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Abstract

We present an application of our new theoretical formulation of quantum dynam-

ics, moment propagation theory (MPT) (Boyer et al., J. Chem. Phys. 160, 064113

(2024)), for employing machine-learning techniques to simulate the quantum dynamics

of electrons. In particular, we use real-time time-dependent density functional theory

(RT-TDDFT) simulation in the gauge of the maximally localized Wannier functions

(MLWFs) for training the MPT equation of motion. Spatially-localized time-dependent

MLWFs provide a concise representation that is particularly convenient for the MPT

expressed in terms of increasing orders of moments. The equation of motion for these

moments can be integrated in time while the analytical expressions are quite involved.
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In this work, machine-learning techniques were used to train the the second-order time

derivatives of the moments using first-principles data from the RT-TDDFT simulation,

and this MPT enabled us to perform electron dynamics efficiently. The application to

computing optical absorption spectrum for various systems was demonstrated as a

proof-of-principles example of this approach. In addition to isolated molecules (water,

benzene, and ethene), condensed matter systems (liquid water and crystalline silicon)

were studied, and we also explored how the principle of the nearsightedness of electrons

can be employed in this context.

Introduction

Real-time simulations of electron dynamics have attracted great interest for studies of non-

equilibrium behavior in molecular systems.1–4 In particular, real-time time-dependent density

functional theory (RT-TDDFT) has become a widely used tool to investigate various phe-

nomena such as optical absorbance,5–7 energy transfer,8,9 plasmons,10,11 charge transfer,12,13

electronic circular dichroism,14 thermalization,15 high harmonic generation,16,17 electronic

stopping,18 electrical conductivity,19 photocatalysis,20 transient absorption spectroscopy,21

spin transfer,22 magnons,23 core electron excitation,24 exciton dynamics,25 laser-induced

water splitting,26 and many other electronic excitation phenomena. The approach of RT-

TDDFT is to propagate single-particle time-dependent Kohn Sham (TD-KS) orbitals to

study quantum dynamics.1 These orbitals posses a gauge freedom where a unitary trans-

formation has no effect on the quantum dynamics.27,28 One example of this gauge is the

maximally localized Wannier functions (MLWFs) where the orbitals are unitary transformed

in spatially-localized orbitals.28 These MLWFs have previously been found to be useful in

studying novel phenomena in complex systems such as Floquet engineering29 and the elec-

tronic stopping response in DNA.18 These MLWFs also have been used in RT-TDDFT for

efficient implementation of hybrid exchange-correlation (XC) functionals.30 Performing RT-

TDDFT simulations, however, requires a large computational cost especially for simulating
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condensed matter systems.1

In recent years, molecular dynamics (MD) simulations have employed machine learning

(ML) techniques to speed up calculations.31 By either predicting the force or the potential

energy from atomic positions, the MD-ML models can provide highly accurate simulations

with lower computational cost as compared to first-principles MD.32,33 This has motivated

investigations into using these ML techniques for electron dynamics.34,35 Secor et al., for ex-

ample, proposed using artificial neural networks (ANN) as propagators in quantum dynamics

for predicting the one-dimensional wavefunction at a future time step using the current time

dependent wavefunction and potential.35 However, training and choosing basis sets for higher

dimensional systems proved challenging.35

In our previous work, we proposed a novel theoretical formulation for quantum dynamics

in the single-particle description.36 Our new approach, moment propagation theory (MPT),

describes a single-particle wavefunction in terms of increasing orders of moments. We analyt-

ically derived the equation of motion for these moments. The proof-of-principle simulations

employed up to the fourth-order of moments and accurately modeled the quantum dynamics

of both harmonic and anharmonic well systems. Motivated by the analytical solution for

the harmonic well, the work also proposed using ML techniques to circumvent the expensive

calculation of the the moment time-derivatives. An artificial neural network (ANN) model

accurately simulated the harmonic potential with low computational cost.36 This is analo-

gous to the MD-ML models that calculate the force on the atoms through approaches like

ANN models.

In this work, we demonstrate the use of the moment propagation theory with machine-

learning techniques (MPT-ML) for real systems through the use of RT-TDDFT simulation.

By using the moments of the spatially localized time-dependent MLWFs, only the moments

up to a low order are needed to concisely describe the system within the MPT framework.

We demonstrate the accuracy of the MPT-ML model approach for single molecular systems

of water, benzene, and ethene. As a test of performance, we compute the optical absorption
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spectra for these molecules. We then investigate its application to liquid water and crystalline

silicon and also examine how the principle of the nearsightedness of electrons can be utilized.

Theoretical and Modeling Details

Brief Overview of Moment Propagation Theory

In our earlier work,36 we showed that the single-particle quantum dynamics can be formulated

in terms of the moments of increasing orders instead of propagating the wave function using

via a Schrodinger-like equation, as done using TDKS equations in RT-TDDFT simulation.

Let us briefly summarize the key points of this MPT that are relevant in this work. We

express the single-particle wavefunction here as ψ(x, y, z, t) as the orders of the moments are

generally not the same in the three Cartesian coordinates. The moments of the single-particle

probability density is

⟨xaybzc⟩ (t) =
∫ ∫ ∫

xaybzcn(x, y, z, t)dxdydz, (1)

where a, b, c are non-negative integers used to denote the a-th, b-th, c-th moment in x, y, z

directions of the Cartesian coordinate space and n(x, y, z, t) is the single particle (probability)

density, which is the square modulus of the single-particle wave function (i.e. n(x, y, z, t) =

|ψ(x, y, z, t)|2). The explicit equation of motion for the moments can be derived from the

TDSE where the first-order time derivative of the moments is

d ⟨xaybzc⟩ (t)
dt

=− i

2

∫ [
∇2

(
xaybzc

)
n+ 2∇

(
xaybzc

)
· ∇ψψ∗] d3r, (2)

and the second-order time derivative of the moments is

d2 ⟨xaybzc⟩ (t)
dt2

=

∫
Re

[
−∇(xaybzc) · ∇V n+

1

4
∇4

(
xaybzc

)
n− (∇⊗∇

(
xaybzc

)
· (∇⊗∇ψ))ψ∗

]
d3r.

(3)
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In our earlier work,36 we showed that the numerical quantum dynamics simulation scheme

can be formulated by Taylor-expanding the moments in time and truncating the expansion at

the second order, as done in most classical molecular dynamics simulation. Importantly, we

showed that the second-order time derivative can be given in terms of the moments and their

first-order time derivatives albeit the explicit expression is highly complicated for numerical

evaluation, especially for higher-order moments.

Machine Learning the second-order time derivatives

In general, the second-order time derivative can be expressed as

d2 ⟨xaybzc⟩ (t)
dt2

= F ({⟨xdyezf⟩ (t)}, {d ⟨x
dyezf⟩ (t)
dt

}), (4)

where F is a function, generally very complicated, of the moments and their first-order time

derivatives. F can be solved analytically only for very limited cases such as the harmonic

oscillator as discussed in our earlier work.36 We also proposed that the use of ML approaches

including a simple ANN model for F instead of its explicit evaluation, as often done for

potential energy in classical MD simulation.36 While it is tempting to apply popular ML

techniques like ANN and deep-learning models, it is also possible to use more traditional ML

techniques by incorporating known physical behavior. For example, Vulpe and coworkers

developed a MD potential using the physics-based many-body expansion of the potential

energy.37 Hauge and coworkers noted that ANNs struggle to extrapolate data, such as dipole

moments in time, so they had to enforce certain restrictions to prevent over-fitting and

ensure stable extrapolation.38 In this work, with the analytical expression (Eq. 4) in mind,

we examine the linear model for the ML,

d2 ⟨xaybzc⟩ (t)
dt2

= Ba,b,c +
∑
d,e,f

Ca,b,c,d,e,f ⟨xdybef⟩ (t) +
∑
d,e,f

Da,b,c,d,e,f
d ⟨xdyezf⟩ (t)

dt
, (5)
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where the coefficients B,C,D are to be machine-learned from RT-TDDFT simulation. For

brevity, let us denote the moments using ⟨ri⟩ (t) ≡ ⟨xaybzc⟩ (t). For multi-electron systems

in the TD-KS scheme, interactions between electrons must be incorporated as well

d2 ⟨ri⟩j
dt2

= Bi,j +
∑
k,l

Ci,j,k,l ⟨rl⟩k +
∑
k,l

Di,j,k,l
d ⟨rl⟩k
dt

, (6)

where ⟨ri⟩j is the i-th moment of the j-th electronic state.

Time-Dependent Kohn Sham Equations in Wannier Gauge

In extended periodic systems, the Bloch states satisfy ψn(r+R,k) = eik·Rψn(r,k) where n is

the band index and R is the lattice-periodic cell vector. Correspondingly, Wannier functions

are given by

wn(r,R) =
Ω

(2π)3

∫
BZ

dke−ik·Rψn(r,k), (7)

where Ω is the volume of the real-space periodic cell.28 Wannier functions are translation-

ally invariant such that wn(r,R) = wn(r − R,0), and it can be denoted simply as wn(r).

These Wannier functions possess a gauge freedom, and it has become popular to make these

Wannier functions unique by minimizing the total spread given as

S =
∑
l

(⟨wl|r2|wl⟩ − ⟨wl |̂r|wl⟩2), (8)

where the position operator r̂ is defined according to Resta’s formula in extended systems,39

⟨r̂⟩ = L

2π
Im ln ⟨ei

2π
L
·̂r⟩, (9)

where L is the lattice vector of the periodic cell. This can be extended to second order of

moments as well40
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⟨(r̂ − ⟨r̂⟩)2⟩ = (
Lr

2π
)2(1− | ⟨ei

2π
Lr

r̂⟩ |2), (10)

where r is one of the Cartesian coordinates x, y, or z and

⟨(r̂ − ⟨r̂⟩)(r̂′ − ⟨r̂′⟩)⟩ = LrLr′

16π2

(
ln | ⟨ei

2π
Lr

r̂e
−i 2π

Lr′
r̂′⟩ |2 − ln | ⟨ei

2π
Lr

r̂e
i 2π
Lr′

r̂′⟩ |2
)
, (11)

where r is one of the Cartesian coordinates x, y, or z and r′ is another Cartesian coordinate.

As discussed in Ref 28 , TD-KS equations can be propagated using the MLWFs,

i
∂wl(r, t)

∂t
= {ÛML − 1

2
∇2 + VKS(r, t)}wl(r, t), (12)

where ÛML is the operator for ensuring the maximally localization of the Wannier functions,

and VKS is the KS potential. This scheme has been successfully used for various applications

and also for reducing the computational cost of evaluating the exact exchange.30

Computational Method

Instead of using the Taylor series expansion as often done in classical MD simulation (see

Supporting Information), we propose an alternative scheme. By applying the MPT to the

quantum dynamics described by TD-MLWFs, solutions to the linear model (LM) (Eq. 6)

can be obtained analytically. Eq. 6 is written in terms of matrices as

Ẍ(t) = CX(t) +DẊ(t) +B, (13)

where X(t) is the vector with the moments, X(t) = (< ri=1 >j=1 (t), < ri=1 >j=2 (t), ..., <

ri=2 >j=1 (t), ...)T , B, C, and D are specified in Eq. 6. It is convenient to rewrite this

equation as

Ẏ(t) = AY(t) + E, (14)
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where we define

Y(t) ≡

X(t)

Ẋ(t)

 , (15)

A ≡

0 I

C D

 , (16)

E ≡

0

B

 . (17)

The matrices 0 and I are zero and identity matrices respectively with the same size as other

matrices. The general solution to this linear ordinary differential equation (ODE) can be

expressed as

Y(t) = eAtV −A−1E, (18)

where V is defined by

V ≡ Y(0) +A−1E. (19)

The initial value problem (IVP) here is

Y(t) = PeQtP−1V −A−1E, (20)

where Q is the diagonal matrix such that A = PQP−1. Y(t) contains time-dependent

information about the moments. When the Fourier transform of the first-order moments

in Y(t) are used to calculate the optical absorption spectrum as discussed in the following,

the eigenvalues (Q) can be identified as the frequencies of the absorption spectrum and the

eigenvectors (P) provide the magnitude of the transition dipoles.

In few cases, the matrix Q has diagonal elements with ReQii > 0 such that the solution

diverges in the form of eReQiit. These eigenvalues tend to be close to zero, but having

such real-valued non-zero elements lead to an nonphysical solution for MPT in numerical
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simulations. We correct this numerical artifact by setting the real part of these eigenvalues

to zero to eliminate the diverging solution. Generally speaking, the cause of having positive

real eigenvalues stems from fitting the linear model to a data set produced by RT-TDDFT

simulation with a finite simulation time T . Indeed, we observe that as T increases, the need

for this correction decreases. In numerically performing some of these matrix operations, we

may use other standard corrections. In evaluating A−1 = PQ−1P−1, we set any eigenvalues

with their absolute value below a certain threshold |Qii| < c (we use c=0.005) as Q−1
ii = 0.

Likewise, we set Q−1
ii = 1

Qii
when |Qii| ≥ c. Additionally, we employ a high eigenvalue cutoff

h such that (P−1V)i = 0 if |Im(Qii)| > h (we typically use h=2 or 54.4 eV), removing

nonphysical high frequency noises.

Ridge Regression: Regularization refers to a statistical technique to minimize errors from

overfitting with training data, and so-called ridge regression is one of the most commonly-

employed regularization technique for linear regression models. With a large number of

variables as for condensed matter systems, the overfitting becomes a practical issue because

of the multicollinearity within the dynamics of MLWFs. Thus, we also examined the effec-

tiveness of the ridge regression technique, which minimizes the loss function

L = α
∑
i

M2
i +

∑
j

(yj − LM(xj))
2, (21)

where LM is the linear model as described above in Eq. 13. The Mi is the i-th learnable

parameter in matrix A. The variables xj and yj are the Y(tj) inputs and the Ẍ(tj) outputs,

respectively where j is for the time index. The hyperparameter, α, is an additional adjustable

parameter that is used to reproduce the training data closely.

Nearsightedness of Electrons: With increasingly large numbers of the moments for mod-

eling condensed matter systems, numerical noises from fitting the first-principles data could

degrade the accuracy. The nearsightedness principle of electrons41,42 can be invoked to reduce

the number of the parameters necessary in the above proposed model based on the moment

propagation theory. According to the nearsightedness principle, local electronic properties
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like the probability density depend on the effective external potential of only nearby points.

Changes in that potential beyond a certain distance have limited effects on the local proper-

ties. This allows us to introduce a cutoff distance beyond which the electrons (represented

by MLWFs) are not impacted the dynamics of other electrons. Then, the equation of the

motion for the moments (Eq. 6) can be written in terms of the subset of the all MLWFs as

d2 ⟨ri⟩j
dt2

= Bi,j +
∑

k,l∈|⟨ri⟩j−⟨rl⟩k|<rc

Ci,j,k,l ⟨rl⟩k +
∑

k,l∈|⟨ri⟩j−⟨rl⟩k|<rc

Di,j,k,l
d ⟨rl⟩k
dt

, (22)

where rc is the cutoff distance beyond which the MLWFs do not impact their dynamics. In

addition to allowing us to develop an effective computational method, this procedure also

enable us to study the extent to which the nearsightedness principle applies in real systems.

Studying the necessary cutoff distance for fully reproducing the RT-TDDFT result informs

us about the effective distance for the such nearsightedness of electrons in condensed matter

systems.

The workflow of this work is summarized in Figure 1. First, the RT-TDDFT simulation is

performed using the Qb@ll code.28 In the RT-TDDFT simulation with the MLWF gauge, all

the moments are computed at each time step. The machine-learning model is then developed

by fitting the equation-of-motion from the moment propagation theory (MPT-ML) to this

first-principles training data. The resulting MPT-ML model is examined against the RT-

TDDFT simulation by computing the optical absorption spectra, which contain the electronic

excitation at all frequencies.
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Figure 1: Workflow diagram for the MPT-ML model. First, the RT-TDDFT simulation is
performed, and the moments and their time derivatives are computed for the time-dependent
MLWFs. Then, the machine-learning model is developed by training the equation-of-motion
of the moment propagation theory (MPT) using this first-principles data. Finally, the result-
ing MPT-ML model is used to simulate electron dynamics to compute physical properties
such as optical absorption spectrum.

Results and Discussion

Calculation of Dielectric Function

To demonstrate the above described approach based on the moment propagation theory in

the context of RT-TDDFT, optical absorption spectra are calculated. For extended systems,

the optical absorption spectrum can be obtained from the imaginary part of the dielectric

function,28

ϵ(ω) = 1 +
4π

3
Tr [σµν(ω)] , (23)

where σµν(ω) is the complex frequency-dependent polarizability tensor. It can be obtained

by Fourier transforming the time-dependent polarization

σµν(ω) =
1

δν

∫
dteiωt

∑
j

⟨rµ⟩j (t), (24)

where ⟨rµ⟩j (t) is the first-order moment that is propagated as vector elements of X(t) (Eq.

20). Here δν is the strength of the abrupt homogeneous electric field applied to the system in

ν direction using the length gauge.28 The imaginary part of the dielectric function is directly

related to the optical absorbance while the real part is related to the dispersion. For isolated

systems such as gas-phase molecules the macroscopic dielectric function is not well defined,
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and the optical absorption is typically described in terms of the dipole strength function,

which is also expressed in terms of the polarizability tensor as

S(ω) =
4πω

3c
Tr [Imσµν(ω)] , (25)

where c is the speed of light. In practice, we add a damping term in the form of e−
t
τ in Eq.

24 where τ is chosen to be ∼100 a.u.. This damping term reduces the noise from having the

finite amount of dynamics in taking the Fourier transform.

Optical absorption spectrum of gas phase molecules

To investigate the applicability of the above-described approach of using the machine learn-

ing linear model for the moment propagation theory (MPT-ML) approach in practice, we

consider several isolated molecules of water, benzene, and ethene. For RT-TDDFT simula-

tion, the PBE XC functional43 was used with 40 Rydberg cutoff for planewave expansion

and PBE Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials were used.44 A

single molecule is placed in a 70 a.u. cubic simulation cell. A delta kick strength of 0.01

a.u. was used in the applied electric field, and 0.2 a.u. was used for the time step in the

enforced time reversal symmetry (ETRS)45 integrator for a total of 200 a.u. simulation time.

As discussed above, RT-TDDFT simulation was performed in the Wannier gauge and the

individual moments are obtained for each MLWF. A key point of this study here is whether

the electron dynamics necessary for calculating physical properties like optical absorption

spectra can be adequately described using only low orders of the moments. While MPT is

exact in principle, its practical advantage is limited by the orders of the moments necessary

for describing electron dynamics in real systems.

Figure 2 shows the dynamics of a MLWF on a single water molecule in RT-TDDFT.

The MPT-ML approach seeks to capture the dynamics of this single MLWF using increasing

orders of moments. As figure 2 shows, the MLWF is highly localized and amenable to using
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a concise description using low orders of moments. This remains the case as the MLWF

changes over time allowing the use of ML methods to learn the dynamics of moments in the

MPT framework.

Figure 3 shows that the results from the MPT-ML approach and the reference RT-

TDDFT result, which also serves as the training dataset. The MPT-ML approach uses up

to the second-order moments and their time derivatives in Eq. 20. The optical absorption

spectrum show three prominent sharp peaks of 6.2 eV, 8.3 eV, and 12.4 eV below the broad

peak centered at 20 eV. With the first-order moments only, the MPT-ML model captures

the first two peaks at 6.2 eV and 8.3 eV well but it fails to reproduce the third peak at 12.4

eV. By including up to the second-order moments, the MPT-MP model is able to correctly

capture also the third peak in addition to the rest of the spectrum features. By using a

more complete description of the MLWFs of the single water system with higher orders of

moments the result is expected to match the RT-TDDFT result. We also notice that since

the size of matrix Q from the IVP is larger for the second order moments, there are more

frequencies that could exist in Q. This is seen as the increasing roughness of the second

order result over the first order.

Figure 2: Isosurfaces of a single O-H bond-centered TD-MLWF (top panels) and an oxygen
lone pair TD-MLWF (bottom panels) for an isolated water molecule. Each snapshot captures
the TD-MLWFs at different instances of time during an RT-TDDFT simulation, following
perturbation by an impulsive electric field.

13



Figure 3: Optical absorption spectra of a single water molecule, obtained using the RT-
TDDFT simulation and MPT-ML model. The MPT-ML model was performed with up
to the second-order moments. The contours of the electron density for the O-H bond and
oxygen lone pair MLWFs are shown. See Figure S2 in Supporting Information for a close-up
figure focused on the energy range below the broad peak.

We apply the MPT-ML approach here on an ethene molecule to examine its applicability

for molecules with double bonds. The optical absorption spectrum show a single sharp peak

at 7.5 eV below the broad peak centered at 20 eV as seen in Figure 4. In this case, the

MPT-ML model well reproduces the spectrum even with the first-order moments only, and

including up to the second-order moments only further make the spectrum better as in the

case of RT-TDDFT result.
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Figure 4: Optical absorbance spectra of an ethene molecule, obtained using the RT-TDDFT
simulation and MPT-ML model. The MPT-ML model was performed with up to the second-
order moments. The contours of the electron density for the C-H bond and C=C bond
MLWFs are shown. See Figure S3 in Supporting Information for a close-up figure focused
on the energy range below the broad peak.

A benzene molecule was studied here particularly because of the delocalized nature of

electrons as manifested in conjugation around the carbon atoms. The same computational

parameters were used for RT-TDDFT simulation as in the case of water molecule, except for

using a longer simulation time of 400 a.u. Figure 5 shows the optical absorption spectrum

of a single benzene molecule. A notable feature is the prominent absorption peak at 6.8 eV,

and this key feature is accurately reproduced by the MPT-ML model. While the MPT-ML

model with only the first-order moments is able to capture this absorption peak correctly,

it gives an erroneous broad peak at 40 eV. By including up to the second-order moments,

the MPT-ML is able to correctly eliminate this behavior, yielding an accurate absorption

spectrum.
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Figure 5: Optical absorption spectra of a benzene molecule obtained using the RT-TDDFT
simulation and MPT-ML model. The MPT-ML model was performed with up to the second-
order moments. The contours of the electron density for the C-H bond and C=C bond
MLWFs are shown. See Figure S4 in Supporting Information for a close-up figure focused
on the energy range below the broad peak.

Optical absorption spectrum of condensed matter systems

We examine here the MPT-ML approach for more complex systems of condensed matter

systems. In particular, we consider the case of liquid water and crystalline silicon.

Liquid Water: For liquid water a cubic simulation cell (30.6683 a.u.) containing 162 water

molecules (1296 electrons) with periodic boundaries was used. The structure of liquid water

was generated by taking a snapshot of the equilibrated system following a 20 picosecond clas-

sical molecular dynamics simulation at 300 K using the single point charge with polarization

correction (SPC/E) model.46 All atoms are held fixed for the RT-TDDFT simulation, and

a delta kick strength of 0.01 a.u. with a 0.1 a.u. time step was used by employing the en-
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forced time reversal symmetry (ETRS)45 integrator for a total of 250 a.u. simulation time.

The PBE approximation was used for the XC functional, and Hamann-Schluter-Chiang-

Vanderbilt (HSCV) pseudopotentials47 were used with a 40 rydberg cutoff for the planewave

kinetic energy cutoff for the KS orbitals. Previous work has shown that this liquid water

simulation cell is fully converged with respect to cell size48,49 and that PBE gives an accurate

description of the optical absorption spectra.49

Figure 6: Optical absorption spectra for the 162-molecule liquid water cell using RT-TDDFT
simulation and the MPT-ML model. The inset shows the 162 water structure used. The
MPT-ML model was employed also with the ridge regression, with the hyperparameter value
of 10−8.

In Figure 6, we compare the MPT-ML model with the RT-TDDFT simulation. As can

be seen, by including only the first-order moments in the MPT-ML model already performs

quite well in reproducing the RT-TDDFT spectrum. At the same time, the tail end of
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the spectrum above 30 eV starts to deviate from the first-principles calculation unless the

second-order moments are also included. For condensed matter systems with a large number

of variables for the MPT model, we also examined the use of the ridge regression technique

as discussed in the Computational Method section. For this particular case of water, the

ridge regression does not have much impact unlike the crystalline silicon case discussed in

the following section.

For linear response properties like the optical absorption spectrum, it is instructive to

examine the nearsightedness principle of electrons by Kohn50 in condensed matter systems.

A particular question in the context of the MPT is to what extent the quantum dynamics

of individual Wannier functions can be described by accounting for the dynamics of nearby

Wannier functions. We examine here such an effective radius of influence for the dynamics

of individual Wannier functions, studying the non-local nature of the many-body quantum

dynamics for this electronic system. We do so by introducing the cutoff radius for individual

MLWFs in constructing the MPT-ML model as described in the Computational Method

section. Figure 7 shows how the optical absorption spectrum changes with the cutoff radius,

Rcut, of 2 and 7 a.u. The distance of 2 a.u. corresponds to having only the intra-molecular

interactions among MLWFs on individual water molecules. With the cutoff radius of 7

a.u., the model includes the inter-molecular interactions among MLWFs of their neighboring

water molecules. This essentially take into account the dynamical effect within the first

solvation shell around individual water molecules. The Rcut = 7 a.u. spectrum captures all

the key features as seen in Figure 7 while the Rcut = 2 a.u. spectrum shows that it is too

short to capture the “nearsightness” as perhaps expected. This analysis not only provides

valuable insight into the short-range nature of quantum dynamics responsible for the optical

absorption in water but also offers an effective scheme to reduce the computational cost of

simulating electron dynamics in large complex systems.
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Figure 7: Optical absorption spectra for the 162 molecule liquid water cell using RT-TDDFT
simulation and the MPT-ML model. The effect of having the varying cutoff radii (Rcut) on
the MPT-ML model is shown. The MPT-ML models use the ridge regression, including the
first and second order of moments. The inset shows the 162-molecule liquid water structure,
indicating the size of 7 a.u. radius with the blue shade.

Importantly in the context of MPT-ML approach, this approach also allows us to sig-

nificantly reduce the number of parameters to machine-learn. Table 1 shows the number

of moments and the corresponding parameters needed for different systems and settings.

Letting n be the number of moments, the number of parameters to be learned is n2+n
2

. In

condensed matter systems like water, over 68 million parameters need to be machine-learned

even when we need only up to the second-order moments. Using Rcut = 7a.u., only 4.98% of

these parameters are necessary, significantly reducing the computational complexity of the

machine-learning.
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Table 1: Number of parameters in the MPT-ML models

System Number of Moments Number of Parameters
Water 72 2,628
Benzene 270 36,585
Ethene 108 5,886
162 Waters 11,664 68,030,280
162 Waters (Rcut = 7 a.u.) 11,664 3,385,476
162 Waters (Rcut = 2 a.u.) 11,664 425,736
Silicon 4,608 10,619,136
Silicon (Rcut = 14 a.u.) 4,608 1,661,184
Silicon (Rcut = 7 a.u.) 4,608 624,384

Crystalline Silicon: For modeling the optical absorption spectrum of crystalline silicon, we

use an elongated supercell that consists of 128 silicon atoms, following our previous work.30

The PBE approximation was used for the XC functional, and ONCV pseudopotentials were

used with a 15 Ry cutoff for the planewave kinetic energy cutoff for the KS orbitals. The

enforced time reversal symmetry (ETRS)45 integrator was used to perform RT-TDDFT

simulation for a total of 600 a.u. simulation time with 0.2 a.u. time steps. A delta kick

was applied to excite the system in the direction of the elongation with the field strength of

0.001 a.u. Figure 8 shows the spectrum obtained using the MPT-ML model along with the

RT-TDDFT result. Unlike for the water case discussed above, including also the second-

order moments does not straightforwardly improve the linear model spectrum. While the

overall shape is improved especially the high energy region (above 5 eV), the inclusion of the

second-order moments introduced an artificial peak around 1.5 eV. Here, the use of ridge

regression technique for reducing the overfitting problem helps significantly, eliminating the

unphysical peak below 2 eV. Figure 9 shows how the use of the cutoff radius affect the

spectrum. While the prominent peak at 2.8 eV is largely absent with Rcut = 7a.u., the

cutoff radius of Rcut = 14a.u. is already large enough to capture the essential features of

the optical absorption spectrum here. As summarized in Table 1, using the cutoff radius

significantly reduces the number of required parameters for the machine-learning by an order

of magnitude.
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Figure 8: Optical absorption spectra of crystalline silicon, calculated with the 512-electron
(128-atom) simulation cell using RT-TDDFT simulation and the MPT-ML model. The
MPT-ML model was employed also with the ridge regression, with the hyperparameter
value of 10−12. The inset shows the 128-atom simulation cell used and the direction of the
external electric field applied.

Cross-validation and CPU time requirement

We comment on the cross-validation and CPU time requirement of the MPT-ML model

discussed above in this section. In this proof-of-principle work for the new MPT-ML model

approach, our aim here was to demonstrate its efficacy by reproducing the RT-TDDFT

simulation result (also the training set) using the moment propagation theory (MPT). We

trained the equation-of-motion of the MPT using the machine-learning approach. A natural

question is whether the MPT-ML model would have been able to predict the RT-TDDFT

simulation result with a smaller training data set. We focus here on the single water molecule
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Figure 9: Optical absorption spectra of crystalline silicon, calculated with the 512-electron
(128-atom) simulation cell using RT-TDDFT simulation and the MPT-ML model. The effect
of having the varying cutoff radii (Rcut) on the MPT-ML model is shown. The MPT-ML
models use the ridge regression, including the first and second order of moments. The inset
shows the simulation cell used, indicating the size of 7 a.u. radius with the blue shade.

system for simplicity to answer this question, and we consider the model that includes both

the first-order and second-order moments. Figure 10 shows how the optical absorption

spectrum from the MPT-ML model changes when the training data set was obtained from

RT-TDDFT simulations performed for the duration of 200, 150, 100, and 50 a.u. The

reference RT-TDDFT simulation result is from the 200 a.u. RT-TDDFT simulation. As

can be seen in Figure 10, the optical absorption spectrum including the prominent peaks is

well reproduced already with the training data set from the shorter 100 a.u. RT-TDDFT

simulation. As expected, with increasingly larger data sets, the spectrum approaches closer

to that of the 200 a.u. RT-TDDFT simulation (i.e. “RT-TDDFT” in Figure 10).
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Figure 10: Cross-validation of MPT-ML models using a shorter training time. The system is
a single water molecule and the MPT-ML models used up to the second order of moments.

Table 2 shows the CPU time used for each part in the workflow (see Fig. 1) for selected

systems (a water molecule, condensed matter system consisting of 162 waters, and crystalline

silicon). As can be seen, even with the additional CPU time required for training the MPT-

ML model, the computational cost saving gained by using the MPT-ML model is significant;

the computational time is reduced by several orders of magnitude. For instance, in the

case of the simulation with 162 waters (Rcut = 7a.u.), the CPU time required by the MPT-

ML simulation is 1.41 × 104 times lower than that of the RT-TDDFT simulation. The

computational scaling of matrix operations (such as diagonalization) required for the MPT-

ML model scales with O(n3) where n is the number of moments. This scaling can be further

improved if the diagonalization (and other matrix operations) can be approximated by m
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block diagonal matrices of equal size; this would reduce the computational scaling to O( n3

m2 ).

Table 2: Total CPU time for selected systems. Simulation time (time step) for the water
molecule, the liquid water, and crystalline silicon are 200 a.u. (0.2 a.u.), 250 a.u. (0.1
a.u.), and 600 a.u. (0.2 a.u.), respectively. The simulations were performed on 88 processors
on 2 Broadwell nodes (Intel Xeon E5-2699A v4-2.4 GHz) of the Dogwood Cluster at the
University of North Carolina at Chapel Hill.

System RT-TDDFT (s) MPT-ML training (s) MPT-ML simulation (s)
Water Molecule 6.85× 106 2.49× 10−2 7.10× 10−2

162 Waters (Rcut = 7 a.u.) 7.91× 107 9.70× 101 5.62× 103

Silicon (Rcut = 7 a.u.) 9.72× 106 2.87× 100 2.47× 102

Conclusions

While TDDFT provides a particularly convenient theoretical formalism for simulating the

quantum dynamics of electrons from first principles, RT-TDDFT simulation remains com-

putationally intensive for studying many complex chemical systems.1 At the same time,

data-driven modeling has become increasingly popular in many fields, especially for molecu-

lar dynamics simulation of atoms in recent years.51 On the other hand, the electron dynamics

remains as one of the challenging cases for applying data-driven approaches like ML.35 In

this work, we showed how the recently formulated MPT36 offers a powerful framework for

machine-learning the quantum dynamics of electrons when it is combined with the RT-

TDDFT simulation in the Wannier gauge.28 MPT derives the equations of motion for all

orders of moments. Due to the highly localized nature of individual MLWFs, we can antici-

pate that only low-order moments might be necessary for an accurate description. However,

even for the low-order moments, their second-order time derivatives are highly complicated

to calculate in practice. As done in the case of classical MD simulation, we applied the

ML technique for approximating the second-order time derivatives by training them against

the first-principles simulation.52 We showed how this MPT-ML approach can be used to

accurately calculate the optical absorption spectra of various systems from small gas-phase

molecules to condensed phased systems even with a simple machine-learning method (i.e.
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linear model). For condensed matter systems, we also examined the nearsightedness prin-

ciple of electrons to exploit the short-range nature of their influence to significantly reduce

the number of parameters to be trained.

This work thus far remains a proof-of-principle demonstration for real systems using

first-principles calculation. At the same time, one can already realize how this MPT-ML

approach can significantly benefit the field especially when using advanced XC functionals

like hybrids, which are an order of magnitude computationally more expensive than standard

XC functionals even with recent advancements.30,53 While this work focused on the use of the

MPT-ML approach for optical absorption spectrum, linear-response property, we envision it

extended for studying more complicated non-equilibrium electron dynamics phenomena in

future work.

Supporting Information
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(16) Woźniak, A. P.; Moszyński, R. Modeling of High-Harmonic Generation in the C60

Fullerene Using Ab Initio, DFT-Based, and Semiempirical Methods. The Journal of

Physical Chemistry A 2024, 128, 2683–2702, PMID: 38534023.

(17) Okyay, M. S.; Sato, S. A.; Kim, K. W.; Yan, B.; Jin, H.; Park, N. Second harmonic Hall

responses of insulators as a probe of Berry curvature dipole. Communications Physics

2022, 5, 303.

(18) Shepard, C.; Yost, D. C.; Kanai, Y. Electronic Excitation Response of DNA to High-

Energy Proton Radiation in Water. Phys. Rev. Lett. 2023, 130, 118401.

(19) Ramakrishna, K.; Lokamani, M.; Baczewski, A.; Vorberger, J.; Cangi, A. Electrical

conductivity of iron in Earth’s core from microscopic Ohm’s law. Phys. Rev. B 2023,

107, 115131.

(20) Yamijala, S. S.; Shinde, R.; Hanasaki, K.; Ali, Z. A.; Wong, B. M. Photo-induced

degradation of PFASs: Excited-state mechanisms from real-time time-dependent den-

sity functional theory. Journal of Hazardous Materials 2022, 423, 127026.

(21) Moitra, T.; Konecny, L.; Kadek, M.; Rubio, A.; Repisky, M. Accurate Relativistic Real-

Time Time-Dependent Density Functional Theory for Valence and Core Attosecond

Transient Absorption Spectroscopy. The Journal of Physical Chemistry Letters 2023,

14, 1714–1724, PMID: 36757216.

(22) He, J.; Li, S.; Bandyopadhyay, A.; Frauenheim, T. Unravelling Photoinduced Inter-

layer Spin Transfer Dynamics in Two-Dimensional Nonmagnetic-Ferromagnetic van

der Waals Heterostructures. Nano Letters 2021, 21, 3237–3244, PMID: 33749285.

(23) Tancogne-Dejean, N.; Eich, F. G.; Rubio, A. Time-Dependent Magnons from First

Principles. Journal of Chemical Theory and Computation 2020, 16, 1007–1017, PMID:

31922758.

29



(24) Yao, Y.; Yost, D. C.; Kanai, Y. K-Shell Core-Electron Excitations in Electronic Stop-

ping of Protons in Water from First Principles. Phys. Rev. Lett. 2019, 123, 066401.

(25) Peng, B.; Lingerfelt, D. B.; Ding, F.; Aikens, C. M.; Li, X. Real-Time TDDFT Studies

of Exciton Decay and Transfer in Silver Nanowire Arrays. The Journal of Physical

Chemistry C 2015, 119, 6421–6427.

(26) Miyamoto, Y.; Zhang, H.; Cheng, X.; Rubio, A. Modeling of laser-pulse induced water

decomposition on two-dimensional materials by simulations based on time-dependent

density functional theory. Phys. Rev. B 2017, 96, 115451.

(27) Jia, W.; Lin, L. Fast real-time time-dependent hybrid functional calculations with the

parallel transport gauge and the adaptively compressed exchange formulation. Com-

puter Physics Communications 2019, 240, 21–29.

(28) Yost, D. C.; Yao, Y.; Kanai, Y. Propagation of maximally localized Wannier functions

in real-time TDDFT. The Journal of Chemical Physics 2019, 150, 194113.

(29) Zhou, R.; Yost, D. C.; Kanai, Y. First-Principles Demonstration of Nonadiabatic Thou-

less Pumping of Electrons in a Molecular System. The Journal of Physical Chemistry

Letters 2021, 12, 4496–4503, PMID: 33956458.

(30) Shepard, C.; Zhou, R.; Bost, J.; Carney, T. E.; Yao, Y.; Kanai, Y. Efficient ex-

act exchange using Wannier functions and other related developments in planewave-

pseudopotential implementation of RT-TDDFT. The Journal of Chemical Physics

2024, 161, 024111.
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