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Abstract

Allostery, the process by which binding at one site perturbs a distant site, is being rendered as a key focus in the field
of drug development with its substantial impact on protein function. The identification of allosteric sites is a challenging
task and several techniques have been developed, including Machine Learning (ML) to predict allosteric sites that utilize
both static and pocket features. Our work, DeepAllo, is the first study that combines fine-tuned protein language model
(pLM) with FPocket features and shows an increase in prediction performance of allosteric sites over previous studies.
The pLM model was fine-tuned on Allosteric Dataset (ASD) in Multitask Learning (MTL) setting and was further used
as a feature extractor to train XGBoost and AutoML models. The best model predicts allosteric pockets with 89.66%
F1 score and 90.5% of allosteric pockets in the top 3 positions, outperforming previous results. A case study has been
performed on proteins with known allosteric sites, which shows the proof of our approach. Moreover, an effort was made
to explain the pLM by visualizing its attention mechanism among allosteric and non-allosteric residues.
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Introduction

Allostery is a mechanism that regulates protein activity through

a ligand binding at a distant site that is different than the active

site. Most drugs change the activity of a protein by directly

binding to the active site. It has been suggested that every

protein possesses allosteric behavior. Even if a certain protein

has not yet exhibited allosteric behavior, it could be because

of the absence of right conditions such as allosteric effectors or

certain mutations [Gunasekaran et al., 2004, Tsai et al., 2008].

Allosteric drugs offer the advantage of having fewer side effects

than that of orthosteric drugs [Mannes et al., 2022]. In contrast

to allosteric sites, active sites are highly conserved across a

protein family; a drug may bind to the active site of several

members of a family. Moreover, allosteric drugs bind elsewhere

on the protein surface: surface regions are less conserved across

families and it gives us the benefit that when specialized drugs

are difficult to bind, effective allosteric drugs can be made

[Nussinov and Tsai, 2012].

Several ML methods use pocket features to predict allosteric

sites [Huang et al., 2013, Greener and Sternberg, 2015, Song

et al., 2017, Bian et al., 2019]. Notable related works are

PASSer, PASSer 2.0, and PASSerRank [Tian et al., 2021,

Xiao et al., 2022, Tian et al., 2023b] that follow the similar

approach by extracting pockets through FPocket [Guilloux

et al., 2009]. FPocket, gives feature vectors representing

each pocket and further they train several models on these

extracted features by performing binary classification i.e.

whether a given pocket is allosteric (positive) or not (negative).

However, they have not leveraged the power of pre-trained

Protein Language Models (pLMs) or Protein Large Language

Models (pLLMs). We fine-tuned ProtBERT-BFD (ProtBERT-

Big Fantastic Database) pLM from the family of ProtTrans

[Elnaggar et al., 2021] on the AlloSteric Database (ASD)

dataset [He et al., 2023] and extended it by fine-tuning the

pLM in Multi Task Learning (MTL) fashion/setting by using

two prediction heads that predicted (A) allosteric residues (B)

secondary structure residues. Task A is the primary task and

the idea was that in addition to unavailability of large allosteric

dataset, while learning allosteric residues (tokens), the model

could get information from the secondary structure of the

protein and hence would get better information in order to

learn allosteric residue features. Further, we leveraged these

fine-tuned pre-trained Language Models (pLMs) as backbones

(feature extractors) by combining their features with FPocket

features to train XGBoost and Automated Machine Learning

(AutoML) models. These pLM features’ based trained model

outperform the performance of already available computational

approaches and prove that the pLM features do provide useful

information that helped us achieving better performance scores.

To support our concept, we provide the internal attention
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Table 1. Train/Test Split

Data Split Proteins Pockets Residues

Train 165 3,375 64,593

Test 42 848 15,567

mechanism to explain the fine-tuned pLM and a case study

that shows correctly predicted allosteric site.

The Approach

Dataset
AlloSteric Database (ASD)1 is an annually updated, freely

available collection of allosteric proteins [He et al., 2023]. We

used the similar preprocessing steps [Tian et al., 2023b] by

utilizing the Python scripts2 to clean the dataset. MMseqs2

[Steinegger and Söding, 2017, 2018, Mirdita et al., 2019, 2021]

was used to get proteins having less than 30% similarity.

MMseqs2 clusters sequences using their similarity hence a

representative protein was selected from each cluster. After

preprocessing, a total of 207 proteins were extracted from the

source ASD dataset and randomly split into 80% for training

and 20% for testing. Table 1 gives the detail of the split.

On average, ∼20 pockets were detected in each distinct

protein. A huge class imbalance was detected where positive

samples (pockets) accounted to only 304 or 7.76% of the dataset

(4223 pockets).

Methodology
Figure 1 gives the whole architecture of our study. A protein

structure and sequence is fed into FPocket and finetuned

ProtBERT, respectively. FPocket extracts pockets, where each

pocket has PDB file format like coordinates and a 19-d feature

vector. The pLM also produces features where each vector is

of size 1024 and represents a single residue in the sequence.

All 1024-d vectors representing residues in a certain pocket are

aggregated to make one 1024-d vector. Both feature vectors

(from FPocket and pLM) are concatenated, resulting in a

1043-d vector. This feature vector is further fed into XGBoost

and AutoML models, representing a pocket, and these models

classify whether this pocket is an allosteric pocket or not.

The approach of finetuning and leveraging pLMs, from our

knowledge, is novel for allosteric sites prediction and has never

been used before.

pLM Finetuning Setup

Elnaggar et al. [2019] implemented MTL to train a pLM on

different tasks i.e. to predict secondary structure (SS) and

function of protein. By fusing multiple tasks, each task got

information from other tasks that helped a certain task to

predict better. Following this idea, we prepared the model

to get structure level information in combination with other

tasks in order to improve the model’s performance to predict

allosteric residues (as primary task).

The pLM was fine-tuned to perform residue-level prediction

at each head. First, to feed the allosteric dataset into the model,

following steps were performed:

1 https://mdl.shsmu.edu.cn/ASD/
2 https://github.com/smu-tao-group/PASSerRank

Fig. 1. Architecture and Approach

• Each residue in an allosteric pocket was labelled as

allosteric. Hence, each residue in a protein sequence was

labelled as either positive or negative referring to being

allosteric or non-allosteric, respectively.

• Each residue in each sequence was separated by space

character, as the expected input of ProtBERT model.

Each sequence was truncated to a maximum of 1024 length

for training. The model, at both classification heads, performed

classification at residue-level (token-level). Dataset was highly

imbalanced; weighted Cross Entropy Loss function, given

in eq. 1, was used by giving more weight to the positive

(allosteric) class. Moreover, the dataset [Klausen et al., 2018]

for secondary structure prediction task (secondary task) had 3

classes referring to (i) Alpha Helix (H), (ii) Beta Sheet (E), (iii)

Coil (C), hence its head had 3 output units.

M∑
c=1

Yo,clog(Po,c) (1)

where M is total number of classes, Yo,c is the ground truth

and Po,c is the predicted probability of observation o being in

class c.

The pLM was fine-tuned in two settings: (a) Base -

only allostery prediction head (no MTL) and (b) MTL -

Allostery and Secondary Structure (SS) tasks comprising of two

prediction heads. The architecture for finetuning the model, in

MTL fashion, is given in Figure 2. No soft parameter sharing

was used as the tasks are already similar. The model takes

a protein sequence, and produces a 1024-d feature vector for

each residue in a sequence of length L, hence giving a tensor

of size L× 1024. Further, two heads, Secondary Structure (SS)

classification head and Allostery Classification head, perform

https://mdl.shsmu.edu.cn/ASD/
https://github.com/smu-tao-group/PASSerRank
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Fig. 2. pLM finetuning framework of the proposed architecture. SS Head

refers to Secondary Structure classification task. L is sequence length and

for each residue (token) the model produces 1024d feature vector, hence

L × 1024. SS has 3 classes (E - Beta sheet, H - Alpha Helix, C - Coil)

hence L × 3 and allosteric head has two classes (positive or negative),

hence L × 2.

Table 2. Hyperparamters for ProtBERT Finetuning (MTL)

Hyperparameter Value

Epochs 12

Batch Size 4

Learning Rate 5e−5

Weight Decay 4e−1

Evaluation Metric F1 Score

Optimizer AdamW

their own classification in order to fine-tune the model. Hence

the idea was that, the multi-task learning handles m multiple

learning tasks, denoted as {Ti}m
i=1, where the tasks share

similarities but are not exactly the same. The goal is to improve

the prediction performance of a model on a specific task Ti by

leveraging information from other related tasks.

In this architecture (Figure 2), supervised learning is being

performed and multi-task supervised learning setting means

that each task in MTL is a supervised learning task, which

models the functional mapping from data instances to labels.

We are given m supervised tasks Ti for i = 1, . . . ,m, each

with its own training dataset Di = {(xi
j , y

i
j)}

ni

j=1, where

xi
j is a feature vector in d-dimensional space, and yi

j is the

corresponding label (yi
j are discrete). For the ith task, there

are ni pairs of input data and labels. The aim of multi-task

learning (MTL) is to learn m functions {fi(x)}m
i=1, one for

each task, such that each function fi(x
i
j) can accurately predict

the associated label yi
j . After these functions are trained, they

can then be applied to new, unseen data points from the

corresponding tasks to make predictions. Table 2 gives the

hyperparameters that were used to fine-tune the pLM in MTL

fashion.

Pockets Extraction and Downstream Model Training

FPocket [Guilloux et al., 2009] was used to extract pockets

from the protein structures. However, the scope of the work is

to fine-tune the ProtBERT model in MTL setting and answer

that, whether the finetuned pLM specifically in MTL fashion

helps improve the prediction performance of allosteric sites. For

this, as language models cannot directly predict pockets/sites

from a protein sequences, XGBoost and Automated Machine

Learning (AutoML) models were trained on combined FPocket

features and features extracted from the finetuned pLM to

predict whether a given pocket is an allosteric pocket or not.

Training XGBoost

XGBoost was trained on pockets dataset. Each pocket’s

features were concatenated with the pLM features such that

only those pLM residue features were used for a certain pocket

that were part of that pocket. It was trained by using binary

logistic function as objective function with regularization λ =

0.15 and max tree depth of 7. To overcome the class imbalance

problem, scale_pos_weight was set to the ratio of negative

samples to the positive samples in training partition. The model

was trained for 100 boosting rounds with 5-fold cross validation

strategy, hence the scale_pos_weight parameter was calculated

dynamically for each fold.

Training AutoML

Automated Machine Learning (AutoML) takes out all manual

processing steps from preprocessing the dataset to model

training and selection by automating this process into a

pipeline. We used AutoGluon [Erickson et al., 2020] library

for this purpose; it leverages multi-layer stacking with k-

fold bagging. AutoGluon automatically selects the the layers

and value of k during the training process. As mentioned

in the Training XGBoost section 2.2.3, same dataset was

used comprising of the finetuned pLM features and pocket

features. We trained the AutoML models (pipeline) with default

parameters on a single GPU, during which the pipeline trained

several models with 3 layers of stacking and 8-folds.

Experimental Evaluation

As the dataset is highly imbalanced, the performance was

evaluated using F1 score mainly but also keeping in mind

Precision and Recall. F1 score is not only a measure of how

many positives are found, but it also penalizes for the false

positives that the method finds. Due to the high imbalance

in the dataset, model achieved a high accuracy simply by

predicting the majority class all the time, thus making the

accuracy metric misleading. F1 score is more suitable in this

case as it takes into account both precision (how many of

the predicted positive instances are actually positive) and

recall (how many of the actual positive instances are predicted

positive). A model with a high F1 score is both good at avoiding

false positives and false negatives, making it a more balanced

measure than accuracy in imbalanced datasets.

Results and Discussion

Features’ Analysis
Feature exploration and analysis is an important step in ML.

In this study, two types of features were used: FPocket features

(representing pockets) and ProtBERT features (representing

sequence residues). To analyze the class distribution, pockets

features were concatenated with residue features (making up

1043-d feature vector corresponding to each pocket) and t-

SNE (t-Distributed Stochastic Neighbour Embedding) [van der

Maaten and Hinton, 2008] was performed to reduce dimensions

from 1043 (1024+19) to 2 dimensions. Here X and Y are simply

the names given to reduced dimensions.

Visually, pockets do not cluster into distinct positive or

negative partitions. However, it can be seen in Figure 3 that
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Fig. 3. Allosteric and Non-Allosteric Sites’ t-SNE Features Distribution

Table 3. ProtBERT Results Comparison - Base vs. MTL

Model F1 Precision Recall

ProtBERTBase 0.2688 0.2205 0.3442

ProtBERTMTL 0.2999 0.3193 0.2828

most positive samples are shown in the top right corner of the

plot. This shows that they share some similarities in high-

dimensional space. Moreover, these pockets are near to the

modulator and this is how we defined the allosteric sites while

preparing data (pocket near to the modulator). Also, negative

samples are scattered all over the plot that could be a hint of

a greater diversity within negative class.

Results’ Analysis of Finetuning ProtBERT-BFD
To finetune the ProtBERT-BFD pLM, as mentioned in the 2.1

dataset section, each residue was labelled as either positive

(allosteric) or negative (non-allosteric). BertTokenizer from

HuggingFace was used to tokenize the sequences with sequence

length restricted to 1024 size.

We finetuned the pLM in MTL setting and without MTL.

Table 3 gives the results of models, where MTL refers to the

pLM finetuned in MTL fashion and Base refers to without

MTL. MTL-based model performs better than base model

which proves that MTL increases the prediction performance.

Moreover, we are also interested in higher precision (that means

we are looking for accurate true positives), which MTL model

gives us. Vig et al. [2021] interpreted attention in the ProtTrans

models [Elnaggar et al., 2021] and they concluded that in the

deeper layers of the LLM, heads give more attention to the

binding sites and contacting residues, relatively to the earlier

layers. Binding sites in proteins play an important role in

interacting with other molecules that influence the protein’s

functionality. Even with evolution, binding sites are conserved

and remain unchanged as they have important role in protein

Table 4. XGBoost Results’ Comparison - Base vs. MTL

Model (features) F1 Precision Recall

pLMBase 0.7179 0.8077 0.6462

pLMMTL 0.8596 0.8909 0.8306

pLMBase + Poc 0.8361 0.8947 0.7846

pLMMTL + Poc 0.8870 0.9107 0.8644

Table 5. AutoML Results’ Comparison - Base vs. MTL

Model (features) F1 Precision Recall

pLMBase 0.7500 0.8936 0.6462

pLMMTL 0.8649 0.9123 0.8136

pLMBase + Poc 0.8036 0.9036 0.6923

pLMMTL + Poc 0.8966 0.9231 0.8814

[Kinjo and Nakamura, 2009]. This is the reason that attention

targets binding sites.

Like the main binding sites, it can be conjectured that

allosteric sites are also conserved to some extent. Hence,

the model can give more attention to the conserved regions

(allosteric sites) even when other parts of the sequence may

vary.

XGBoost Results’ Analysis
XGBoost was trained and tested on features making up of (a)

only pLM-base features (Base), (b) only pLM-MTL features

(MTL), (c) combination of pLM-base and FPocket features

(Base + Poc), and (d) combination of pLM-MTL and FPocket

features (MTL + Poc). Table 4 gives the results of XGBoost

model (in the same order, a, b, c, and d) comparing results

in groups of each two rows. In both cases, (with and without

pocket features), features from MTL-based pLM outperform

the model trained on features from base model. Highest F1

score achieved was 88.7%.

AutoML Results’ Analysis
AutoML was also trained with same settings as mentioned in

the XGBoost section 4.3. Models trained on MTL-based pLM

features outperformed than that of base pLM features. Highest

F1 score achieved was 89.66%.

Models trained with MTL-pLM features have better recall

and precision and overall they perform better than base pLM

features based models.

Results Comparison and Discussion
The method discussed above, used pLM features and/or pocket

features. Both results have been given with and without pocket

features in order to show how pLM features affect the prediction

performance of allosteric sites. Moreover, not only the pLM

showed better performance but MTL-based pLM outperformed

all other methods.

Allosteric sites were ranked in different top positions namely,

Top 1%, Top 3%, Top 5%, and Top 10%. Figure 4 shows that

90% of positive or predicted allosteric sites by AutoML based

on MTL-pLM features, are ranked in top 10% of the results.

Table 6 gives the overall results comparison of MTL-based

models with previous approaches, with findings from previous

approaches taken from their respective papers. Previous studies

have used only pocket features to predict allosteric sites while
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Fig. 4. Ranking of Allosteric Sites in MTL vs. base pLM Features based

AutoML

Table 6. Comparison of MTL-based pLM Models with Previous

Models

Model (features) F1 Precision Recall

SVM [Tian et al., 2023b] 0.559 0.444 0.758

XGBoost [Tian et al., 2023b] 0.596 0.586 0.609

LTR [Tian et al., 2023b] 0.662 0.662 0.662

AutoML [Tian et al., 2023a] 0.701 0.850 0.616

Ensemble [Tian et al., 2023a] 0.782 0.726 0.847

DeepAlloXGBoost 0.887 0.911 0.864

DeepAlloAutoML 0.897 0.923 0.881

the models in this work have utilized the MTL-pLM features.

As the model performs better with the combination of pLMMTL

and pocket features, the same model’s results are compared

with previous approaches.

DeepAlloAutoML model (trained on MTL based pLM features

with pocket features) outperforms all previous models and has

12.8% increase over highest performing (Ensemble) [Tian et al.,

2023a] model. Moreover, our model can predict a pocket with

90.5% confidence among the top 3 positions that is also higher

than the Ensemble model’s top 3 i.e. 84.9%

Case Study

We tested our model on a case study protein (PDB ID: 3PEE)

that was not in our dataset. It is known to have allosteric sites.

AutoMLMTL model was used to predict the allosteric pockets.

Top 3 pockets were selected by ordering predicted pockets in

the descending order of probabilities.

In Figure 5, predicted pockets are marked in red, orange,

and purple color. Red color shows that pocket with the highest

probability, orange with the next highest probability, and the

purple shows the third highest probability of an allosteric

pocket. Moreover, the modulator is shown in green color. 1st

pocket has 0.84 probability of being an allosteric pocket while

remaining two pockets have 0.014 and 0.012 probability,

respectively. The model was evaluated on 50% threshold i.e.

a pocket must have atleast 0.5 probability to be predicted as

allosteric, otherwise it would be considered negative.

The predicted pocket is the correct allosteric pocket. It

can be observed that the predicted true allosteric pocket is

Fig. 5. Predicted Allosteric Sites: Top 1st (Red), Top 2nd (Orange), Top

3rd (Purple), and Modulator (Green)

near to the modulator (green). Moreover, third pocket (purple)

is extremely far from the modulator, which is a proof that

the model learns to predict correct allosteric pockets and

takes into consideration the distance between the modulator

and the allosteric pocket. It can be conjectured that the

pLMMTL features provide geometrical aspects of a protein and

consequently help a model to differentiate between residues

near the modulator and residues far from the modulator.

ProtBERT Explanation and Visualization

ProtBERT-BFD has 30 layers and 16 heads, resulting in

a total of 30 × 16 = 480 distinct attention mechanisms.

ProtBERT’s attention at different layers was also visualized in

order to understand which head at which layer attends and

which attention mechanism is followed. The visualization was

performed for 5DKK protein. To keep it brief and make the

point, neuron view for layer 7 and head 3 was captured, given

in Figure 6. For the sake of brevity and visualization purposes,

pocket residues were postfixed with an “underscore”. Attention

is being visualized as lines connecting the residue being updated

(left) with the residue being attended to. Color intensity reflects

the attention weight; weights close to one are shown as dark

lines, whereas weights close to zero appear as faint lines or not

visible at all.

Figure 6 gives the neuron view at layer 7 and head 3. First

three columns represent the Query, Key, and Value in the

Attention mechanism. Residues in question are highlighted with

green rectangles. Residue R has same Euclidean distance of

10.5 Å from both residues I and I, however, it gives attention

to I residue and does not attend to residue I (non-allosteric

residue). Although, the geometrical distance is the same, it

can capture the allosteric pocket residues even though, in the

sequence, I is at a long distance from R compared to the

distance from I.

The pLM mostly focuses on delimiter tokens in the initial

layers and as the input passes through deeper layers, the model

can make better connections among the residues (tokens).

Several other patterns also make their presence known in the

model such as attending to previous residue in the sequence

and attending to next residue in the sequence.
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Fig. 6. ProtBERT Neuron View - Layer 7 Head 3

Limitations

The language model can predict allosteric residues but it

cannot predict allosteric sites on its own. Moreover, the F1

score of the pLM is not that high and it might give false

positives (as a standalone version). Secondly, the results of

XGBoost and AutoML models are derived predictions that

come from FPocket’s detected pockets. Whole architecture

is more of an ensemble model that depends on FPocket for

pockets’ extraction. Due to the unavailability of huge dataset

and no access to experimental methods, it is hard to test the

model for new allosteric proteins (this stands for all previous

computational approaches in the literature). Moreover, the

pLM exhibits a lot of attention mechanism and sometimes they

are irrelevant; attending to CLS tokens, sometimes, may render

the results incorrect. Last but not least, the pLM gives more

attention to conserved sites, although allosteric sites are little

bit conserved but they are not as conserved in protein families

as the orthosteric sites are, making it hard for the pLM to make

connections.

Conclusion

This work was aimed to leverage finetuned pLM specifically

in Multitask Learning fashion in order to see if the prediction

performance of allosteric sites, over current approaches in the

literature, improves or not. As in the published literature, ML

and NMA approaches have been utilized to predict allosteric

sites in proteins; pLMs have never been utilized in this domain

of study. Extending base pLM for this task, Multitask Learning

was used to improve the prediction performance of allosteric

sites, by using secondary structure prediction as secondary task.

ProtBERT-BFD was finetuned and used as feature extractor

for XGBoost and AutoML models. FPocket was used to extract

pockets from allosteric proteins that was used as input for

XGBoost and AutoML. The pLM features combined with

pocket features were fed into XGBoost and AutoML, that

resulted in classifying pockets as allosteric or non-allosteric.

Due to high imbalance in the dataset F1 score was chosen as

evaluation metric and the proposed model achieved 89.66% F1

score.

Additionally, a case study was performed to see the top 3

pockets and the model predicted the correct allosteric site as

top 1 position with 99% confidence, proving that pLM finetuned

with MTL do improve prediction performance of allosteric sites

in proteins.

Interpretation and demystification of a deep learning (DL)

model is an important aspect. An effort was made to explain

the pLM and how it captures the allosteric residues. Several

attention mechanisms were identified. Visual interpretation

from these patterns shows distinct information, however, the

perceived information could be subjective.

In future, leveraging more sophisticated pLM models such

as ProtT5 (based on T5 architecture) is expected to further

improve the prediction performance of allosteric sites.
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open source platform for ligand pocket detection. BMC

https://github.com/ku-cosbi/deepallo
https://github.com/ku-cosbi/deepallo
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505


DeepAllo 7

Bioinform., 10, 2009. URL http://dblp.uni-trier.de/db/

journals/bmcbi/bmcbi10.html#GuillouxST09.

K. Gunasekaran, B. Ma, and R. Nussinov. Is allostery

an intrinsic property of all dynamic proteins? Proteins:

Structure, Function, and Bioinformatics, 57(3):433–443,

2004.

J. He, X. Liu, C. Zhu, J. Zha, Q. Li, M. Zhao, J. Wei, M. Li,

C. Wu, J. Wang, Y. Jiao, S. Ning, J. Zhou, Y. Hong, Y. Liu,

H. He, M. Zhang, F. Chen, Y. Li, X. He, J. Wu, S. Lu,

K. Song, X. Lu, and J. Zhang. ASD2023: towards the

integrating landscapes of allosteric knowledgebase. Nucleic

Acids Research, page gkad915, 10 2023. ISSN 0305-1048.

doi: 10.1093/nar/gkad915. URL https://doi.org/10.1093/

nar/gkad915.

W. Huang, S. Lu, Z. Huang, X. Liu, L. Mou, Y. Luo, Y. Zhao,

Y. Liu, Z. Chen, T. Hou, et al. Allosite: a method for

predicting allosteric sites. Bioinformatics, 29(18):2357–2359,

2013.

A. R. Kinjo and H. Nakamura. Comprehensive structural

classification of ligand-binding motifs in proteins. Structure,

17(2):234–246, 2009. ISSN 0969-2126. doi: https://doi.org/

10.1016/j.str.2008.11.009. URL https://www.sciencedirect.

com/science/article/pii/S0969212609000203.

M. S. Klausen, M. C. Jespersen, H. Nielsen, K. K. Jensen,

V. I. Jurtz, C. K. Sønderby, M. O. A. Sommer, O. Winther,

M. Nielsen, B. Petersen, and P. Marcatili. Netsurfp-

2.0: improved prediction of protein structural features by

integrated deep learning. bioRxiv, 2018. doi: 10.1101/

311209. URL https://www.biorxiv.org/content/early/2018/

09/10/311209.

M. Mannes, C. Martin, C. Menet, and S. Ballet. Wandering

beyond small molecules: peptides as allosteric protein

modulators. Trends in Pharmacological Sciences, 43(5):

406–423, 2022. ISSN 0165-6147. doi: https://doi.org/10.

1016/j.tips.2021.10.011. URL https://www.sciencedirect.

com/science/article/pii/S0165614721002145.

M. Mirdita, M. Steinegger, and J. Söding. MMseqs2 desktop
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