz) and the corresponding output
response is plotted. B) Top: Abstract rate-encoding neuron model containing one excitatory (red) and
inhibitory (blue) neuron with linear-threshold activation function (bottom). C) Left: Single TrueNorth
neuron with crossbar weights along with input and output. Right: Transfer function of the TrueNorth
neuron in a rate-encoding configuration similar to the transfer function of biological and abstract neuron
models. D) Wiring diagram showing the connection configuration between 10 excitatory and 1 feedback
inhibitory truenorth neurons for implementing the circuit motif shown in Figure 1A. E) Impact of recurrent
excitation ( ) and feedback inhibition (1) on the slope of the transfer function of the TrueNorth neuron
shown in. F) Matching the slope/gain of the transfer function of the TN neuron with the abstract rate
encoding neuron model implemented in software by tuning the TN parameters as described in Appendix A2,
A3. G-I) Parameter tuning and verification of sWTA properties like nonlinear amplification and signal
restoration in TN simulation and TN hardware to sharply tuned inputs (G), signal invariance property
of sWTA to broadly tuned inputs (H), and multistability (I). Output response for optimal parameters is
shown in magenta, inputs are shown in black, and responses for suboptimal parameters are shown in blue
and red. J-L) Population-level implementation of sWTA in the spiking-mode configuration of Truenorth
neural network.



+

Norm

+

Norm

Embedding

Transformer Encoder

L x

Multi-Head
Attention

Multi-Layer
Perceptron

WTA feature representation

Class
Digit 2

...

0 2 3 ....1

E
xt

ra
 le

ar
na

bl
e

[c
la

ss
] e

m
be

dd
in

g

. N

Linear Projection of Flattened Patches

ou
tp

ut MLP
Head

Transformer Encoder

A. Processing of WTA layer on a digit 2 MNIST image sample
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Figure 3: Neocortex-inspired algorithms for machine learning application and basis for zero-shot learning. A) The
process involves a sliding window-based computation to enhance features, employing adjustable parameters
that emulate the WTA implementation. This is accomplished through recurrent excitation and lateral
inhibition acting across pixels, facilitating the feature enhancement mechanism. B) WTA layer-based
image patches for ViT architecture for MNIST and digit datasets. C-D) Integration of WTA layer in
Vision Transformer architecture for MNIST object classification task and results on training the model
on source domain and testing on unseen target domains. E) Natural image segmentation samples from
daytime and nighttime driving datasets. F) Performance improvement with and without adding a WTA
layer in RefineNet for semantic segmentation task.
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(Neocortical Circuit Motifs and Computational Primitives)
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(Real-world Applications)
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Figure 4: Block diagram architecture of our proposed framework. We draw inspiration from understanding the
neurobiological systems of the brain and implement our findings into the neuromorphic hardware. In
addition, we implement our findings as a pre-processing WTA layer in AI models and observe high-
performance boosts in real-world object classification and natural image segmentation tasks.
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Supplementary Figure 1: A) Schematic of the experimental arrangement showing ChR2 injections in LGN, and
recordings in pyramidal neuron in V1. B) Average light-evoked synaptic responses (10
trails) in a representative layer 2/3 pyramidal neuron in V1 at the indicated holding
potentials in control (magenta) and in the presence of GABAzine (black). C) Summary
data showing IPSP amplitude versus holding potential in control (magenta) and in
the presence of GABAzine (black) in different binocular layer 2/3 pyramidal neurons.
D-E) Impact of PV and SST neuron activation on the f/I curves of L2/3 pyramidal
neurons. Voltage responses of binocular pyramidal neurons at different resting membrane
potentials during cre-dependent activation of PV (D) and SST (E) inhibitory neurons.
F) Quantification of peak hyperpolarization (left panel), rise time (middle panel), and
full-width half maximum (right panel) of the inhibition evoked by SOM and PV neuron
activation in binocular pyramidal neurons at a resting membrane potential of -45 mV.
G) Schematic showing contextual inputs from the Auditory cortex to layer 1 Lamp5
neurons in the somatosensory cortex (S1). H) Suprathreshold voltage response of an
L1 Lamp5 interneuron to a somatic current injection of 200 pA. I) Amplitude of
EPSPs in a layer 1 neuron in S1 versus LED power (470 nm, 2 ms) in the presence of
TTX+4-AP. Inset: Example EPSPs during photo-activation of auditory cortex axons
with increasing power (0.24 to 1 mW). J) Histogram of EPSP amplitude in layer 1
interneurons receiving (cyan) and not receiving (grey) A1 input. Inset: Pie chart of the
distribution of responding (cyan) and non-responding (grey) layer 1 interneurons.
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Supplementary Figure 2: A) Voltage traces depicting neuronal firing for Poisson-distributed synaptic stimulation
at various stimulus frequencies (SF) varying from 5 to 100 Hz. B) Schematic showing
inhibitory neurons preferred synaptic location onto pyramidal neurons and their action
potential firing dynamics of pyramidal neuron (black) and distinct interneuron types:
PV (blue), SST (red), Lamp5 (orange). C) Plot showing output firing frequency (FF) as
a function of SF for individual neuron types as described in (B). D) Schematic showing
simplified circuit organization of feedforward (FF) and feedback (FB) inhibition on
pyramidal neurons. E-F) Quantification of Feedforward (E) and Feedback (F) inhibition
impact on the pyramidal neuron’s input-output function for different inhibitory synaptic
conductance shown in various colors. Input to the network is Poisson-distributed
synaptic stimulation at various SF as described in (A). G) Schematic showing the
canonical cortical microcircuit motif. H-I) Impact of varying PV (H) and SST (I)
inhibition on the selectivity index, which is calculated by subtracting the responses of
pyramidal neurons to closely tuned inputs and multiplying the response difference with
network gain. Selectivity index quantification as a function of inhibitory conductance
strength for various scenarios such as in the presence of both PV, SST, and Lamp5
inhibition (orange), PV and SST only (magenta), PV only (cyan), SST only (red) and
no recurrent excitation (black).
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Supplementary Figure 3: A-C) Impact of excitatory synaptic weight (A), threshold parameter (B), and leak
parameter (C) on TrueNorth neuron input-output function for various magnitudes of
the tested parameter shown in the corresponding color. D-F) Comparison of network
gain of the rate-based neural network model implemented in the programming platform
and with the TN neural networks implemented in the Compass (TrueNorth’s) emulator.
For sharply tuned (D), broadly input with noise (E) and broadly tuned input with
multistability (F) under optimal (magenta) and suboptimal (blue) parameter tuning.
G-H) Impact of threshold mask noise parameter on WTA dynamics in TN. Spike raster
plot of winning population showing WTA behavior for a threshold mask noise value of
10 (G). Population response dynamics of the winning and losing excitatory pool along
with inhibitory population (H).
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Supplementary Figure 4: Neural state machines implemented with coupled sWTA motifs. A-B) Input-dependent
state transition conditions in a two-state (S1 and S2) finite state automaton (FSA) and
its neuronal implementation via coupled sWTA through excitatory connection, gamma
(γ). The state transition is mediated through state pointer neurons. C) Population-level
implementation of the two-state FSA as coupled sWTA in spiking-mode configuration
for the two states (S1 and S2) and state-transition pointer (P12, P21) sWTA population
as shown in (B) showing excitatory (red) and inhibitory (blue) neurons along with state
pointer neurons (black) and state transition inputs. D) Impact of coupling strength ()
between sWTA and threshold mask noise on the persistence of the state maintenance
various threshold mask noise (TM) is shown in different colors. E) Demonstration
of persistent activity for state maintenance with optimal parameters in the presence
of only input X or input Y. S2 output in blue and S1 output in green. F) Raster
plot of the state pool neurons showing state transitions from S1 (green) to S2 (blue)
along with inputs for optimal parameters. G) Heatmap of the synaptic weight matrix
implementing population-level two-state FSA in TN neurons. H) Hardware load analysis
for various core size activation runtime for coupled sWTA network and comparing it
with Truenorth versus software emulation and programming platform implementation.
The log10 plot shows the differences in execution time as a function of computational
load for hardware vs simulation. The graph shows the execution time for 1) NSCS
(only TN Compass simulator) in green. 2) Native TN (only hardware) in red. 3)
Total emaulation+simulation run time in blue. For each case, various configuration
is explored with coupled sWTA implemented using within core neurons (intra-core) vs
external core neurons (inter-core).
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Supplementary Figure 5: A. Training and validation performance (top-5 accuracy, total accuracy, and loss)
of ViT architecture with and without adding WTA-layer. B. Training and validation
performance (accuracies and losses) of CapsuleNet architecture with and without adding
WTA-layer.
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Supplementary Figure 6: (A). Comparison of WTA and other normalization (LCN, LRN, Z-Score) techniques
on 0 and 7 sample images from MNIST and MNIST-M. (B). UMAP embeddings of
MNIST (brown) and MNIST-MM (purple) datasets, each row shows the embeddings of
digits (0: leftmost - 9: rightmost) drawn from MNIST and MNIST-MM datasets for
different techniques. (C). ViT is trained on MNIST and tested on both MNIST and
MNIST-M datasets for comparisons between WTA and other techniques.
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Supplementary Figure 7: Qualitative outputs of Night-time driving data set against the RefineNet trained with
WTA and without WTA layer. The WTA representation is demonstrated in the last
column which is fed to RefineNet for training.



Supplementary Table 1: Performance comparison of various DNN architectures after and before adding WTA-
layer. Bold green shows the benchmarking results, whereas normal green shows the
performance improvement after adding the WTA layer but no benchmarking. The gray
shows the cases where model performance is not improved by adding a WTA layer in the
architecture (best seen in color).

Supplementary Table 2: Training settings for each model for object classification and segmentation tasks.
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