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Poultry farming is threatened by regular outbreaks of Escherichia coli (E. coli) that lead to significant economic18

losses and public health risks. However, traditional surveillance methods often lack sensitivity and scalability.19

Early detection of infected poultry using minimally invasive methods is thus essential for preventing epidemics.20

To that end, we leverage recent advancements in computer vision, employing deep learning-based tracking to21

detect behavioral changes associated with E. coli infection in a case-control trial comprising two groups of broiler22

chickens: (1) an uninfected, unvaccinated negative control group and (2) E. coli-infected chickens without prior23

vaccination using a field strain from the poultry industry. More specifically, we can use tracking data to extract24

simple features pertaining to kinematic behavior, such as distance travelled, rate of change in body area, and time25

spent near the food source. These revealed markedly reduced activity in the challenged group when compared to26

the negative control. Post-mortem physiological markers of infection and inflammation, including serum amyloid27

A and organ lesion scores, confirmed infection severity differences among groups. Overall, this study demonstrates28

the potential of deep learning-based behavioral analysis as a scalable and objective tool for early infection detection29

in poultry farming, paving the way for improved animal welfare and disease management.30
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1. Introduction32

Poultry farming is a cornerstone of the agriculture industry and is essential to global nutritional security, accounting for33

nearly 35% of the world’s meat production [1]. In many poultry-producing regions, Escherichia coli (E. coli) infection34

is a leading cause of morbidity and mortality, including China [2, 3], the United States [4, 5], Brazil [6], and several35

European countries such as the United Kingdom [7] and Denmark [8, 9]. The diversity of pathogens is also of concern for36

public health, particularly those of economic importance and frequent zoonosis, which include several viruses, bacteria,37

fungi, and roundworms [10–12]. Consequently, detecting early signs of infection in domesticated birds, such as broiler38

chickens, is crucial to animal welfare, economics, and public health.39

Over recent decades, a plethora of techniques have been proposed to leverage data from physiological markers (e.g.,40

body temperature [13–15]) or behavioural outputs (e.g., locomotion [16]; sound [17–20]) to assess welfare impairments41

and detect pathogen outbreaks. Measuring temperature requires precise thermal imaging cameras, which are expensive42

and sensitive to environmental disturbances. In contrast, acquiring sound and video recordings is logistically simpler43

and less expensive, but usually requires computer-intensive postprocessing to extract meaningful behavioural features.44

In addition, obtaining precise estimates of individual patterns remains challenging. For instance, commonly used video45

processing methods such as optical flow [16, 21] provide insights at the level of a flock and not of the individual. To46

obtain individual-level measurements, gait-scoring systems have been developed and implemented in broiler chickens [22,47

23], but these are impractical for real-time applications. Other frameworks based on markers or wearable sensors (e.g.,48

accelerometers [24] or RFID chips [25–27]) are promising for their high resolution, but are intrusive and not easily49

scalable to industrial settings.50

Alternatively, recent progress in deep learning [28] for computer vision has catalysed the development of versatile51

frameworks for markerless pose estimation and kinematic covariate extraction for individual [29–32] or multiple animals52

simultaneously [33–36], which have especially garnered interest in neuroscience [37, 38] and ecology [39]. As to53

animal behaviour and welfare monitoring, the potential advantages of deep learning-based videography analysis are54

multi-factorial. Indeed, state-of-the-art solutions are non-invasive, adaptable to various environments, user-friendly,55

and may allow for individual-level analysis with near-human-level precision. Although these systems initially require56

data-intensive training of deep neural networks on videos of interest, transfer learning allows for fast deployment of57

pre-trained models on new video data.58

To this end, we develop a feasibility study that demonstrates the capacity of deep learning-based, markerless tracking (i.e.,59

tracking without pre-placed physical markers) from video recordings to detect phenotypical and physiological differences60

in broiler chickens following E. coli infection. We designed a trial in which 40 chickens were randomly assigned to61

two, equal-sized, separately-housed groups: (1) an uninfected group (control), and (2) a group infected with E. coli62

(Fig. 1). Infection with E. coli in many poultry-producing regions is a leading cause of morbidity and mortality [5, 40].63

In addition, E. coli outbreaks are linked with intensive use of antibiotics, promoting the selection of resistant strains that64

have the potential to spillover into human populations [41].65

Here, we use the multi-animal version of DeepLabCut [34] to identify behavioural changes associated with E. coli66

infection in a trial with two groups of broiler chickens: (1) uninfected group (negative control), and (2) an E. coli-infected67

group using a standard industry dose. Using automated measurements from deep learning, we found chickens infected68

with E. coli to move and travel less in their pens and spend less time near the food source (used as a proxy to measure69

feeding time). This was in agreement with necropsy data confirming distinct patterns of E. coli infection and inflammation70

in infected compared with uninfected groups. Thus, our data provide evidence that deep learning on video is a useful71

and objective tool for detecting the behavioural and physiological changes associated with infection. The simplicity72

and objectivity of the statistics gleaned from videos, including distance travelled and changes in body area, indicate that73

scalability to industrial settings is feasible. Addressing sensitivity to other pathogens, high animal densities, and trade-offs74

between labelling individual animals and image resolution will be crucial for implementing reliable deep learning-based75

outbreak detection methods in broiler farms.76
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2. Methods77

2.1. Animals and housing conditions78

40 day-old, E. coli-unvaccinated, Ross 308 broiler chickens (mixed gender) were obtained from Blenta AB (Blentarp,79

Sweden) and followed for 38 days (Fig. 1a). The animals were accommodated in two groups of 20 (see Experimental80

design) in an 8.64 m2 coop (3.6 m x 2.4 m; Fig. 1c) with a dust bath to a 16h light (06h-22h):1h dim (22.00-23.00):7h81

dark (23.00-06.00) schedule. Feed was provided ad libitum twice daily to accommodate the increased growth (from 15 to82

200 grams/day) according to the feeding schedule of Aviagen (Bække, Denmark) and consisted of commercial wholefood83

for broiler chickens of age 0-8 weeks (Brogaarden, Lynge, Denmark). Water was available ad libitum at two different84

sources. Standard procedures were conducted to prevent cross-contamination from other pathogens: experimenters wore85

personal protective equipment and used sanitized lab equipment before conducting daily checks of each pen.86

2.2. Experimental design87

On the day of arrival, each chicken was randomly assigned to one of two groups: uninfected control group, or infected88

with E. coli. For the infected group, E. coli (strain ST117 E44; accession number LXWV00000000.1) was administered89

intratracheally (9.9 × 105 cfu/chicken in 0.5 ml) (week 5 of the experiment; Fig. 1a), while chickens from the control90

group were sham-challenged intratracheally (phosphate-buffered saline; (PBS)) following the same timeline. The strain91

used for inoculation was provided by the Section of Veterinary Clinical Microbiology at the University of Copenhagen92

and prepared as described in Kromann et al. [40] (storage at -80°C, streaking on blood agar base supplemented with 5%93

bovine blood (BA) and incubation at 37°C overnight). A single colony was incubated in brain heart infusion (BHI) broth94

overnight at 37°C. Subsequently, 1 ml of the culture were transferred to 100 ml BHI and incubated until the optical density95

at 600 nm (OD600) reached 1.56 (approximately two hours). At OD600 = 1.56 (exponential phase), 308 µL of culture96

was transferred to 199.69 ml PBS (Thermo Fisher Scientific; Roskilde, Denmark) and a volume of 0.5 ml per animal was97

used as inoculum and kept on ice until infection. The colony-forming unit (CFU) count in the inoculum was confirmed98

by 10-fold dilutions prepared in triplicates and plated (100 µL) on BA, incubated overnight before counting.99

2.3. Biological data sampling100

Blood samples were collected twice: firstly a day before the challenge and secondly before euthanisation for analysis of101

serum amyloid A using the LZ-SAA assay (Eiken Chemical Co., Tokyo, Japan). Euthanisation was performed by cervical102

dislocation directly following the induction of unconsciousness by blunt head trauma. Gross pathology was performed two103

days post-infection during the necropsy in a randomised and blinded manner to mitigate experimenter biases. An overall104

lesion score was calculated by visually assessing and grading pathological lesions in the peritoneum, airsacs, lungs and105

spleen (see Table S1). To measure pulmonary E. coli CFU counts, each lung was first weighed and then blended with a106

1/1 (weight/vol) 0.9% PBS. The resulting blend was serially diluted tenfold (10−1-10−7) and 3 × 30 µL per dilution was107

spotted separately for overnight incubation. CFU counts were normalised by lung weight.108

2.4. Behavioural data sampling109

For each group, five videos were recorded over three days: two in the first two days (morning and afternoon, after feeding)110

and one on the third morning (Fig. 1a). Each recording lasted between 20 and 30 minutes and was acquired at 30 frames111

per second (FPS) at a resolution of 1080 × 1920 pixels using GoPro HERO10 Black cameras (https://gopro.com). The112

cameras were placed 130 cm away from the floor. For each video, the first two minutes were removed to minimise any113

potential experimenter intervention.114

2.5. DeepLabCut training and inference115

Animal tracking was performed in markerless fashion using the multi-animal version of DeepLabCut [34]. For each video,116

twenty frames were selected using k-means clustering. For each frame, annotations for five body parts (head, centre left,117

centre right, saddle, and tail) were added for each animal. We used a pre-trained DLCRNet_ms5 [34], which consists of118
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a multi-scale convolutional neural network (CNN) built on top of a ResNet-50 [42] feature extractor and stacked with119

deconvolutional layers to predict where the body parts of interest are and which animals they belong to. The multi-scale120

architecture fuses high and low resolution maps, thus allowing to accurately detect body parts with both fine-grained121

detail and broader contextual information, enabling robust performance across varying poses, scales, and inter-animal122

occlusions. The model was trained with default parameters (Adam [43] optimisation with multi-stage learning rate (η)123

scheduling (stage 1: η = 1 × 10−4 for 7,500 iterations; stage 2: η = 5 × 10−5 for 12,000 iterations; stage 3: η = 1 × 10−5
124

until the end of the experiment), batch size of 8) using 95% of the labelled frames for 200,000 training iterations. The root125

mean squared errors (RMSEs) were: 3.03 pixels (train set) and 8.68 pixels (test set) for an image size of 1080 × 1920126

pixels. The trained network was then used to extract the (x, y) positions of each body part for each animal in all videos.127

An example frame is shown in Figure 1e.128

2.6. Post-processing129

For each video, DeepLabCut outputs an array of (x-coordinate, y-coordinate, and likelihood) triplets of size F × (N ×130

B × 3), where F is the number of frames, N the number of animals, and B the number of body parts. Predictions with131

a likelihood below 0.9 were dropped. To recover some of the dropped values, forward linear interpolation was applied132

at a body part level, where at most 15 consecutive missing values could be filled (0.5 s). (x, y) positions were finally133

smoothed using Savitzky-Golay filtering with a polynomial order of 7 and a window length of 15 frames. Subsequently,134

three behavioural features could be extracted (Fig. 1b). First, distance travelled (in px) was estimated on a frame-to-frame135

basis by taking the average Euclidean distance of each body part position from one frame to the next. Second, to quantify136

other forms of behavioural activity not necessarily related to locomotion (e.g., stretching for improved ventilation), the137

rate of change in body area was estimated in a similar vein to [38], using the shoelace formula based on a polygon defined138

by the head, the left centre, the saddle, and the right centre (Fig. 1d). Similar to the travel distance, absolute frame-wise139

differences in body area were collected. To account for potential radial and tangential distortions due to the camera setup,140

for each frame, we normalised the measured velocity and rate of change in body area of each animal by its head-to-saddle141

distance. Third, the time spent near the food source (assumed as a proxy for time spent eating) was estimated for each142

animal by computing the number of frames in which the animal’s head was in the vicinity of the food source (Fig. 1c).143

The vicinity was defined as a rectangle whose scale of 1.05 times the scale of the food source in the video.144

2.7. Statistical analysis145

For all analyses of physiological covariates, nonparametric Mann-Whitney U tests were conducted to examine146

between-subject differences. The t-test assumption of normality was assessed using quantile-quantile plots (Q-Q plots)147

while Levene’s test was used to test for homoscedasticity. For all markers, both normality and homoscedasticity could148

not be reasonably assumed for lesion scores and SAA levels, leading us to opt for Mann-Whitney U tests to assess149

between-group disparities. For all pairwise comparisons, Cohen’s d was reported to reflect the effect size.150

For each behavioural feature, a Bayesian mixed-effects model was employed to investigate between-group variations151

(with the control group as a reference), while accounting for random variations across the different recordings. Our mixed152

effects model had the following linear predictor153

µij = α + βX + γ0i

where µij is a behaviour feature of interest (e.g., distance travelled) for a day i and individual j, α is an intercept that154

corresponds to the control group, β is a scalar for the group X (infected or not), and γ is a random effect for the ith day. As155

the distance travelled and body area change were normalised by the body length (thus constituting rates distributed in (0,156

1)), we assumed their values were generated from a Beta distribution. Whilst the time spent near food source is also a rate,157

a zero-inflated version of the Beta distribution was used to account for the frequent zero-valued observations. All models158

were fitted with the default prior distributions suggested by brms [44]. To facilitate efficient sampling and minimise159

divergent transitions, a target acceptance rate of 0.99 was chosen and a maximum tree depth of 15 was selected for160

building during the trajectory phase of the Hamiltonian Monte Carlo no-U-turn sample (NUTS) [45]. For all variables, we161

compared the beta family models (with a logit link function) against models with the default family parameter (Gaussian162

with an identity link function) in brms and picked the best family based on a Bayesian estimate of the expected log163

pointwise predictive density (ELPD) from leave-one-out cross-validation (LOOCV) (Table S4). Finally, convergence164
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plots and posterior predictive checks were plotted to check model fit (see Figures S1 to S4). For all variables, the models165

fitted using a beta distribution were preferable.166

2.8. Implementation167

Video pre-processing was performed using ffmpeg (https://ffmpeg.org) and tracking was implemented using the168

multi-animal version of DeepLabCut 2.3.5 [29, 34]. Fine-tuning of the pre-trained DLCRNet was performed on a169

single NVIDIA RTX A6000 graphical processing unit (GPU). Feature extraction and statistical tests were performed170

using custom scripts in Python using NumPy (Harris et al. [46], version 1.25.0), pandas (McKinney [47], version171

1.5.3), SciPy (Virtanen et al. [48], version 1.11.1) and Pingouin (Vallat [49]; version 0.5.4). Bayesian mixed-effects172

modelling was implemented in R 4.4.0 using the brms package [44]. The code for reproducing feature extraction and173

statistical analyses is available at: https://github.com/Neclow/dlc2ecoli.174

2.9. Ethics175

The study was approved by the Danish Animal Experiments Inspectorate under the Danish Ministry of Environment and176

Food, and all animal procedures were performed in accordance with this approval (license no. 2019-15-0201-01611) and177

with ARRIVE guidelines. The licence granted, and guidelines hereof, is in agreement with the Danish law on animal178

experiments and the EU directive 2010/63. Predefined humane endpoints were determined and animals were observed179

every 30 min for the initial six hours after inoculation, subsequently at maximally eight-hour intervals for three days after180

inoculation with increased frequency in the event of clinical signs in any of the groups. If clinical signs were present, e.g.,181

ruffled feathers, depression, anorexia, lethargy or dyspnoea, the bird was either treated with 0.1 mg/kg buprenorphine and182

observed with increased frequency or euthanised.183
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3. Results184
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Figure 1. Experimental setup. (a) Timeline of the experiment. (b) Pipeline for behavioural feature extraction using DLCRNet, the
standard model of the multi-animal version of DeepLabCut (maDLC)[34]. (c) Diagram of the chicken coops. (d) Standardised body
parts used for tracking and polygon used to approximate body area. (e) Example predictions from maDLC, based on one frame.
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Figure 2. Comparison of physiological biomarkers of inflammation in response to E. coli challenge. Significance levels: *P < 0.05,
**P < 0.01, ***P < 0.001.
Post-mortem examination of the chickens by necropsy revealed significant disparities between the groups in terms of185

lesion score, SAA levels, and number of CFUs (Fig. 2; Mann-Whitney U: Ulesion = 39.5, USAA = 45.0, Ucfu = 31.0;186

p-values < 0.001) with medium to very large effect sizes (Cohen’s d: dlesion = -2.121, dSAA = -1.153, dcfu = -0.607).187

Chickens from the control group had near-zero presence of SAA and colony-forming units as well as very few lesions,188

while E. coli-infected groups showed significantly higher values for all markers (Table S2).189

Between-group behavioural differences in distance travelled, body area, and time near food source were evaluated using190
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Figure 3. Comparison of behavioural features in response to E. coli challenge. Top: posterior distributions from Bayesian mixed-effects
modelling to investigate between-group variations while accounting for random variations across the different recordings, predicting
the group (infected or not). Middle: mean estimates of the same behaviour features for the E. coli group, with the negative control
group serving as the reference. Bottom: average treatment effect for each behaviour feature, computed as a ratio between the E. coli
and control groups. Error bars indicate 95% confidence intervals.
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Bayesian mixed-effects modelling, with random effects applied to the recording time (Fig. S1- S4). We found the infected191

group to be significantly less active than the uninfected control group as measured by the distance travelled (average192

treatment effect (ATE) ratio: 24% reduction (95% CI: 6-39%)) and rate of change in body area (ATE ratio: 23% reduction193

(95% CI: 4-39%)) (Fig. 3; Table S3). In addition, we posit that the infected group fed less as its individuals spent194

less time near the food source on average (ATE ratio: 41% reduction (95% CI: 24-56%)). Individual chicken identity195

was not recovered from one recording to another, such that a chicken labelled “chicken1" in a given recording could196

not be re-identified in subsequent recordings, preventing analyses within-subjects. Overall, video analysis was effective197

at discriminating behavioural patterns between the control and infected groups, which were confirmed by traditional198

post-mortem analysis of infection biomarkers.199
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4. Discussion200

In this proof-of-concept study, we demonstrate the capacity of deep learning-based, markerless tracking from video201

recordings to detect phenotypical differences in broiler chickens following E. coli infection. This method holds202

significant promise for promptly identifying infection or compromised animal well-being at the individual level, without203

human intervention or intrusive sensors [24–27] - a capability previously limited to flock-level analyses by conventional204

techniques [16, 21]. Moreover, the simplicity and objectivity of the statistical analyses derived from video data suggest205

promising avenues for future research in disease detection and management within the poultry industry. Extracting three206

intuitive features from multi-animal DeepLabCut tracking [34] revealed distinct behavioural patterns between the infected207

and uninfected chickens, corresponding to observed differences in common physiological markers of E. coli infection,208

including serum amyloid A levels, E. coli concentrations and organ lesion scores.209

Identifying infections using videography has several challenges, some of which are associated with the inherent conditions210

from the poultry industry settings, where individual animal identification is laborious. Accordingly, we did not preserve211

bird identity across recordings, and therefore did not perform within-subject analyses. Although mixed-effects modelling212

was used to compare trends between groups, analysing individual differences in behavioural and physiological data would213

facilitate high-resolution analyses. Future research might explore long-term video monitoring at lower resolutions, or the214

use of individual features for identifications at maximal video resolution. Similarly, we focused on coarse behaviours that215

might not reflect the behavioural nuances from the immune state of individuals. Upcoming work could explore a greater216

range of behavioural responses.217

Scaling up deep learning-based methods of pose estimation to farm-level settings can be done via a series of technological218

and practical solutions. Critically, scalability benefits from minimising the number of cameras used, thus maintaining219

individual chicken identity and data efficiency. Current tracking of individual body parts becomes challenging when220

the number of individuals is large (e.g., > 50), but solutions are being quickly developed to mitigate the errors arising221

from crowded environments [50, 51]. Other tracking frameworks such as TRex [33] allow for the tracking of up to222

256 individuals with reasonable precision, but do not track individual body parts and are still insufficient for farm-level223

conditions where several hundreds of animals can coexist. To that end, we posit that using robust deep neural networks224

trained on semantic segmentation (e.g., SAM [52], SAM-2 [53], or DEVA [54]) or in a self-supervised fashion to225

build holistic visual representations (e.g., DINOv2 [55]) could be used to compare embeddings frame-by-frame. This226

framework would operate in a similar manner to optical flow, but we hypothesise that embedding comparison could227

capture differences more accurately.228
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5. Conclusion229

Our findings demonstrate the potential of deep learning-based video analysis in detecting subtle behavioral and230

physiological changes linked to infection, offering an objective and scalable tool for outbreak detection in industrial231

poultry farming. The simplicity and objectivity of the statistical analyses derived from video data, coupled with232

advancements in deep learning technology, suggest promising avenues for future research in disease detection and233

management within the poultry industry.234
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A. Appendix368

A.1. Supplementary Figures369
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Figure S1. brms output for distance travelled, showing density plots for each factor (left) and caterpilar plots (right).
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Figure S2. brms output for the change in body area, showing density plots for each factor (left) and caterpilar plots (right).
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Figure S3. brms output for the time spent near the food source., showing density plots for each factor (left) and caterpilar plots (right).
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Figure S4. Posterior predictive checks for the time spent near the food source.
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A.2. Supplementary Tables370

Table S1. Description of lesion score levels

Organ Characteristic Levels

Peritoneum

Inflammatory reaction

0: None
1: Local at the entrance
2: Around the ovary
3: In the omentum
4: All peritoneum

Amount of exudate
0: None
1: Sparse
2: Some
3: Abundant

Type of exudate

0: None
1: Aqueous
2: Lump of pus
3: Flakes
4: Confluent

Transparency of peritoneum

0: Clear
1: Nuclear
2: Cloudy
3: Milky
4: Opaque

Liver Inflammatory reaction
0: None
1: Fibrin covering < 25%
2: Fibrin covering > 25%
3: Fibrin covering all the liver

Airsac (left)

Transparency of airsac

0: Clear
1: Nuclear
2: Cloudy
3: Milky
4: Opaque

Amount of exudate
0: None
1: Sparse
2: Some
3: Abundant

Lung (left)

Amount of exudate
0: None
1: Sparse
2: Some
3: Abundant

Congestion
0: None
1: Sparse (< 25% of lung tissue)
2: Pronounced (> 25% of lung tissue)

Lung lesions (oedema)

0: None
1: Slight oedema of the alveolar walls
2: Moderate oedematous thickening of alveolar walls with
occasional alveoli containing coagulated oedema fluids
3: Extensive occurrence of alveolar and interstitial oedema

Lung lesions (size)

0: No lesions
1: Small lesions between 1 cm2 and 2 cm2

2: Moderate-size lesions between 3 cm2 and 4 cm2

3: Extensive lesions with more than 4 cm2 and covering almost all
the area of the lungs

Granulomas

0: None
1: Few small white caseous/spherical nodules
2: Numerous small white caseous/spherical nodules
3: Many caseous lesions/nodules and green-gray mold due to
sporulation

Spleen Proliferation
0: None
1: Little proliferation
2: Distinct proliferation

Table S2. Mann-Whitney U tests to assess between-group differences in serum amyloid A levels, lesions scores, and number of
colony-forming units.

A B U-val p-value Cohen’s d

Serum amyloid A (mg/L)
Control E. coli 45.0 2.77e-05 -1.153

Lesion score
Control E. coli 39.5 1.064e-05 -2.121

Colony-forming units
(per gram of lung)
Control E. coli 31.0 1.252e-06 -0.607
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Table S3. brms summary tables for the behavioural features. Reference group: Control (uninfected). Significant differences
(determined if the confidence intervals exclude zero) with respect to the negative control are shown in bold. CI: confidence interval (l:
lower, u: upper). R̂: Gelman-Rubin statistic [56] for Markov chain Monte Carlo convergence; convergence is deemed suitable when R̂

is close to 1. ESS: effective sample size.

Estimate Est.Error l-95% CI u-95% CI R̂ Bulk ESS Tail ESS

Distance travelled
Intercept -3.32 0.116 -3.543 -3.079 1.003 2353.594 1771.796
E. coli -0.286 0.112 -0.506 -0.069 1.002 3717.03 2639.991

Rate of change in body area
Intercept -2.912 0.125 -3.148 -2.658 1.001 1750.502 1543.872
E. coli -0.283 0.117 -0.518 -0.049 1.001 3034.374 2758.279

% Time near food source
Intercept -2.281 0.245 -2.74 -1.761 1.002 1333.479 1306.324
E. coli -0.585 0.148 -0.883 -0.302 1.001 3112.788 2167.955

Table S4. Comparison of different families for mixed-effects modelling using brms. ELPD: expected log pointwise predictive density.
LOOCV: leave-one-out cross-validation. SE: standard error.

Family (link) ∆ELPD LOOCV ELPD
Estimate SE Estimate SE

Distance travelled
Beta (logit) 498.315 19.847
Gaussian (identity) -153.134 8.685 345.181 19.389

Rate of change in body area
Beta (logit) 418.771 22.354
Gaussian (identity) -170.662 10.437 248.109 24.957

% Time spent near food source
Zero-inflated Beta (logit) 292.026 31.327
Gaussian (identity) -105.782 30.388 186.244 19.72
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