arXiv:2401.01217v1 [cs.DC] 2 Jan 2024

KCES: A Workflow Containerization Scheduling
Scheme Under Cloud-Edge Collaboration
Framework

Chenggang Shan, Runze Gao, Qinghua Han, Zhen Yang, Jinhui Zhang, and Yuanqing Xia, Fellow, IEEE

Abstract—As more IoT applications gradually move towards
the cloud-edge collaborative mode, the containerized scheduling
of workflows extends from the cloud to the edge. However,
given the high delay of the communication network, loose
coupling of structure, and resource heterogeneity between cloud
and edge, workflow containerization scheduling in the cloud-
edge scenarios faces the difficulty of resource coordination and
application collaboration management. To address these two
issues, we propose a KubeEdge-Cloud-Edge-Scheduling scheme
named KCES, a workflow containerization scheduling scheme
for the KubeEdge cloud-edge framework. The KCES includes
a cloud-edge workflow scheduling engine for KubeEdge and
workflow scheduling strategies for task horizontal roaming and
vertical offloading. Considering the scheduling optimization of
cloud-edge workflows, this paper proposes a cloud-edge workflow
scheduling model and cloud-edge node model and designs a
cloud-edge workflow scheduling engine to maximize cloud-edge
resource utilization under the constraint of workflow task delay.
A cloud-edge resource hybrid management technology is used to
design the cloud-edge resource evaluation and resource allocation
algorithms to achieve cloud-edge resource collaboration. Based
on the ideas of distributed functional roles and the hierarchical
division of computing power, the horizontal roaming among the
edges and vertical offloading strategies between the cloud and
edges for workflow tasks are designed to realize the cloud-edge
application collaboration. Through a customized IoT application
workflow instance, experimental results show that KCES is
superior to the baseline in total workflow duration, average
workflow duration, and resource usage and has the capabilities
of horizontal roaming and vertical offloading for workflow tasks.

Index Terms—Workflow scheduling, cloud-edge collabora-
tion, resource collaboration, application collaboration, horizontal
roaming, vertical offloading.

I. INTRODUCTION

ITH the rapid development of the Internet of

Thing (IoT) and artificial intelligence technology, the
massive data created by vast access devices is exponential
growth, putting enormous pressure on network bandwidth and
servers [1]. Traditional cloud computing gradually presents
problems such as poor real-time performance, insufficient
bandwidth, high energy consumption, and lack of data secu-
rity [2], [3]. To this end, edge computing, as a new computing

C. Shan, Q. Han, and Z. Yang are with the School of Artificial Intel-
ligence, Zaozhuang University, Zaozhuang, Shandong, 277160, China. E-
mail: {uzz_scg, hanginghual23, yang_zh99} @163.com

R. Gao, J, Zhang, and Y. Xia are with the School of Automation, Beijing
institute of technology, Beijing, 10081, China. E-mail: {runze_gao, zhangjinh,
xia_yuanqing} @bit.edu.cn

(Corresponding authors: Zhen Yang; Jinhui Zhang; Yuanqing Xia)

model, provides an edge-assisted cloud way to cope with the
shortcomings of cloud computing. It provides a cloud-edge
collaborative distributed computing architecture closer to data
sources, integrated computing, network, storage, and applica-
tions, and meets key needs of agile link, real-time business,
application intelligence, and security and privacy protection in
the IoT field through near-device service mode [4].

Cloud workflow scheduling is a significant means to realize
the efficient execution of workflow on the cloud platform.
It achieves the best resource match between workflow tasks
and cloud computing resources by optimizing scheduling [5].
In the cloud-native era, container technology facilitates the
gradual extension of cloud workflow scheduling from the
cloud to the edge [6]-[8]. In addition to dealing with the
processing of massive data of edge devices, the distributed
computing architecture of cloud-edge collaboration can release
the execution ability of cloud workflows to the edge [9]
and meet the practical needs of workflow containerization
applications in the IoT and industrial internet field. However,
because of the high time delay, loose coupling structure, and
resource heterogeneity of the communication network between
cloud and edges, workflow containerization scheduling in
cloud-edge collaborative architecture faces two challenges.
This paper explains how we address these two challenges and
comprehensively describes our solution.

One notable challenge is the difficulty of collaborative
management of cloud-edge resources. The loose coupling
structure and high time latency of the cloud-edge network
make the workflow containerization scheduling under the
cloud-edge framework unable to obtain the cloud-edge re-
source utilization rate in time and delay the best time of
task optimization schedule [10], [11]. Another challenge is
the difficulty of application collaboration management. Cloud-
edge application collaboration enables cloud and edge to host
workflow task containers through workflow containerization
scheduling, realizes vertical offloading between cloud and
edges and horizontal roaming among edges for workflow tasks,
and completes workflow containerization execution under task
dependency and delay constraints. However, the high time
delay of the communication network between cloud and edges
restricts the real-time communication of cloud-edge hosting
tasks, and resource heterogeneity makes the same task depend
on different container images on cloud and edge nodes, along
with loose coupling structure, which affects the roaming
and offloading of cloud-edge tasks and poses challenges to
application collaboration management [12], [13].



At present, related solutions like KubeEdge [14], [15]
from Huawei and OpenYurt [16] from Alibaba have extended
the Kubernetes (K8s) container orchestration capabilities to
the edge. In addition, the proposed solutions for K8s, such
as Cloud4IoT [17] and FLEDGE [18], solve the horizontal
roaming and vertical offloading problems of IoT applications,
and the edge container orchestration and scheduling prob-
lems, respectively. The cloud-edge collaboration framework
proposed by the industry integrates cloud-edge heterogeneous
resource management and focuses on industry applications,
lacking efficient scheduling strategies for request assignment
and service orchestration. The academic pays more attention
to task scheduling and deployment rather than workflow
scheduling research in the IoT field, and there is a lack of
research on cloud workflow scheduling optimization in real
cloud-edge collaboration scenarios.

To overcome these challenges, we propose a workflow con-
tainerization scheduling scheme for the cloud-edge framework
named KCES in this paper. The KCES includes a cloud-
edge workflow scheduling engine for KubeEdge and workflow
scheduling strategies for task horizontal roaming and vertical
offloading in the cloud workflow scheduling model. Consider-
ing the scheduling optimization of cloud-edge workflows, this
paper proposes a cloud-edge workflow scheduling model and
cloud-edge node model and designs a cloud-edge workflow
scheduling engine to maximize cloud-edge resource utilization
under the constraint of workflow task delay. The KCES
employs resource hybrid management technology for cloud-
edge nodes to design the cloud-edge resource evaluation and
resource allocation algorithms to achieve cloud-edge resource
collaboration. Based on the ideas of distributed functional
roles and the hierarchical division of computing power, the
horizontal roaming among the edges and vertical offloading
strategies between the cloud and edges for workflow tasks are
designed to realize the cloud-edge application collaboration.

This paper aims to open up the application collaboration and
resource collaboration between cloud and edges and realize
task horizontal roaming among edges and vertical offloading
between cloud and edges under the workflow scheduling
model. Compared with the baseline algorithm, experimental
results under three distinct workflow arrival patterns show that
our KCES gains time-saving of 8% to 24.5% in the average
total duration of all workflows, time-saving of 22.7% to 44.5%
in the average duration of individual workflow, and an increase
of 20% and 6.6% to 13.3% in CPU and memory resource
usage rate, respectively. Our contributions are summarized as
follows:

1) Model: We propose a workflow scheduling model for
cloud-edge scenarios and build a workflow scheduling
optimization problem in pursuit of cloud-edge resource
utilization maximization.

2) Platform: We design a cloud-edge workflow scheduling
engine under the KubeEdge cloud-edge framework and
realize cloud-edge containerized scheduling under the
constraints of workflow task dependency.

3) Algorithms: A resource hybrid management technology
for cloud-edge nodes is used to design the resource
evaluation and resource allocation algorithm to achieve

cloud-edge resource collaboration. Based on the idea
of distributed functional roles and hierarchical division
of computing power, the horizontal roaming among
the edges and vertical offloading strategies between the
cloud and edges of cloud workflow tasks are designed
to realize the cloud-edge application collaboration.

4) Evaluation: We customize a universal workflow in-
stance of IoT application and verify the containerized
scheduling capability of cloud-edge workflow schedul-
ing engine within the KCES and the superior perfor-
mance of task horizontal roaming and vertical offloading
algorithms.

The rest of the paper is organized as follows. Section 2
summarizes the related work. Section 3 presents details of
the system model and formulation. Section 4 elaborates on
the cloud-edge workflow scheduling engine and its modular
description. Section 5 further introduces algorithm imple-
mentation. Section 6 provides the experimental analysis and
evaluates the effectiveness of the KCES. Finally, we conclude
the paper in Section 7.

We have open-sourced the KCES. The source code is
publicly available on GitHub [19].

II. RELATED WORK

This section analyzes the research progress related to cloud-
edge collaboration from the perspectives of industry and
academia, then introduces containerized workflow scheduling
and presents a novelty analysis of our work.

A. Cloud-Edge Collaboration

The collaboration between cloud and edge is the most
explored collaboration form by researchers and industry at
present, and it is also a relatively mature collaborative model in
the technical stage. In industry, some companies have released
products based on cloud-edge collaboration. KubeEdge [15]
was first proposed by Huawei as an open-source intelli-
gent edge framework for cloud-edge collaboration. Built on
K8s, KubeEdge supports cloud-native edge computing and
extends containerized application orchestration capabilities to
the edge [14]. Alibaba contributed the complete edge com-
puting cloud-native project OpenYurt to the community [16].
Adhering to the concept of cloud-edge integration, OpenYurt
relies on the powerful container arrangement and scheduling
capabilities of native K8s and numerous edge computing
application scenarios and implements a complete set of edge
cloud-native solutions. Baetyl [20] was an edge computing
framework released by Baidu, which has the characteristics of
containerization of component modules and one-click deploy-
ment. It can seamlessly extend cloud computing, data, and
service to edge devices, provide temporary offline and low-
latency computing services, and meet various edge computing
scenarios. These frameworks help users solve the issues of
large-scale application delivery, operation and maintenance,
and control on massive edge and end resources and also
provide a sinking channel for central services to achieve
seamless docking with edge computing applications. The
cloud-edge collaboration framework proposed by the industry



pays more attention to heterogeneous resource management,
application delivery, operation, and maintenance in the cloud-
edge scenario rather than workflow scheduling, so it lacks an
efficient scheduling framework for workflow task assignment
and cloud-edge service orchestration.

The academic community has also made corresponding
advances for cloud-edge collaboration frameworks. Haja et
al. [9] designed a K8s scheduler with edge topology awareness
and self-healing characteristics to deal with the deployment of
delay-sensitive applications at the edge while considering the
delay constraints and edge reliability of applications. Huang et
al. [21] proposed a machine learning framework for training in
the cloud and prediction at the edge and uses Docker and K8s
cloud-native tools to build an edge machine learning platform.
In order to solve the problem of edge data confidentiality,
Dupont et al. [17] proposed Cloud4loT, a platform for K8s
to perform horizontal roaming and vertical offloading of IoT
application tasks. In [18], Goethals et al. proposed the edge
container orchestration tool FLEDGE based on K8s and stud-
ied the container orchestration technology, container runtime
selection, and container network implementation under limited
edge resources. In [22], Wang et al. proposed a KubeEdge-
based edge Al framework that helps reduce the burden of
developing specific edge/embedded Al systems and promotes
cloud-edge coordination and collaboration. Considering re-
quest assignment and service orchestration, Han et al. [23]
proposed a K8s-oriented KaiS scheduling framework for an
edge-cloud system, a learning-based scheduling framework
to satisfy service requests using distributed edge nodes and
cloud cluster resources. However, these frameworks involve
lightweight container technology, suitable for the K8s platform
but not for workflow application scenarios with dependencies.

B. Containerized Workflow Scheduling

Recently, containerized workflow scheduling has emerged
by virtue of the rapid deployment and resource-sharing char-
acteristics of container technology. Extended to the field of
cloud-edge collaboration, Li et al. [24] proposed a three-
step scheduling model combining flexible resource allocation
and optimization deployment for containers under workflow
constraints. The authors considered multiple objectives of
cloud-edge resources and containerized workflows, including
makespan, load imbalance, and energy consumption. Meng
et al. [25] put forth an online algorithm named Dedas that
greedily schedules newly arriving tasks and considers whether
to replace some existing tasks to meet the deadline of the ar-
riving task as much as possible. In [26], Qian et al. proposed a
workflow-aided IoT paradigm with intelligent edge computing
to automate the execution of IoT applications with dependen-
cies, aiming to reduce the latency of the IoT systems. For
cloud-native workflow scheduling, Shin et al. [27] proposed
a workflow-aware scheduling algorithm with a hybrid priority
rule and dynamic task parallelism to improve resource utiliza-
tion and minimize weighted workflow completion time. These
research works pay more attention to the optimal scheduling
and deployment of tasks, aiming to improve various indicators
of workflow, including completion time, energy consumption,

and resource utilization. The verification platforms tend to be
simulation testbeds and customized testbeds and do not rely
on open-source edge computing frameworks, which is slightly
insufficient in practice and application promotion.

C. Novelty Analysis of Our Work

Different from the above research, our proposed scheme
KCES makes full use of the technical advantages and commu-
nity influence of K8s and KubeEdge and realizes the container-
ized execution of IoT workflows in a real-world cloud-edge
environment with the cloud-edge workflow scheduling engine
and workflow scheduling scheme for KubeEdge. The KCES
solves the issues of cloud-edge resource collaboration and
application collaboration and maximizes cloud-edge resource
usage under workflow constraints. It equips with the schedul-
ing ability of task horizontal roaming and vertical offloading
to achieve load balancing in cloud-edge clusters.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section describes the workflow scheduling model in the
cloud-edge scenario, presents the cloud and edge node model,
and formulates workflow scheduling optimization problems for
cloud-edge scenarios under the task delay constraint.

A. Workflow Scheduling Model

There is a KubeEdge cluster in a cloud-edge scenario, where
the master node does not participate in the load (only manages
the cluster). C' = {C4, Cy, ..., Cy,, } stands for a group of cloud
virtual machine nodes and m represents the number of cloud
nodes in the cluster. For m cloud nodes, there is a set of
available CPU cores {u§,u$,...,uS,} and a set of available
memory capacities {mem§, mems5, ..., mem?, } to represent
its available resources. Another group of edge nodes in the
cluster is represented as E = {FEi, Fs, ..., B, }, n indicates
the number of edge nodes in the cluster. For n edge nodes,
there is a set of available CPU cores {u$, u$, ..., u¢ tand a set
of available memory capacities {mem$, mems, ..., mems& } to
represent its available resources.

A workflow set in the cloud-edge scenario is expressed
as W = {w;y,wa,..,wr}, where k is the number of
workflows. A workflow abstraction is defined as w; =
{slaw,,si1,8i2,.,Sin}, Where i represents the sequence
number of the workflow, sla,,, represents the Service Level
Agreement (SLA) of the workflow, s; ,, indicates a step or task
in workflow w;. Each workflow task is denoted as:

s4,j = {slas, ;,id, data,image, cpu, mem, duration},

. ) (D
1<i<kand1<j5<n.

The id of the above (1) indicates the unique identifier of the
task in the workflow w;, data indicates the needed data during
the task execution process, and image indicates the image
address of the workflow task. cpu and mem denote the number
of CPU millicore and memory capacity (Mi) required for this
task, respectively. The duration indicates the duration of the
task Pod!. Each workflow has an optional SLA (sla;), either

Pod is an atomic scheduling unit of the K8s cluster that can encapsulate
one or more task containers.



on the workflow sla,,, or the workflow task slas, ,, consisted
of sloy, slog, ...slo, service level objectives as follows.

,slop},i € {w;, s 5} 2)

The cloud-edge scenario only considers the deadline as
a single Service Level Object (SLO), and each task in the
workflow needs to be completed within its deadline. Likewise,
the workflow is no exception. Since the edge scenario is a
hard real-time system in which the deadline of each task and
workflow should consider the real-time requirements of the
terminal equipment in the edge scenario.

sla; = {sloy, sloa, ...

slaqy,; = deadline,,,,
3)

slag, . = deadline, ..
1,7 i,J

Noted that the last task in the workflow, s; 14s¢, has the same
deadline as this workflow deadline:

deadlines, ., = deadline,,. 4)

For intensive diagnostic workflow in IoT scenarios, delay-
sensitive tasks and tasks with data privacy need to be scheduled
by the cloud-edge workflow scheduling engine to the edge
node near the device end. If the edge node cannot complete
the task on time, it means that this edge node does not
have enough resources to perform the task. The cloud-edge
workflow scheduling engine will notify the user to reset the
task deadline, run the node model at the edge again, or select
another edge node in the same edge scenario.

B. Edge Node Model

If a task is assigned to an edge node, the cloud-edge
workflow scheduling engine evaluates whether the edge node
can run this task based on the task’s execution time. The
execution time of a task on the edge node includes the
computing time, data transmission time from the device to
the edge node, and task image transmission time, which are
Teem, Tg data and T ijg respectively. Assuming that the
amount of task output data is small, the transmission delay of
output data is negligible. The execution time of task s; ; of
workflow w; on edge node e is:

T = Tom + T30 + T, (5)
The calculation time of workflow task s; ; at edge node e in
the above (5) can be obtained by the following equation:

‘/;data/Rallocated,e’ (6)

Te,com _
Si N ,Cpu

Vdajta indicates the data amount collected by the device end
that needs to be processed on edge node e for workflow task
4 g”;’%‘;fjd ¢ represents the computing resources allocated
by edge node e within the lifecycle of task s; ; (only CPU is
considered). The resource requirement for each workflow task

can be expressed as:
cpu __ \e data
Re pj Aoy Ve @)

where )\gij represents the number of instructions (MIPS)
required to process each byte of workflow task s; ; image
data on edge node e, which can be measured offline [28]. To
ensure that the tasks scheduled to the edge node are completed

on time (meeting the SLA), the resources allocated to this task
by the edge node e must be no less than the required resources,
as follows:

Rallocated e . (8)

Regf,u Si,5,CPU

The workflow task s; ; scheduled on the edge node requires
the device connected to the edge node to transmit the collected
data to the edge node, and the data transmission time can be

calculated as follows:

Te ,data

Si,j

= Vi, ©)

where W, ™! indicates the time required for a byte of data to
be transmitted over the communication link between the edge
node and the device.

Considering the limited storage resources of edge nodes, the
I'mages, ; of workflow task s; ; is only partially stored in the
local edge node, and the transfer time of workflow task image
can be calculated as follows:

Teimg — { 40

Images, ; € I°
Si.j Vimg [Woi
o

Images, ; ¢ I° (10)

Herein, I, indicates the local image storage of edge node
e, V;Zg denotes the amount of image data for the workflow
task s; ;. Wei’ indicates the link bandwidth allocated by the
edge node to connect to the cloud node for task s; ;.

In addition, the constraint of the edge node model is

j{: Re,, ; < R°,

P e
sl,JGSp

(1)

where S represents the set of active workflow tasks on edge
node at time p. This constraint means that the sum of resource
requirements of tasks s; ; running on edge node e at time p
is not greater than the resource quota R of the edge node e.

C. Cloud Node Model

Non-latency sensitive tasks and non-data privacy tasks are
scheduled by the workflow scheduling engine to the cloud
node c. Since the workflow image warehouse is located in
the cloud, we can ignore the task image transfer time. The
execution time of workflow task s; ; on cloud node c is
calculated as follows:

,dat dat
Ty, ; =15 ‘jom Tfi ara Tffj are, (12)
T¢;°o™ represents the computing time of workflow task s; ;

on cloud node ¢, which is calculated as follows:

Vdata/Rallocated,c

54,7,CPU ’ (13)

Te.com
J

Rgflfcc‘;}fd *“ indicates the computing resources allocated by the
cloud node within the lifecycle of task s; ; (only considering
CPU).

The workflow task s; ; scheduled on the cloud node trans-
mits the collected data from the device to the cloud node
through the edge node. The data transmission time 7T, data
from the device to the edge node can be calculated by (9)

The transmission time of the collected data by the device
from the edge node to the cloud node required for workflow
task s; ; on the cloud node is calculated as follows:

6 data Vdata/Wji(’.j )

Sij Sij

(14)



Delay constraints under both the edge node model and cloud
node model satisfy:
T: LTS

817‘ 57,7

< deadlines, ,, (15)

In the above formula, af y and g, , are binary variables,
indicating whether Workﬂow task 54 is scheduled to the edge
node or cloud node. If task s; ; runs on edge node e or cloud
node ¢, the corresponding binary variable is 1. Otherwise, it
is 0. The binary variables must meet o, = # o, .

D. Problem Formulation

This paper studies containerized scheduling of cloud work-
flow in the cloud-edge scenario, aiming to solve the issues of
resource collaboration and application collaboration for work-
flow tasks in the cloud-edge scenario. Cloud-edge workflow
scheduling optimization aims to host as many workflow tasks
as possible while maximizing the utilization of cloud-edge
resources.

Whether in the edge node model or the cloud node model,
once the workflow task goes through Resource Evaluator,
Resource Allocator, and Scheduling Decision (IV-B2), the
Resource Manager immediately allocates the resources of the
corresponding node to this task, and the task scheduling is
done by the default scheduler Kube-scheduler 2 of K8s. The
workflow tasks in this paper are complete and uninterruptible
and do not support the resource reallocation scheme during the
lifecycle of task containers. We assume that each node in the
cloud-edge cluster is always active, and the workflow contin-
uously arrives at the cloud-edge workflow scheduling engine.
Since the CPU is a compressible resource and memory is
an incompressible resource, the optimization goal of resource
allocation only considers memory resources. Regardless of the
current edge node or cloud node, the Resource Manager’s
optimization problem for node resource allocation at the arrival
time of task s; ; is represented by

k n
allocated
-2 > R /mem,

i=1 j=1s; ;€8

(16)

mem € {memS, memj },

p7

satisfying:
k. n
Cis 2. 2
i=1 j=1s; ;€5PNS"

GYY Y

i=1 j=1s,,€5PNS"

Rallocated < u,u € {uzc”ule}7

Si,7,CPU

allocated
RS Cmem < MeM,

a7

mem € {memp, memf} ,
Cs: ag, ]Ti ;T g, JTE < deadlines, ,,

0‘2” gw € {0,1} and «f 7é aii_j,
The Resource Manager allocates resources RZ/'¢4%¢¢ and
allocated

a1 memm when the task s; ; arrives. The optimization prob-
lem of (16) is to maximize the resource allocation of all task

2Kube-scheduler is the default scheduler for K8s and runs as part of the
control plane.

set S contained by the current node (cloud node or edge node).
Constraint C; means that at the arrival of the current task s; ;,
the total CPU resource allocation of all tasks hosted by the
destination node cannot exceed resource quota w on this node.
Constraint Cy indicates that at the arrival of the current s; ;,
the total memory resource allocation of all tasks hosted by
the destination node cannot exceed the resource quota mem
on this node. Constraint C3 states that the deadlines, ; of a
workflow task s; ; needs to be satisfied regardless of whether
it is scheduled and executed by an edge node or a cloud node.
Variables p and [ need to satisfy 1 <p<mand 1 <[ < n.

IV. CLOUD-EDGE WORKFLOW SCHEDULING ENGINE

This section elaborates on the cloud-edge workflow schedul-
ing engine, including architecture design and core subsystem
introduction.

A. Architecture Design

The cloud-edge scenario builds on K8s and KubeEdge
frameworks, incorporating EdgeMesh components. The left
part of Fig. 1 shows the detailed architecture of the cloud-
edge workflow scheduling engine, and the right part presents
the cloud-edge-end three-layer architecture of the cloud-edge
scenario.

The cloud-edge workflow scheduling engine realizes the
management, scheduling, and containerized execution of
workflow tasks across cloud-edge nodes. The engine provides
a front-end interface for public or private clouds. The cloud-
edge containerization scheduling of workflow tasks follows the
priority dependency of tasks. Under the condition of satisfying
the workflow SLAs, the resource evaluation algorithm 1, re-
source allocation algorithm 2, and scheduling decision are used
to ensure the maximum utilization of cloud-edge resources.
It provides a one-click deployment capability and automated
software operation process for the KubeEdge framework.

B. Core Subsystems

The cloud-edge workflow scheduling engine contains three
core subsystems: Workflow Injector, Containerized Workflow
Builder, and Service Constructor.

1) Workflow Injector: Users can define workflows and
deliver them in the form of cloud services [7]. The workflow
Injector completes the parsing and packaging of workflows and
injects workflows into the Containerized Workflow Builder via
gRPC communication. During workflow delivery, workflow
data is populated into the Redis database.

2) Containerized Workflow Builder: The Containerized
Workflow Builder contains Resource Manager, Containerized
Executor, State Tracker, and Informer.

Resource Manager contains Resource Evaluator, Resource
Allocator, and Scheduling Decision. Once the workflow task
arrives at the Containerized Workflow Builder, the Resource
Evaluator evaluates whether the delay constraints of the cur-
rent task can be satisfied at the cloud or edge node according
to the resource evaluation algorithm 1. Herein, the calculation
of task execution time on cloud or edge nodes evolves into



Pull Images
+ Docker Image Api [
Workflow Submission . . ______________l__________
1 Cloud-Edge Workflow Scheduling Engine 5 ]
] |
e L g e
: : o | | | Containerized Workflow Builder | i Cloud !
Queue !
| | Workflow I | ( State Tracker r |
| : Parser @ | | : . . | Kubernetes
I L | 1
| l | ___________________ Containerized [ I 8
I 51 I Resource | | | .. Executor | ! 7 &= !
Evaluat Namespace | o . |
: g : Packer > @, I_ | = L, Gt | | I | | | KubeEdge
]
S| e IgRPCl Resource : | : EdgeMesh [mh_j |
[ | | - | | Agent Agent V JI
| .
| | Workflow Injector ® I 5| s —4=1
| | | | Decision | T
| —— [ [ Edge
| !_ N Redis 0 I : ——— e — — — — ————— = ==
_Database | 2 Service Constructor | I EdgeMesh EdgeMesh
[ | | » EdgeCore EdgeCore
I (1 Names| H i i Agent Agent
| pace | ! Service Builder | |1 — ___
I T a1 Creator i | e EEEr | A S ——— £ 2 Edge N
| - i = ==
| : I ( State Tracker )4— | : ’ it fod > £od
! [t il ) I A i =
__ | | ! —— edis  |q¢——— Iyl
oy | i 0 @] ] o e &
ontrol Flow . oy _____y Vel e =9 WY e
| Online Data Sharing |
| v i /

Fig. 1. Cloud-edge workflow scheduling engine

the calculation of available resources, that is, whether there
are sufficient resources available in a specific timeslot p to
determine whether the current node meets the delay constraint
of this task. In order to make full use of the cloud-edge node
resources, the Resource Allocator adopts the resource scaling
strategy [8] and allocates required resources of the current task
through the resource allocation algorithm 2. The Scheduling
Decision subsystem is to present the created task Pod to the
Kube-scheduler of K8s for scheduling.

Containerized Executor creates the workflow namespace
and the PVC under the current namespace, generates the task
Pod of the corresponding workflow, and realizes the data
sharing between tasks under the same namespace through the
Volume and NFS mechanism. The data of the created task Pod
is populated into the Redis database in time.

State Tracker utilizes the List-Watch mechanism to provide
resource state information such as Namespace, Pod, and PVC
to the Containerized Executor.

Informer is to synchronize resource objects and events
between the K8s apiserver * and the Informer local cache
and provides the State Tracker with up-to-date resource state
information.

3) Service Constructor: The Service Constructor consists
of Namespace Creator, Service Builder, and State Tracker.

Namespace Creator is functionally the same as the Names-
pace Creator in the Containerized Workflow Builder and is re-
sponsible for creating the namespace of the injected workflow.
Resource isolation space is provided for the Service creation
of subsequent workflow tasks.

Service Builder is responsible for creating the correspond-
ing Service for each task under the workflow namespace,
exposing the Service in Clusterlp mode [29]. Workflow task

3The K8s apiserver serves as the front end and is a component of the K8s
control plane that exposes the K8s APL

————————————————— 1 Result Output

Pod realizes task communication between tasks in cloud-edge
scenarios by means of Service ClusterIp.

State Tracker is similar to the function of the Status
Tracker within the Containerized Workflow Builder and is
responsible for monitoring the state information of the names-
pace and Service resource objects through the ListWatch
mechanism.

V. ALGORITHM IMPLEMENTATION

This section proposes the cloud-edge resource hybrid man-
agement strategy, integrates the cloud and edge node resources,
and designs the resource evaluation and resource allocation al-
gorithms to solve the resource coordination issue in workflow
containerized scheduling of cloud-edge scenarios. For cloud-
edge containerized workflow scheduling, this section proposes
the distributed functional role strategy and the computing
power hierarchical division strategy to implement the task
horizontal roaming and vertical offloading algorithms against
the application coordination issue.

A. Resource Collaboration

The cloud-edge workflow scheduling engine manages the
cloud-edge resources through the KubeEdge framework and
schedules as many workflow tasks as possible to execute on
the cloud or edge nodes, aiming to maximize the resource
utilization of cloud-edge nodes. However, this does not mean
that all workflow tasks will run. Regardless of the cloud or
edge node, if this node accepts multiple workflow tasks at a
timeslot, it will lead to insufficient resources for these tasks
to meet the task deadline and be scheduled. Whether the
task execution time on the cloud or edge nodes can satisfy
the task delay constraint depends on the available resources.
The resource quota of the assigned task depends on the
Resource Manager of the workflow scheduling engine, and



the resource allocation of the Resource Manager depends on
the task number hosted by the current cloud or edge node.
We evaluate whether an arriving workflow task is acceptable
by calculating whether the current node has enough available
resources. In order to maximize the resource utilization of
cloud or edge nodes, the resource scaling method proposed
in our former work [8] is adopted, and the resource request
parameters of workflow tasks are appropriately adjusted to
make cloud or edge nodes accommodate more workflow task
without affecting current workflow task.

1) Cloud-Edge Resource Hybrid Management Strategy:
The cloud-edge workflow scheduling engine is deployed on
the cloud in a containerized way. In order to realize resource
evaluation and cloud-edge workflow scheduling, it is necessary
to manage cloud-edge resources in the KubeEdge cluster
uniformly. KubeEdge can extend K8s’ container orchestration
capabilities to the edge and help K8s obtain the resource
objects of the edge node through the resource API methods.
Herein, a data dictionary Residual ResourceMap stores the
remaining resources of all nodes in the cloud-edge cluster and
is defined in Fig. 2.

map[IpAddress]NodeResidualResource
type NodeResidualResource struct {
MilliCpu uint64
Memory uint64

Fig. 2. Data dictionary definition of the remaining resources at cloud or edge
node

Herein, IpAddress is a string type and represents the IP
address of the cloud-edge node. NodeResidualResource is a
structural data structure that contains two uint64 type param-
eters of milliCpu and Memory representing the remaining CPU
and memory resources on the current node, respectively. With
the help of the API method of cloud-edge node resource oper-
ations, we can obtain PodLister and NodeLister. By calling the
resource discovery algorithm [8], using PodLister, NodeLister,
and ResidualMap, we are able to get ResidualResourceMap of
cloud edge nodes. The ResidualResourceMap data dictionary
provides the residual resource data of cloud-edge nodes for re-
source evaluation and achieves the purpose of hybrid resource
management of cloud-edge nodes.

2) Residual Resource Calculation For Cloud-edge Nodes:
The execution status of task Pod has Pending, Running,
Succeeded, Failed, and Unknown [30]. According to the Pod
characteristics of K8s, task Pods in Pending and Running
states are considered to calculate the occupied resources. The
set of task Pods in Pending and Running states on the current
node is denoted as S? and S”, respectively.

When the workflow task s;; arrives at the cloud-edge
workflow scheduling engine, the Resource Evaluator within
the Resource Manager evaluates whether to accept this task
according to the remaining resource amount of the current
node and the total resource demand of the current task and the
concurrent tasks in its lifecycle. Using the resource discovery
algorithm, the CPU and memory resources occupied by the

workflow task Pod active in the current node can be obtained
as follows.

cpu ;
Rused - Z Retpu(t)’
tesSrNST
1
mem __ Re™e™ (¢ ( 8)
used € ( )7
teSrPNST

By using the resource discovery algorithm, the allocatable
CPU and memory resources at the current node can be
represented as R.}' .. and R7e™ . . The difference
between the allocatable resources of the current node and the

occupied resources is the remaining resources of this node.

3) Resource Evaluation Algorithm: The Resource Evalua-
tor simulates workflow w; to further execute a lifecycle of the
current task s; ; to predict the future concurrent tasks [30]. By
searching the Redis database, we obtain the set .S of workflow
tasks to be scheduled to the current node. Then, the set S is
searched for the workflow tasks (i.e., concurrent tasks) to be
started within the lifetime of the current task s; ; (between the
task start time P..7, and Py,). We denote this task set as
S Compete The total CPU and memory resource requirements
of all workflow tasks in this set are calculated as follows.

cpu _ cpu
Recompeta - E Re (t)7
tegeompete
84,5
Re™mem _ R mem(t) (19)
ecompeta - € .
- ot
tessomrete

The Resource Evaluator can determine whether the current
node can accept the workflow task s; ; based on the following
conditions:

chu, > Recpu +Rrpu + Recpu

allocatable = used compete? (20)
mem mem mem mem
allocatable 2> Resi,j Rused + Recompete'

When the allocatable resources of the current node satisfy
(20), the workflow scheduling engine schedules the task s; ;
to the current node.

Algorithm 1 is the resource evaluation algorithm, which
aims to provide the decision of scheduling workflow tasks
to cloud or edge nodes. In line 4, the resource requirement
of the current task s;; is calculated using (7). When the
workflow task arrives, line 5 populates the workflow task
s;,;’s data into the Redis database and updates the start time
and deadline of the task. Then, line 6 checks to see if the
current task’s successor is complete. Once the conditions are
available for execution, line 7 creates the namespace and PVC
for this task. Lines 8 and 9 calculate B2} Rmem

allocatable’ allocatable’

RP" . and R™™ of the node to which s; ; will be scheduled,
respectively. Lines 10 to 21 traverse workflow task set S in
the Redis to obtain the total resource requirements Ry, ..
and R7;00 . of these tasks to be executed during the lifetime
of task s; ;. In line 22, True is returned when the available
resources of the node to which task s; ; will be scheduled
to satisfy (20). The time complexity of this algorithm is

O(max{|V| x |Pod.List| ,|S|}).



Algorithm 1 Resource Evaluation Algorithm
1: Input s; ;;
2: Output True or False;
3¢ Initialize Roocarapier Ratiocatabie
RP" and RIS as zero;
4: Use (7) to compute Re‘p“ and Remejm of task s; ;;
5: Populate s; ;’s data into Redis and update the start time
and deadline of task s; ;;
6: Check if the parent task of the current task s; ; is com-
pleted, otherwise, wait;
7: Create the namespace and PVC of w; containing s; ;;
8: Obtain R} . . and R7em . of the node to which
s;,; will be scheduled;
9: Obtain R;"", and R of the node to which s; ; will
be scheduled;
10: for task ¢ to be scheduled on the current node € S do
11:  // t hasn’t been executed yet

Reb"

mem
compete> Re

compete>

12:  if t. AliveStatus == false then

13: /I These tasks with equal labels belong to the same
node

14: if ¢.Labels == s; ;.Labels then

15: if t.start € [P}, Prax| then

16: Rzg:fupete-'-:Recpu (t)’

17: gzinn;)ete"':Remem (t);

18: end if

19: end if

20:  end if

21: end for

22: if Rgzll)llf)catable> Recpu-'-RZZZd"_Rezzo)Z@pete and
glllegrclatable> Remem+Rumseem+Reg¢L)%ete then

23:  return True;
24: else

25:  return False;
26: end if

4) Resource Allocation Algorithm: This section maximizes
node resource utilization by making the cluster nodes host
more tasks, which continues the case that the resource evalu-
ation algorithm 1 returns False. When (20) cannot be satisfied
at the same time or both, in order to make cloud or edge nodes
accommodate more workflow tasks and maximize the resource
utilization of cloud or edge nodes, we calculate the resource
demand according to the following equations:

cpu chu
ReCPU,Si,J Recpu . allocatable used
cut Si,j R cpu + Recpu B
’SL 3 compete
2D
Rmem RCPU
R MEM,Si,j — Re™Mem . allocatable used
cut Si,j Remem + Remem

Si,j compete

The CPU and memory resource requirements scaled by
(21) should meet the minimum resource requirements of the
current task s; ; to run. The minimum resource requirements
of task s;; are expressed as Regl" min and Re<m™ min,
which depend on resource amount operated by the resource
load tool Stress within the Pod of task s; ;. Within the task
Pod, Stress allocates 1 CPU fork and Remem N memory as
resource load. In order to ensure the smooth running of task

Pod, the minimum memory resource amount of the task Pod
corresponding to task s; ; needs to be increased by a constant
£=20 after experimental testing (the minimum CPU resource
amount is not considered, because CPU is a compressible
resource). The resource amount Rey®™ min 4 3 ensures that
the Pod corresponding to task s; ; will not fail to execute
because the Stress tool runs out of memory resources.

Algorithm 2 Resource Allocation Algorithm

1: Input s; ;;

allocated allocated
2. OQutput R0 and REOTTET:

CPU m. cpu mem cpu
3: Obtain Rallocatable’ Rall()('afable’ Rused’ Rused ’ Recompete
and Rel}7" .. by using algorithm 1;

. DU, S; 5 mem,s;, ; .
4: Obtain ]iffach[,),ﬁE and Re,,, Cpihrougkclp(fl),
. cpu
5: Define Rjjocorape= RETI+R catRecompete as A1,

mem | pmeri mem .
Rallocatable> Re Rused +Recompete 2.18 AQ’
6: Define — as loglcal negation and A as logical and;
7. if A1 A Ay then
allocated _ cpu. allocated mem

8 RSL j cpu Resi,j’ Rsl ,j,mem Resl i

9: else
10: if = A; A Ay then

) allocated _ cpu,Si,j, allocated _ mem.
11: ]%s1 j.cpu T Recut ’ Rsl j,mem Resl g
12: else
13: if Ay A = Ay then

) allocated _ cpu. allocated _ mem,s; j
14 Rsl L CPU ReaL G’ Ral jsmem T Recut ’
15: else

) allocated _ CpU,Si,j, allocated _ mem,sq,j,
16: Rsl j.cpu T Recut ’ ]%s1 j.mem — R cut ’
17: end if
18:  end if
19: end if

Lo allocated cpu,min allocated
20: if Rs1 L§1CPU 2 Resi‘j and Re7 jamem >

(Re;’jim min 4 3) then

. allooated allocated .
21 return RGO and RETOTTST:
22: else

23:  Call the horizontal roaming algorithm 3 to search for
other edge nodes with sufficient resources in the edge
scene where task s; ; is located;

24: end if

Algorithm 2 is the resource allocation algorithm for edge
or cloud nodes in cloud-edge scenarios. This algorithm is able
to obtain the allocatable resource RE!0%eicd and RE!oseted on
the node to be scheduled for task s; ;. Lines 3 to 5 obtain the
various parameters and conditions of this algorithm. When the
total resource demand of task s; ; and its concurrent tasks in
the future lifecycle is not greater than the residual resources
of this node, lines 7 to 8 allocate resources according to the
resource demand of task s; ;. When the total CPU resource
demand of task s;; and its concurrent tasks in the future
lifecycle is greater than the residual CPU resource of this node,
lines 10 to 11 allocate the scaled CPU resource Reg., """
and memory resource Rey ™ to task s;;. When the total
memory resource demand of task s; ; and its concurrent tasks
in the future lifecycle is greater than the residual memory
resource of this node, the scaled memory resource Re_., ="’

and Recmf are allocated to task s;; in line 13 and line
14. When neither condition A1 nor A2 holds, lines 15 and



16 present the scaled CPU and memory resources. If the
allocated resource R‘J”J"Cc’;f;d and Rg!'oseied do not meet the
comparison conditions in line 20 and the horizontal roaming
algorithm 3 is invoked to search for other edge nodes with
sufficient resources in edge scenario of task s; ;. Then, the
resource allocation of task s; ; is performed on the edge node
obtained by the search. Resource allocation algorithm 2’s time
complexity depends on the resource revaluation algorithm 1’s
time complexity O( max{|V| x |Pod.List|,|S|}).

5) Scheduling Decision: When the task s;; obtains
Rgltocated and Rg!located allocated by the resource allocation
algorithm 2, the Containerized Executor creates the namespace
of the workflow in which the task located, and the correspond-
ing Pod for the task s; ;. Finally, the default scheduler of
K8s, i.e., the Kube-scheduler, schedules the task Pod to the

corresponding cloud or edge node.

B. Application Collaboration

This section uses the edge-edge horizontal roaming and
cloud-edge vertical offloading scheme of workflow task con-
tainers to realize the workflow containerization scheduling in
cloud-edge scenarios and to deal with the difficulty of cloud-
edge application collaborative management.

1) Task Horizontal Roaming Scheme: In the data collection
scenario of IoT, the sensor devices in the perception layer
collect a large amount of data. Due to the delay sensitivity
and data privacy of some data, there is a large amount
of communication delay in batch uploading to the cloud,
which cannot meet the real-time requirements of applications.
Therefore, it is necessary to complete data processing at the
edge nodes near the device to save data transmission time. A
data processing model is formed for edge nodes to deploy data-
intensive applications and cloud nodes to deploy diagnosis and
decision-making platforms.

Distributed function role policy. According to different
functional roles, edge nodes host data-intensive applications,
and cloud nodes run diagnosis and decision-making plat-
forms. When faced with a large volume of data-collecting
scenarios, new business loads will continuously gather on
edge nodes, and data collecting and task processing will
exhaust the resources of edge nodes, resulting in insuffi-
cient resource allocation for subsequent tasks. When the
task load hosted by the node is heavy, resource shortage
will cause part of the workflow task to fail (task Pod
OOMKilled), so the task horizontal roaming algorithm is
needed to migrate the current failed task Pod to the same
edge scene. Other nodes of the same role in this scene
are used to host this task and ensure the smooth operation
of the workflow. The Kube-scheduler uses a label-matching
mechanism to schedule workflow task Pod for the cloud-
edge scenario. The task label has a data dictionary structure,
represented by map [Key : IpAddress]. Key represents the
label keyword of the scheduling node and belongs to a node-
set {node-1,node-2, ...,node-m, edge-1, edge-2, ..., edge-n}.
Each task Pod keeps the same label as its host node, which
ensures that the Kube-scheduler schedules task Pods to its
matching node.

Task horizontal roaming algorithm. Algorithm 3 im-
plements the horizontal roaming of the task Pod with
OOMK111ed state, returning the labels of the destination node
in the same edge scenario.

Algorithm 3 Task Horizontal Roaming Algorithm

1: Input s; ;;

2: Output Label of the destination node;

3: The Informer within workflow scheduling engine automat-
ically captures the OOM Killed task s; ; and executes the
delete operation;

4: Obtain the clusterNodeLabelMap(map[key][]IpAddress)

of all node labels in cloud-edge cluster;

: Obtain the labelKey and IPAddress of task s; ;;

: Obtain the remaining resource list of the cluster nodes;

: for V IPAddress € clusterNodeLabelMap[labelKey] do

if IPAddress # s; ;.IPAddress then
Search for the same role node with the largest resid-
ual source in the same edge scenario from the node
remaining resource list where the task s; ; is located;

© 0 N o W

10: Update the label key of task s; ; as the iPAddress of
the edge node with the largest residual resources;
11:  end if
12: end for
13: Update the label of task s; ; in Redis database;
14: Return the Labels of the node to which task si,j will
roam;

Line 3 describes that the workflow scheduling engine cap-
tures the task Pod of the OOMKilled state in real-time
through the Informer module and removes this task. Line 4
obtains the clusterNodeLabelMap of the labels of all nodes in
the cluster. Line 5 gets the keywords and key values of the
task labels for OOMKilled tasks. Then, line 6 obtains the
remaining resource list of the cluster nodes. Line 7 traverses
the cluster NodeLabel M ap[label Key] of the node label in
the same edge scenario. Line 8 to line 10 exclude the current
node to search the node with the largest residual resources
and record the node IP address of this node, which is the
horizontal roaming node of task s; ;. In line 13, the label of
task s; ; in the Redis database is updated, and the label of this
roaming node is returned. Time complexity of algorithm 3 is
O(|V| x |Pod.List|).

2) Task Vertical Offloading Scheme: In the industrial IoT
field, in order to maintain workshop equipment, it is necessary
to deploy remote equipment monitoring tasks on edge nodes
near the devices, continuously obtain equipment status data
collected by sensors for preprocessing, and send the results
to the diagnosis platform. The diagnosis platform processes
data preprocessing results from edge node monitoring tasks.
The diagnosis platform task can drift between the cloud node
and the edge node in accordance with the specific monitoring
requirements of the manufacturer.

Computing power hierarchical division strategy. In in-
tensive device-monitoring mode, product testing and deploy-
ment are the main requirements. In order to reduce the data
transmission delay between monitoring tasks and diagnosis



platform tasks, diagnosis platform tasks can be offloaded to
edge nodes with low computing power levels. In the regular
device-monitoring mode, the daily business application of the
device is the primary requirement. To save the resources of
the edge nodes, diagnosis platform tasks can be offloaded to
the cloud nodes with high computing power.

The task vertical offloading algorithm follows the idea of
computing power hierarchical division, which can reasonably
offload tasks running on cloud or edge nodes and give full
play to the advantages of cloud-edge resources. To test the task
vertical offloading scheme, the cloud-edge workflow schedul-
ing engine appropriately scales the resource requirements
of tasks according to the resource scaling strategy, and the
vertical offloading process of OOMK1i11led task Pod caused by
insufficient resources is to simulate the offloading of diagnostic
platform tasks from edge nodes to cloud nodes. Due to re-
source heterogeneity of cloud-edge nodes, the data dictionary
of cluster task image is defined as map [Ip : ImageAddress],
where Ip represents the IP address set of cluster nodes.
ImageAddress stands for the image address of the diagnostic
platform task on the corresponding node. Since the task
vertical offloading scheme realizes the task offloading from
the edge node to the cloud node, which involves the different
processor architectures of the nodes, the task offloading should
consider the change of the image address for the diagnosis
platform task.

Task vertical offloading algorithm. Algorithm 4 imple-
ments the vertical offloading of the task Pod with OOMKilled
state and returns the label of the destination cloud node
corresponding to the edge scene.

In line 3 of algorithm 4, the cloud-edge workflow schedul-
ing engine captures the OOMKilled task Pod in real-time
through the Informer module and removes this task. Line 4
gets the clusterNodeLabelMap (map[key][]IpAddress) of the
labels of all nodes in the cluster, and line 5 obtains the
NodeTaskImageAddressMap (map[Ip][]ImageAddress) for all
cluster nodes. Then, line 7 obtains the residual resource list of
the cluster nodes. Line 8 traverses the clusterNodeLabelMap
of the cluster nodes, and for each labelKey, line 9 obtains
the clusterNodeLabelMap[labelKey] of the cloud node that
matches the labelKey. Then line 10 traverses clusterNodeLa-
belMap[labelKey], and lines 11 to 13 search the cloud node
with the largest residual resources (corresponding to the edge
scenario of the node where task s; ; is located) excluding the
current node, and records the IP address of the cloud node.
This cloud node is the vertical offloading node of task s; ;.
In line 17, the label of task s;; in Redis data is updated,
and finally, the label of this offloading node is returned. Since
len(clusterNodeLabelMap) in line 8 is less than V' (the number
of cluster nodes). The clusterNodeLabelMap[labelKey] in line
9 of the algorithm is the set of IP addresses of nodes in
a certain edge scenario, and this set must also be smaller
than len(Pod.List) in the cluster. So the time complexity of
algorithm 4 is O( |V| x |Pod.List|).

VI. EXPERIMENTAL EVALUATION AND ANALYSIS

In this section, we use the cloud-edge workflow scheduling
engine to run the customized IoT workflow to test the perfor-

Algorithm 4 Task Vertical Offloading Algorithm

1: Input s; ;;

2: Output The label of offloading node;

3: The Informer within workflow scheduling engine automat-
ically captures the OOM Killed task s; ; and executes the
delete operation;

4: Obtain the clusterNodeLabelMap(map[key][]IpAddress)
of all node labels in cloud-edge cluster;

5: Obtain the NodeTaskImageAddressMap(map[Ip][]Image
Address) of task images for all nodes in cloud-edge
cluster;

6: Obtain the 1abelKey and IPAddress of task s; ;;

7: Obtain the remaining resource list of the cluster nodes;

8: for V labelKey € clusterNodeLabelMap do

9:  Get clusterNodeLabelMap of cloud node matching la-
belKey;

10  for V IPAddress € clusterNodeLabelMap[labelKey] do

11 if IPAddress # s; ;. IPAddress then

12: Search for the cloud node with the largest remain-

ing resource in the cloud scenario that corresponds
to the edge scenario of task s; ;;

13: Record the IPAddress of cloud node with max-
imum residual resources as the label key value
of task s;; and update the task image address
NodeTaskImageAddressMap[IPAddress].

14: end if

15:  end for

16: end for

17: Update new labels of task s; ; in Redis database;

18: Return the label of offloading node of task s; ;;

mance of the related algorithms. We sequentially present the
experimental setup and performance evaluation.

A. Experimental Setup

This section details the experimental setup, including the
experiment testbed, workflow instance, workflow arrival pat-
tern, evaluation metrics, and baseline.

1) Experimental Testbed: As shown in Fig. 3, the cloud
consists of K8s clusters, and the edge includes four Raspberry
PI edge nodes. We use KubeEdge to build the cloud-edge clus-
ter, which integrates the cloud, edge, and device end containing
sensors and other collecting devices. The edges and device end
belong to distinct edge scenarios, such as edge-1 and edge-
2. The cloud-edge workflow scheduling engine is deployed
in the K8s cluster in the cloud, with continuous injection
of workflows. For IoT workflow application scenarios, delay-
sensitive tasks and tasks with data privacy need to be scheduled
to the edge nodes near the device by the cloud-edge workflow
scheduling engine for execution. Table I describes the software
and hardware configuration of the cloud-edge testbed.

2) Workflow Instance: In this section, we design a universal
workflow suitable for IoT application scenarios. The workflow
topology includes multiple branch combinations of the DAG
graph (in-tree, out-tree, fork-join, etc.), which aims to simulate
the relationship between businesses in IoT applications as
much as possible.



TABLE I
CONFIGURATION OF CLOUD-EDGE EXPERIMENTAL TESTBED

CNode Node Number CPU Specifications Software Hardware Configuration
ategory
master:192.168.0.160 ubuntu 20.4 CPU 1 Core
Cloud Node node-1:192.168.0.161 Intel(R) Core(TM) K8s 1.19.6 Memory 2 GB
node-2:192.168.0.162 i7-1165G7@2.80GHz KubeEdge 1.9.1 Bandwidth 100Mbps
Docker18.9.6 NIC Intel PRO/1000
edge-1:192.168.0.163 Raspberry Pi4 ubuntu 20.4 CPU 4 Cores
Edge Node edge-1:192.168.0.164 Model B K8s 1.19.6 Memory 2 GB
edge-2:192.168.0.165 Broadcom BCM2835 KubeEdge 1.9.1 Bandwidth 100 Mbps
edge-2:192.168.0.166 Cortex-A72@1.5GHz Docker18.9.6 NIC 2.4GHz WiFi
R W Deploy, launch the edge
/ Cloud \,' V’]OZE tyask on cloud nogde
K8s ulustel\\
O SIgICHos l l ’ Data collection for T1 A Ta
Q Edge node nmh 1:192.168.0.161 5% master: £92.168.0.160 edge node tasks 1 0\
O Device node ’ node-2:192.168.0.162 “;,‘/ VI \ Y
: TS5 T6 T9 T10

KubeEdge

Fig. 3. Cloud-edge testbed.

Fig. 4 depicts a universal workflow topology in an IoT
scenario. The workflow task Tj located at the top layer is re-
sponsible for workflow deployment, the start of the edge node
task, and runs on the cloud node. Then, the data collection
tasks of the second layer edge nodes (edge nodes in edge-1 and
edge-2) are triggered following workflow dependencies and
converge to the third layer edge nodes (edge nodes in edge-1
and edge-2) for data processing. Next, the data flows into task
Ty, of the fourth layer cloud node, which is responsible for
further data processing. T%2 continues to trigger the edge node
tasks at the fifth layer to collect data, and the data is aggregated
to the edge node at the sixth layer to complete processing in
turn. Finally, the data flows into the task 75 of the cloud node
to provide data processing results for users to make decisions.
For the data collection, data processing, and decision-making
tasks in the IoT application workflow (Fig. 4), we simulate
the execution process of these tasks through the Stress tool.
By injecting the relevant parameters into the task container,
the Stress tool will execute the corresponding resource load,
simulating the running of the real task.

3) Workflow Arrival Pattern: We use the following three
workflow arrival patterns to simulate the intensity of workflow
arrival. The task horizontal roaming and vertical offloading al-
gorithm tests use constant arrival patterns to inject workflows.
The Workflow Injector module sends a specified number of
workflows to the Containerized Workflow Builder every 300

Data collection
for edge node tagks

Data aggregatlo
processing for T12
cloud node tasks
X A

/\
NN Y
T14 i

Data collection for
T
edge node tasks

\ V4
N ¥
T17
Data processing for i
edge node tasks T18
T19
I
|
v

Data aggregation processing for

cloud node tasks T20

O Cloud node (label node-2:192.168.0.162)
O Cloud node (label node-1:192.168.0.161)
O Edge node (label edge-1:192.168.0.163...164)

O Edge node (label edge-2:192.168.0.165...166)

Fig. 4. Workflow instance.

seconds. For instance, a total of 10 workflows, each batch
number y = 2, sending once every 300 seconds, a total of 5
times.

Constant arrival pattern. The number of workflow re-
quests arrives in a constant manner. The Workflow Injector
module injects two workflow requests to the Containerized
Workflow Builder every 300 seconds (that is y = 2). The
whole process continuously injects five times, a total of 10
workflows, as shown in Fig. 5(a).

Linear arrival pattern. The number of workflow requests
is injected into the Containerized Workflow Builder in an
increasing linear function (y = k * x + d, where y is the
amount of injected workflow requests and d takes the initial
value of 1). The injected workflow requests are increased by
k (kK = 1) every 300 seconds, and the whole process sends
injections four times, a total of 10 workflows, as shown in
Fig. 5(b).

Pyramid arrival pattern. The curve of the number of work-



flow requests conforms to a pyramid shape. The experiment
starts with a small number of concurrent workflow requests
(1 workflow) until it grows to a randomly chosen larger value
(limited to cloud-edge resources, here taken as 3), as shown in
Fig. 5(c). The number of injected workflow requests grows by
one every 300 seconds until a peak. Once reaching the peak,
the number immediately falls back to its initial value in the
same way, and the process executes repeatedly until the total
number of workflow requests (i.e., 17).

4) Evaluation Metrics: The evaluation metrics of cloud-
edge workflow scheduling optimization include total workflow
duration, average workflow duration, CPU resource usage,
and memory resource usage. The evaluation metrics for task
horizontal roaming and vertical offloading algorithms contain
the lifecycle of horizontal roaming or vertical offloading tasks,
task number, and resource allocation during task roaming and
offloading.

Total workflow duration (min). It represents the total
duration of all injected workflows, that is, the time taken
by workflow injection from the first workflow request to the
completion of the last workflow execution.

Average workflow duration (min). This metric represents
the average execution time of a single workflow, that is, the
time taken by each workflow from the beginning of the first
task to the end of the last task.

Resource usage. It contains the average resource usage of
CPU and memory. This metric reflects the average resource
usage over the total duration of all injected workflows in the
KubeEdge cluster.

Lifecycle of horizontal roaming or vertical offloading
tasks. This metric represents the time consumption of a
OOMK1illed task from being captured to the end of roaming
or offloading.

Number of horizontal roaming or vertical offloading
tasks. This metric reflects the number of roaming and offload-
ing tasks that occur during the injection of a certain number
of workflows.

Resource allocation in horizontal roaming or vertical
offloading tasks. This metric shows the execution effect of
task horizontal roaming or vertical offloading algorithms and
the fault-tolerant management ability of cloud-edge workflow
scheduling engine through the resource allocation of roaming
or offloading tasks.

5) Baseline: We use the resource allocation strategy in [7]
as the baseline that does not consider the potential concurrent
task requests in the lifecycle of the current task. It means
that the resource allocation strategy in the baseline follows
the First-Come-First-Serve (FCFS) scheme, and this scheme
depends on the adequacy of the remaining resources on a
node in the cloud-edge cluster. If the residual resource amount
of the node is sufficient, the resource allocation strategy is
implemented. Otherwise, it needs to wait for other task Pods
on the node to complete and release resources to meet the
resource requirements requested by the current task.

B. Performance Evaluation

This section depicts the execution process of the cloud-edge
workflow scheduling engine running the IoT application work-

flow in the cloud-edge scenario, evaluates the performance of
the KCES scheme, and verifies the effect of the task horizontal
roaming and vertical offloading algorithms.

1) Cloud-edge Workflow Scheduling Performance Analysis:
To verify the performance of KCES, we adopt the cloud-
edge configuration in Fig. 3 and use the cloud-edge workflow
scheduling engine to run the IoT workflow application (Fig. 4)
on the KubeEdge cluster. The resource allocation algorithm in
the KCES aims to make each cloud or edge node host as
many workflow tasks as possible and maximize the resource
utilization of cloud-edge nodes without violating the task
deadline. When the allocated resources of the node where
the current task resided do not meet the minimum amount
of memory resource Remem min 4 B the task horizontal
roaming algorithm 3 is tr1ggered to search for other nodes with
sufficient resources in the same scenario to host the current
task. It alleviates the shortage of allocatable resources of the
current node and also realizes load balancing under the same
scenario. We evaluate the performance of KCES using total
workflow duration, average workflow duration, CPU resource
usage, and memory resource usage.

As shown in Table II, "KCES” represents our proposed
KCES in this paper, and “Baseline” stands for the baseline
algorithm. Three arrival patterns inject 10, 10, and 17 work-
flows, respectively. Under different workflow arrival patterns,
the KCES outperforms the baseline in total workflow duration,
average workflow duration, and CPU and memory resource
usage metrics. Table II shows the mean and standard deviation
0 of performance index data. The low standard deviation of
various metrics in the table indicates that the dispersion of
different metric data is low, which reflects the stability and
reliability of the KCES. The table shows that the CPU and
resource usage data have little difference for each workflow
arrival pattern, and the two resource usage curves are similar
for each workflow arrival pattern, which is attributed to the
same resource scaling ratio of CPU and memory.

Fig. 5 depicts the CPU and memory resource usage rate
under three distinct arrival patterns for IoT application work-
flows. The resource curve used in each workflow arrival pattern
in the figure generally ends later than the workflow request
curve because each workflow has a deadline in the future, and
some workflows are still waiting in the queue for execution
until all injected workflows have been executed.

In the experimental setup, the IoT application workflow
consists of 21 tasks (refer to Fig. 4), and workflow tasks
will run on cloud or edge nodes. Compared to the baseline,
for total workflow durations in Table II, the KCES saves
13.8% in constant arrival mode, 24.5% in linear arrival mode,
and 8% in pyramid arrival mode. The KCES respectively
saves 22.7%, 44.5%, and 29.7% in average workflow duration
under three different workflow arrival patterns compared to
the baseline, as shown in Fig. 5(a), (b) and (c), respectively.
In linear arrival mode, the KCES obtains better performance
in terms of total workflow duration and average workflow
duration. It is due to that the concurrent degree of injected
workflow requests is directly related to total workflow duration
and average workflow duration. The higher the concurrency
of injected workflow requests, the more workflow tasks run



TABLE II
PERFORMANCE METRIC DATA OF CLOUD-EDGE WORKFLOW SCHEDULING

-

Metrics Constant Arrival Linear Arrival Pyramid Arrival
Workflow KCES | Baseline KCES [ Baseline KCES [ Baseline
Number of workflow requests 10 10 17
Types Interval betl\:l/le;eg?g /t:vo requests 300 300 300
z
< Total workflow duration (min) 26.3 30.5 25 33.1 45.8 49.8
= (Standard deviation) (6 =0.6) 6=11) 6=1.1) (6 =2.0) (6 = 0.25) (6 =0.94)
S
= Average workflow duration (min) 6.37 8.24 6.9 12.44 8.1 11.52
E (Standard deviation) (6 =0.38) (6 =0.9) (6 =1.03) 6=11) (6 = 0.56) (6 =047
,§ CPU resource usage 0.06 0.05 0.06 0.05 0.06 0.05
E (Standard deviation) (6 = 0.00) (6 = 0.00) (6 =0.00) (6 = 0.00) (6 = 0.00) (6 = 0.00)
«
= Memory resource usage 0.16 0.15 0.16 0.15 0.17 0.15
S (Standard deviation) (6 =0.01) (6 = 0.00) (6 =0.01) (6 = 0.00) (6 = 0.00) (6 = 0.00)
20 20 20
allocatable CPU -- used CPU in Baseline allocatable CPU -~ used CPU in Baseline allocatable CPU -- used CPU in Baseline
—— used CPU in KCES +  constant arrival pattern —— used CPU in KCES + linear arrival pattern —— used CPU in KCES + pyramid arrival pattern
19 19 19
18 18 18
= 5 _ 5 _ 5
§17—’ - ; §17¢‘ - § §17,N— - §
g 263 059 ; g s 259 33;5\6 % g . ‘vﬂ 89089 . g
g 4‘"8" % “ 4-% 3%
@ 31 [ & @
24 2
N
0

o

o 10 20 30 35 10

Time (Minutes)

)

Time (Minutes)

Z‘O 3b 35
Time (Minutes)

allocatable memory
—— used memory in KCES

-~ used memory in Baseline
+  constant arrival pattern

Y
v

allocatable memory
—— used memory in KCES

allocatable memory
used memory in KCES

-~ used memory in Baseline
+ pyramid arrival pattern

-~ used memory in Baseline
+ linear arrival pattern

\
Y
Ay

89,989
4

@59 33" 25-9

Memory (Gi)

s1sanbay Mo|IoM
Memory (Gi)

Memory (Gi)

o - M e s oo o
$350nboY MO | $3{IOp

°
s3sanbay mojIom

0 10 20 30 35 0 10
Time (Minutes)

(a) Constant Arrival Pattern

Time (Minutes)

(b) Linear Arrival Pattern

20 30 35

Time (Minutes)

(c) Pyramid Arrival Pattern

Fig. 5. The CPU and memory resource usage rate under three distinct arrival patterns for Iot application workflows.

per timeslot, and the shorter the total workflow duration and
average duration of a single workflow. For CPU and memory
resource usage in Fig. 5, KCES outperforms the baseline for
each arrival pattern. Due to the limited resources in cloud-
edge nodes, the injected workflow load is small, and the CPU
and memory resource utilization under two strategies is not
high. Compared to the baseline, KCES increases CPU resource
usage by 20% and memory resource usage by 6.6% to 13.3%.

From the resource usage curves (CPU and memory) of
three workflow arrival patterns in Fig. 5, we can observe
that the resource usage peak of our KCES is higher than
that of the baseline algorithm most of the time. Moreover,
the peak of the resource usage curve is generally consistent
with the centralized arrival of workflow requests. It is because
the former uses a resource scaling method to adjust the
resource requirements of potential future task requests during
the lifecycle of the current task. Under the premise of ensuring
the smooth operation of task Pods, the strategy starts task Pods

on the current node as much as possible to speed up workflow
execution efficiency. In addition, for the case of insufficient
resource allocation of nodes, the task horizontal roaming al-
gorithm alleviates the lack of resource allocation on the current
node, realizes load balancing in the same scenario, and speeds
up the execution efficiency of the workflow by searching
other nodes with the same role with sufficient resources in
the same scenario to host the task. The baseline algorithm
depends on the adequacy of the remaining resources on the
cluster nodes. In the scenario of high workflow concurrency,
the insufficient remaining resources of the nodes will cause
the baseline algorithm to suffer from endless waiting and a
lot of time waste, which prolongs the total workflow duration
and average duration of a single workflow.

2) Task Horizontal Roaming Performance Analysis: To
verify the horizontal roaming of workflow tasks in an edge
scenario, the experiment in this section follows the cloud-
edge configuration in Fig. 3, and the cloud-edge workflow



node-1: H
192.168.0.161 L
node-2: T
192.168.0.162 L0 ]

edge-1:
192.168.0.163 L

edge-1:
192.168.0.164

edge-2:
192.168.0.165 L

edge-2:
192.168.0.166 L
| ]

302 316 340 349 372 402 421

Fig. 6. Task horizontal roaming process in workflow-3.

scheduling engine runs on cloud nodes. We evaluate the task
horizontal roaming algorithm from the lifecycle of horizontal
roaming tasks, the number of horizontal roaming tasks, and
resource allocation.

Lifecycle of horizontal roaming tasks. The lifecycle of a
horizontal roaming task refers to the total time consumption of
the whole process of task creation, task OOMKilled caused
by insufficient resources, task deletion, task roaming, task
recreation, task execution completion, and task deletion again.
The experiment adopts the constant arrival pattern to inject
four workflows in two batches every 300 seconds. This section
selects a group of experimental data from multiple experiments
to analyze the task roaming lifecycle metric.

The experimental data show that two tasks of workflow-3
have occurred horizontal roaming ahead of the completion of
four workflows. As shown in Fig. 6, the workflow-3’s lifecycle
is from the 302nd to the 633rd second of the experiment
process, consuming 331 seconds. The task roaming lifecycle
of Th and T'6 lasts from the 340th second to the 402nd
second for 62 seconds. TS5 and T6 migrate horizontally from
192.168.0.163 in the edge scenario edge-1 to 192.168.0.164
in this scenario. In addition, Fig. 6 shows that the task roaming
process of T'5 and 76 in workflow-3 does not affect the smooth
operation of the whole workflow in the cloud-edge scenario.

Number of horizontal roaming tasks. In the experiment,
the Workflow Injector module injected b workflows concur-
rently every 300 seconds in constant arrival mode, and N
workflows needed to inject N/b batches in total. Under the
effect of the task horizontal roaming algorithm, the cloud-
edge workflow scheduling engine executed five groups of
experimental tests (N = 2,0 = 1), (N = 4,b = 2),
(N =6,b =3), (N =8b=4)and (N = 10,b = 5).
The total number of injected workflow tasks is 42, 84, 126,
168, and 210, respectively, and the successful execution rate
of workflow tasks in each group of experiments is 100%.

Fig. 7 depicts the relationship between workflow scale
and the number of horizontal roaming tasks for five group
experiments. In Fig. 7, the error bar (standard deviation) of
roaming task number changes slightly, which reflects that
the Resource Allocator module of the cloud-edge workflow
scheduling engine has high stability when facing a high
workflow workload. We can observe that the (N = 2,b = 1)
group experiment does not have task horizontal roaming due

452

473 502 522 550

w
u

25
= Task roaming number 32

B Percentage of task roaming number

w
o

r20

254
. 15.2 o
[ 153
Q 1 a
£ 2
c Q
x 8
n 154
\© 10§

=
o

ol
N=2,b=1

N=4,b=2

N=6,b=3 N=8,b=4 N=10,b=5

Fig. 7. Relationship between workflow scale and the number of horizontal
roaming tasks

to the small workflow load, sufficient resource allocation, and
no OOMK1i 11ed task Pod. With the growth of workflow scale,
the load in the cloud-edge cluster increases, and the resources
become tighter, leading to the gradual increase of the task
roaming number and the percentage of task roaming.

In the experiment data group (N = 10,b = 5), the number
of horizontal roaming tasks has been as high as 32, and
the percentage of horizontal roaming tasks reaches 15.2%.
Under the effect of the resource scaling strategy in Resource
Allocator, each cloud-edge node can accommodate more tasks,
and some task Pods become OOMKilled state because of
resource shortage. With the help of the task horizontal roaming
algorithm, the cloud-edge workflow scheduling engine can
automatically capture the OOMKilled task Pod and transfer
the load to other nodes in the same scenario to realize the
resource reallocation of the OOMK111ed task Pod and ensure
the normal execution of the task Pod.

Resource allocation for horizontal roaming tasks. We
choose task 7'9 of workflow-0 with horizontal roaming event
in experiment data group (N = 10,b = 5) to analyze resource
allocation. At the beginning of the task lifecycle, the cloud-
edge workflow scheduling engine simulates the current task
T9 running a lifecycle, predicts the possible concurrent tasks



in the future, and uses the resource scaling strategy to host as
many task Pods as possible, aiming to maximize the resource
utilization of cloud-edge nodes.

1200

OOMKille Deletefi Reallocation

= = allocated CPU
= = reallocated CPU

=
A 0 ® O
o © © o
S & & o
1
|
|
t
|
|
|
|

#CPU (milli cores)
N
o
o

1 \
0 10 20 30 40 50 60 70 80 90

o

1000

OOMKille Deletefi Reallocation — = allocated memory
800 1 = = reallocated memory
minimum memory

6004 | | [TOTTETEEEE 1

400 -

#Memory (Mi)

200 {j======u] —=

! \

0 10 20 30 40 50 60 70 80 90
Time (seconds)

b | | —

Fig. 8. Resource reallocation for horizontal roaming task.

Currently, the allocated resources for task 7'9 are 400
millicores CPU and 199 Mi memory, since the memory request
required by the internal Stress tool of 79 in the workflow defi-
nition is 200Mi (Reg':fjm’mm), the memory request for normal
execution of task9’s Pod is not less than Reg’:im’mm + 4, ie.,
220Mi (8 = 20). As shown in Fig. 8, at the 21st second,
task 79 encounters OOMKilled due to insufficient memory
resource allocation. Next, the cloud-edge workflow schedul-
ing engine captures this task and calls the task horizontal
roaming algorithm 3 to remove this task while obtaining
other edge nodes suitable for hosting this task. At the 26th
second, the Pod corresponding to task 7'9 is removed from
the cluster. Then, the workflow scheduling engine invokes the
resource allocation algorithm at the 33rd second to restart
the resource allocation for 7'9. The reallocated resources
(CPU : 400m, Memory : 630Mi) are enough to ensure the
smooth operation of 79, and finally, at the 63rd second, the
workflow scheduling engine deletes the successfully executed
task 7'9.

3) Task Vertical Offloading Performance Analysis: Using
the experimental testbed in Fig. 3 and the cloud-edge workflow
scheduling engine, this section evaluates the task vertical
offloading algorithm from the lifecycle of vertical offloading
tasks, the number of vertical offloading tasks, and resource
allocation.

Lifecycle of vertical offloading tasks. The lifecycle of a
vertical offloading task refers to the total time consumption of
the whole process of task creation, task OOMKilled caused
by insufficient resources, task deletion, task offloading, task
recreation, task execution completion, and task deletion again.
The experiment verifies the task vertical offloading algorithm
of the KCES and adopts the constant arrival pattern to inject
four workflows in two batches every 300 seconds. This section
selected a group of data from multiple experiments to analyze
the task offloading lifecycle metric.

As shown in Fig. 9 and Fig. 10, task 719 of workflow-0 and
task T'1 and T2 of workflow-2 have been vertically offloaded
as of the completion of four workflows. Fig. 9 shows that the
lifecycle of workflow-0 takes 344 seconds from the 2nd second
to the 346th second. The task 719 of workflow-0 undergoes
vertical offloading from the 282nd second to the 325th second,
offloading from 192.168.0.166 of edge scenario edge-2 to
cloud node node2:192.168.0.162, and the lifecycle takes 43
seconds. Fig. 10 shows that the lifecycle of workflow-2 takes
411 seconds from the 306th second to the 717th second, and
the vertical offloading process of its task 7'1 lasts from the
342nd second to the 380th second, and the lifecycle takes
38 seconds. The vertical offloading process of task 72 lasts
from the 342nd second to the 392nd second, and the lifecycle
takes 50 seconds. Due to insufficient resource allocation, task
T1 and task 72 encounter OOMKilled, the task wvertical
offloading algorithm offloads two tasks from 192.168.0.163
in edge scenario edge-1 to cloud node nodel:192.168.0.161.
In addition, Fig. 9 and Fig. 10 also show that the task vertical
offloading process of workflow-0 and workflow-2 does not
affect the successful execution of the workflow in the cloud-
edge scenario.

Number of vertical offloading tasks. Similar to the task
horizontal roaming experiment, the task vertical offloading
experiment also used a constant arrival pattern to inject b
workflows concurrently every 300 seconds by the Workflow
Injection module, and a total of N/b batches were injected.
Five sets of (N =2,b=1), (N =4,b=2), (N =6,b=3),
(N =8,b=4) and (N = 10,b = 5) experimental tests were
performed. The total number of injected tasks is 42, 84, 126,
168, and 210, respectively, and the successful execution rate
of each group of experimental workflow tasks reaches 100%.

Fig. 11 depicts the relationship between workflow scale
and the number of vertical offloading tasks in five group
experiments. Similar to the horizontal roaming experiment,
the error bar (standard deviation) of offloading task number
changes slightly, which reflects that the Resource Allocator
of the workflow scheduling engine has high stability when
facing a high workflow workload. As shown in Fig. 11, with
the increase in the number of injected concurrent workflows,
the resources of the cloud-edge cluster become increasingly
strained, resulting in the gradual growth of the number of
offloading tasks and the percentage of task offloading.

In the (N = 10,b = 5) group experiment, the number
of vertical offloading tasks reaches 40, and the percentage of
vertical offloading tasks is 19%. In order to verify the ability of
the vertical offloading algorithm, we use the resource scaling
method in the experiment, and the cloud-edge nodes accom-
modate more tasks at the same time, causing some task Pods to
enter the OOMKilled state due to insufficient resources. In
the experiment, the cloud-edge workflow scheduling engine
can automatically capture the OOMKilled task Pod and
transfer the load to the corresponding cloud node with the
help of the vertical offloading algorithm to realize the resource
redistribution of the OOMKilled task Pod and ensure the
normal execution of the task Pod.

Resource allocation for vertical offloading tasks. We
choose task 77 of workflow-3 with a vertical offloading



node-1: (" TTTTTT mrme m m m mm mm m
192.168.0.161 e e e e e e e
node-2: T T |~ T -
192.168.0.162 e e el L
edge-1:  .-—--—- Tl TS5 B —— — --------------------------------------- -
192.168.0.163 .. _ .. '1T23 = 6 . T14 . _Vsnmalnfﬂoadmg.fr_m ................
edge-2:19.168.0.166 o
e - fode=2: TY.T68.0: 16~ "~ =" ="~ -
192.168.0.164 - oo __ .................................................................... Lo
PO I N e Y I 0 N Y A §
192.168.0.165 —..—-.. T4 T 10 oo T17 T18 PR R p——
@dge-2: T s s e e RRETR - — e e s e e e s e -
B T e T .
L L l | L l I l L I L L,
2 19 52 110 140 166 186 221 253 282 306 325 346 (S)
Fig. 9. Task vertical offloading process in workflow-0.
node-1: [T T T g P [ T T T e e e s
192.168.0.161 eevoeee L .. Vertical offloading from .._.._.. m _________________________________________ ___I
edge-1:192.168.0.163 to
node-2: e e BOE: 1T10T TOR U =" " =" "+ s e e s _
192.168.0.162 L L e
edge-l:  mmeees Tl _ TS S i _
192.168.0.163 —vememee . j T3 — 1] I TI4 b oot et
T6
edge-1:
192.168.0.164 = -smvemee e ee e e -
edge-2:
192.168.0.165
o, Lo T :
192.168.0.166 Lo v e oo e il Ame L I
| | | | | | [ | I L,
306 342 364 392 434 484 516 537 616 674 717 (S)
Fig. 10. Task vertical offloading process in workflow-2.
45 25 1000 - -
[ Task offloading number 20 . - = allocated CPU OOMKilled Deleted Reallocation
I Percentage of task offloading number u  8pQ 4 = = reallocated CPU
40 9
o
o
35 1o 20 % 600
= 4004 e ™
30 z e e B !
5 25 14.9 & § 200q; )
2 155 1 | 1
€25 o 0 r r r r r T T T T T
2 5 0 10 20 30 40 50 60 70 80 90 100 110
Q
~ 20 Q 800 -
[ — == = allocated memory OOMKilled Deleted Reallocation
K 103
X - = = reallocated memory
15 = s 600 A minimum memory
6.3 E- s004 e -
10 8 5 2 I
3.6 g ‘
PR SRy Sy, S Sy, Sp—— L
1
0 PO 0 ! - - - - - Ll . v al
N=2,b=1 N=4,b=2 N=6,b=3 N=8b=4 N=10,b=5 0 10 20 30 40 50 60 70 80 90 100 110
Time (seconds)
Fig. 11. Relationship between workflow scale and the number of vertical  Fig. 12. Resource reallocation for vertical offloading task.

offloading tasks

event in experiment data group (N = 8,b = 4) to analyze
resource allocation. At the beginning of the task lifecycle,
the cloud-edge workflow scheduling engine also adopts the
resource scaling strategy to allocate resources for the current
T7 as (CPU : 333m,Memory : 45M3i). Since the allo-
cated memory is less than the minimum amount of memory
Remejm min 4 3 required for the normal execution of task T7’s
Pod, i.e., 220Mi (8 = 20M7), as shown in Fig. 12, task T'7
encounters OOMKi1lled at the 63rd second.

T7 takes a long time from initial resource allocation to
OOMKilled (about 62 seconds). It is due to the current
cloud nodes nodel:192.168.0.161 and node2:192.168.0.162
have fewer resources (C'PU : 1000m, Memory : 2Gi). For
the high load of concurrent tasks, the resource scaling method
allocates fewer resources (the lower limit of allocated memory
resources is set to 10007 in the experiment, to trigger the
task Pod OOMKilled to verify the task horizontal roaming
algorithm and vertical offloading algorithm). When the allo-
cated resource amount is less than the resource lower limit,



it will wait until the amount of allocated resources meets the
requirement (above the resource lower limit), which consumes
a lot of time. At the 63rd second, the cloud-edge workflow
scheduling engine captures this task and calls the task vertical
offloading algorithm to remove this task while obtaining the
cloud node suitable for vertical offloading of this task. At the
67th second, the Pod corresponding to 77 is removed from
the cluster. Then, the workflow scheduling engine invokes the
resource allocation algorithm at the 83rd second to restart
the resource allocation for 7'7. The reallocated resources
(CPU : 400m, Memory : 433M7i) are enough to ensure the
smooth operation of 7'7, and finally, at the 98th second, the
workflow scheduling engine deletes the successfully executed
task T'7.

VII. CONCLUSION

This paper proposes a workflow containerization scheduling
scheme KCES for the KubeEdge cloud-edge framework and
studies the task scheduling optimization problem of cloud
workflow in the cloud-edge collaboration mode. The KCES
establishes a workflow scheduling model and cloud-edge node
model and uses the resource hybrid management technology to
solve the issue of cloud-edge resource collaboration in work-
flow scheduling. Based on the idea of distributed functional
roles and the hierarchical division of computing power, the
proposed task horizontal roaming and vertical offloading algo-
rithms aim to solve the application collaboration issue between
cloud and edge. Experimental results verify the effectiveness
of the proposed KCES through the cloud-edge experimental
platform. In the future, we aim to extend the scale of cloud-
edge clusters to integrate reinforcement Learning methods and
further improve the performance of KCES.

REFERENCES

[11 Y. Xia, “Cloud control systems,” IEEE/CAA J. Autom. Sin., vol. 2, no. 2,
pp. 134-142, 2015.

[2] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopou-
los, “Challenges and opportunities in edge computing,” in Proc. IEEE
Int. Conf. Smart Cloud (SmartCloud). New York, NY, USA: IEEE, pp.
20-26.

[3] G. Peng, H. Wu, H. Wu, and K. Wolter, “Constrained multiobjective
optimization for iot-enabled computation offloading in collaborative
edge and cloud computing,” IEEE Internet Things J., vol. 8, no. 17,
pp. 13723-13736, 2021.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646,
2016.

[5] L. Yang, L. Ye, Y. Xia, and Y. Zhan, “Look-ahead workflow scheduling
with width changing trend in clouds,” Future Gener. Comput. Syst., vol.
139, pp. 139-150, 2023.

[6] C. Shan, G. Wang, Y. Xia, Y. Zhan, and J. Zhang, “Containerized
workflow builder for kubernetes,” in Proc. 23rd IEEE Int. Conf. High
Perform. Comput. Commun. 7th IEEE Int. Conf. Data Sci. Syst. 19th
IEEE Int. Conf. Smart City. 7th IEEE Int. Conf. Depend. Sens. Cloud Big
Data Syst. Appl. (HPCC/DSS/SmartCity/DependSys). Haikou, Hainan,
China: IEEE, 2021, pp. 685-692.

[71 C. Shan, Y. Xia, Y. Zhan, and J. Zhang, “Kubeadaptor: A docking
framework for workflow containerization on kubernetes,” Future Gener.
Comput. Syst., vol. 148, pp. 584-599, 2023.

[8] C. Shan, C. Wu, Y. Xia, Z. Guo, D. Liu, and J. Zhang, “Adaptive resource
allocation for workflow containerization on kubernetes,” J. Syst. Eng.
Electron., vol. 34, no. 3, pp. 723-743, 2023.

[9] D. Haja, M. Szalay, B. Sonkoly, G. Pongracz, and L. Toka, “Sharpening
kubernetes for the edge,” in Proc. ACM SIGCOMM Conf. Posters
Demos, Beijing, China, 2019, pp. 136-137.

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. Bader, L. Thamsen, S. Kulagina, J. Will, H. Meyerhenke, and O. Kao,
“Tarema: Adaptive resource allocation for scalable scientific workflows
in heterogeneous clusters,” in Proc. IEEE Int. Conf. Big Data Smart
Comput. (BigComp). Orlando, FL, USA: IEEE, 2021, pp. 65-75.

N. Agrawal, J. Rellermeyer, and A. Y. Ding, “Tot resource-aware orches-
tration framework for edge computing,” in Proc. 15th Int. Con. Emerging
Networking Experiments and Technologies, Orlando, FL, USA, 2019, pp.
62-64.

Y. Hao, Y. Jiang, T. Chen, D. Cao, and M. Chen, “itaskoffloading:
intelligent task offloading for a cloud-edge collaborative system,” IEEE
Netw., vol. 33, no. 5, pp. 82-88, 2019.

X. Zhang, M. Qiao, L. Liu, Y. Xu, and W. Shi, “Collaborative cloud-edge
computation for personalized driving behavior modeling,” in Proc. 4th
ACM/IEEE Symp. Edge Comput., Arlington, Virginia, 2019, pp. 209-
221.

Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend cloud to edge with
kubeedge,” in Proc. IEEE/ACM Symp. Edge Comput. (SEC). Seattle,
WA, USA: IEEE, 2018, pp. 373-377.

(2023) Kubeedge - github. [Online]. Available: https://github.com/
kubeedge/kubeedge

(2023) Openyurt - github. [Online]. Available: https://github.com/
alibaba/openyurt

C. Dupont, R. Giaffreda, and L. Capra, “Edge computing in iot context:
Horizontal and vertical linux container migration,” in Proc. Global
Internet Things Summit (GloTS). Geneva, Switzerland: IEEE, 2017,
pp. 1-4.

T. Goethals, F. De Turck, and B. Volckaert, “Fledge: Kubernetes
compatible container orchestration on low-resource edge devices,” in
Proc. Int. Con. Internet of Vehicles. Kaohsiung, Taiwan: Springer,
2019, pp. 174-189.

(2023) KCES-Github.  [Online].
CloudControlSystems/KCES

(2023) Baetyl - github. [Online]. Available: https://github.com/baetyl/
baetyl

Y. Huang, K. cai, R. Zong, and Y. Mao, “Design and implementation of
an edge computing platform architecture using docker and kubernetes
for machine learning,” in Proc. 3rd Int. Conf. High Perform. Compilation
Comput. Commun., Xi’an, China, 2019, pp. 29-32.

S. Wang, Y. Hu, and J. Wu, “Kubeedge. ai: Ai platform for edge
devices,” arXiv preprint arXiv:2007.09227, 2020.

Y. Han, S. Shen, X. Wang, S. Wang, and V. C. Leung, “Tailored learning-
based scheduling for kubernetes-oriented edge-cloud system,” in Proc.
Conf. Comput. Commun.  Vancouver, BC, Canada: IEEE, 2021, pp.
1-10.

F. Li, W. J. Tan, and W. Cai, “A wholistic optimization of containerized
workflow scheduling and deployment in the cloud—edge environment,”
Simul. Model. Pract. Th., vol. 118, p. 102521, 2022.

J. Meng, H. Tan, X.-Y. Li, Z. Han, and B. Li, “Online deadline-
aware task dispatching and scheduling in edge computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 6, pp. 1270-1286, 2019.

Y. Qian, L. Shi, J. Li, Z. Wang, H. Guan, F. Shu, and H. V. Poor,
“A workflow-aided internet of things paradigm with intelligent edge
computing,” IEEE Netw., vol. 34, no. 6, pp. 92-99, 2020.

J. Shin, D. Arroyo, A. Tantawi, C. Wang, A. Youssef, and R. Nagi,
“Cloud-native workflow scheduling using a hybrid priority rule and
dynamic task parallelism,” in Proc. 13th Symp. Cloud Comput., 2022,
pp. 72-717.

A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. USENIX Conf. Hot Topics Cloud Comput.
(HotCloud), Boston, MA, USA, 2010, pp. 1-7.

(2023) Service - documentation. [Online]. Available: https://kubernetes.
io/docs/concepts/services-networking/service/

A. Tlyushkin, A. Ali-Eldin, N. Herbst, A. V. Papadopoulos, B. Ghit,
D. Epema, and A. Iosup, “An experimental performance evaluation of
autoscaling policies for complex workflows,” in Proc. 8th ACM/SPEC
Int. Conf. Perform. Eng., New York, NY, USA, 2017, pp. 75-86.

Available:  https://github.com/


https://github.com/kubeedge/kubeedge
https://github.com/kubeedge/kubeedge
https://github.com/alibaba/openyurt
https://github.com/alibaba/openyurt
https://github.com/CloudControlSystems/KCES
https://github.com/CloudControlSystems/KCES
https://github.com/baetyl/baetyl
https://github.com/baetyl/baetyl
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

	Introduction
	Related Work
	Cloud-Edge Collaboration
	Containerized Workflow Scheduling
	Novelty Analysis of Our Work

	System Model and Problem Formulation
	Workflow Scheduling Model
	Edge Node Model
	Cloud Node Model
	Problem Formulation

	Cloud-edge Workflow Scheduling Engine
	Architecture Design
	Core Subsystems
	Workflow Injector
	Containerized Workflow Builder
	Service Constructor


	Algorithm Implementation
	Resource Collaboration
	Cloud-Edge Resource Hybrid Management Strategy
	Residual Resource Calculation For Cloud-edge Nodes
	Resource Evaluation Algorithm
	Resource Allocation Algorithm
	Scheduling Decision

	Application Collaboration
	Task Horizontal Roaming Scheme
	Task Vertical Offloading Scheme


	Experimental Evaluation and Analysis
	Experimental Setup
	Experimental Testbed
	Workflow Instance
	Workflow Arrival Pattern
	Evaluation Metrics
	Baseline

	Performance Evaluation
	Cloud-edge Workflow Scheduling Performance Analysis
	Task Horizontal Roaming Performance Analysis
	Task Vertical Offloading Performance Analysis


	Conclusion
	References

