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Abstract

Single-cell sequencing measurements facilitate the reconstruction of dynamic biology by capturing snapshots of the
molecular profiles of individual cells. Cell fate decisions in development and disease are orchestrated through an intricate
balance of deterministic and stochastic regulatory events. Drift-diffusion equations are effective in modeling single-cell
dynamics from high-dimensional single-cell measurements. While existing solutions describe the deterministic dynamics
associated with the drift term of these equations at the level of cell state, the diffusion is modeled as a constant across cell
states. To fully understand the dynamic regulatory logic in development and disease, models explicitly attuned to the
balance between deterministic and stochastic biology are required. Addressing these limitations, we introduce scDiffEq, a
generative framework for learning neural stochastic differential equations that approximate the deterministic and
stochastic dynamics in biology. Using lineage-traced single-cell data, we demonstrate that scDiffEq offers improved
reconstruction of held-out cell states and prediction of cell fate from multipotent progenitors during hematopoiesis. By
imparting in silico perturbations to multipotent progenitor cells, we find that scDiffEq accurately recapitulates the dynamics
of CRISPR-perturbed hematopoiesis. Using scDiffEq, we simulate high-resolution developmental cell trajectories,
modeling their drift and diffusion, enabling us to study their time-dependent gene-level dynamics.

Introduction

Dynamical systems underpin fundamental processes in biology and disease, including developmental differentiation and
cancer. Gene expression is a common molecular proxy used to characterize cell types and states. Single-cell
measurements such as single-cell RNA-sequencing (scRNA-seq) can capture snapshots of both stable cell states as well
as transient states occupied by cell subpopulations undergoing transition between more stably observed cell states. While
individual cells are destroyed upon measurement, scRNA-seq facilitates rapid profiling of thousands of cells, which has
enabled the development of computational strategies to infer the relationship between an observed cell state and its past
and future states. These approaches facilitate the study of relationships between cell states as well as between cell states
and cell fates in cell trajectories and enable new insights into the regulatory dynamics underlying developmental
processes and disease.

The evolution of tools to study dynamics from single-cell molecular data have grown increasingly sophisticated, leveraging
emerging techniques from machine learning and domain knowledge of underlying biology . Trajectory inference
methods have offered effective approaches for pseudotemporal ordering in low-dimensional representations of cell state
though remain limited to correlative analyses of genes with pseudotime, restricting their ability to provide insights on the
underlying mechanisms that give rise to these trajectories. RNA velocity leverages reasonable biophysical assumptions
regarding nascent, mature and degradation of RNA transcripts to infer future cell states on short timescales. Methods,
including Dynamo and CellRank, use RNA velocity to infer cell trajectories and fate on extended timescales . However,
methods for estimation of RNA velocity from single-cell expression are sensitive to preprocessing and smoothing
operations and struggle to accurately model multi-fated trajectories®. Thus, methods that use RNA velocity as an input
feature depend on the validity of the assumptions made about transcriptional kinetics during velocity estimation.
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Drift-diffusion equations have been used to model cellular dynamics from snapshot data (Fig. 1a). In high dimensions,
such as those encountered in single-cell gene expression analyses, finding analytical solutions to partial differential
equations is computationally intractable. Thus, to gain traction in modeling single-cell dynamics, initially-proposed
frameworks necessitated strong assumptions. One of the first solutions to this framework, population balance analysis
(PBA), proposed leveraging properties of spectral graph theory to model cell states at steady state via a weighted random
walk through a cell neighbor graph °.

PRESCIENT is a generative recurrent neural network that learns a drift field from coarse, time-resolved cell data using an
optimal transport-based loss function. This drift field is regularized according to the assumption that cells exist in a
gradient potential landscape — i.e, each forward step taken by the model is the negative gradient of the model output
(potential), representing a Waddington Landscape of cell development "2,

Dynamo learns a smoothed vector field from noisy velocity estimates that serves as a drift term in the drift-diffusion
framework 7. PBA, PRESCIENT, and Dynamo propose models using a drift-diffusion framework though fix diffusion to a
uniform Gaussian noise term, treating its magnitude as a tunable hyper-parameter. This treatment of diffusion thus
assumes the stochastic dynamics of individual cells are cell state-independent, preventing further study of the stochastic
nature of gene expression as a function of cell state.

At the molecular level, stochasticity is required to facilitate the development of diverse cell types that originate from a
common progenitor 3. This stochasticity functions in tandem with more deterministic evolved regulatory mechanisms to
give rise to cellular diversity observed during dynamic developmental processes. Understanding the interplay between
stochastic and deterministic gene expression is essential to build interpretable models of the complex processes
underlying cell decision making. We sought to better understand when in time and where in gene expression space cells
lean on stochasticity to make decisions and how this translates to coordinated changes in transcriptional states.
Historically, differential equations have served as a workhorse of biological modeling. However, modeling complex,
biological systems, even in low dimensions, typically requires assumptions built on decades of empirical observations.
Fortunately, recent advances in deep learning, mainly neural differential equations, have provided a solution to
numerically approximate dynamics governed by complex differential equations '-'®. Neural stochastic differential
equations (neural SDEs) offer a direct framework to parameterize both the drift and diffusion terms of a drift-diffusion
equation, each with a deep neural network (Fig. 1b) .

In this work, we build on existing models of cell dynamics, taking advantage of neural differential equations, to present
scDiffEq, a deep learning framework that learns neural SDEs from embeddings of cell states to model and study their
dynamics (Fig. 1c). We benchmark scDiffEq against existing methods in approximating cell dynamics, using multi-time
point lineage-traced scRNA-seq data (Fig. 1d-f). We note distinct improvements in scDiffEqQ’s prediction of cell fate from
multipotent progenitor cells. We next observe scDiffEq’s enhanced ability to interpolate distributions of held-out cell
populations. We showcase scDiffEq's ability to identify genes correlated with cell diffusion, distinctly separate from those
associated with cell drift. This highlights the critical importance of modeling diffusion in our understanding of cellular
dynamics and offers a framework for its biological interpretation. Specifically, we investigate this through a detailed study
of neutrophil/monocyte decision-making from a multipotent progenitor cell wherein we attempt to pinpoint cell fate
decision-making in both time and gene expression space. We demonstrate, in continuous time resolution, the recovery of
key gene regulatory relationships and study how these processes relate to both cell drift and diffusion properties.

Results

Learning neural differential equations with scDiffEq. scDiffEq is based on neural Stochastic Differential Equations
(SDEs) and is designed to accept cell input of any dimension. Contemporary methods including PRESCIENT use
principal component analysis (PCA) as a preprocessing step. For straightforward comparison, we use the first 50 principal
components (PCs) of a z-scored gene expression matrix. scDiffEq requires the annotation of an initial position from which
it solves an initial value problem (IVP), to begin fitting the neural SDE describing the dynamics of the observed cell
manifold. When discreetly-labeled time points are provided, scDiffEq computes the Wasserstein Distance of cells sampled
from the observed cell population against those it predicts (Fig. 1c).
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To illustrate the scDiffEq framework, in our experiments, we used a lineage-traced scRNA-seq dataset profiling mouse
hematopoiesis based on the Lineage And RNA Recovery (LARRY) barcoding system, measured over three time points
(days 2, 4, 6, post-barcode transduction). In total, the LARRY dataset comprises 130,887 scRNA-seq cell profiles. 49,302
(37.7%) of these measured cell states were successfully transduced with one of 5,864 lineage barcodes. 28,249 cells
were profiled on day 2, 48,498 cells on day 4, and 54,140 on day 6. 4,638/28,249 day 2 cells (16.4%), 14,985/48,498 day
4 cells (30.9%), and 29,679/54,140 day 6 cells (54.8%) were lineage barcoded. On day 2, the 4,638 barcoded cells
spanned 2,672 unique barcodes. The 14,985 barcoded cells observed on day 4 spanned 4,101 unique barcodes and the
29,679 barcoded cells observed on day 6 spanned 3,956 unique barcodes. At each time point, the most abundant
barcodes occupied 8 cells, 56 cells, and 157 cells representing 0.17%, 0.38%, and 0.53% of barcoded cells, respectively.

Using this dataset, we demonstrate how scDiffEq samples cells from the day 2 population and approximates a small,
discrete step, “forward”, advancing at a specified interval (dt). At each annotated, observed time point (such as days 4 and
6), it computes the Wasserstein Distance between the predicted cell population at that time point with a randomly sampled
subset of the observed cells at the same time; this distance is approximated using the Sinkhorn Divergence (Methods).
scDiffEq is then iteratively optimized to minimize the Sinkhorn Divergence between the predicted and observed cell
manifolds, summed over each real time point (day 4 and day 6, using the LARRY dataset). The stochastic predictions of
scDiffEq produce synthetic cells that, while similar to those observed in the original data, are unique. A nearest neighbor
graph trained on the original data provides a means of mapping the predicted cells to a distribution of similar, real cells. To
quantify how well the observed data might be recapitulated via simulation, we sampled an increasing number of simulated
trajectories from the model and used a nearest neighbor graph to map the predicted cells to the observed cell manifold,
revealing that we are able to recapitulate 59.5% of the LARRY dataset manifold from just 10,000 initial cells (Suppl. Fig.
1). Once the model has converged, cell trajectories simulated in conjunction with the IVP-solver may then accurately
represent a cell traversing through the learned latent time and space, enabling prediction of cell trajectories from clonal
lineage families.

Benchmarking models of single-cell dynamics with multi-time point lineage-traced scRNA-seq data. Benchmark
datasets paired with standardized analysis tasks are required to validate and compare predictive models. However,
single-cell data generation destroys the measured cell, impeding the observation of ground truth relationships between
measured cells and their true past and future states. Despite this inherently obfuscated observation of cell-cell
relationships, we and others have employed the LARRY dataset as an approximation of the ground truth real-time cell
dynamics (Fig. 2a, b). The LARRY dataset circumvents the destruction of cell trajectories by transducing multipotent
progenitor (MPP) cells with lentiviral barcodes, which are heritably propagated to their daughter cells. Briefly, two days
post-transduction, the MPP cells were sampled for scRNA-seq and divided into parallel wells. Each well of cells were
measured via scRNA-seq four and six days, post-transduction. While not every cell sampled for scRNA-seq retained a
heritable barcode, 5,864 lineage barcodes were recovered, spanning 49,302 of the 130,887 measured cells and thus
enabling the coarse reconstruction of real-time cell development in hematopoiesis over three time points (Fig. 2c, Suppl.
Fig. 2). This dataset is among a growing collection of lineage-traced single-cell datasets that pair heritable DNA barcodes
with single-cell sequencing measurements, offering temporally dependent descriptions of cell states and thereby a
real-time reconstruction of the temporal dynamics including state-state and state-fate relationships '"-24.

Here, we adapt and build on benchmark tasks that have previously been used in conjunction with this LARRY dataset '
to compare the accuracy of models aimed at learning and predicting cellular dynamics on two tasks: fate bias prediction
(Task 1) and prediction of intermediate cell states at unobserved time points (Task 2). For Task 1 we reasoned that for a
given heritably barcoded cell observed at day 2 in the LARRY dataset, should a matching barcode be identified in another
cell at one or more later time points in the dataset, we can infer that those cells are clonally related. Thus, in a multipotent
cell system, the barcode of a progenitor cell enables a glimpse into how that progenitor cell may or may not be biased
towards formation of a specific cell fate. Taking advantage of the LARRY dataset’s ability to highlight state-fate
relationships, we first benchmarked scDiffEq against several methods, including methods specialized towards modeling
single-cell transcriptomic data as well as more general classification algorithms such as nearest-neighbors and logistic
regression. The goal of the fate prediction task is to accurately infer the final “fate bias” or relative proportion of cell fates
formed, from a given progenitor cell, compared to the real values tabulated for each lineage observed in the LARRY
dataset (Fig. 1d). To prepare the LARRY dataset for each task, we followed the pre-processing procedure demonstrated
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in the work describing PRESCIENT (Methods). Briefly, for Task 1, fate prediction, we first segmented the dataset into train
and test sets wherein all day 2 cells and the day 4 and day 6 cells from Well 1 were used as the training set. Cells in Well
2 were reserved for the test set (Fig. 2b, Methods). We then randomly initialized scDiffEq over five seeds, fitting the
model as described above on the training set. For each cell lineage, we then sampled the model, simulating 2,000
trajectories to arrive at a representative approximation of the model’s predicted outcome.

A discriminative classifier such as logistic regression predicts cell fates with greater accuracy (57.7%) than any of the
single-cell focused methods that we benchmarked here. While a classifier method offers a reasonable prediction of cell
fate from standardized input features, they provide relatively little information towards the underlying molecular processes
and dynamics, beyond classification. We thus begin our benchmark with these baselines towards determining the
learnable information content of scRNA-seq state descriptions that may be used to make predictions of future cell states,
focusing on the relative gains in insight each method offers in the context of their predictive capabilities. Torch-PBA, our
PyTorch implementation of the PBA framework (Methods), predicted cell fates with a mean accuracy (n=5) of 53.6%.
Dynamo offers in-depth analyses of generatively sampled cell trajectories through only predicted cell fates with 26.3%
accuracy. CellRank, which does not employ any drift-diffusion modeling assumptions though is widely-adopted, predicted
cell fates with only 15.6% accuracy. Notably, Dynamo and CellRank, both of which rely on RNA-velocity estimates
performed worse than all other methods, none of which use information derived from ratios of nascent and mature mRNA
transcripts. PRESCIENT outperformed CellRank and Dynamo, predicting cell fate with an mean (n=5) accuracy of 39.4%
(without KEGG weights) and 48.7% (with KEGG weights). “KEGG weights” refer to the growth-informed weights (via
KEGG gene expression signature) used in the Wasserstein Distance loss calculation as performed in previous studies
using a similar optimal transport framework. scDiffEq outperformed all methods tailored towards single-cell analysis in cell
fate prediction with mean accuracies (n=5) of 52.5% (without KEGG weights) and 53.3% (with KEGG weights),
representing a ~4.6% improvement in prediction accuracy of the existing state-of-the-art method, PRESCIENT (Fig. 2d).
In general, we find that modeling non-uniform diffusion (as compared to PRESCIENT) enables us to more accurately
predict fates outside of Neutrophils and Monocytes (Suppl. Fig. 3).

While fate prediction is informative with respect to state-fate relationships, discriminative models are not designed to also
recapitulate a biological process. Both scDiffEq and PRESCIENT enable prediction of intermediate, unobserved cell
states. In Task 2, interpolation of cells from a withheld time point, we compared scDiffEq to PRESCIENT, following the
procedure outlined in Yeo, et. al., 2021. Briefly, models are fit to the LARRY dataset using only cells from day 2 and day 6,
withholding cells at day 4. Day 4 cells then serve as the test set by which models are evaluated (Fig. 1e). Successful
reconstruction of the withheld time point was measured using the Wasserstein Distance loss function, approximated as
the Sinkhorn Divergence (arbitrary units)?®. Over five seeds, PRESCIENT was able to achieve a mean training distance of
14.94 and a test distance of 25.85. scDiffEq was able to minimize the training distance to 13.74 and the test distance to
24.56 (Fig. 2e). As described above, while PRESCIENT is grounded in similar assumptions to scDiffEq, it is restricted to
learning functions constrained to a potential gradient and does not explicitly parameterize the diffusion term in the
drift-diffusion framework. scDiffEq models of comparable size to PRESCIENT, in terms of parameters (two fully-connected
layers of 400 nodes) though unconstrained to a gradient of potential were unable to outperform PRESCIENT, we were
eventually able to improve upon the performance achieved by PRESCIENT through increased model complexity: we
composed the drift and diffusion networks of the scDiffEq model for this task using two fully-connected layers of 4000
nodes and two fully-connected layers of 800 nodes, respectively.

We note a distinct advantage in the approach taken by scDiffeq and PRESCIENT, to learn and subsequently simulate a
latent time, from coarse, real time measurements of cells. Using a sample model prediction from scDiffEq, we
demonstrate, over the course of a simulated population, cells beginning with zero error from their sampled d2 population,
moving away from that population and eventually minimizing their distance to the observed d4 and d6 populations at
increments of 0.1d (Fig. 2f). While many methods are capable of assigning an arbitrary pseudotime to a biological
process, relatively few are able to generate a latent time based in real time units.

To encourage transparency and forward progress within the field, we make our benchmark implementation available as an
open-source Python package such that the community may readily apply and evaluate new models to this benchmarking
framework (Methods).
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Model predictions are corroborated using in silico perturbations. Inspired by the work presented in Yeo, et. al., 2021,
we next asked whether scDiffeq could simulate expected changes to biological systems under perturbed conditions. We
introduced in silico perturbations for an ensemble of transcription factors (TFs) known to be involved in granulopoiesis and
neutrophil development: Lmo4, Dach1, Kif4, and Cebpe. Each perturbation was introduced to the z-scored gene
expression matrix of 200 randomly selected undifferentiated cells from day 2. The unperturbed, zero-centered z-score
values of target genes in selected cells are then directly set to a positive value for over-expression or a negative value for
perturbations that represent knockdown or knockout. For each perturbed progenitor cell, the modified gene expression
z-scores were transformed into the latent space using the original PCA model - these values were used as input to
scDiffEq to simulate the resulting trajectories. We compared the simulated trajectory for perturbed cells to that of an
unperturbed control simulation, qualitatively noting a shift in population density from monocytes towards neutrophils, when
the neutrophil TF ensemble was perturbed to z=10 (Fig. 2g, h). Next, we systematically profiled an array of expression
perturbations spanning z-scores = 2.5, 5, and 10 for simulated overexpression and -2.5, -5, and -10 for simulated gene
expression knockdown. Compared to the control with a mean neutrophil fate fraction of 0.129 and mean monocyte fate
fraction of 0.577+0.024, for each overexpression experiment of z = 2.5, 5, and 10, a corresponding dose-dependent
response, increasing the fraction of neutrophils predicted (0.171+£0.021, 0.208+0.015, and 0.293+0.024, respectively,
p<0.05 using Welch’s independent two-sided t-test) while decreasing the fraction of monocytes predicted (0.507+0.019,
0.43110.032, and 0.267+0.023, respectively, p<0.05) at the final time point, t = 6d (Fig. 2i, j). Similarly, for simulated
knockdowns, while z = -2.5 does not produce a significantly different fraction of neutrophils, z = -5 and z = -10 produce
dose-dependent decreases to the fraction of neutrophils formed (0.101+0.010 and 0.075+0.010, respectively, p < 0.05)
and z = -2.5, -5, and -10 all produced significant corresponding increases in the fraction of monocytes formed
(0.628+0.022, 0.680+0.022, and 0.734+0.027, respectively, p<0.05) (Fig. 2i, j).

Decomposing the learned dynamics described by drift and diffusion from scDiffEq. Proceeding with a model
checkpoint optimized for fate prediction, without further refitting, we next reevaluated each cell in the original dataset using
both the independent model components: the neural networks for drift and diffusion to obtain the corresponding
50-dimension drift and diffusion vectors for each cell state. Each 50-dimension vector describes the instantaneous drift or
diffusion “velocity” of each evaluated state. We summarized the magnitude of the drift and diffusion forces for each cell as
a scalar value by computing the L2Norm of the aforementioned 50-dimension vectors. We used a nearest neighbor graph
to smooth these values and visualize using UMAP (Fig. 2b, Suppl. Fig. 4), noting, qualitatively, cell- and group-specific
fluctuations in both drift and diffusion.

Next, we simulated 2,000 trajectories from each of the 2,081 cell states observed in d2 that are also heritably observed in
later time points. We show three representative examples spanning the reconstruction of single-fate lineages (Fig. 3a),
bi-fated lineages (Fig. 3b) and lineages with three or more fates (Fig. 3¢). As before, for each simulated trajectory we
reevaluate every simulated cell state against the drift and diffusion components of the model from which they were
generated. For each of the 2,081 simulations, we computed the mean drift and diffusion at each 0.1d interval, grouping
each trajectory according to its fate multiplicity or, the number of fates reached from a given progenitor state (Suppl. Fig.
5). We focus on mono- and bi-fated simulations fated predominantly towards neutrophil or monocyte. We note mean
maximum drift values of 13.40£1.97 and 15.08+1.94 for mono- and bi-fated simulations fated towards neutrophil while
simulations fated towards monocyte reach maximum drift values of 18.55+2.57 and 16.80+ 2.49 for mono- and bi-fated
simulations, respectively. Mono- and bi-fated neutrophil-fated simulations reach a mean maximum diffusion of 6.25+0.90
and 5.46+0.86 while monocyte-fated simulations reach maximum diffusion values of 0.86+£1.22 and 4.76%1.05,
respectively (Fig. 3d, e). Summarizing these observations: for monocyte- and neutrophil-fated trajectories, the temporal
drift appears to remain relatively uniform, regardless of which fate is reached or if only one or both fates are reached from
an initial state. In contrast, of trajectories that reach only a single fate, those biased towards neutrophils demonstrate
distinct temporal diffusion from those biased towards monocytes; these differences being reduced for bi-fated trajectories.

The bi-fated simulation shown in Fig. 3b highlights a multipotent progenitor cell that is empirically observed, using the
lineage tracing data to produce both monocytes and neutrophils. Using this simulation as an example to explore the
learned model drift and diffusion terms, we decompose the cell state-specific drift and diffusion along the trajectory as in
Fig. 2d, and visualize each individual state using UMAP (Fig. 3f, g).



Within a simulation, attributes of each sampled trajectory may be annotated at each incremental time step (dt = 0.1d),
allowing us to establish connections between observations in one state and those in other states or outcomes.
Specifically, we can categorize trajectories based on their final states (fates) in simulations where we observe the
formation of multiple fates, enabling us to condition attributes on these fates and make comparisons of attributes between
conditions. Further, this categorization enables us to analyze the points of divergence among these trajectories. For
instance, we can identify unique features of trajectories that originate from the same initial cell though ultimately reach
separate fates (e.g., monocyte and neutrophil). Applying this strategy to the bi-fated simulation shown in Fig. 3b, we
compute the mean drift and diffusion values (plotted with standard deviation), at each time step, for both monocyte-fated
trajectories as well as neutrophil-fated trajectories (Fig. 3h, i). Since PCA was used to embed cells into the input latent
space, we linearly inverted the scDiffEq-predicted 50-dimension cell states to estimate z-scored gene expression.
Subsequently, we can arrive at non-negative estimates of gene expression by converting the gene z-scores back to
log-normalized, non-negative expression values. This procedure enables estimation of gene expression for every
scDiffEqg-predicted cell state. We then compute the correlation of reconstruction expression for each gene, conditioned on
fate, to drift and diffusion, conditioned on fate, within the simulation. Normalized expression values of the top 25 correlated
genes, for drift and diffusion in neutrophil and monocyte-fated trajectories are displayed in Fig. 3h, i.

Elane (Fig. 3j) and Mpo (Fig. 3k) are markers of neutrophil development %%, Predicted expression of both Elane and
Mpo were moderately anti-correlated with Neutrophil drift (rho=-0.66, p=3.0e-06; rho=-0.53, p=3.8e-4, respectively using
Student's two-sided f-test)) though moderately and highly correlated neutrophil diffusion, respectively (rho=0.47, p=1.7e-3;
rho=0.71, p=2.2e-07 using Student's two-sided t-test). The predicted temporal expression profiles of Elane and Mpo were
not correlated to monocyte drift. However, predicted expression profiles of both Elane and Mpo were observed to exhibit
strong positive correlation with monocyte diffusion (rho=0.66, p=3.0e-06; rho=0.83, p=4.2e-11, respectively using
Student's two-sided t-test).

Granulocyte colony-stimulating factor receptor (G-CSF-R, also known as CD114) is encoded by Csf3r. G-CSF binding to
G-CSF-R is an essential stimulation event during neutrophil development and proliferation 2. Temporal expression of
Csf3r (Fig. 3l) was observed as moderately correlated to drift (rho=0.33, p=3.6e-02, using Student’s two-sided t-test) and
moderately anti-correlated to diffusion (rho=-0.54, p=2.4e-04, using Student’s two-sided t-test) in neutrophil-fated
trajectories. Csf3r is also highly anti-correlated to monocyte diffusion (rho=-0.69, p=5.5e-07, using Student’s two-sided
t-test).

CCAAT/enhancer-binding protein alpha (Cebpa) is a crucial TF in the differentiation of immature granulocytes 262°. A
recent, detailed CRISPR screening investigation of mouse hematopoiesis demonstrates that loss of Cebpa results in
decreased neutrophils and monocytes from multipotent progenitors. However, in the same study, knockout of /rf8 in MPPs
was shown to selectively decrease development of monocytes without the same impact on the development of
neutrophils. Predicted temporal expression of Cebpa (Fig. 3m) was observed to be in the top 2% of genes positively
correlated with diffusion (rho=0.97, pval=1.3e-25, using Student’s two-sided t-test) though not significantly correlated with
drift in monocyte-fated trajectories. In neutrophil-fated trajectories, Cebpa was observed to be in the top 15% of genes
positively correlated with diffusion (rho=0.87, p=7.5e-14, using Student’'s two-sided t-test) though not significantly
correlated with drift. Predicted temporal expression of Irf8 (Fig. 3n) was found to be in the top 2% of genes positively
anti-correlated with drift (rho=-0.93, p=2.7e-18, using Student’s two-sided f-test) and highly anti-correlated with diffusion
(rho=-0.76, p=9.5e-09, using Student’s two-sided t-test) of monocyte-fated trajectories. /rf8 was also found to be in the top
2% of genes positively anti-correlated with drift (rho=-0.83, p=2.7e-11, using Student’s two-sided t-test) of neutrophil-fated
trajectories though only moderately correlated with Neutrophil diffusion (rho=0.42, p=5.7e-03, using Student’s two-sided
t-test). In agreement with the Giladi et al., 2018 CRISPR perturbation results, /rf8 is more tightly correlated with both the
drift and diffusion of Monocyte-fated trajectories as compared that of neutrophil-fated trajectories.

Granulocyte-monocyte progenitor cells (GMPs) are the immediate precursor to granulocytes like neutrophils and
agranulocytes like monocytes. Fit3 plays an important role in the development of GMPs towards monocyte lineages 3032,
Predicted temporal expression of Flt3 (Fig. 30) was observed to be moderately correlated with drift in both monocyte- and
neutrophil-fated trajectories (rho=0.39, p=1.1e-02; rho=0.35, p=2.5e-02, respectively using Student’s two-sided t-test).
Strongly correlated (top 15%) with diffusion in both monocytes (rho=0.93, p=3.3e-18, using Student’s two-sided t-test) and
neutrophils (rho=0.87 , p=8.9e-14, using Student’s two-sided f-test).
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Finally, we use Spi1 and Gfi1 as a brief vignette to contextualize our findings. Spi1 encodes the pioneer TF protein, PU.1
3. The GFI1 protein, encoded by Gfi1 is a transcriptional repressor in hematopoiesis. Gfi1 and Spi1 function
antagonistically through a protein-protein interaction in regulating mouse hematopoiesis. Here we observe this
relationship to be captured by the model, potentially reflected by their relative correlations to the drift and diffusion forces
acting on cells during myeloid development. Spi7 is strongly anti-correlated to monocyte diffusion (rho=-0.96, p=1.6e-22,
using Student’'s two-sided f-test) and highly anti-correlated to neutrophil diffusion (rho=-0.71, p=1.7e-07, using Student’s
two-sided t-test). In contrast, Gfi1 is highly correlated with monocyte diffusion (rho=0.76, p=9.3e-09, using Student’s
two-sided t-test) and moderately correlated with neutrophil diffusion (rho=0.47, p=2.1e-03, using Student’s two-sided
t-test). In terms of drift, while Spi1 is highly anti-correlated to drift in the monocyte trajectory (rho=-0.60, p=3.6e-05, using
Student’s two-sided t-test), Gfi7 is not correlated. Conversely, while Gfi1 is highly anti-correlated to drift in neutrophil
trajectory (rho=-0.67, p=1.5e-06, using Student’s two-sided t-test), Spi1 is not correlated to drift in the neutrophil trajectory
(Fig. 3p, q). Further work will be required to demonstrate this observation over the initiation of several models followed by
significance testing.

Discussion

scDiffEq is a drift-diffusion framework that leverages neural stochastic differential equations (SDEs) to capture the
deterministic and stochastic dynamics of single-cell. Using the LARRY dataset, we built on a previously-implemented set
of benchmarking tasks that aim to ascertain our models’ ability to learn cell dynamics. Through these benchmarking tasks,
we demonstrate an improved reconstruction of cell dynamics as measured by cell fate prediction (Task 1) and
reconstruction of unseen cell populations (Task 2) when compared with existing methods. In developing this benchmark,
we have built on existing literature and expanded accessibility, transparency, and utility of these benchmarks for future
studies.

We explore the relationship between learned drift and diffusion fields, as they relate to cell fate decision-making. As a
generative model, scDiffEq facilitates simulation of cellular differentiation from hematopoietic progenitors to mature
granulocytes. These simulations offer insights into the deterministic and stochastic changes in gene expression across
trajectories, and how they differ by terminal fate. At the gene-level, we demonstrate that our simulated trajectories
recapitulate experimentally observed patterns of expression in neutrophil and monocyte lineages. We identify several
genes with temporal expression profiles that demonstrate a strong correlation to fate-specific drift or diffusion, including
Irf8, Gfi1, Spi1, and Cebpa, all of which are known to regulate myelogenesis and mediate other key gene regulatory
relationships.

scDiffEq presents a flexible drift-diffusion framework for modeling the dynamics from single-cell data. While we benchmark
and demonstrate this method using scRNA-seq data, we anticipate that this framework is likely amenable to modeling
data from other single-cell modalities, including spatial transcriptomics or measurements multiplexed with perturbations.
As a generalizable method for training neural SDEs, scDiffEq establishes a foundation on which new methods for
biologically-informed regularization may be implemented. We anticipate this method to serve both as an instrumental tool
for studying single-cell trajectories and cell-fate decisions, as well as an important methodological step towards
developing the next generation of generative models for studying biological dynamics from single-cell data.


https://paperpile.com/c/CJNscX/yht6
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Figure 1. scDiffEq algorithm overview a. Conceptual overview of modeling a dynamical cell system such as hematopoietic
development. b. Modeling cell drift and diffusion with neural differential equations in scDiffEq. c¢. Schematic diagram of
scDiffEq training. d-f. Graphical summary of applications and analyses enabled by scDiffEq.
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Figure 3.

Decoupling cell-specific drift and diffusion. a-c

. UMAP of an scDiffEq model simulation of a relatively



mono-fated (a), bi-fated (b), and multi(3+)-fated (¢) d2 progenitor cell from the in vitro LARRY scRNA-seq dataset. The
simulation is colored according to time and plotted against the observed cell manifold. Blue kernel density maps indicate
the distribution of simulated cells at d6. d. Mean L2Norm of cell drift (top) and diffusion (bottom) at each time point, for
every trajectory predominantly biased towards the neutrophil or monocyte fates, fate multiplicity. Each simulation
(N=2,000 Individual trajectories) is represented by the lighter-weight lines and colored according to fate, while the bold line
represents the mean of all trajectories, conditioned on fate. The left two subplots show simulations that reach only a single
fate, while the right two subplots show those that are bi-fated. e. Mean maximum value of drift (top) and diffusion (bottom),
for each group of simulations shown in (d). * indicates p < 0.05. f, g. UMAP of the scDiffEq simulation from (b), colored
according to the smoothed L2Norm of cell (f) drift and (g) diffusion. h, i. Temporal L2Norm of cell drift (top, left) and
diffusion (top, right) for (h) neutrophil-fated and (i) monocyte-fated trajectories sampled from the model simulation shown
in (b). Below each are the top 25 rank-ordered drift- and diffusion-correlated gene expression predictions with respective
Pearson correlation shown to the right. j-q. Temporal expression of the critical regulatory genes in neutrophil and
monocyte development: Elane (j), Mpo (k), Csf3r (1), Cebpa (m), Irf8 (n), FIt3 (o), Gfi1 (p), and Spi1 (q). Overlaid the
mean and standard deviation of gene expression are dotted lines indicating the relevant drift or diffusion from the
simulation shown in (h), and (i).



Methods

Data preprocessing.

Following the procedure from PRESCIENT, we filtered non-highly-variable genes, regressed out genes associated with a
list of cell cycle genes. We then scaled the log-normalized expression counts and performed PCA using sci-kit learn. As
described above, we have assembled a package to reproducibly fetch, preprocess, and format the LARRY dataset and
interface that dataset with models to recapitulate the benchmarking efforts we and others have used with this data. First,
the data matrices and associated cell- and gene-level metadata are fetched from:
https://qithub.com/AllonKleinLab/paper-data/tree/master/Lineage_tracing on_transcriptional landscapes links state to f
ate_during_differentiation (commit: af842ce).

Drift-diffusion model of cell dynamics.

G , e . . . L .
Allow z € R to be a cell’s position in a low dimensional representation of transcriptional space. We assume the dynamics
of a cell’'s state change can be represented as a drift-diffusion equation of the following form:

dz(t) = f(z(t))dt + g(z(t))dW (1)

Where f(z) and g(z) are drift and diffusion vector fields defined on R tis an unobserved latent time, and W(t) is
Brownian motion. To constrain f(z), adopt Yeo et al.’s approach of defining the drift field as the negative gradient of some

potential function Yi(z), a scalar field defined on R°. As such the equation can now be written as
dz(t) = — Vy(z(®)dt + g(z()dw(t)

By integrating forward in time, we can compute the future state of a cell, i.e.

z2(t) = z(t) + [— V(z®)dt + [ g(z()dw(¢)

0 0

Sinkhorn Divergence.

Fitting a model that successfully reconstructs cellular populations from progenitors requires a metric to compare simulated
cellular populations to those observed. For this we utilize the metric of Sinkhorn divergence, an unbiased entropically
regularized Wasserstein distance %.

. . obs  obs obs. sim  sim sim obs sim. . G
Consider two discrete sets of cells,Z  ={z ",z , ..z }tandZ_ ={z ,z , ..z }whereeachz ,z isinR.
obs 1 2 n sim 1 2 m i Jj

. . . G
We define two discrete probability measures on R, w, = (zZ Wobs) and v, = (Zsim, Wsim) where w,,w. are

obs’ sim

non-negative weight vectors on the standard simplex AG, i.e. for the observed cells weights, Y w;’bs = 1and
i=1

w20V i €0, 1, .n}.

The entropically regularized Wasserstein distance between o, and v with a squared Euclidean cost can be written,

n m 3 2
_ 1 obs _ sim _ 1 _
W?x(uobs' Usim) - i§1j§1 Pij 2 ”Z Zj ”2 A (log log (Pij) 1)

i

. 2
Where ||sz$ - z]S,Lm|| is the squared Euclidean distance between a simulated and observed cell in R® and A is the strength
2

sim

of entropic regularization. P is a transport plan where each element PL,], represents mass transported from point szs to 7,


https://github.com/AllonKleinLab/paper-data/tree/master/Lineage_tracing_on_transcriptional_landscapes_links_state_to_fate_during_differentiation
https://github.com/AllonKleinLab/paper-data/tree/master/Lineage_tracing_on_transcriptional_landscapes_links_state_to_fate_during_differentiation
https://paperpile.com/c/CJNscX/Id7T

The marginals of the transport plan must be equal to the measures M and v i.e. the matrix P is subject to the row
sum and column sum constraints imposed by our weights W, and W, i.e.

m n
TP =w ' Vie(l, 2 njand ¥ P, = w]‘,’bsv]'e{l, 2, .m}
= i=1

For some regularization strength 2, the Sinkhorn divergence between o, and v . can be written,

Sl(uobs' Usim) = Wh(uobs' Usim) - %Wl(uobs' uobs) - _;W)\(Usim' Usim)

Where WA is the entropically regularized Wasserstein distance. The inclusion of self-transport terms forces the Sinkhorn
divergence to be equal to zero when W, =V

sim’

Model fitting.

The goal of our model training is to learn a parameterization of yi(z) and g(z) that captures dynamics that simulate an
observed dataset Zobs from a set of progenitor cells ZO eZobs. We parameterize the scalar potential field {(z) and the

diffusion vector field g(z) with deep neural networks (discuss more next section).

Simulation of the process in (3) via Euler’s method can be done via the first order discretization:

Zome T 5T VlIJ(Zt)At + g(zt)W(At)

[
Where At = TV& given user-specified parameters t N " Allow Z€z, to be a user-defined subset of cells that

steps final ’ " ste
are assumed to have been measured att = 0, i.e. the initial population. For each training iteration, we randomly select
N_. from this population and forward integrate each cell’s position to times {At, 2At... tfinal} via the Euler discretization in

(4). Allow wad r to be the resulting set of all Nce s forward integrated positions at time T from the initial population.

1
Similarly, Z. . is the set of transcriptional profiles for the cells observed at time point T.

We utilize the same growth weights that are computed in Yeo et al. to arrive at our weights W and W We now

form the probability measures Wops 7 = (Z W s, T) and v = (Zsim’ ? Woim T). For multiple time points {1, 2, ..T,. 1},

obs, T’ " final
we calculate our overall cross-sectional loss as
Tfinal
loss = Tz—:l Sl uobs, T’ Usim, T)

We aim to find parameters for yi(z) and g(z) that minimize this loss function. We do so by implementing our forward
integration approach with a Sinkhorn divergence loss in PyTorch optimizer. We train the model by optimizing weights of
Y(z) and g(z) via the Adam optimizer.

Benchmark task one: fate prediction.

scDiffEq. We fit scDiffEq over 250 epochs, exposing the model to cells from Well 0 (day 2) and Well 1 (day 4 and day 6),
using 90% of that data for training and 10% for validation, reshuffling that split at every epoch. . Evaluation was performed
by predicting the clonal fate bias of cells in Well 2 (day 4 and day 6) from the corresponding clonal progenitors in Well 0
(day 2).

PRESCIENT. We fit PRESCIENT, using their recommended parameters, as described in their Yeo et al., 2021. Briefly,
using cells from Well 0 (day 2) and Well 1 (day 4 and day 6), PRESCIENT was trained over 2500 epochs. Evaluation was



performed by predicting the clonal fate bias of cells in Well 2 (day 4 and day 6) from the corresponding clonal progenitors
in Well 0 (day 2). Predicted cell states at day 6 were labeled using the pre-fit nearest neighbor classifier.

Population balance analysis (PBA). To predict fate bias with PBA, we re-implemented the original PBA algorithm in
PyTorch to provide a significant boost to the speed of downstream analyses. Following the procedure described in
Weinreb, et al., we independently sampled 20,000 cells from the training set over five seeds. PBA requires designating
“source” and “sink” points in the cell manifold. Undifferentiated cells were designated as the “source”. To designate the
“sink” points, we first pre-computed the potential values for each cell in the training set. For each cell fate, the cell with the
minimum value of potential and its 20 nearest neighbors were designated as “sink” points. S = 10 was used as the
corresponding “S” parameter for each sink point cell. Undifferentiated cells were assigned R = 0.2, while fated “sink” cells
were assigned R = -0.2. Cells not designated as source or sink were assigned S = 0 and R = -1.0e-03. PBA next
computes fate bias directly, producing a cell x fate bias matrix. We set the stochasticity, D = 1.0. Each cell in the training
set was assigned a fate bias. To evaluate progenitor cells in the test set, we used a nearest neighbor graph built from the
progenitor cells in the training set, subsequently mapping (using k = 20 neighbors) the fate biases generated for the cells
in the training set to those in the test set.

Dynamo. We adapted the author-published tutorial for scRNA-seq. Briefly, this approach uses PCA-transformed
embeddings as input and relies on the “stochastic” model for computing expression dynamics. Importantly, the function,
‘dyn.tl.gene_wise_confidence’ was used to identify and filter genes whose velocity contradicts the “direction” of cell
‘movement” based on user-provided initial and final states.

CellRank. We adapted the author-published tutorial for running CellRank using the RNA velocity kernel, which relies on
pre-computing RNA velocity values using the scVelo dynamical model. Per the tutorial, the “combined kernel” was created
from a velocity kernel and connectivity kernel, weighted 0.80 and 0.20, respectively. n = 10 macrostates were used to
compute the absorption probabilities towards terminal states / fates.

Labeling cells using approximate nearest neighbors. Following the procedure described by Yeo, et al., we used a
nearest neighbors classifier to label simulated cells, based on their relative position with respect to the observed manifold.
We used the annoy classifier from Spotify, fitting the model using all observed cells in the 50-dimension PCA space, using
10 trees, 20 neighbors, and euclidean distance.

Logistic regression. We used the scikit- learn implementation of logistic regression, fitting the model to the PCA
representation of the training set cells and their tabulated fate biases. We then predict the fate biases of the PCA
representation of cells from the test set. We then compute accuracy scores using sci-kit learn, for all evaluated cells.

Benchmark task two: recovery of a withheld time point.

Following the protocol outlined in Yeo, et,. al., 2021, briefly, we fit both scDiffEq and PRESCIENT to the subset of data in
days 2 and 6 for which lineage information was recorded. scDiffEq was trained for 100 epochs. PRESCIENT models were
trained for 2500 epochs. Evaluation of each model was performed by sampling 10,000 cells from day 2, with replacement,
weighted by the empirically derived rate of cell proliferation and simulating one trajectory per cell. We then computed the
Wasserstein distance via Sinkhorn divergence between the simulated cell populations at both day 4 and day 6 against the
observed cell populations at these respective time points. PRESCIENT was evaluated at every 100 epochs. scDiffEq was
evaluated at every epoch. For both models, we report the test error for the epoch with the minimum training error.

Analysis task three: In silico gene perturbations.

Following the protocol outlined in Yeo, et,. al., 2021, briefly, we introduced perturbations to 200 cells sampled from Day 2
of the LARRY dataset. For each gene perturbed, we set the z-scored expression to the indicated target value and
re-transformed the scaled expression matrix using the pre-fit PCA model (to the original data). These perturbed cells were
used as input to the scDiffEq model for predicting future states. We then label the model-predicted latent states using a
nearest neighbor classifier fit to the original dataset. We used Welch’s independent two-sided t-test to assess significance



in comparing the fractions of neutrophil and monocyte fates across conditions (perturbed vs. unperturbed). Each
presented comparison was performed over 10 seeds.
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Supplementary Figures
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Supplementary Figure 1. Reconstruction of the observed manifold. a. Percent manifold recovery, using nearest neighbor
(k=20) mapping. b-h. UMAP plots showing reconstruction of the original LARRY dataset manifold (background) using
model simulations (gray) from 1, 10, 100, 1000, 10,000, 20,000, and 50,000. randomly sampled initial cells, highlighted in

blue.
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Supplementary Figure 2. Fate prediction (task 1) benchmark baselines. a. Pearson’s correlation coefficient of the mean
of the first 50 principal components, by well. b. UMAP plots highlighting time-specific sub-populations of the LARRY
scRNA-seq dataset annotated with the Sinkhorn divergence between time points as well as a linear interpolation of the d4
distribution. ¢. Sinkhorn divergence between wells at each time point.
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Supplementary Figure 3. scDiffEq fate prediction confusion matrices. a-e. scDiffEq without KEGG weights. F-j. scDiffEq
with KEGG weights.
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Supplementary Figure 4. Decomposed drift and diffusion from the learned neural SDE, applied to all cells of the LARRY
dataset, superimposed on the structure of the learned neural SDE.
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Supplementary Figure 5. Mean temporal L2Norm of model-predicted (a) drift and diffusion (b) diffusion, per simulated
trajectory, grouped by fate multiplicity.



