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We present a spectroscopy scheme using transfer matrix and tensor network. With this method,
the energy spectrum is obtained from the eigenvalues of the transfer matrix which is estimated
by coarse grained tensor network of a lattice model, and the quantum number is classified from
the matrix elements of a proper operator that can be represented as an impurity tensor network.
Additionally, the momentum of one-particle state and two-particle state whose total momentum
is zero are classified using matrix elements of proper momentum operators. Furthermore, using
Lüscher’s formula, the scattering phase shift is also computed from the energy of two-particle
state. As a demonstration, the method is applied to (1 + 1)d Ising model.

The 41st International Symposium on Lattice Field Theory (LATTICE 2024)
28 July - 3 August, 2024
Liverpool, UK

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:fathiyya@hep.s.kanazawa-u.ac.jp
mailto:takeda@hep.s.kanazawa-u.ac.jp
mailto:yamazaki@het.ph.tsukuba.ac.jp
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
5
6

Spectroscopy using tensor renormalization group method Fathiyya Izzatun Az-zahra

1. Introduction

Monte Carlo (MC) algorithm has been used for hadron spectroscopy in lattice QCD and
succeeded in reproducing the low-lying hadron spectrum as reported in [1]. However, this algorithm
requires large time extend to extract the ground state and large statistics to obtain the excited states.
Motivated by these problems, we look for another computational scheme for spectroscopy which is
based on tensor network method.

Recently, the research of spectroscopy of a lattice model using tensor network has become
progressive. Some of the research are spectroscopy of (1+1)d quantum electrodynamic (QED) with
the Hamiltonian tensor network [2] and the computation of ground state energy by Lagrangian
tensor network [3]. As a continuation of this progress, we propose a spectroscopy scheme using the
Lagrangian tensor network combined with transfer matrix.

Unlike the MC method, transfer matrix does not require a large time extend and in principle, all
of the energy spectrum can be extracted from its eigenvalues. However, the dimension of this matrix
is very large so that the direct diagonalization is computationally impractical. To resolve this, we use
higher order tensor renormalization group algorithm (HOTRG) [4] to reduce the dimensionality so
that the energy spectrum can be computed but some errors will emerge. The quantum number and
momentum of the energy eigenstate are identified from matrix elements of a proper operator that
is approximated using HOTRG as well. Furthermore, the two-particle states with total momentum
zero which are important to compute the phase shift are also identified using matrix elements of a
chosen operator. As the first step, we carry out the scheme to the (1+1)d Ising model.

2. Spectroscopy using transfer matrix and tensor network

In this section, we explain how our scheme can extract the energy spectrum of the (1+1)d Ising
model and identify the quantum number and momentum of the energy eigenstate.

2.1 Energy spectrum

First, we consider the partition function of (1 + 1)d Ising model,

𝑍 =
∑︁
{𝑠}

𝑒
𝛽

∑
r∈Γ

∑2
𝜇=1 𝑠 (r+�̂�)𝑠 (r) (1)

where 𝛽 = 𝑇−1 is the inverse of temperature, and 𝑠 is spin with value 𝑠 = ±1. The spin 𝑠 resides on
two dimensional lattice Γ defined as:

Γ = {r = (𝑡, 𝑥) |𝑡 = 0, 1, . . . , 𝐿𝑡 − 1 and 𝑥 = 0, 1, 2, . . . , 𝐿𝑥 − 1} (2)

where 𝐿𝑡 and 𝐿𝑥 are system size in time and space direction respectively. We apply the periodic
boundary condition (PBC) to the system so that the partition function can be represented as the
product of transfer matrix T ,

𝑍 = Tr[T 𝐿𝑡 ] . (3)

For (1 + 1)d Ising model this matrix T is exactly given by

T𝑆′𝑆 =

(
𝐿𝑥−1∏
𝑥=1

exp[𝛽𝑠(𝑡 + 1, 𝑥)𝑠(𝑡, 𝑥)]
)
×
(
𝐿𝑥−1∏
𝑥=1

exp
[
𝛽

2
𝑠(𝑡 + 1, 𝑥 + 1)𝑠(𝑡 + 1, 𝑥)

]
exp

[
𝛽

2
(𝑡, 𝑥 + 1)𝑠(𝑡, 𝑥)

])
.

(4)
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(a) (b)

Figure 1: (a)Transfer matrix T . (b) Tensor network A as a product of matrix 𝑌 and 𝑌†.

The terms in the first parentheses in eq. (4) is the interaction of spins in the time direction, while
the second one is for the space direction. The transfer matrix indices 𝑆′ and 𝑆 represent the spin
configuration at time 𝑡 + 1 and 𝑡 respectively,

𝑆′ = {𝑠(𝑡 + 1, 𝑥) |𝑥 = 0, 1, 2, . . . , 𝐿𝑥 − 1}, (5)
𝑆 = {𝑠(𝑡 , 𝑥) |𝑥 = 0, 1, 2, . . . , 𝐿𝑥 − 1}. (6)

From the eigenvalue decomposition of the transfer matrix T𝑆′𝑆 ,

𝑇𝑆′𝑆 =

2𝐿𝑥−1∑︁
𝑎=0

𝑈𝑆′𝑎𝜆𝑎 (𝑈†)𝑎𝑆 , (7)

we have the unitary matrix 𝑈𝑆′𝑎 containing eigenvector |𝑎〉, and the eigenvalue 𝜆𝑎. The energy of
eigenstate |𝑎〉 denoted as 𝐸𝑎 can be extracted from 𝜆𝑎 as follows:

𝜆𝑎 = 𝑒−𝐸𝑎 . (8)

with 𝑎 = 0, 1, . . . , 2𝐿𝑥 − 1. Using eq. (8), the energy gap 𝜔𝑎 = 𝐸𝑎 − 𝐸0 where 𝐸0 is the ground
state energy may be written as

𝜔𝑎 = ln
(
𝜆0
𝜆𝑎

)
for 𝑎 = 1, 2, 3, . . . , 2𝐿𝑥 − 1. (9)

The eq. (9) tells us that the energy gap 𝜔𝑎 can be computed directly from the eigenvalues of transfer
matrix.

Despite of the simpleness, the dimension of transfer matrix is equal to the exponential of the
system size so that the direct diagonalization is very hard to be done by computer. We handle this
problem by representing the partition function as a tensor network since the dimensionality of the
tensor network can be reduced into some cut-off 𝜒 using coarse graining process formulated in [4].

Now let us explain how the tensor network can give us the estimation of the transfer matrix
spectrum 𝜆𝑎. First, we define a matrix 𝑌 as follows:

𝑌𝑆′𝑘 =

𝐿𝑥−1∏
𝑥=0

1∑︁
𝑘𝑥=0

𝑢𝑠′𝑥𝑘𝑥
√
𝜎𝑘𝑥 ×

𝐿𝑥−1∏
𝑥=1

exp[ 𝛽
2
𝑠′𝑥+1𝑠

′
𝑥] . (10)
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(a) (b)

Figure 2: (a) Initial pure tensor network. (b) Initial impurity tensor network.

Note that the terms 𝑢 and 𝜎 in eq. (10) are obtained from the singular value decomposition (SVD)
of the local Boltzman factor on time direction

exp[𝛽𝑠′𝑥𝑠𝑥] =
1∑︁

𝑘𝑥=0
𝑢𝑠′𝑥𝑘𝑥𝜎𝑘𝑥𝑢

†
𝑘𝑥𝑠𝑥

, (11)

where 𝑠′𝑥 = 𝑠(𝑡 + 1, 𝑥) and 𝑠𝑥 = 𝑠(𝑡, 𝑥). Using the matrix 𝑌 , the transfer matrix can be rewritten as

T = 𝑌𝑌†. (12)

If we insert eq. (11) to eq. (3), then the partition function becomes

𝑍 = Tr
[
T 𝐿𝑡

]
= Tr

[(
𝑌𝑌†

)𝐿𝑡

]
= Tr

[(
𝑌†𝑌

)𝐿𝑡

]
= Tr

[
A𝐿𝜏

]
(13)

where A is a tensor network defined as

A ≔ 𝑌†𝑌 . (14)

The graphical images of eqs. (14) and (12) are given in Fig. 1. From this figure, we see that the
tensor network A can be written as a product of rank-four tensor 𝐴 defined as

𝐴𝑘𝑥 𝑙𝑥 𝑗𝑥 𝑙𝑥−1 ≔
√
𝜎𝑘𝑥𝜎𝑙𝑥𝜎𝑗𝑥𝜎𝑙𝑥−1

∑︁
𝑠𝑥

(𝑢†)𝑘𝑥𝑠𝑥 (𝑢†)𝑙𝑥𝑠𝑥𝑢
†
𝑠𝑥 𝑗𝑥

𝑢
†
𝑠𝑥 𝑙𝑥−1

. (15)

The SVD of matrix 𝑌 is given by 𝑌 = 𝑈
√
𝜆𝑊† where 𝑈 and 𝜆 are unitary matrix and eigenvalues

of transfer matrix in eq. (7). If we subtitute the SVD of 𝑌 into eq. (12), then we get eq. (7). On the
other hand, if the SVD of 𝑌 is inserted to eq. (14), we obtain the EVD of A:

A = 𝑊𝜆𝑊†. (16)

Eqs. (7) and (16) show that the tensor network A has the same eigenvalue as the transfer matrix T
but with different eigenvectors.

In order to compute the estimation of the eigenvalues 𝜆𝑎, we coarse grain a square tensor
network with volume 𝑉 = 2𝑛 × 2𝑛 using HOTRG [4] as shown by Fig. 2a. We denote the initial
tensor as 𝐴 [0] . After (𝑛−1) times coarse graining, the system consist of tensor 𝐴 [𝑛−1] with volume
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is reduced to 𝑉 = 2 × 2. Furthermore, we compute A [𝑛] by applying direct contraction to tensors
𝐴 [𝑛−1] as follows:

A [𝑛]
𝑘1𝑘2, 𝑗1 𝑗2

=
∑︁

𝑙1,𝑙2,𝑚1,𝑚2,𝑛1,𝑛2

𝐴
[𝑛−1]
𝑘1𝑙1𝑛1𝑙2

𝐴
[𝑛−1]
𝑘2𝑙2𝑛2𝑙1

𝐴
[𝑛−1]
𝑛1𝑚1 𝑗1𝑚2

𝐴
[𝑛−1]
𝑛1𝑚2 𝑗1𝑚1

. (17)

The dimension of A [𝑛] is (𝜒2, 𝜒2) and its diagonalization is given by

A [𝑛] = 𝑊 [𝑛]𝜆 [𝑛]𝑊 [𝑛]† (18)

where 𝑊 [𝑛] is a unitary matrix consisted of approximate eigenvectors and 𝜆 [𝑛] is the estimation

of the eigenvalues of transfer matrix 𝜆𝑎 ≈
(
𝜆
[𝑛]
𝑎

)1/𝐿𝑡

. The factor 1/𝐿𝑡 appears because we coarse

grain the two-dimensional tensor network
(
A [0] )𝐿𝑡 instead of one time slice tensor network A [0] .

Lastly, using 𝜆 [𝑛] , the numerical estimate of energy gap can be written as

𝜔𝑎 ≈ 1
𝐿𝑡

log

(
𝜆
[𝑛]
0

𝜆
[𝑛]
𝑎

)
= 𝜔

[hotrg]
𝑎 , for 𝑎 = 0, 1, . . . , 𝜒2 − 1. (19)

2.2 Identification of quantum number and momentum

In this section we will show how to identify the quantum number 𝑞𝑎 of the state |𝑎〉 using the
matrix elements of a proper operator Ô𝑞 defined as

𝐵𝑏𝑎 B 〈𝑏 |Ô𝑞 |𝑎〉 =
(
𝑈†O𝑞𝑈

)
𝑏𝑎

. (20)

The selection rule associated with the symmetry of the system is needed to identify the quantum
number. The symmetry of (1+1)d Ising model is 𝑍2 symmetry so that there are two possible
quantum number i.e. 𝑞 = ±1. If �̂� is a discrete transformation operator that commutes with
Hamiltonian and has property �̂��̂�−1 = 1, then the matrix elements becomes

𝐵𝑏𝑎 = 〈𝑏 |�̂��̂�−1Ô𝑞 �̂��̂�−1 |𝑎〉 = 𝑞𝑏𝑞𝑎𝑞〈𝑏 |Ô𝑞 |𝑎〉, (21)

where 𝑞𝑎 is from �̂� |𝑎〉 = 𝑞𝑎 |𝑎〉 and 𝑞 is from �̂�−1Ô𝑞 �̂� = 𝑞Ô𝑞. From eq. (21), we have selection
rule:

if 𝐵𝑏𝑎 = 〈𝑏 |Ô𝑞 |𝑎〉 ≠ 0 ⇒ 𝑞𝑏𝑞𝑎𝑞 = 1. (22)

This matrix elements 𝐵𝑏𝑎 has the same dimension as the transfer matrix. The direct computa-
tion of 𝐵𝑏𝑎 is computationally expensive so that in a similar way with the transfer matrix, we firstly
present 𝐵𝑏𝑎 in terms of tensor network:

𝐵𝑏𝑎 =

(
𝜆−𝑚+1/2𝑊†A𝑚−1A ′A𝑚𝑊𝜆−𝑚−1/2

)
𝑏𝑎

. (23)

The exponent 𝑚 in eq. (23) is choosen to be 𝑚 =
𝐿𝑡

2 . The estimation of 𝜆 and 𝑊 in eq. (23) can
be obtained from coarse graining the pure tensor network in Fig. 2a. Meanwhile, the estimation of
A𝑚−1A ′A𝑚 is obtained through coarse graining the impurity tensor network in Fig. 2b. Note that
A ′ is one time slice tensor network containing impurity tensor 𝐴′. For a single spin operator Ô𝑞 =

5
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(a) (b) (c)

Figure 3: The numerical result of energy gaps and matrix elements of the system at 𝑇 = 2.44 with size
𝐿𝑥 = 64 computed by HOTRG with 𝜒 = 80. (a) The energy gaps 𝜔 [hotrg]

𝑎 over eigenstates 𝑎 = 1, 2, . . . , 20.
(b) The matrix elements 𝐵 [hotrg]

0𝑎 ≈ 〈Ω|𝑠0 |𝑎〉. (c) The relative error of the energy gaps 𝜔 [hotrg]
𝑎 .

𝑠𝑥 , impurity tensor 𝐴′ is defined as 𝐴′
𝑘𝑥 𝑙𝑥 𝑗𝑥 𝑙𝑥−1

≔
√
𝜎𝑘𝑥𝜎𝑙𝑥𝜎𝑗𝑥𝜎𝑙𝑥−1

∑
𝑠𝑥
𝑠𝑥 (𝑢†)𝑘𝑥𝑠𝑥 (𝑢†)𝑙𝑥𝑠𝑥𝑢

†
𝑠𝑥 𝑗𝑥

𝑢
†
𝑠𝑥 𝑙𝑥−1

.
After coarse graining, the matrix elements can be expressed as follows:

𝐵𝑏𝑎 ≈
((
𝜆 [𝑛]

)−𝑚+1/2
𝑊 [𝑛]†A ′[𝑛]𝑊 [𝑛]

(
𝜆 [𝑛]

)−𝑚−1/2
)
𝑏𝑎

≔ 𝐵
[hotrg]
𝑏𝑎

. (24)

This technique can also be used to identify the momentum of the energy eigenstate using
momentum operator Ô(𝑝). For a given momentum 𝑝, if 〈Ω|Ô (𝑝) |𝑎〉 ≠ 0, where |Ω〉 is vacuum,
then 𝑝 is judged to be the momentum of |𝑎〉.

3. Numerical Result

For the demonstration of this method, we carry out the spectroscopy calculation of (1+1)d
Ising model at higher temperature side i.e. 𝑇 = 2.44 for system size 𝐿𝑥 = 64 with the cut-off bond
dimension 𝜒 = 80. We compute the energy gaps 𝜔 [hotrg]

𝑎 and the result for 𝑎 = 1, . . . , 20 is shown
in Fig. 3a. From this figure, we see the energy eigenstates are divided into two groups of quantum
number 𝑞 = {+1,−1}. The classification is based on matrix elements 𝐵

[hotrg]
0𝑎 in Fig. 3b. We use

eq. (24), with the spin operator Ô𝑞 = 𝑠0 whose quantum number is 𝑞 = −1 and the state 〈𝑏 | is chosen
to be vacuum 〈Ω| with 𝑞Ω = +1. From eq. (22), it is concluded that if 〈Ω|𝑠0 |𝑎〉 ≈ 𝐵

[hotrg]
0𝑎 ≠ 0

then the quantum number of |𝑎〉 is 𝑞𝑎 = −1. On the other hand, if 𝐵 [hotrg]
0𝑎 = 0, then we judge the

quantum number of |𝑎〉 to be 𝑞𝑎 = +1. From this analysis, we see that for temperature 𝑇 = 2.44
and system size 𝐿𝑥 = 64, the eigenstate 𝑎 = 1, 2, 3, 4, 5, 7, 8, 14, 15 and 20 have quantum number
𝑞𝑎 = −1, and the rest have 𝑞𝑎 = +1.

In Fig. 3c, we show the relative error of numerical energy gaps over exact energy gaps using
𝛿𝜔𝑎 =

|𝜔 [exact]
𝑎 −𝜔 [hotrg]

𝑎 |
𝜔

[exact]
𝑎

. We compute 𝜔 [exact]
𝑎 by following formulation in [5]. The result shows that

𝛿𝜔𝑎 tends to be larger for higher eigenstate and the largest error is in order 𝑂 (10−2).
To identify the momentum, we compute the matrix elements

〈Ω|Ô1(𝑝) |𝑎〉 = 〈Ω| 1
𝐿𝑥

𝐿𝑥−1∑︁
𝑥=0

𝑠𝑥𝑒
−𝑖 𝑝𝑥 |𝑎〉 ≈ 𝐵0𝑎 (𝑝) [hotrg] , (25)
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(a) (b)

Figure 4: (a) The dispersion relation of energy and momentum. (b) The numerical scattering phase shift of
(𝑞 + 1)d Ising model obtained using our method.

using HOTRG with 𝜒 = 80. For a finite system, the momentum is discretized into 𝑝 = 2𝜋𝑛
𝐿𝑥

with
𝑛 = 0, 1, 2, . . . , 𝐿𝑥 − 1. By carefully examining the matrix elements 𝐵0𝑎 (𝑝)[hotrg] , we conclude
that the eigenstate |𝑎〉 with 𝑞 = −1 in Fig. 3a has momentum as follows: |0〉, |20〉 ⇒ |𝑝 | = 0;
|2〉, |3〉 ⇒ |𝑝 | = 2𝜋

𝐿𝑥
; |3〉, |4〉 ⇒ |𝑝 | = 4𝜋

𝐿𝑥
; |5〉, |6〉 ⇒ |𝑝 | = 6𝜋

𝐿𝑥
; and |7〉, |8〉 ⇒ |𝑝 | = 8𝜋

𝐿𝑥
. The

energy 𝜔
[hotrg]
𝑎 and momentum 𝑝 is plotted into dispersion relation in Fig. 4a. The figure shows that

the dispersion relation from HOTRG data agree with the continuum 𝜔 =
√︁
𝑚2 + 𝑝2 and the lattice

dispersion relation 𝜔 = arccosh(1 − cos 𝑝 + cosh𝑚) [6].
Furthermore, we also identify the two particle states with total momentum 𝑃 = 0 using the

matrix elements of the double-spin operator in the momentum space as follows:

〈Ω|Ô2(𝑃, 𝑝) |𝑎〉 = 〈Ω| 1
𝐿2
𝑥

𝐿𝑥−1∑︁
𝑥,𝑦=0

𝑠𝑥𝑠𝑦𝑒
−𝑖 𝑝1𝑥𝑒−𝑖 𝑝2𝑦 |𝑎〉 ≈ 𝐵0𝑎 (𝑃, 𝑝) [hotrg] , (26)

where 𝑝 𝑗 =
2𝜋𝑛 𝑗

𝐿𝑥
for 𝑗 = 1, 2 and 𝑛 𝑗 = 0, 1, 2, . . . , 𝐿𝑥 − 1 are momentum of the first and second

particle respectively, 𝑃 = 𝑝1 + 𝑝2 is the total momentum, and 𝑝 = (𝑝1 − 𝑝2)/2 is the relative
momentum. If 〈Ω|Ô2(𝑃, 𝑝) |𝑎〉 ≠ 0, then |𝑎〉 is assigned to be the two-particle state with total
momentum 𝑃 irrespective of 𝑝. In this research, we only consider the two-particle state whose total
momentum is 𝑃 = 0. We compute 𝐵

[hotrg]
0𝑎 (𝑃, 𝑝) at 𝑇 = 2.44 for several system size 𝐿𝑥 = 8 − 64

with 𝜒 = 80, and the results are shown in Table 1. The energy 𝜔
[hotrg]
𝑎 listed in Table 1 are judged

to be the energy of two-particle state with the total momentum is equal to zero because the matrix
elements 𝐵0𝑎 (𝑃, 𝑝) [hotrg] of the corresponding state in each system size 𝐿𝑥 are non-zero when
𝑃 = 0 while the values become extremely small or considered as zero when 𝑃 ≠ 0. Using the
energy in Table 1, we compute the relative momentum 𝑘 ,

𝜔 = 2
√︁
𝑘2 + 𝑚2 (27)

where 𝑚 is the rest mass and here we use the exact one at infinite volume limit 𝑚 = 0.12621870.
Using this 𝑘 , the phase shift 𝛿(𝑘) is computed from Lüscher’s formula [7],

𝑒2𝑖 𝛿 (𝑘) = 𝑒−𝑖𝑘𝐿 . (28)

7
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Table 1: The energy gaps 𝜔 [hotrg]
𝑎 of two-particle state at system size 𝐿𝑥 = 8− 64, and their matrix elements

𝐵0𝑎 (𝑃, 𝑝) [hotrg] at total momentum 𝑃 = 0 and 𝑃 ≠ 0.

𝐿𝑥 𝑎 𝜔
[hotrg]
𝑎 𝐵0𝑎 (0, 0) [hotrg] 𝐵0𝑎 (0, 2𝜋

𝐿𝑥
) [hotrg] 𝐵0𝑎 ( 2𝜋

𝐿𝑥
, 𝜋
𝐿𝑥
) [hotrg]

8 4 0.814585 0.37740 0.12364 < 10−15

19 2.133922 0.07730 0.04844 < 10−12

16 4 0.465348 0.31004 0.09529 < 10−15

18 1.171480 0.06904 0.05901 < 10−12

32 4 0.319553 0.21122 0.06541 < 10−14

14 0.636356 0.04705 0.06178 < 10−10

64 6 0.270836 0.12007 0.03888 < 10−14

13 0.387849 0.03007 0.05024 < 10−9

The plot of 𝛿(𝑘) over 𝑘/𝑚 is given in Fig. 4b, where we divide the plot into the elastic and
the inelastic area. The dashed line represents the limit of the elastic region which is defined as
0 ≤ 𝑘/𝑚 <

√
3. The phase shift in the elastic region is around −𝜋/2 which agrees with theoretical

prediction i.e. 𝛿ising = −𝜋/2 [6].

4. Summary and outlook

We propose a spectroscopy scheme using the transfer matrix and the tensor network, and
demonstrate it with (1 + 1)d Ising model. The computation is done at temperature 𝑇 = 2.44 and
system size 𝐿𝑥 = 64 using HOTRG with 𝜒 = 80. In this parameter set, our method can reproduce
the energy gaps𝜔 [hotrg]

𝑎 and its quantum number correctly up to 𝑎 = 20 with the largest relative error
is in order 𝑂 (10−2). The low-lying momentum of one-particle channel is identified by computing
the matrix elements of the single spin operator in the momentum space. Furthermore, two particle
states with the total momentum 𝑃 = 0 at several system sizes 𝐿𝑥 = 8, 16, 32, 64 are identified by
examining the matrix elements of double-spin operator in the momentum space. Using the energy
gaps of two-particle states and the Lüscher’s formula, the scattering phase shift is determined. The
numerical phase shift in elastic region agrees with theoretical result i.e. 𝛿 = −𝜋/2. For future work,
we will apply this method to (1+1)d scalar field theory, and also use the method to compute the
phase shift in the moving frame.
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