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ABSTRACT 19 
Poplar is a promising resource for wood production and the development of 20 
lignocellulosic biomass, but currently available varieties have not been optimized for 21 
these purposes. Therefore, it is critical to investigate the genetic variability and 22 
mechanisms underlying traits that affect biomass yield. Previous studies have shown 23 
that target traits in different poplar species are complex, with a small number of ge-24 
netic factors having relatively low effects compared to medium to high heritability. In 25 
this study, a systems biology approach was implemented, combining genomic, 26 
transcriptomic, and phenotypic information from a large collection of individuals from 27 
natural populations of black poplar from Western Europe. Such an approach identi-28 
fied a QTL and a gene, chalcone isomerase (CHI), as a candidate for controlling ra-29 
dial growth. Additionally, analysis of the structure and diversity of traits as well as 30 
CHI gene expression revealed a high allelic fixation index, linked to the geographical 31 
origin of the natural populations under study. These findings provide insights into 32 
how adaptive traits arise, are selected, and maintained in the populations. Overall, 33 
this study contributes to enhancing the use of poplar as a valuable resource for sus-34 
tainable biomass production. 35 
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Introduction 39 

Trees play a crucial role in mitigating climate change by sequestering carbon from the atmos-40 
phere through photosynthesis, and forest ecosystems are considered the largest terrestrial car-41 
bon sinks on Earth (Pan et al., 2011; Harris et al., 2021). The future evolution of carbon seques-42 
tration in forests relies heavily on how the growth rate and lifespan of trees respond to the chan-43 
ging climate (Brienen et al., 2020; Zhou, 2022). Trees keep accumulating carbon in their trunks, 44 
branches, and roots as they grow, which enables them to capture and store atmospheric carbon 45 
for several decades or possibly centuries (Green & Keenan, 2022). The major part of the tree 46 
trunk is created by the cambium, and the developing xylem constitutes a complex and dynamic 47 
system that generates wood in accordance with the seasonal cycle (Rathgeber et al., 2016). Ho-48 
wever, we still lack an integrative theory to understand growth patterns because wood formation 49 
requires the coordination of many metabolic pathways (Bryant et al., 2023). 50 

Knowing and understanding the links between phenotypes and genetic mutations is a major 51 
challenge. Such studies have emerged for poplar, a model for tree biology, genomics, evolutio-52 
nary and ecological genetics (Jansson & Douglas, 2007; Douglas, 2017). Furthermore, cultivated 53 
poplars have commercial value for peeling and veneer, lumber, paper pulp and are also used as 54 
bioenergy feedstock due to their high biomass production and favourable cell wall chemistry 55 
(Porth & El-Kassaby, 2015; Taylor et al., 2016; An et al., 2021; Abreu et al., 2022). Populus nigra 56 
is a deciduous tree species native to Europe, Asia and North Africa that occupies riparian eco-57 
systems with diverse climate ranges (De Rigo et al., 2016). The genetic structure of this species 58 
in its natural distribution area is not extensively known. Yet, some studies have shown high gene-59 
tic diversity within populations and low but significant genetic differentiation between river basins, 60 
suggesting high levels of gene flow in Western parts of the distribution (Smulders et al., 2008; 61 
Dewoody et al., 2015; Wójkiewicz et al., 2021). Seven ancestral genetic clusters were found in 62 
the first genome-wide genotyping study of 838 native individuals from 12 Western European river 63 
basins (Faivre-Rampant et al., 2016). However, another study of seven species showed that 64 
black poplar is highly structured with low diversity within populations (Milesi et al., 2024). These 65 
results may be due to the fact that the ecology of the species is strongly influenced by a very dy-66 
namic environment, the alluvial banks where it breeds, resulting in a complex structure (Gurnell & 67 
Petts, 2006; Alimpić et al., 2022). 68 

Black poplar also shows a wide phenotypic diversity which can be observed on latitudinal 69 
clines such as that observed for leaf functional traits in response to drought (Viger et al., 2016) or 70 
on leaf morphology and structure (Guet et al., 2015b). Among the observable phenotypes, 71 
growth traits and wood production are considered fundamental for the adaptation and productivi-72 
ty of planted forests (Grattapaglia et al., 2009). For example, the biosynthetic pathway of lignin, 73 
an essential component of wood, is known to affect abiotic tolerance and growth in Populus (Xie 74 
et al., 2018). However, few genetic studies have been carried out on traits related to growth, and 75 
even fewer at the genomic level using the natural intraspecific diversity of trees. Genetic differen-76 
tiation between natural populations of P. trichocarpa was found for growth and phenology, which 77 
was higher than the rather weak differentiation observed at the genome level (Evans et al., 2014; 78 
Oubida et al., 2015). This suggests that local adaptation explains patterns of variation in these 79 
traits better than genetic drift alone. The adaptive traits of poplar populations show variations de-80 
pending on the local climate at their geographic origin. Using genome-wide association studies 81 
(GWAS) on provenances of P. trichocarpa, candidate loci underlying bud phenology and bio-82 
mass have already been identified (Evans et al., 2014; Zhang et al., 2019). Based on 113 natural 83 
P. tremula genotypes from Sweden, a study showed significant natural variation in growth and 84 
wood-related traits and allowed the identification of genetic markers associated with these traits 85 
(Escamez et al., 2023). In this context, the OGDH enzyme (2-oxoglutarate dehydrogenase) was 86 
found to be associated with variation in tree volume and constitutes an interesting potential can-87 
didate for improving stem volume. Within the same collection of Aspen trees, a major and unique 88 
locus was also discovered. It determines the timing of bud formation and facilitates adaptation to 89 
different growing seasons and colder climates (Wang et al., 2018). A systems genetics approach 90 



in a subset of the same collection linked natural variation in lignin content and composition to 91 
responses to mechanical stimuli and nutrient availability (Luomaranta et al., 2024). Furthermore, 92 
QTLs were identified for stem and biomass traits in several mapping populations involving as 93 
parental species those typically used to generate cultivated hybrids (P. deltoides, P. nigra and P. 94 
trichocarpa). Of note, these studies reported several QTL hotspots for biomass accumulation in 95 
different environments (Rae et al., 2008, 2009; Dillen et al., 2009; Monclus et al., 2012). 96 

Although QTL mapping studies in segregating progenies have reported QTL hotspots that 97 
explain a large part of genetic variation for growth, the QTL resolution was too limited to identify 98 
the underlying candidate genes (Rae et al., 2009). On the other hand, GWAS can make use of 99 
the rapid decay of linkage disequilibrium in forest trees (Neale & Kremer, 2011), but most studies 100 
carried out so far for growth traits have reported a limited number of loci that individually do not 101 
explain a large proportion of the genetic variance of this heritable trait (Mckown et al., 2014; All-102 
wright et al., 2016). Many studies suggest that complex traits are controlled by multiple loci, each 103 
with rather small effects (Bradshaw & Stettler, 1995; Grattapaglia et al., 1996; Rae et al., 2007; 104 
Wade et al., 2022). To go further in understanding phenotypes and adaptation, the genomics 105 
toolbox and statistical methods as systems biology approach made available for research are 106 
constantly evolving (Pazhamala et al., 2021). The revolution comes in particular from the applica-107 
tions that “omics” technologies have made possible for plants such as forest trees (Plomion et 108 
al., 2016; Borthakur et al., 2022). Thus, with the progression of methodologies and the reduction 109 
in the costs of these approaches, a certain number of studies have examined at large scale of 110 
endophenotypes like transcriptomic (Chateigner et al., 2020), proteomic (Plomion et al., 2006; 111 
Castillejo et al., 2023; Teyssier et al., 2023) or even metabolomic (Rodrigues et al., 2021) in 112 
trees. Another study has advocated the use of RNAseq to jointly identify polymorphisms and 113 
quantify the transcriptomic variability across natural populations (De Wit et al., 2015). Such an 114 
approach could contribute to filling the gap between the genome and phenotypic variation for 115 
complex traits and further contribute to the explanation of their missing heritability (Maher, 2008; 116 
Chandler et al., 2014). 117 

Here, we report a GWAS for growth using phenotypic data from natural populations of P. ni-118 
gra evaluated in two common garden experiments together with SNP data from RNAseq (Cha-119 
teigner et al., 2020; Rogier et al., 2023). We further make use of the transcriptomic data to dis-120 
sect a major QTL for growth and pinpoint a candidate gene from the flavonoid pathway. Finally, 121 
we studied the genomic and transcriptomic diversity of the candidate gene and the phenotypic 122 
diversity across the natural populations and could show that the polymorphism is involved in 123 
growth differentiation, suggesting an implication in local adaptation. 124 

Material and methods 125 

Plant material and field experiments. 126 

The complete plant material and field management was previously described (Guet et al., 127 
2015a; Gebreselassie et al., 2017). Briefly, an initial experimental design based on a total of 128 
1,160 genotypes of P. nigra, representative of the species range in Western Europe, was esta-129 
blished in two contrasting common gardens located at Orléans (France, ORL) and Savigliano 130 
(Italy, SAV) in 2008. In both sites, the genotypes were replicated 6 times in a randomized com-131 
plete block design. A previous study, using a 12k Infinium array (Faivre-Rampant et al., 2016) 132 
was used to characterize the genetic diversity within this collection. A subset of 241 genotypes 133 
representative of the natural diversity and originating from 10 river basins was selected. 134 

Climate data. 135 

Climatic variations across the locations of origin of the populations were analysed by applying 136 
principal component analysis on 19 annual bioclimatic variables obtained from the WorldClim 137 
dataset (Hijmans et al., 2005). The values used are the 30-year average (1960 to 1990) with a 138 
resolution of 1 km² per grid cell obtained from the GPS location of the original natural popula-139 



tions. The first two principal components (PC1 and PC2) corresponded to the weighted precipita-140 
tion and temperature variables, respectively. 141 

Phenotyping. 142 

We have described in detail the phenotyping of 21 traits in previous works (Chateigner et al., 143 
2020; Wade et al., 2022). Only the circumference and the basic density of the wood (Infraden) 144 
were used in this study. Briefly, trees were pruned at the base after one (SAV) or two years of 145 
growth (ORL), to remove a potential cutting effect. Circumferences at 1-m above the ground 146 
were measured on 2-year-old trees in winter 2010-2011 at SAV and in winter 2011-2012 at ORL. 147 
Basic density was determined as previously reported as described in (Chateigner et al., 2020). 148 
Briefly, it was measured on a piece of wood from the stem section harvested for RNA sequenc-149 
ing (see hereafter) following the Technical Association of Pulp and Paper Industry (TAPPI) 150 
standard test method T 258 "Basic density and moisture content of pulpwood". For each site, the 151 
phenotypic data were analyzed with a linear mixed model to compute genotypic means adjusted 152 
for micro-environmental effects as described in (Gebreselassie et al., 2017). Before the adjust-153 
ment of the model, a square root transformation was made to ensure the normality and homo-154 
scedasticity of the residuals. 155 

Transcriptomic data. 156 

RNA sequencing was carried out on young differentiating xylem and cambium tissues collect-157 
ed in 2015 from two replicates of the 241 genotypes located in two blocks of the Orleans com-158 
mon garden, as described in (Chateigner et al., 2020). Sequencing reads were obtained to pro-159 
vide both transcriptomic and genomic data. Briefly, frozen milled tissue was used to isolate total 160 
RNA with RNeasy Plant kit (Qiagen, France), according to manufacturer’s recommendations and 161 
a treatment with DNase I (Qiagen, France) was made. Samples of young differentiating xylem 162 
and cambium tissues of the same tree were pooled in an equimolar extract before sending it for 163 
the sequencing at the POPS platform with Illumina Hiseq2000. Reads were mapped to the P. 164 
trichocarpa v3.0 primary transcripts using bowtie2 v2.4.1 (Langmead & Salzberg, 2012) and only 165 
transcripts with at least 1 count in 10% of the samples were kept, yielding 34,229 features. The 166 
raw count data were normalized by Trimmed Mean of M-values using the R package edgeR 167 
v3.26.4, calculated in counts per millions (CPM) and computed in ������ � 1�. At the end, the 168 
CPM were fitted with a linear mixed model including batch and genetic effects to extract their 169 
genotypic Best Linear Unbiased Predictors (BLUPs). These genotypic BLUPs of transcripts were 170 
used for the rest of our analysis. 171 

Genotypic data. 172 

The full details of genotypic analysis have been described in (Rogier et al., 2023), including 173 
software used, data filtering criteria and final SNP selection. Briefly, genotyping data were ob-174 
tained, using BWA-MEM v0.7.12 to map the reads into the P. trichocarpa v3.0 reference genome 175 
and the SNPs were called using 3 callers to generate a high-confidence SNP set. Only the SNPs 176 
identified by at least 2 of the 3 callers and with less than 50% of missing values were selected. 177 
Missing values were imputed using the Fimpute v.2.2 program (Sargolzaei et al., 2014) and 178 
complementary genotyping data previously obtained with a 12 k Illumina Infinium Bead-Chip ar-179 
ray (Faivre-Rampant et al., 2016). At the end, we obtained 878,957 SNPs and from these, 180 
440,292 SNPs were retained for this study after filtering for a minimum allele frequency of 0.05. 181 

Genetic analyses 182 

Unless otherwise stated, all analyses have been carried out with R v4.4.1 (R Core Team, 183 
2021) under the RStudio environment (RStudio Team, 2020). 184 



Partition of variance 185 
The following bivariate mixed model was fitted to partition the variance in circumference 186 

across the two sites into between- and within-population genetic variation and their interaction 187 
with site: 188 

(1)   	 
 �	�	�� 
 
� � ��� � ��� � � 189 

Where 	 is a vector of genotypic adjusted means for circumference in ORL and SAV, 
, �� 190 
and �� are design matrices relating observations to fixed and random effects, � is the fixed effect 191 
of site and � and � are between and within random genetic effects. � and � follow a multivariate 192 

normal distribution with mean 0 and variances: � ���� �������� ���� �  ��  and � ���� �������� ���� �  ��. ��  and �� 193 

are genomic relationship matrices between and within populations. They were estimated from the 194 
full genomic relationship matrix computed with ldak software v5 (Speed et al., 2012), by averag-195 
ing the kinships per population for ��  and setting the kinships at zero across populations for ��. 196 

Population genetics 197 ��� was estimated using Weir and Cockerham method (Weir & Cockerham, 1984) and im-198 
plemented in plink (v1.90b6.3). ��� was estimated using variance parameters from the previously 199 

described mixed-model as: ��� 
 �
�
�

��
�
�	���

� 

. 200 

GWAS 201 
GWAS was performed for circumference in each site with genotypic adjusted means and 202 

SNPs, using a linear mixed model as originally proposed by (Yu et al., 2005) and implemented in 203 
the R package MM4LMM (Laporte et al., 2022). This model included a random polygenic effect 204 
with a covariance structure defined by a genomic relationship matrix computed with the software 205 
ldak to account for linkage disequilibrium between SNPs (Speed et al., 2012). We also performed 206 
multi-locus GWAS using the multi-locus mixed-model (MLMM) approach implemented in the R 207 
package MLMM v0.1.1 (Segura et al., 2012), as well as multi-environment GWAS carried out 208 
with the MTMM approach implemented in R (Korte et al., 2012). Linkage disequilibrium between 209 
significantly associated SNPs was estimated in R as the squared allelic coefficient. 210 

GWAS were also carried out using transcriptomic data (eQTL analysis) but focusing only on 2 211 
genes of particular interest in this work. The analyses were done using both single- and multi-212 
locus approaches, as presented for circumference. 213 

We also looked at associations between our candidate SNP, latitude of origin and climatic da-214 
ta at the population level using a Pearson correlation test.  215 

Further tests were carried with data previously published by (Pégard et al., 2020) on a multi-216 
parental population of P. nigra (factorial mating design). This dataset consisted of 629 individuals 217 
with genotypic and circumference data. We retrieved 46 SNPs within the interval 218 
[chr10:20105000, chr10:20125000] corresponding to the region of interest in the present study, 219 
and carried out association tests between these SNPs and the phenotype using a simple linear 220 
model. 221 

Results 222 

A QTL controlling radial growth is highlighted by a genome-wide association study. 223 

We performed a GWAS for circumference using 428,836 SNPs and detected a significant 224 
signal for this trait phenotyped in Savigliano (Fig. 1a), with a total of 18 significant SNPs, includ-225 
ing 11 on chromosome 10 in strong linkage disequilibrium. Closer examination of this region 226 
showed that the signal is distributed over two gene models: Potri.010G212900, annotated as a 227 
Beta-Hexosaminidase 1 (Hexo1) and Potri.010G213000, annotated as a chalcone isomerase 228 



family protein (CHI) (Fig. 1b). In the MLMM approach, the whole signal vanishes out after condi-229 
tioning on the top SNP, suggesting that a single allele is associated with the trait in the region 230 
(Fig. S1). This top SNP explains more than 50% of the phenotypic variation (without accounting 231 
for population structure, Fig. 1c). While non-significant at the genome-wide level when consider-232 
ing circumference at Orleans (Fig. S2), this top SNP still explains more than 20% of the pheno-233 
typic variation in this common garden and its effect is in the same direction as found in 234 
Savigliano (Fig. 1c). Consequently, a multi-trait GWAS combining phenotypes from the two 235 
common gardens confirmed this signal but detected only a total of 7 significant SNPs (Fig. S3), 236 
mainly for the global effect (i.e., common to the two sites). These 7 SNPs identified in the multi-237 
trait GWAS, are included in the 11 detected in single-trait GWAS at Savigliano and constitute our 238 
core set of candidate SNPs (Tab. S1). Among them, 6 are exonic (4 non-synonymous and 2 239 
synonymous) and 1 is in 5’UTR, unsurprisingly as they come from RNAseq reads. In addition, 240 
they are all located on the CHI gene except one. It is worth mentioning that the top SNP is locat-241 
ed in an exon of CHI gene and is predicted to be non-synonymous. 242 

 243 

 244 

Figure 1 - GWAS of the circumference phenotype. a) Genome-wide Manhattan 245 
plot highlighting QTL on chromosome 10 performed using a single locus mixed 246 
model and 428,836 SNPs markers from natural P. nigra diversity phenotype at 247 
Savigliano; b) Manhattan plots focused on SNPs with lowest p-values obtained 248 
and concerning 2 gene regions, with corresponding mean coverage of RNAseq 249 
reads across individuals; c) Box plot of the circumference in both experimental 250 
sites (transformed with a square root, sqrt), depending on the allele count of the 251 
candidate SNP with the lowest p-value. 252 



Gene expression sustains CHI as a candidate gene. 253 

We used the RNAseq data, generated from the xylem and cambium tissues of poplars grown 254 
at Orléans as an endophenotype to test whether the expression of our candidate genes correlat-255 
ed with the phenotypes and could be linked to the effect of one of them. Negative correlations 256 
were found between gene expressions and phenotypes, and their magnitude was higher for CHI 257 
than for Hexo1 (Fig. 2a, Fig. 2b), with R2 of 0.53 and 0.35 for circumference evaluated in 258 
Savigliano and Orleans, respectively. When using the expression of both genes to jointly explain 259 
phenotypes, the correlation between CHI gene expression and circumference was maintained 260 
(R2 = 0.49 at Savigliano and R2 = 0.25 at Orleans) while it drastically dropped for Hexo1 (R2 = 261 
0.004 at Savigliano and R2 = 0.05 at Orleans). We also made use of transcriptomic data for CHI 262 
and Hexo1 to perform an eQTL analysis, which highlighted a strong cis control for the 2 genes 263 
(Fig. 2c). The fact that these two genes are close from each other and in opposite directions on 264 
the genome, together with the existence of strong LD in the region (Fig. 1b), generates a positive 265 
correlation between their expressions (R2 = 0.19). But, when focusing on the region of interest, 266 
we observed different patterns of eQTL signal between the 2 genes (Fig. 2d). Interestingly, the 267 
pattern of eQTL for CHI gene was similar to the one observed for circumference (Fig. 2d, Fig. 268 
1b). Altogether, these results supported CHI as a candidate gene for the control of circumference 269 
variability. 270 
 271 

 272 

Figure 2 - eQTL analysis sustains CHI (Potri.01G213000) as a candidate gene for 273 
the control of circumference variation. a) correlation between the circumference 274 
and the expression level of Hexo1 primary transcript (Potri.010G212900.1) ; b) 275 
correlation between the circumference and the expression level of CHI primary 276 
transcript (Potri.010G213000). c) Manhattan plot and d) focus on the candidate 277 
region of the eQTL analysis using the variations in the expression level of the 2 278 
primary transcripts previously highlighted as phenotypes. Circumference was 279 
transformed with a square root (sqrt). The expression level of transcripted have 280 
been standardized with a genetic analysis. 281 



Structure of the diversity of the CHI gene highlighted by population-scale analyses. 282 

To further characterize the effect of the top SNP on the phenotypic variability, we partitioned 283 
the variance of circumference across locations into between-population and within-population 284 
genetic effects, their interaction with location, and a residual term (Fig. 3). This analysis showed 285 
that a large part of the phenotypic variation (35%) was due to genetic differences between popu-286 
lations, followed by interaction variance between genetics within populations and location (25%), 287 
genetic variance across populations (20%), and interaction variance between genetics across 288 
populations and location (17%). Interestingly, when the top SNP was included as a fixed effect in 289 
this variance partitioning model, it explained up to 24% of the total phenotypic variance, and this 290 
part of variability was mainly from the between population genetic component (Fig. 3, model 2). 291 
This analysis suggests that the QTL, previously identified by GWAS, is driven by differences in 292 
radial growth at the population level. 293 
 294 

 295 

Figure 3 - Partition of phenotypic variance for circumference across two locations 296 
using two models: Model 1 (mod.1) refers to the model of variance partition with-297 
out the top SNP (Chr10:20120195), while model 2 (mod. 2) is the model that in-298 
cludes the top SNP as a cofactor. Btw-pop and With-pop refer to between and 299 
within population variances, while G and GE refer to genetic and genetic by envi-300 
ronment variance, respectively. 301 

To confirm this observation, we computed the fixation index (FST) of the 428,836 SNPs and 302 
looked at the value of the top SNP detected by the GWAS. This SNP displayed a high FST value 303 
(0.69) well above the 99th percentile (0.28) of the genome-wide FST distribution (Fig. 4a). Such a 304 
high fixation index is due to a fixation of the reference allele in several populations mainly from 305 
the north-east of the studied area (NL, Kuhkopf, Rhin, Ticino), a fixation of the alternative allele in 306 
some population from central (Loire, Val d’Allier) and southern (Ramières) France and southern 307 
Italy (Basento), and a balanced situation in intermediate populations between these extremes 308 
(Dranse and Paglia) as well as in the population of south-western France (Adour) (Fig. 4b). In-309 
terestingly, such a genetic differentiation is also observed at the phenotypic level as well as at 310 
the transcriptomic level for CHI gene, as highlighted by high QST values (Fig. 4a) and population 311 
differences (Fig. 4c). Consequently, associations between SNP and traits (Fig. 5a) or gene ex-312 
pression (Fig. 5b), as well as correlations between traits and gene expression (Fig. 5c), were 313 
high and significant when estimated at the population level, except for the trait evaluated at Orle-314 
ans, which is consistent with the results obtained at the individual level (Fig. S4). 315 
 316 



 317 

Figure 4 - Structure of the diversity. a) Distribution of genome-wide Fst together 318 
with specific values indicated by vertical lines: 99th percentile of the distribution, 319 
top SNP (Chr10:20120195) Fst, CHI (Potri.010G213000.1) expression Qst, cir-320 
cumference at Orléans and Savigliano Qsts. b) Geographical origin of populations 321 
together with the distribution of alleles within each population for the top SNP 322 
(Chr10:20120195), the size of the pie is proportional to the size of the population. 323 
c) Distribution of circumferences at Orléans and Savigliano, as well as CHI 324 
(Potri.010G213000.1) expression across populations. 325 
 326 
 327 

 328 
Figure 5 - Associations at the population scale. a) Correlation between circumfer-329 
ence at Savigliano and allele frequencies for the top SNP (Chr10:20120195); b) 330 
correlation between CHI (Potri.010G213000.1) expression and allele frequencies 331 
for the top SNP (Chr10:20120195); c) correlation between circumference at 332 
Savigliano and CHI (Potri.010G213000.1) expression. 333 



Validations. 334 

To support our findings, we complemented our study by several analyses. First, we looked at 335 
co-localizations between the QTL detected in the present study and QTLs previously reported in 336 
the literature. Of particular interest, we found in the same genomic region a QTL previously re-337 
ported by Rae et al. (2009) for several traits related to biomass production in an interspecific pop-338 
lar progeny, and named poplar biomass locus 3 (PBL3). PBL3 included several QTLs for height 339 
and diameter found across multiple years, and it was delimited by two SSRs (ORPM149 and 340 
PMGC2786). We retrieved the coordinates of these markers on the P. trichocarpa reference ge-341 
nome by blasting their priming sequences. The resulting interval in bp was [17566502, 342 
21189318] (Fig. S5). It thus fully includes the QTL reported here which spans the interval 343 
[20105000, 20125000] (Fig. 1b). Second, we retrieved data from intraspecific crosses of P. nigra 344 
carried out within the French breeding program and previously used and reported by (Pégard et 345 
al., 2020) for genomic prediction. From the SNP set in this previous study, we identified 46 SNPs 346 
that fell within the interval and tested associations between each of these SNPs and the pheno-347 
type circumference in a panel of 629 individuals resulting from those crosses. The most signifi-348 
cant association (p = 2.43e-05) was found for a SNP located at 20 119 788 bp (407 bp from the 349 
top SNP) (Fig. S6), which was also found significant in the present study with an effect in the 350 
same direction (alternative allele associated with an increase in circumference). 351 

Discussion 352 

We made use of growth data collected in two common garden experiments together with 353 
transcriptome-wide SNP data to search for genetic associations between genotype and pheno-354 
type in P. nigra. Such analysis pinpointed a small genomic region located at the distal end of 355 
chromosome 10 which encompassed 2 gene models, of which one was annotated as a chalcone 356 
isomerase (CHI). Transcriptomic data within one of the two common gardens further supported 357 
an implication of CHI in the phenotypic variation. Because the black poplar collection was struc-358 
tured into subpopulations corresponding to the geographic origins of the accessions, we further 359 
focused on differences between subpopulations and found that CHI diversity is a main driver of 360 
growth differences at the subpopulation scale. Such findings suggest an implication of this gene 361 
in local adaptation. Finally, we seek to validate our results with data from previous works and 362 
found that our significant loci match a previously reported QTL hotspot for biomass accumulation 363 
in an interspecific poplar family (Rae et al., 2009). We further validated the effect of the QTL in 364 
an independent panel with a P. nigra pedigree from the French breeding program (Pégard et al., 365 
2020). 366 

The strongest effect in the GWAS was found for the phenotypic data collected in the common 367 
garden (SAV) where the genetic variability for growth was the largest. This site enabled a better 368 
expression of the phenotypic variability for growth. Unfortunately, transcriptomic evaluation was 369 
carried out in the other common garden (ORL). Consequently, it is hard to conclude on the inter-370 
play between SNP variation and gene expression to explain the variation in growth. Indeed, if we 371 
run a mediation analysis, as proposed by Sasaki et al. (2018), using phenotypic data from SAV, 372 
we cannot conclude that the expression of CHI mediates the genetic association (data not 373 
shown). While if we repeat such analysis with phenotypic data from ORL we find that the asso-374 
ciation is mediated by CHI expression, although the association with growth at ORL is not signifi-375 
cant genome-wide. Yet, the fact that gene expression data were collected from a different site 376 
than the one in which the GWAS is significant, underlines the robustness of the results. 377 

Another complication with the loci detected originates from the confounding effect of popula-378 
tion structure. Indeed, the phenotype, gene expression as well as polymorphisms display a signi-379 
ficant variability across populations which drives the correlations and associations between them. 380 
Such a situation is not ideal for association mapping, and the confounding effect attributed to po-381 
pulation structure has to be specifically handled by the statistical model applied, usually a linear 382 
mixed model with a random polygenic effect having as covariance the genomic relationship bet-383 
ween individuals (Yu et al., 2005). In addition, we used the program ldak to account for LD bet-384 



ween polymorphisms in the estimation of the relationships (Speed et al., 2012), required to be 385 
independent, because our SNPs come from RNAseq and are thus clustered by genes with po-386 
tentially some strong LD between neighbouring SNPs. The correction applied within the linear 387 
mixed model with such a matrix appeared to be milder than the one achieved with a regular GRM 388 
such as the one estimated following (VanRaden, 2008), resulting in a significant signal. Such a 389 
complication underlines the need to validate the association, which was achieved through two 390 
main approaches. First, we found that the detected locus falls within a QTL hotspot for biomass 391 
previously reported in several mapping populations (Rae et al., 2008, 2009; Dillen et al., 2009; 392 
Monclus et al., 2012). Second, we have shown that one of the significant SNP affects also the 393 
growth in a large collection of P. nigra from a breeding pedigree previously used for testing ge-394 
nomic prediction in black poplar (Pégard et al., 2020). While statistically significant, the effect of 395 
the SNP is lower than in the natural populations. This could potentially be explained by GxE inte-396 
raction since we already found that the SNP effect is different between the two common garden 397 
experiments and the P. nigra pedigree from Pégard et al. (2020) was evaluated in a different lo-398 
cation within a quite different climatic area (oceanic climate). 399 

Another way of validating the locus would be to gain insights into the biological mechanism 400 
relating the polymorphisms to the trait through the expression of CHI. Considering the polymor-401 
phisms, we could identify four non-synonymous SNPs significantly associated with the pheno-402 
type, one in the first exon and three in the second exon of the gene, including the top SNP (Tab. 403 
S1). We could hypothesize that one or several of these SNPs affect the enzymatic activity of 404 
CHI, for which a cellular response could be an overexpression of the gene as compensation. 405 
This would be consistent with the observed positive relationship between the most significant 406 
polymorphism and the expression of CHI (Fig. 5b). Also, the decrease in the enzymatic activity 407 
of CHI for individuals carrying the alternate allele of the top SNP could be consistent with the de-408 
crease in growth observed in these individuals (Fig. 1c). Another hypothesis to explain the nega-409 
tive correlation between growth and CHI expression could be a trade-off between growth and 410 
wood quality (Novaes et al., 2010). To test this hypothesis, we retrieved data on wood density 411 
measured on samples collected at Orléans. The top SNP displayed a significant association with 412 
wood density, with a positive effect of the alternate allele, which was thus opposite to the effect 413 
found for circumference (Fig. S7a). Similarly, a significant positive correlation was found between 414 
wood density and CHI gene expression while such correlation was positive for circumference 415 
(Fig. S7b). These results provide some evidence for the effect of CHI on the trade-off between 416 
wood growth and density. Interestingly, a preceding study revealed that silencing hydroxycinna-417 
moyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) in Arabidopsis thaliana in-418 
volves an accumulation of flavonoids and a reduction of plant growth (Besseau et al., 2007). This 419 
is consistent with our results since CHI is one of the first key enzymes of the flavonoid pathway 420 
(Dare et al., 2020). HCT is a key enzyme of the lignin pathway, which is well documented and 421 
consists of a metabolic grid that modifies phenylalanine in multiple steps to ultimately produce 422 
the monolignols p-coumaryl, coniferyl, and sinapyl alcohols. In a previous study, screening a 423 
wide diversity of populations and focusing on the lignin biosynthesis pathway made it possible to 424 
identify common and rare functional variants in several genes (Marroni et al., 2011), including a 425 
natural defective allele for HCT (Vanholme et al., 2013). However, no effect on growth could be 426 
detected in this work.  427 

When looking at the loci diversity at the population level we found a strong differentiation, far 428 
above the genome-wide level (Fig. 4). Such a differentiation is thus more likely to result from dif-429 
ferential selection than genetic drift. Of particular interest, the differentiation across natural popu-430 
lations was also found for CHI expression and circumference (Fig. 4), and we could show that 431 
the top SNP contributed mainly to the between-population component of genetic variation for 432 
growth (Fig. 3). As a result, highly significant correlations were found between allele frequencies, 433 
gene expression, and phenotype at the population level (Fig. 5). When looking at the repartition 434 
of alleles on a map representing the geographic origin of the populations, a clear North-East ver-435 
sus South-West differentiation appears. Such a tendency was confirmed by the significant corre-436 
lation found between latitude of origin and allele frequencies (Fig. S8a). One could thus hypothe-437 



size that the differentiation could be related to climatic differences across Western Europe, which 438 
was confirmed by the significant correlation detected between allelic frequencies and a tempera-439 
ture proxy of the climate of origin (Fig. S8b). If we go back to the phenotypic data across popula-440 
tions, it’s worth noting that the southern populations with the alternate allele fixed display a lower 441 
growth and higher wood density. These data support the idea that southern populations are gro-442 
wing slowly as an adaptation to high summer temperatures, which ultimately underlines the 443 
adaptive relevance of the locus reported here. 444 

This work strengthens the interest in combining transcriptomics with genomics data across 445 
large natural populations to unravel locus and genes involved in key adaptive processes such as 446 
the trade-off between growth and wood formation. Such results provide some guidance to breed 447 
future varieties of trees with improved efficiency to store carbon. 448 
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