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A Bioinformatician, Computer Scientist, and
Geneticist lead bioinformatic tool development -
which one is better?
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Abstract
The development of accurate bioinformatic software tools is crucial for the effective analysis of complex biological
data. This study examines the relationship between the academic department affiliations of authors and the
accuracy of the bioinformatic tools they develop. By analyzing a corpus of previously benchmarked bioinformatic
software tools, we mapped bioinformatic tools to the academic fields of the corresponding authors and evaluated
tool accuracy by field. Our results suggest that “Medical Informatics” outperforms all other fields in bioinformatic
software accuracy, with a mean proportion of wins in accuracy rankings exceeding the null expectation. In
contrast, tools developed by authors affiliated with ”Bioinformatics” and ”Engineering” fields tend to be less
accurate. However, after correcting for multiple testing, none of the results are statistically significant (p > 0.05).
Our findings reveal no strong association between academic field and bioinformatic software accuracy. These
findings suggest that the development of interdisciplinary software applications can be effectively undertaken by
any department with sufficient resources and training.
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Background

Much is made of departmental divisions within academia;
These can denote research and teaching expertise [1], influ-
ence hiring decisions, access to funding, publishing and the
training of students recruited for research projects [2]. How-
ever, interdisciplinary subjects such as bioinformatics break
down the traditional barriers between departments and subject
areas [3, 4, 5].

Bioinformatics, is an interdisciplinary field that fuses biol-
ogy, computer science, and mathematics, and now plays a piv-
otal role in modern biological research [3]. The development
of bioinformatic tools and software is critical for interpret-
ing complex biological questions, such as what evolutionary,
structural and functional analyses of genomic, transcriptomic,
and proteomic data can tell us. The field of “bioinformat-
ics” can include many overlapping research fields that include
computational biology, biomathematics, biostatistics, medical
informatics and other similar areas.

Bioinformatics gained significant traction with the advent
of high-throughput sequencing technologies, which created
a need for robust computational tools to manage the large
volumes of data generated [3, 5]. In response, departments
specializing in bioinformatics began to emerge from biology,
computer science, and engineering faculties, each bringing
unique contributions to the field’s development and expansion.

Bioinformatics integrates methods from various disciplines,
fostering novel insights that are unattainable within a single
field [6]. This requires a deep understanding of biological
sciences for interpreting data, and strong computational skills

are required to develop algorithms and analyze the results at
scale.

Experts in biological and health sciences, such as genet-
ics and molecular biology, can ensure that software tools are
biologically relevant and accurate by identifying critical ques-
tions and guiding computational tool development. However,
biology departments may lack the advanced computational
expertise required for developing sophisticated software. In
our analysis, we have grouped the biological and health fields
under the category of “domain experts”.

The mathematical, engineering and computational sci-
ences, referred to here as the “development experts”, con-
tribute significantly by bringing expertise in algorithm de-
velopment, mathematical modelling, statistics, and software
engineering principles. These skills are essential for creating
efficient, scalable, and robust bioinformatic tools. However,
the challenge for development experts is gaining a deep under-
standing of biological domains, which is necessary to ensure
software tools are both relevant and accurate.

Departmental differences can influence the development of
bioinformatic software tools because they reflect the varying
expertise, resources, and perspectives that different academic
fields offer. Development experts may excel in areas such as
algorithm efficiency, mathematical modeling, data handling,
and software engineering, while domain experts may bring a
deep understanding of biological questions, data interpretation,
limitations, and potentially better curation of control datasets.
Consequently, the success of a tool may rely more on the
integration of diverse forms of expertise rather than the specific
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departmental affiliation of its developers. This blending of
skills can mitigate potential disparities between departments,
resulting in comparable outcomes regardless of the department
of origin.

The primary objective of this study is to investigate whether
the academic department affiliation of a corresponding author
is associated with the accuracy of the bioinformatic software
tools they develop. We aim to determine if tools developed by
authors from certain academic fields, such as “Bioinformat-
ics”, “Computer Science” or “Genetics” show higher or lower
accuracy compared to those from other fields. To achieve
this, we analyzed a benchmarked corpus of bioinformatic soft-
ware tools and evaluated their accuracy based on the academic
affiliations of their developers.

Results
We are interested in exploring the relationship between the
accuracy of bioinformatic software tools and the academic
fields of study of their developers. Using a published cor-
pus of accuracy rankings for bioinformatic software tools, we
mapped these tools to their respective academic fields and eval-
uated how software accuracy correlates with the developers’
academic affiliations.

We used a published supplement [7] to obtain previously
benchmarked accuracy rankings and mapped corresponding
authors’ addresses to a standardized list of specific ’fields of
study’ [8]. These were further grouped into broader general
fields and areas of expertise. Figure 1 illustrates the number
of tools representing each general and specific field (N ≥ 10).
Most bioinformatic software is developed by corresponding
authors who list Genetics, Bioinformatics, Computer Science,
or similar departments as their primary address (Figure 1A).
Among the general fields, the Biological Sciences produce
the most software tools, followed by the Computer Sciences
(Figure 1B).

The mean proportion of wins (e.g., if tool ‘A’ outranks tool
‘B’, this counts as a win for tool ‘A’) and the corresponding
Z-scores provide a method to rank fields of study based on
the relative accuracy of bioinformatic software benchmarked
between 2005 and 2020, compared to the expected number of
wins for random groupings (i.e., wins = 0.5). A higher propor-
tion of wins and a greater (−1)∗Z − score indicate that tools
from a particular department more frequently outperformed
competing tools in independent benchmarks.

The specific and general field that outperformed all others
is “Medical Informatics”, a branch of “Technologies”, with
16 software tools categorized under both fields. Among these,
five are different parameter options for the MAFFT multiple
sequence alignment tool [9]. These Medical Informatic tools
have a mean proportion of wins of 0.70 and 95% confidence
interval of 0.53−0.85, which excludes the null value of 0.5.
The corresponding Z-score is −1.88, and after correcting for
multiple testing, the P-value is 0.29.

At the other end of the spectrum is “Bioinformatics”. Iron-
ically, authors that list “Bioinformatics” in their address field

tend to produce less accurate software for bioinformatic appli-
cations. The mean proportion of wins was 0.43, with a 95%
confidence interval of 0.33−0.53. The corresponding Z-score
is 1.20 and after correcting for multiple testing the P-value is
0.46.

The general field of “Engineering” also ranked low, with a
mean proportion of wins of just 0.34 and a 95% confidence in-
terval of 0.16−0.60. The corresponding Z-score is 1.25. This
general field comprises several smaller specific fields, such
as ”Bioengineering and Biomedical Engineering,” ”Computer
Engineering,” and ”Electrical and Electronics Engineering.”
However, since none of these specific fields individually had
more than ten corresponding software tools, they were ex-
cluded from the more detailed analysis.

The remaining general and specific academic fields have
confidence intervals that include the null value of 0.5, and
relatively modest Z-scores that range from -0.49 to 0.96. The
P-values for each were greater than 0.05.

For the highest level field classifications of software devel-
opment expert, biological domain expert or interdisciplinary
expert each had similar mean proportions of wins (0.51, 0.49
and 0.46 respectively). The interdisciplinary experts had a
lower Z-score of −0.87, which corresponds to P = 0.46 after
correcting for multiple testing.

Conclusions and Limitations
We tested the assumption that the speciality of academic depart-
ments reflect the quality of the research software they produce.
After correcting for multiple testing, we found no significant
association between academic expertise type and the accuracy
of bioinformatic tools, suggesting that academic department
affiliation does not correlate with software quality. Similarly,
both general and specific research fields showed no significant
associations (Figure 2).

Our earlier paper found that a long-term commitment to
keeping software updated was the primary factor associated
with accurate software tools. This current study complements
that finding by demonstrating that citation metrics (e.g. jour-
nal impact factors and author H-index), tool age, tool speed,
and now academic fields of inquiry are not associated with
software accuracy.

We focus on software tool accuracy here [10]. While speed,
usability and some features of software tools are important, in
our opinion the primary concern for bioinformatic software
tools is the accuracy of the results they produce. As poor
predictions may have long-term consequences for our general
research field.

Medical Informatics, under the broader category of ”Tech-
nologies,” is identified as the top-performing group in develop-
ing accurate bioinformatic software tools. The tools include a
number of methods for structural variation detection, single-
cell profiling, long-read assembly, multiple sequence align-
ment and are derived from several different research teams.

Bioinformatics and Engineering ranked lower in terms of
software accuracy. Tools developed by authors who affiliated
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Figure 1. The number and intersection of general (A) or specific (B) fields that have contributed to bioinformatic software tools
included in recent benchmark studies. The number and intersection of specific fields.

with ”Bioinformatics” typically had slightly lower accuracy
than that of other fields. However, this was not a statistically
significant finding. In addition (further bad news for this au-
thor), “Biochemistry” was similarly ranked, again this was not
a statistically significant finding.

This leads us to conclude that an individual’s host depart-
ment are not reflective of the quality of software that they are
capable of producing (p > 0.05 in all instances). As a conse-
quence, the academic department should not be used as a proxy
for judging the potential of software development projects.

Limitations: Some benchmarks rank multiple tool options,
which can introduce modest to large effects as these options
may not be independent. Additionally, the accuracy metrics
used are diverse, and some may be flawed under certain condi-
tions; for example, “accuracy” can be misleading with large
class-imbalances [11], and the N50 metric for sequence assem-
bly has been criticized by some commentators [12]. Moreover,
some benchmarks are relatively small, so even small changes
in rank can have a substantial impact on the proportion of wins
for intermediate rankings. Lastly, the cohort of benchmarks
has not been updated to include more recent results.

There is often a disconnect between a developer’s training
and their departmental affiliation, as evidenced by this author
whose diverse academic and professional background spans
mathematics, bioinformatics, computer science, molecular bi-
ology, and genomics, yet currently lists their affiliation with a
Biochemistry Department. The “Biochemistry” departmental
label does not accurately reflect the author’s training or recent
publications. In fact, the author admits to not recalling key

details of glycolysis, the citric acid cycle, or the structures of
amino acids and proteins.

The last, or corresponding, author is typically the principal
investigator who leads a project. They may have limited direct
involvement in the development of any software tool, while
their role is mainly to provide resources and overall direction
for the project. However, there is likely to be a significant
overlap between the department of the first author, who is
usually the primary developer of the tool, and the department
of the last author (though this was not tested in this study).
Therefore, we expect that the results will be broadly similar if
first-author departments were analyzed instead.

In conclusion, this study does not find strong evidence that
the academic department affiliation of authors is associated
with the accuracy of bioinformatic software tools. This chal-
lenges the assumption that departmental expertise correlates
with software quality. Future research could explore other
factors, such as the nature of interdisciplinary collaborations
or the training of developers, to better understand what factors
contribute to the development of high-quality bioinformatic
tools.

Methods
Pre-registration: This study’s desired sample size, in-

cluded variables, hypotheses, and planned analyses were pre-
registered on the Open Science Framework prior to any unpub-
lished data being collected [7].

Benchmarking data: software ranks from previously gath-
ered benchmarks are publically available [13], these include
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Figure 2. (A) A forest plot, illustrating the mean and 95% confidence intervals of the proportion of times software tools
published by a given field “win” in pairwise comparisons. Confidence intervals and the mean was determined using a
bootstrapping procedure. Within each field the entries have been sorted by the mean number of wins. The sample size for each
field is indicated by the column of numbers on the right of the figure. (B) A Z-score was computed for each distribution of
bootstrap samples for each field. The expected proportion of wins for randomly selected groups of tools was used as “x” (i.e.
null=0.5).

data from 68 publications that rank the accuracy of different
sets of 498 distinct software tools.

Mapping tools to academic field: For each software tool,
the corresponding publication(s) were identified, and the ad-
dresses of the primary corresponding author were manually
extracted when available. If an author listed multiple addresses,
only the first two were used. In cases with multiple correspond-
ing authors, the last corresponding author was chosen.

The department names of the authors were mapped to the
closest associated “fields of study” as defined by the National
Science Foundation [8]. We analysed these fields at three hier-
archical levels: first, specific fields (e.g. “genetics”, “computer
science”, “bioinformatics” etc), which were then mapped to
broader general fields (e.g. “biological sciences”, “computer
sciences” etc). Thirdly, we categorized them into three types of
expertise: development experts, domain experts and inter-
disciplinary experts. Development experts, from fields such
as computer science, mathematics, and engineering, are ex-
pected to bring relevant expertise in software engineering and
the mathematical modeling of biological problems. Domain

experts, from the biological and health sciences, are antici-
pated to possess detailed knowledge of their subject area and
to be invested in producing high-performing software for their
research needs. Interdisciplinary experts come from fields
such as bioinformatics, biostatistics, and biomathematics, and
also include researchers who list both development and do-
main expertise (e.g. “Computer Science” and “Genetics”). We
have treated some fields as synonymous; for example, “Com-
putational Biology” was mapped to “Bioinformatics”, and
“Genomics” is mapped to “Genetics”.

We restricted all subsequent analyses to fields that contain
at least 10 software tools in our benchmark corpus. This
mitigated against potential issues due to small sample sizes.

Statistical analysis: The accuracy data is derived from
benchmarks using a diverse number of metrics that include
sensitivity, specificity, PPV, FDR, error rates, AUROC, MCC
and others [10]. The number of tools ranked in any benchmark
ranged from 3 to 50. In order to obtain a representative mea-
sure of accuracy for a field that accounts for the diversity in
accuracy measures and number of ranked tools, we employed a
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rank-based and bootstrapping strategy. We randomly sampled,
with replacement, sets of 200 tools from the total of 498 tools.
For each tool, a corresponding benchmark was selected at ran-
dom, and the number of times the tool “won” against another
tool was recorded, along with the total number of pairwise
comparisons made. These counts of wins and total compar-
isons were then assigned to the corresponding specific, general,
and expertise areas. This process was repeated 1,000 times
to estimate the mean proportions of wins for each field, along
with a 95% confidence interval for these values (Figure 2A).
Additionally, we calculated a Z-score for each field to deter-
mine the number of standard deviations the mean number of
wins deviates from the expected null value of 0.5 for randomly
grouped tools (Figure 2B).

Z − score = x−µ

σ

Where µ is the mean, σ is the standard deviation, x is
the raw value. In this case we set x = 0.5 as this is the null
expectation for the proportion of wins for randomly grouped
sets of tools. For the purposes of illustration we plot (−1)∗ z
so that the direction is the same as for the “proportion of wins”
forest plot (Figure 1).

P-values are computed from the absolute value of the Z-
scores to evaluate if any field is significantly distinguished
from the null i.e. P[X > x]. The P-values are corrected for
multiple testing by controlling the false discovery rate method
[14].
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