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Abstract

Fragment-based quantum chemistry methods offer a means to sidestep the steep nonlinear scaling of
electronic structure calculations so that large molecular systems can be investigated using high-level
methods. Here, we use fragmentation to compute protein–ligand interaction energies in systems
with several thousand atoms, using a new software platform for managing fragment-based calcula-
tions that implements a screened many-body expansion. Convergence tests using a minimal-basis
semi-empirical method (HF-3c) indicate that two-body calculations, with single-residue fragments
and simple hydrogen caps, are sufficient to reproduce interaction energies obtained using conven-
tional supramolecular electronic structure calculations, to within 1 kcal/mol at about 1% of the
computational cost. We also demonstrate that the HF-3c results are illustrative of trends obtained
with density functional theory in basis sets up to augmented quadruple-ζ quality. Strategic de-
ployment of fragmentation facilitates the use of converged biomolecular model systems alongside
high-quality electronic structure methods and basis sets, bringing ab initio quantum chemistry to
systems of hitherto unimaginable size. This will be useful for generation of high-quality training
data for machine learning applications.

1 Introduction

There is an urgent and growing need to provide high-
accuracy training data for machine learning (ML) appli-
cations. This is especially true for biological systems,
where understanding protein–ligand interactions is cru-
cial for advancing drug discovery and where ML-based
screening is playing an increasingly prominent role.1–16

Integration of quantum chemistry with ML has the po-
tential to revolutionize computational biology and to re-
duce the cost of drug discovery by enabling the use of
non-empirical screening tools.

Encoding biomolecular systems requires a large,
inconsistently-sized parameter space that is intractable
to train and use when considered as a whole. ML ap-
proaches commonly reduce complex systems into their
component parts (“tokens”), then infer properties of the
system as a whole based on relationships between to-
kens. This approach is complementary to fragmenta-
tion methods in quantum chemistry,17,18 which approxi-
mate supersystem properties by systematically partition-
ing that system into numerous fragments, for which it
is relatively inexpensive to perform high-quality calcu-
lations. This provides a hierarchy of well-defined frag-
ments and a database can be used to train ML model
for large systems. Generating high-quality training data
for protein–ligand binding is complicated, however, by
the requisite size of the models involved. Furthermore,
the non-covalent nature of many protein–ligand interac-
tions means that the electronic structure model must be
chosen carefully.19
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Fragment-based quantum chemistry leverages dis-
tributed computing by means of physics-based approx-
imations, as an alternative to parallelization of conven-
tional algorithms.20,21 In this way, O(Np) computational
scaling (where N measures system size and the exponent
p depends on the electronic structure model) is reduced to
Nsub×O(np), where n is a fixed subsystem size that does
not grow with N , and Nsub is the number of subsystems,
which increases with N . This is an attractive approach to
parallelization, in part because the storage footprint (i.e.,
memory and/or disk space), which is often the practical
limitation, is reduced to that of the largest subsystem
and checkpointing can be organized at the level of indi-
vidual subsystem calculations. However, the number of
fragments can be prohibitive for large systems, and must
be culled via some kind of screening algorithm.22–26 This
is necessary not only to reduce cost but also to forestall
precision issues associated with calculations that might
involve 105 or more individual separate subsystems.27–29

To this end, we have recently introduced a new
software framework, Fragme∩t,26,30 with inherent
database management, parallelization, and screening ca-
pabilities. It is built upon a generalized many-body
expansion (MBE)17,31–33 and interfaced with numer-
ous quantum chemistry codes. In recent applications,
Fragme∩t has been used to investigate enzyme ther-
mochemistry in large active-site models,25 and to perform
high-order n-body calculations on water clusters and ion–
water clusters.26,34 In the present work, we aim to apply
fragmentation to protein–ligand interaction energies us-
ing enzyme models that include not just nearest-neighbor
residues but which afford energetically converged interac-
tion energies. Even at the level of density functional the-
ory (DFT), there have been few studies with converged
results for full-protein models of ligand binding.35,36
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There has been other work applying fragment-based
quantum chemistry to calculate protein–ligand interac-
tion energies,37–48 mostly using DFT although a few
studies using second-order Møller-Plesset perturbation
theory in small basis sets have been published.45–48 The
purpose of the present work is to establish protocols that
are robust and reliable, which could eventually be used
at better levels of theory. Crucially, we aim to com-
pute interaction energies (∆Eint) that are faithful to a
supramolecular calculation performed at the same level
of theory (method and basis set), and to use sufficiently
large molecular models so that ∆Eint is converged with
respect to further increases in system size. Our approach
is based on the MBE truncated at n-body interactions
[MBE(n)] and we examine convergence for n = 2–4 us-
ing single-residue fragments, in models containing up to
3,124 atoms. This represents unprecedented size and
scope for application of MBE(n).

The present calculations use DFT and semi-empirical
quantum chemistry but extension to correlated wave
function models can be envisaged. Even for DFT cal-
culations, our goal is to reach the basis-set limit. For
that purpose, the widely-used “fragment molecular or-
bital method” (FMO)49 is inadequate. As applied to
protein–ligand interaction energies,40–43,46,47,50–52 FMO
is tantamount to MBE(2) with an electrostatic embed-
ding scheme that is known to be unstable in large basis
sets.17 Much of the FMO literature on drug discovery
is focused on pairwise analysis of interaction energies,
rather than the absolute value of ∆Eint,

47,51–54 but for
ML applications we desire a scheme that is robust enough
to target ∆Eint itself.

We also wish to avoid complicated capping schemes,
as in “molecular fragmentation with conjugate caps”
(MFCC).55 The “conjugate caps” amount to the back-
bone of the neighboring amino acid residue, the size of
which makes MFCC difficult to generalize to arbitrary
n-body interactions.44,56 In contrast, we have found that
MBE(n) with simple hydrogen-atom caps can be used
to obtain converged thermochemical quantities for enzy-
matic reactions.25 Lastly, we desire a method that can be
applied to enzymes in their native protonation states, so
that the ability to describe ions (and to use diffuse basis
functions) is required. In fragment-based calculations,
ionizable side chains are often protonated so as to obtain
charge-neutral fragments,37–39,57 as this minimizes many-
body polarization effects. However, there is no guarantee
that the neutralized enzyme remains functional.

In previous work, MBE(n) has been successfully ap-
plied to enzymatic thermochemistry with all of the afore-
mentioned caveats.25 Inclusion of ionic residues required
low-dielectric boundary conditions to eliminate spurious
many-body effects, which is likely a consequence of de-
localization error in DFT, as discussed elsewhere.34 The
present work extends the thermochemical protocols de-
veloped in Ref. 25 to the case of protein–ligand binding.
We introduce a set of four T4-lysozyme complexes with
small aromatic ligands and four other complexes with

large ligands. These systems are then used to assess
both the accuracy and the cost of various fragment-based
methods to compute ∆Eint.

2 Methods

2.1. Data Sets. Bacteriophage T4 lysozyme pro-
motes the release of phage particle from the wall of a
cell by breaking down peptidoglycan, allowing for the in-
jection of genomic DNA into the host Escherichia coli
cell.58 The class of enzymes considered here have apo-
lar and polar binding sites and are known as L99A and
L99A/M102Q, respectively.59–61 For these systems, cal-
culation of protein–ligand interaction energies has proven
challenging for classical molecular dynamics methods.61

Benchmark data sets of crystal structures and binding
energies for both sites, with a variety of non-covalent lig-
ands, were introduced in a recent review.61 These exam-
ples having binding energies within a narrow range from
4.0–6.7 kcal/mol,61 with estimated uncertainties that are
< 0.2 kcal/mol.60–65

We selected two representative systems from the L99A
data set, with protein databank (PDB) codes 181L66 and
4W54.65 The L99A/M102Q data set introduces a point
mutation at one side of the binding site, replacing methio-
nine residue 102 with the polar side chain of glutamine to
serve as a hydrogen-bond acceptor. From this data set we
selected representative systems 1LI260 and 3HUA.64 The
ligands for these four T4-lysozyme complexes are benzene
(for 181L), ethylbenzene (for 4W54), phenol (for 1LI2),
and indole (for 3HUA); see Fig. 1a.

In addition to this T4 lysozyme data set, an additional
set of proteins with fewer than 200 residues but much
larger ligands was chosen for additional tests. This data
set ranges from the compact tyrosine kinase structure
(PDB: 1O48)67 to a large inhibitor of dihydrofolate re-
ductase (PDB: 1BOZ).68 In ascending order of size, they
are 1O48,67 1ZP5,69 1MMQ,70 and 1BOZ.68 All of the
ligands, which are depicted in Fig. 1b, serve as inhibitors
and we refer to this set of complexes as the “large in-
hibitor data set” (LIDS).

The ligand of 1O48 binds to the SH2 domain of
pp60Src kinase,67 which is important in the control of cell
proliferation, differentiation, motility, and adhesion.71

This site serves as a potential target as pp60Src ki-
nase has been linked to bone resorption.72 The ligands
for 1ZP5 and 1MMQ serve as inhibitors for metallo-
proteases; the ligand in 1ZP5 serves as an inhibitor
for N -hydroxyurea and 1MMQ’s inhibitor binds to ma-
trilysin (uterine metalloproteinase).69,70 Enzymes 1ZP5
and 1MMQ each contain two Zn2+ and two Ca2+ ions.
In both of these metalloproteinases, over-regulation can
lead to uncontrolled degradation of the extracellular ma-
trix, which is seen in diseases including cancer, arthritis,
and multiple sclerosis.69,70 The design of the ligand in
1BOZ was meant to serve as an inhibitor of Toxoplasma
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181L: 
ΔG º = –5.19 ± 0.16 kcal/mol

4W54: 
ΔG º = –5.76 ± 0.07 kcal/mol

1LI2: 
ΔG º = –5.24 ± 0.00 kcal/mol

3HUA: 
ΔG º = –4.61 ± 0.09 kcal/mol

Fig. 1: Structures and binding energies for the ligands used in this work along with the PDB code for the protein–ligand
crystal structure: (a) T4 lysozymes with small ligands and (b) large inhibitors (“LIDS”).

gondii dihydrofolate reductase and a potential antitumor
agent.68 In addition to the inhibitor, 1BOZ also contains
NADPH as a cofactor.

2.2. System Preparation. Crystal structures were
obtained from the PDB and protonated using the H++
web server,73 for pH = 7.0, salinity of 0.15 M, and dielec-
tric constants εin = 10 and εout = 80. Ligands were pro-
tonated separately using PyMOL.74 Except as noted be-
low, the resulting structures were relaxed using the semi-
empirical GFN2-xTB model75 with a generalized Born/
solvent-accessible surface area (GB/SASA) implicit sol-
vation model for water.76 GFN2-xTB affords reasonable
protein geometries as compared to crystal structures,77

whereas direct calculation of protein–ligand interaction
energies with GFN2-xTB affords mixed results as com-
pared to DFT calculations.78–80 Both metalloenzymes
(1ZP5 and 1MMQ) proved difficult to relax using GFN2-
xTB, as the Zn2+ ion was repeatedly expelled from its
binding site in numerous attempts to optimize the ge-
ometry. For these two systems, we relaxed the geometry
using GFN-FF,81 a polarizable force field designed for
biological macromolecules.

Following structure relaxation, most crystallographic
water molecules were removed except for those that were
directly coordinated to the ligand or to ionic moieties.
(All of the ligands are charge neutral, but most of the
proteins contain at least one charged moiety.) Structures
for 181L and 1LI2 contain two Cl− ions each, and 3HUA
contains a charged phosphate group. Within LIDS, the
1MMQ and 1ZP5 structures each contain four charged
metal ions (Zn2+ and Ca2+), with Zn2+ loosely coordi-
nated to the ligand. Ionic cofactors were combined into
a monomer with their nearest residues (within 2.5 Å) to

improve monomer stability of the MBE(n) calculations
and to reduce the number of fragments. For 1MMQ and
1ZP5, however, Zn2+ cannot be combined with the lig-
and because that would be incompatible with computing
the interaction energy for removing the ligand. This has
implications for the magnitude of the many-body effects
in these systems, as discussed in Section 3 .2.

2.3. Fragmentation. The MBE is a telescoping ex-
pansion for the total ground-state energy E, starting
from fragment energies {EI} (for I = 1, . . . , Nfrag):

E =

Nfrag∑
I=1

EI +

Nfrag∑
I=1

∑
J<I

∆EIJ

+

Nfrag∑
I=1

∑
J<I

∑
K<J

∆EIJK + · · · .

(1)

Two-body corrections are

∆EIJ = EIJ − EI − EJ (2)

where EIJ is the energy of a dimer formed from fragments
I and J . Similarly, the three-body corrections are

∆EIJK = EIJK −∆EIJ −∆EIK −∆EJK

− EI − EJ − EK .
(3)

If eq. 1 is truncated at n-body terms, then we refer to
the resulting method as MBE(n).

Following previous work,25 we deconstruct proteins
into single-residue fragments although we do not sever
the polar peptide (C–N) bond.22,57 Instead, fragments
are constructed by cutting the C–C bond at Cα–C(=O).
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We refer to the fragments as “monomers” and each con-
sists of one amino acid along with the carbonyl moiety
from the neighboring residue. More complicated algo-
rithms for partitioning a protein into fragments have been
suggested22,82 but have not proven necessary to obtain
the accuracy that we seek. Hydrogen-atom caps are used
to saturate the severed valencies, as in previous work.22,25

These capping atoms are positioned at

rcap = r1 +

(
R1 +RH

R1 +R2

)
(r2 − r1) (4)

where r1 and r2 are the locations of the two carbon atoms
in the original C–C bond. The quantities R1 = R2 =
1.70 Å and RH = 1.1 Å are atomic van der Waals radii
for carbon and hydrogen. This procedure is performed
using Fragme∩t.30

Each of the ligands considered in this work is retained
as a single fragment. For the large ligands in Fig. 1b this
may prove to be cost-prohibitive at levels of theory be-
yond DFT and will be revisited at a later time. In other
applications of fragmentation to protein–ligand interac-
tion energies, relatively small fragments have been used
for both ligand and protein,37–39,48 so there is reason to
expect that ligand fragmentation is viable. In the present
work, however, our goal is to establish that the enzymatic
host can be effectively fragmented in a systematic manner
that is conducive to obtaining interaction energies that
are converged with respect to both the size of the enzyme
model (N) and to the level of n-body interactions that
are included. Fragmentation of the protein is relatively
systematic whereas fragmentation of the ligand is less so,
and we choose not to intermingle these two issues in the
present work.

Absent some method to cull the number of subsystems,
the combinatorial nature of MBE(n) quickly leads to an
intractable number of small calculations since

Nsub ∼
(
Nfrag

n

)
∼ Nn . (5)

This combinatorial growth can lead to catastrophic loss-
of-precision under some circumstances,27–29 and in some
cases fragment-based calculations may be more expensive
than the supramolecular calculation they are intended to
approximate.17,23,29 In the present work, we use distance-
based screening to reduce the number of subsystems for
n > 2. Subsystems are eliminated if the minimum in-
teratomic distance between any two fragments exceeds
a specified threshold (Rcut) that we will vary system-
atically to test for convergence. In the case of 181L,
where Nfrag = 164, setting Rcut = 8 Å for MBE(3) re-
duces the number of subsystem calculations from 708,561
to 16,016, a 97.7% reduction. This makes higher-order
n-body expansions feasible in large systems.25,26 En-
zymatic reaction energies and barrier heights converge
quickly with respect to Rcut.

25 Energy-based screening
(e.g., with GFN2-xTB) can be even more efficient than
distance-based screening24 but was not fully implemented
in Fragme∩t when this work was undertaken.

Protein–ligand (P:L) interaction energies ∆Eint are
computed via a supramolecular approach,

∆Eint = EP:L − EP − EL , (6)

by applying MBE(n) consistently to EP:L and EP. A
large number of subsystem calculations cancel in eq. 6
and can be eliminated a priori, as described elsewhere.34

In principle, eq. 6 should be combined with counter-
poise correction to eliminate basis-set superposition er-
ror (BSSE), which can be quite large for sizable protein–
ligand models, especially if double-ζ basis sets are used.83

Many-body counterpoise corrections that are consistent
order-by-order with MBE(n) have been developed for this
purpose84,85 but are not yet available in Fragme∩t. As
a result, and because we are interested in demonstrating
that our protocols are robust in large basis sets, we opt
to push our calculations to the complete basis-set (CBS)
limit using triple- and even quadruple-ζ basis sets.

Because we allow the amino acids to inhabit their na-
tive protonation states, leading to ionic side chains in
some cases, there may be concern about long-range po-
larization interactions. The Zn2+ ion that is present
in two of the LIDS proteins leads to especially large
three- and four-body terms as discussed in Section 3 .2.
Fragme∩t has the ability to add a low-level, ONIOM-
style86 supersystem correction for long-range polariza-
tion, with the subsystem MBE(n) calculations described
at a higher level of theory.25,26 Elsewhere, this procedure
has been called a two-layer “molecules-in-molecules” ap-
proach (MIM2),87 and it has been used by others under
various names.17,88–90 Applying this correction, the to-
tal energy for any given calculation, meaning any of the
three terms in eq. 6, is

Etotal = E
MBE(n)
high −EMBE(n)

low + Esuper
low︸ ︷︷ ︸

δfrag

. (7)

The first two terms represent MBE(n) calculations at
either the target (high) level of theory or else the af-
fordable (low) level of theory. The final term (Esuper

low ) is
the supersystem energy evaluated at the low level of the-
ory with no fragmentation, thus δfrag can be viewed as a
low-level correction for the effects of fragmentation. In
previous work on enzyme thermochemistry, the Hartree-
Fock (HF)/6-31G method (sans polarization functions)
was shown to be an adequate choice for Esuper

low .25 Use
of the 6-31G basis set keeps the cost relatively low as
compared to other double-ζ basis sets, especially if the
electronic structure program can take advantage of com-
pound sp shells used in Pople basis sets.91,92 Due to the
size of the enzyme models considered here, however, we
will use HF-3c for the low level of theory in eq. 7; see
Section 3 .2 .3.

2.4. Quantum Chemistry Calculations. Calcula-

tions were performed using Fragme∩t26,30 interfaced
to Q-Chem v. 6.0.93 For timing data, calculations were
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run on 28-core nodes (Dell Intel Xeon E5-2680 v4) us-
ing 7 worker processes per node, with each individual
Q-Chem calculation employing 4 cores. Supersystem
calculations were performed using a single 48-core node
(Intel Xeon Platinum 8268). Timings will be reported in
terms of aggregate computer time across all processors.
The self-consistent field convergence threshold was set
to 10−8 Eh for all calculations. Integral screening and
shell-pair drop tolerances were both set to 10−12 a.u.,
consistent with recommendations for large-molecule cal-
culations using diffuse basis sets.92

We use the ωB97X-V functional94 as our target level of
theory, as it performs well across a wide range of bench-
marks including non-covalent interaction energies for
small molecules,19,95 where the benchmarks are well es-
tablished. (For molecules with 100+ atoms, benchmarks
are more uncertain.19) Minimally-augmented versions91

of the Karlsruhe basis sets96,97 are used for the ωB97X-V
calculations. Diffuse functions can be important for non-
covalent interaction energies but minimal augmentation
is sufficient for this purpose.83,91 The semi-empirical HF-
3c model is used to evaluate convergence and all HF-3c
calculations use the minimal “MINIX” basis set.98 Since
HF-3c is specifically parameterized for MINIX that ba-
sis set will not be mentioned in the discussion that fol-
lows, whereas for ωB97X-V we will systematically test
the basis-set convergence.

A dielectric constant in the range ε = 2–4 is often used
to represent the hydrophobic interior of a protein.99–104

In previous work,25 we found that a continuum solva-
tion model with ε ≈ 4 helps to avoid spurious oscil-
lations in MBE(n) calculations, even for protein mod-
els with numerous charged residues where MBE(n) with
vacuum boundary conditions does oscillate.25 All cal-
culations reported here use the conductor-like polariz-
able continuum model (C-PCM) with ε = 4.105,106 The
interface with the continuum region is represented us-
ing a van der Waals cavity,106 constructed from atomic
radii that are 1.2× larger than values in the modi-
fied Bondi set,106,107 then discretized using the switch-
ing/Gaussian procedure.105,108–110 For ωB97X-V calcu-
lations, 110 Lebedev points were used for hydrogen and
194 points for other nuclei. For HF-3c, we used 50 points
for hydrogen and 110 points for other nuclei. For super-
system calculations involving the entire protein, a conju-
gate gradient implementation of C-PCM was used.110

3 Results and Discussion

3.1. T4 Lysozyme Data Set. The primary goal of
this work is to develop reliable and reproducible protocols
that afford energetically converged protein–ligand models
that are usable across different levels of electronic struc-
ture theory. In the present work, we use HF-3c to test
convergence with respect to model size but we demon-
strate ∆Eint calculations using ωB97X-V in basis sets up
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Fig. 2: Interaction energy ∆Eint for the benzene ligand in
181L, computed using radial enzyme models of increasing size.
Model size in number of atoms is indicated along the bottom
axis while the top axis shows the radius used to generate each
model. Calculations were performed using ωB97X-V in con-
junction with either the def2-ma-SVP basis set (labeled “DZ”
in the figure) or else the the def2-ma-TZVP basis set (“TZ”).
All MBE(n) calculations useRcut = 8 Å. The “unfragmented”
result is a conventional supramolecular calculation of ∆Eint.

to def2-ma-QZVP.91

3.1.1. Radial Enzyme Models. First, we study conver-
gence of ∆Eint with respect to the size of the enzyme
model using both MBE(n) and conventional supramolec-
ular calculations. We created reduced models of 181L
(which has 2,636 total atoms) based on a simple ra-
dial cutoff around the benzene ligand, then computed
∆Eint using each model for comparison to the result ob-
tained using the complete 2,636-atom protein. (In follow-
up work, we may consider the use of automated con-
struction of binding-site models using residue interaction
networks,111–115 but here we use unsophisticated radial
models as a simple means to establish protocols.)

Figure 2 shows how the results converge with re-
spect to the size of the enzyme model, for both con-
ventional supramolecular DFT and also for MBE(2) and
MBE(3) approximations to it. Conventional calculations
at the ωB97X-V/def2-ma-SVP level are converged using
a model with 665 atoms, corresponding to all residues
within 7 Å of the ligand. Resource limitations preclude
ωB97X-V/def2-ma-TZVP calculations for models larger
than this, but the convergence behavior for smaller mod-
els seems to mirror that obtained using the double-ζ basis
set so we expect that ωB97X-V/def2-ma-TZVP calcula-
tions are also converged for the 665-atom model. Anal-
ogous testing was completed for 1LI2, which has phenol
as a ligand, and the convergence behavior is very similar
(Fig. S2). In that case, a 7 Å (617-atom) model affords
affords a converged value of ∆Eint at the ωB97X-V/def2-
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ma-SVP level, while convergence of the ωB97X-V/def2-
ma-TZVP calculations looks similar.

Examining the MBE(n) results in Fig. 2, we ob-
serve that MBE(2) consistently underestimates |∆Eint|
in both basis sets, due to missing nonadditive polariza-
tion. MBE(3) calculations overestimate |∆Eint|. In the
def2-ma-SVP basis set where we are able to demonstrate
convincing convergence with respect to system size, the
two-body result is underbound by about 2 kcal/mol while
the three-body result is overbound by about 1 kcal/mol,
as compared to a conventional calculation at the same
level of theory. For models larger than 700 atoms, con-
vergence of the MBE(2) and MBE(3) approximations
to ωB97X-V/def2-ma-SVP track the conventional result
quite well, albeit with constant offsets. For small mod-
els, however, that offset is masked and both the MBE(2)
and MBE(3) results are in fortuitously good agreement
with conventional supramolecular calculations. Unless
these studies are pushed to the N →∞ limit, one might
erroneously conclude that three-body effects are unim-
portant. Furthermore, a 200-atom model affords an in-
teraction energy |∆Eint| that is 10 kcal/mol smaller than
the converged value!

If the triple-ζ calculations are indeed converged at
the 665-atom model, then the MBE(2) calculations
are are underbound in that case by about 2 kcal/mol
while MBE(3) calculations are overbound by perhaps
3 kcal/mol. Regardless of where the converged triple-
ζ result for ∆Eint may lie, we can state that MBE(2)
and MBE(3) estimates bracket the conventional value
by about 3.5 kcal/mol at the double-ζ level versus
≈ 5.5 kcal/mol at the triple-ζ level. These are large
ranges by the standards of benchmark accuracy in small-
molecule quantum chemistry calculations and it is not
immediately clear whether this level of agreement is ac-
ceptable. That issue is taken up in Section 3 .1 .4, where
we discuss the appropriate level of accuracy for large-
scale electronic structure calculations of protein–ligand
interaction energies. Before that, however, we examine
convergence of the radial enzyme models with respect
to both model size (N) and level of approximation (n),
in Section 3 .1 .2. Basis-set convergence is examined in
Section 3 .1 .3.

3.1.2. Convergence with N and n. To understand what
is required in order to obtain converged values of ∆Eint,
we first study the behavior of MBE(2) as a function of
Rcut. Results for the 2,636-atom 181L system that was
considered in Section 3 .1 .1 are shown in Fig. 3, examin-
ing how MBE(2) converges with respect to Rcut, the dis-
tance threshold for discarding subsystems. Previously,25

we showed that Rcut = 8 Å affords converged thermo-
chemistry for a 632-atom model of a different enzyme,
exploring several functional and basis-set combinations.
(This 632-atom model affords converged results with re-
spect to larger radial models of the same enzyme.116) The
value Rcut = 8 Å also works well here. Increasing it to
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Fig. 3: Interaction energies ∆Eint for the benzene ligand
in 181L, computed using MBE(2) at the indicated levels of
theory, using a distance cutoff (Rcut) to cull the dimers that
are included in the calculation.

10 Å changes ∆Eint by ∼ 0.1 kcal/mol but increases the
requisite number of subsystem calculations from 2,534
to 3,496. Convergence behavior for the other three T4-
lysozyme systems is quite similar (see Fig. S1 and Ta-
ble S2) and converged MBE(2) interaction energies are
obtained using Rcut = 8 Å in those cases as well.

Convergence behavior as a function of Rcut is also quite
similar for the minimal-basis HF-3c method as compared
to ωB97X-V calculations in basis sets ranging from def2-
ma-SVP to def2-ma-QZVP, although the converged val-
ues of ∆Eint certainly differ in each case. Interaction en-
ergies computed at the ωB97X-V/def2-ma-QZVP level,
which ought to lie close to the ωB97X-V/CBS limit, dif-
fer by about 6 kcal/mol from double-ζ results. Most of
the overbinding in the latter case is likely a BSSE ar-
tifact and is clearly not negligible even though DFT/
double-ζ interaction energies are still (much too) widely
used in biomolecular ∆Eint calculations.46,117 Implemen-
tation of many body counterpoise corrections84,85 within
Fragme∩t is underway, and should provide better-
converged results in smaller basis sets.

For now, we can use def2-ma-QZVP to establish
the basis-set limit.83 This reveals that HF-3c results
are closer to ωB97X-V/def2-ma-SVP than they are
to ωB97X-V/CBS. However, the minimal-basis HF-3c
method can be run in a tiny fraction of the computa-
tional cost, meaning tens of hours for HF-3c versus hun-
dreds of hours for ωB97X-V/def2-ma-SVP, or ∼ 104 h
for ωB97X-V/def2-ma-QZVP.

The smallest of the T4-lysozyme systems contains
2,636 atoms, which taxes our ability to perform super-
system benchmarks using high-quality basis sets. In an
effort to obtain more convergence data, we turn to HF-
3c where supersystem calculations are more feasible. Re-
sults in Table 1 demonstrate that MBE(2) estimates of
∆Eint consistently fall within 1 kcal/mol of the conven-
tional supramolecular result obtained at the same level
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Table 1: HF-3c Results for T4 Lysozymes.

System Method
energy (kcal/mol) CPU

∆Eint error per time

monomer (hours)a

181L

supersys.b −19.4 — 4,156

MBE(2)c −19.1 0.002 21

MBE(3)c −18.8 0.004 298

4W54

supersys.b −25.6 — 2,576

MBE(2)c −26.6 0.006 21

MBE(3)c −26.2 0.004 300

1LI2

supersys.b −18.8 — 5,542

MBE(2)c −19.8 0.006 21

MBE(3)c −19.5 0.004 303

3HUA

supersys.b −30.0 — 2,313

MBE(2)c −30.5 0.003 25

MBE(3)c −30.2 0.002 351

aHardware is described in Section 2 .4. bConventional
(unfragmented) calculation. Timings include EP:L, EP,
and EL. cMBE(n) calculations use Rcut = 8 Å.

of theory. MBE(2) and MBE(3) values of ∆Eint differ by
only 0.3 kcal/mol on average, but the latter are more than
10× more expensive, even with Rcut = 8 Å. Timing data
in Table 1 suggest that the MBE(2) cost is 1% or less of
the conventional cost to compute ∆Eint. This overstates
the MBE(2) cost somewhat, because the full-system cal-
culations were performed on slightly newer hardware as
described in Section 2 .4.

It is common in fragment-based calculations to report
errors on a per-monomer basis, recognizing that over-
all errors may be size-extensive. A target accuracy of
0.1 × (3/2)kBT , or ≈ 0.1 kcal/mol at T = 298 K, has
been suggested.118 This threshold represents 10% of the
available thermal energy per fragment, with the idea that
fragmentation errors should be rendered negligible in
comparison to thermal fluctuations in the energy. While
it’s not clear that this is the right target accuracy for
biomolecular ∆Eint calculations, our T4-lysozyme calcu-
lations do achieve this stringent criterion: the largest er-
rors in Table 1 are only 0.006 kcal/mol/monomer.

For these examples. which involve very small ligands,
a two-body calculation with no electrostatic embedding
at all meets the highest-fidelity standard for fragmenta-
tion, while keeping the cost extremely low in comparison
to fully-converged supramolecular calculations. Avoid-
ing embedding renders these calculations stable in large
basis sets, including basis sets that contain diffuse func-
tions. This will be important for future work, where we
intend to push fragmentation to levels of theory beyond
DFT. As such, we next take a closer look at basis-set
convergence.

3.1.3. Basis-Set Convergence. Having used HF-3c to
establish that MBE(2) provides reliably converged inter-
action energies (which is not the same as accurate inter-

Table 2: MBE(2) Calculations for T4 Lysozymes Using
ωB97X-V in Various Basis Sets.a

System Basis Set
∆Eint CPU time

(kcal/mol) (hours)

def2-ma-SVP −20.99 763

181L def2-ma-TZVP −16.34 2,543

def2-ma-QZVP −15.39 34,474

def2-ma-SVP −30.52 778

4W54 def2-ma-TZVP −24.93 2,749

def2-ma-QZVP −23.69 36,030

def2-ma-SVP −23.14 771

1LI2 def2-ma-TZVP −18.00 2,585

def2-ma-QZVP −16.76 34,941

def2-ma-SVP −34.73 924

3HUA def2-ma-TZVP −27.25 3,246

def2-ma-QZVP −25.42 42,449

aAll calculations use Rcut = 8 Å.

action energies), we next examine MBE(2) calculations
using ωB97X-V in various basis sets; see Table 2. The
value of |∆Eint| is reduced as the basis set is enlarged,
consistent with a reduction in BSSE, and we expect that
DFT/def2-ma-QZVP results lie near the DFT/CBS limit
even without counterpoise correction.83 Smaller models
of 181L and 1LI2 were examined a previous study,83

where it was concluded that ωB97M-V/def2-ma-QZVP
calculations without counterpoise correction were within
0.2 kcal/mol of the ωB97M-V/CBS limit. For compari-
son, uncorrected ωB97M-V/def2-ma-TZVP calculations
were 1.1–1.7 kcal/mol from the CBS limit, erring towards
overbinding, while uncorrected ωB97M-V/def2-ma-SVP
calculations overestimated |∆Eint| 5.0–6.1 kcal/mol as
compared to the ωB97M-V/CBS limit.83 These results
from Ref. 83 use a different functional (ωB97M-V) as
compared to that used here (ωB97X-V), which is unlikely
to affect convergence to the CBS limit, but they corre-
spond to small (5 Å) models with less than 300 atoms
so that the BSSE is likely somewhat smaller than it is in
the present calculations.

3.1.4. Discussion. The def2-ma-QZVP results in Ta-
ble 2 are certainly converged well enough to conclude
that single-pose interaction energies (∆Eint) obtained
with high-quality DFT are considerably larger in magni-
tude than the free energies of binding (∆G◦

bind) that are
measured experimentally, the latter of which range from
∆G◦

bind = −4.6 kcal/mol to ∆G◦
bind = −5.8 kcal/mol

for the T4-lysozyme data set. The same observation has
been made in full-protein DFT calculations.35,36 In par-
ticular, single-pose interaction energies for 1LI2, com-
puted at the PBE+D level, are on the order of ∆Eint =
−28 kcal/mol,36 somewhat larger in magnitude than the
ωB97X-V/def2-ma-SVPD value reported in Table 2.

The difference between a single-pose ∆Eint and ∆G◦
bind

can be partitioned into several different contributions.36
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These include conformational averaging (which is not in-
cluded in the present work), the differential solvation en-
ergy between the protein–ligand complex and its sepa-
rated constituents (denoted ∆G◦

solvn below), and finally
the change intramolecular vibrational entropy (−T∆Svib

where ∆Svib is the change in vibrational entropy upon
complexation). Following Ref. 36, one may express the
free energy according to

〈G〉 = 〈E〉+ 〈Gsolvn〉 − T∆Svib (8)

where 〈· · · 〉 represents conformational averaging. Then
the free energy for ligand binding can be expressed as

∆G◦
bind = 〈∆Eint〉+ ∆G◦

solvn − T∆Svib . (9)

The quantity 〈∆Eint〉 represents the interaction en-
ergy averaged over a molecular dynamics trajectory,
and results for 1LI2 indicate that 〈∆Eint〉 converges in
fewer than 100 snapshots.35,36 The correction ∆G◦

solvn
be estimated using implicit solvation models that
are compatible with large-scale electronic structure
calculations.106,119 Finally, ∆Svib can be computed from
DFT (or perhaps semi-empirical) vibrational frequency
calculations.36,120,121 These corrections are not included
in the present work, however, as our focus is to establish
fragment-based protocols to compute ∆Eint. As such, we
do not expect to recover ∆G◦

bind in these calculations.
In selecting between DFT and semi-empirical meth-

ods, or between double- and triple-ζ DFT methods, it is
worth considering what level of accuracy is required from
the calculations at hand. Convergence of ensemble aver-
ages 〈∆Eint〉 using single-pose interaction energies ∆Eint

appears to be rapid, using classical molecular dynamics
to sample structures,35,36 yet the result will not approx-
imate ∆G◦

bind without a calculation of Svib. The lat-
ter requires vibrational frequency calculations, as SASA-
dependent corrections are insufficient to bridge the quan-
titative gap between 〈∆Eint〉 and ∆G◦

bind.38,39 As com-
pared to the disparity between these two values, changes
in ∆Eint with respect to n-body order are small.

That said, prior fragment-based DFT calculations of
single-pose interaction energies (as in the present work)
have established that these ∆Eint values exhibit re-
markably good correlations with experimental ∆G◦

bind
values,38,39,48 even while they differ by an order-of-
magnitude in absolute value. In some cases, very sim-
ple SASA-dependent entropy corrections122,123 have been
added to fragment-based DFT calculations of ∆Eint.

38,39

In other cases, however, good correlations are observed
even without such a correction.48 For the purpose of ob-
taining training data for ML, direct correlation with ex-
periment is not the most important consideration; sam-
pling, solvation, and entropic corrections can be added
later, using a low-cost ML force field trained on ∆Eint

values from electronic structure calculations.124,125 What
is more important is obtaining high-quality quantum-
chemical benchmark data.

For that purpose, the computational efficiency of
MBE(2) at the DFT/def2-ma-TZVP level presents a

compelling advantage. Such calculations constitute less
than 10% of the cost of MBE(2) using def2-ma-QZVP,
yet afford interaction energies that differ by ∼ 1 kcal/mol
from what is likely the DFT/CBS limit. Even that dif-
ference may very well disappear once many-body coun-
terpoise corrections are incorporated.83 Moreover, the
ωB97X-V/def2-ma-TZVP calculations using MBE(2) re-
quire only about half the computer time that is re-
quired for an unfragmented (full-system) calculation at
the minimal-basis HF-3c level. The former do require
2,500–3,200 h of computer time, which is not a trivial
investment. However, wall times can be significantly re-
duced by exploiting the inherent parallelizability of the
pairwise MBE(2) approach. For example, the 181L sys-
tem consists of 2,534 dimers when Rcut = 8 Å, and each
of these calculations is completely independent of the
others. This makes MBE(2)-based DFT/triple-ζ calcu-
lations an attractive choice if a realistic value of ∆Eint is
sought.

At the same time (and for the same reason), fragmenta-
tion enables large-scale quantum chemistry calculations
using modest hardware, which is an important consider-
ation in making these approaches accessible to investi-
gators at under-resourced institutions. As an example,
consider that a full-system calculation on 181L (2,636
atoms) means 50,558 basis functions for def2-ma-TZVP,
or 116,483 basis functions for def2-ma-QZVP. Even the
triple-ζ calculation lies outside the realm of single-node
(workstation) computing, requiring supercomputer re-
sources that are not available to everyone. In contrast,
low-order MBE(n) remains feasible on workstation hard-
ware even for the large enzyme models considered here.
The present calculations represent some of the largest ap-
plications to date of DFT used to compute protein–ligand
binding using full (or at least, converged) protein mod-
els. Such studies have been carried out recently using
semilocal DFT and a full T4-lysozyme protein,36 using a
linear-scaling DFT code.126 This requires supercomputer
resources,36 whereas all calculations reported here exploit
only single-node parallelism.

The target fidelity of 0.1 × (3/2)kBT that was dis-
cussed in Section 3 .1 .2 is a stringent criterion posited
with an eye toward ab initio molecular dynamics stud-
ies using fragmentation.118 That approach is complicated
by the complexity of analytic gradients in the presence
of charge embedding,17,127 and likely unnecessary since
force fields or semi-empirical quantum chemistry can be
used to better and (much) more efficiently sample the
conformational space. Thus, it is worth asking what
eventual purpose fragment-based ab initio calculations
of protein–ligand binding will serve, and what level of
accuracy and convergence is necessitated by that appli-
cation. We do not have a simple answer to that question
but it’s probably safe to assume that for ML, one desires
a method that accurately reflects the interaction poten-
tial for short-range protein–ligand interactions, e.g., to
replace docking models8–14 or classical force fields.125,128

For that purpose, the highest-quality ab initio interac-
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tion energies may not be necessary and DFT or even
semi-empirical calculations might suffice.

That said, we do worry that the def2-ma-SVP affords
interaction energies that are too far removed from those
obtained in higher-quality basis sets, and that the BSSE
inherent in double-ζ calculations may skew the confor-
mational landscape towards compact structures, which
exhibit larger BSSE and thus ostensibly stronger inter-
actions in small-basis calculations.129–132 It is also worth
considering that the accuracy of DFT for small-molecule
van der Waals complexes does not seem to extend to
complexes in the 150-atom size regime,19 so the qual-
ity of supramolecular DFT “benchmarks” is uncertain
in sizable protein–ligand models. These are important
questions to explore in future work. For now, we simply
note that the conventional “chemical accuracy” standard
of 1 kcal/mol may be overly conservative for the present
purpose.

3.2. Large Inhibitor Data Set. The T4-lysozyme
data set was a useful starting point to establish best prac-
tices for large systems with small ligands. Good accuracy
for very small ligands is important in order to meet the
requirements of fragment-based approaches to drug de-
sign and discovery,133–138 which search for “hits” based
on small-molecule probes rather than larger ligand mod-
els that resemble existing drugs. This strategy has been
suggested as a salve to remedy a slow drift towards drug
candidates with larger and larger molecular weight,139 a
trend that has been blamed for increased attrition rates
in clinical trials.140–143 That said, with an eye towards
computational investigation of existing drug molecules,
or structure-based drug design, it is important to under-
stand how fragmentation protocols fare for much larger
ligands, epitomized by those in Fig. 1b. Each of these
ligands is larger than 40 atoms and there is also more
variety in the enzymatic targets as compared to the T4-
lysozyme data set.

3.2.1. Radial Enzyme Models. In the T4 lysozymes, er-
rors associated with fragmentation appeared to stabi-
lize as the size of the model system increased (Fig. 2).
Here, we perform analogous testing using 1O48 where
the ligand is much larger. Figure 4 plots the results for
a sequence of radial models of increasing size, compar-
ing MBE(2) and MBE(3) calculations to unfragmented
(supramolecular) values of ∆Eint computed at the same
level of theory, namely, DFT in either a double- or a
triple-ζ basis set. The largest model in Fig. 4 uses a 6 Å
radius and contains 619 atoms but convergence to within
1 kcal/mol is achieved using a 3 Å model with 381 atoms.

In the smallest models, MBE(3) yields a marginally
smaller interaction energy as compared to a full-system
calculation but converges to the full-system result in
larger models. For the largest model (619 atoms), the
difference in ∆Eint with respect to the full-system cal-
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Fig. 4: Interaction energy ∆Eint for the benzene ligand
in 1O48, computed using radial enzyme models of increas-
ing size. Model size in number of atoms is indicated along
the bottom axis while the top axis shows the radius used
to generate each model. Calculations were performed using
ωB97X-V with either the def2-ma-SVP basis set (“DZ”) or
else the def2-ma-TZVP basis set (“TZ”). MBE(n) calcula-
tions used Rcut = 8 Å. The “unfragmented” result is a con-
ventional supramolecular calculation of ∆Eint.
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Fig. 5: Difference in ∆Eint for the large-inhibitor complexes,
based on MBE(2) calculations at the HF-3c level as a function
of Rcut. The baseline calculation is MBE(2) with no cutoff
and the shaded region indicates ±1 kcal/mol with respect to
that baseline.

culation is 1.3 kcal/mol for MBE(2) and 0.4 kcal/mol
for MBE(3), at the ωB97X-V/def2-ma-SVP level. If
the def2-ma-TZVP basis set is used instead, the error is
1.0 kcal/mol for MBE(2) and 1.7 kcal/mol for MBE(3).
Strictly speaking, MBE(3) is less accurate than MBE(2)
for the largest enzyme model and basis set, but the dif-
ference with respect to MBE(2) is only a tiny fraction
(< 1%) of ∆Eint = −80 kcal/mol. For all practical pur-
poses, we conclude that MBE(3) provides negligible im-
provement upon MBE(2) in this case.
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Table 3: Summary of HF-3c Calculations for the Large-
Ligand Systems.

System Method
energy (kcal/mol) CPU

∆Eint
error per time

monomer (h)

1O48

supersys.a −89.9 — 854

MBE(2)b −94.8 0.05 21

MBE(3)b −91.3 0.01 366

MBE(4)b −88.9 0.01 3,045

1MMQ

supersys.a −178.6 — 3,138

MBE(2)c −157.2 0.13 41

MBE(3)c −179.6 0.01 534

MBE(4)c −178.4 0.00 3,437

1ZP5

supersys.a −108.7 — 5,619

MBE(2)c −108.7 0.00 45

MBE(3)c −80.0 0.18 654

MBE(4)c −105.0 0.02 4,595

1BOZ

supersys.a −31.3 — 5,018

MBE(2)d −34.1 0.01 93

MBE(3)d −34.8 0.02 2,857

MBE(4)d −11.2 0.11 46,276

aConventional supramolecular calculation. bRcut = 9 Å.
cRcut = 8 Å. dRcut = 12 Å.

3.2.2. Convergence of the MBE. Calculations on the
T4 lysozymes reveal that HF-3c and ωB97X-V exhibit
similar convergence behavior as a function of Rcut, so in
what follows we use the much cheaper HF-3c method to
examine convergence for the large-inhibitor models. Fig-
ure 5 plots the convergence behavior of MBE(2) calcula-
tions as a function of Rcut, relative to a baseline where
all dimers are retained. That full-MBE(2) limit is ob-
tained, to within 0.2 kcal/mol, when Rcut = 20 Å. Adopt-
ing a more permissive 1 kcal/mol tolerance, we can use
Rcut = 9 Å for 1O48, Rcut = 8 Å for 1MMQ and 1ZP5,
and Rcut = 12 Å for 1BOZ. (See Table S3 for the numer-
ical data.) Notably, the 1MMQ and 1ZP5 systems are
approximately the same size as the T4 lysozymes that
were also converged by Rcut = 8 Å, whereas 1BOZ is the
largest system considered here, and it exhibits the slow-
est convergence as measured by Rcut. In future studies
of new enzymes, two-body screening at a semi-empirical
level of theory may offer a way to test convergence at only
modest cost, and this is an avenue that we are currently
pursuing.

Using the aforementioned system-specific Rcut values,
we next examine how MBE(n) converges towards the su-
persystem result, again using HF-3c calculations, with
results up to n = 4 presented in Table 3. We ex-
tended these calculations to the four-body level because
the two-body accuracy is inferior to what we observed
for the T4-lysozyme data set. For example, in the case
of 1MMQ the accuracy of MBE(2) lies outside of our
strict 0.1 kcal/mol/monomer tolerance but that is rec-
tified at the three-body level, and MBE(3) calculations
also noticeably improve the result for 1O48 as well. The

Zn2+

Fig. 6: Active site of 1ZP5 with Zn2+ labeled. The two
hydrogen atoms shown as coordinated to Zn2+ are from the
neighboring histidine residues. A second Zn2+ (not in the
active site) is visible at the top right.

three-body terms provide little change for 1BOZ, where
the MBE(2) result is already within 3 kcal/mol of the
supersystem calculation. However, MBE(3) calculations
for 1ZP5 and MBE(4) calculations for 1BOZ afford very
large errors, which we next examine.

For 1ZP5, MBE(2) is fortuitously accuracy but
MBE(3) is much worse, deviating from the full-system
value of ∆Eint by 29 kcal/mol. That observation, com-
bined with the dramatic failure of MBE(2) for 1MMQ
(21 kcal/mol error) hints at additional complexities for
these two metalloproteins. Both systems feature Zn2+

coordinated to the inhibitor ligand (as shown in Fig. 6
for 1ZP5), leading to sizable many-body polarization.

Histograms of all three-body interactions 1ZP5
(Fig. S4) exhibit a few significant outliers where
|∆EIJK | & 0.01 Eh. The largest of these three-body
contributions is about 30 kcal/mol. The metalloen-
zyme 1MMQ has one very large three-body interaction of
23 kcal/mol (Fig. S5), whereas for 1O48 and 1BOZ the
three-body corrections are much smaller (Figs. S3 and
S6). Inspecting the fragments that give rise to the out-
liers in 1ZP5 and 1MMQ confirms that each contains the
Zn2+ cation, the ligand, and a residue whose side chain is
coordinated to the ligand. For example, the large three
body term for 1MMQ contains GLU121, which is coor-
dinated to the carboxylic acid group in the binding site.
While it is not surprising that a divalent cation engenders
significant nonadditive polarization, these results under-
score the fact that MBE(2) is not always a good approx-
imation for protein–ligand interaction energies.

Inclusion of four-body terms affords notable improve-
ment in the case of 1ZP5, reducing the error from almost
30 kcal/mol to less than 4 kcal/mol, albeit at significant
computational expense. Nevertheless, this demonstrates
what seems to be convergent MBE(n) results for the two
Zn2+-containing enzymes although MBE(4) calculations
for 1MMQ are more expensive than the conventional su-
persystem calculation. Elsewhere, we have addressed this
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problem using energy-based screening,24,26 but that has
not been attempted for these systems. MBE(3) remains
significantly cheaper than a full-system calculation for
these systems, and MBE(2) is at least one order of mag-
nitude less expensive still. This points to the need for
future work in which a limited set of energetically impor-
tant four-body terms might be included in order to re-
cover comparable accuracy at greatly reduced cost, and
we are presently implementing this capability within the
Fragme∩t code.

The need for additional screening is dramatically un-
derscored by MBE(4) results for 1BOZ, the largest en-
zyme considered here. For this system, the difference be-
tween a 8 Å cutoff and a 12 Å cutoff increases the number
of tetramers from 82,975 to 758,495 and increases the er-
ror from 0.5 to 20.1 kcal/mol. The MBE(4) entry in Ta-
ble 3 represents the larger cutoff radius, which two-body
calculations suggest is required to reach convergence, but
using that cutoff results in a MBE(4) estimate of ∆Eint

that is substantially less accurate than the MBE(3) es-
timate. Meanwhile, MBE(4) results with an 8 Å cutoff
afford ∆Eint = −31.8 kcal/mol for 1BOZ, which within
0.5 kcal/mol of the supersystem result.

Thus, 1BOZ appears to be a case where cumulative
errors from a enormous number of subsystem calcula-
tions skews the result, a possibility that we have noted
previously.27,28 A histogram of four-body terms for 1BOZ
with 12 Å cutoff can be found in Fig. S7. Energeti-
cally, these terms are two orders of magnitude smaller
than the three-body terms (shown in Fig. S6), but con-
siderably more numerous. Incorporation of bottom-up
energy-based screening26 into our enzymatic fragmenta-
tion protocol will be essential for routine application of
MBE(4) to model systems of this size.

3.2.3. Two-Layer Approach. The need for four-body
terms drastically increases the requisite number of sub-
system calculations. Automatic energy screening using
GFN2-xTB,26,34 which was developed in parallel with
this work, should ultimately be useful in this regard. As
an alternative, we examine the use of a two-layer super-
system correction (eq. 7). For the calculation of ther-
mochemical quantities in enzymes, this approach worked
quite well when used with only a two-body expansion at
the higher level of theory, and low-level methods such as
HF/6-31G.25 Versions of this “MIM2” procedure (and
also a three-layer “MIM3”) have been used in other
fragment-based calculations of protein–ligand interac-
tion energies,37–39,48 typically using the semi-empirical
PM6+D3144,145 method for the low-level correction, and
with smaller (sub-residue) fragments as compared to the
present work. Here, we examine the efficacy of using HF-
3c to compute δfrag in eq. 7, since we know that HF-3c is
computationally feasible in very large enzyme models.

Although the overall errors in ∆Eint are larger for the
large-ligand data set, the system sizes are also larger so
error per monomer becomes a useful point of comparison.

With the incorporation of four-body terms that metric
achieves the strict criterion of 0.1 kcal/mol/monomer,
but at the same time the number of subsystem calcula-
tions becomes nearly intractable for any level of theory
beyond semi-empirical calculations. Large three-body
terms in 1ZP5 cause require higher-order expansions but
in all of the remaining systems, the error per monomer is
below the target accuracy already at the MBE(2) level.
In other fragment-based studies of metalloproteins, the
fragment that includes the metal ion cofactor typically
contains all proximal molecules (side chains and crys-
tallographic water molecules).25,146 However, this is not
possible in the case of the metalloproteins investigated
here because the ligand coordinates to the metal ion, and
since the ligand must be removed in order to compute
∆Eint, no atoms from the enzyme can be included in the
ligand fragment(s).

With this in mind, a supersystem HF-3c correction
has been applied to all MBE(n) calculations for the large
inhibitors, with results listed in Table 4. These calcula-
tions use the full enzyme although MBE(n) calculations
are applied with Rcut = 8 Å rather than the system-
specific cutoffs used in Table 3. The number of subsys-
tems generally doubles for every 2 Å that is added to
Rcut; for example, in the case of 1BOZ at the MBE(3)
level we obtain 22,001 subsystems for Rcut = 8 Å, 45,433
subsystems for Rcut = 10 Å, and 88,811 subsystems for
Rcut = 12 Å. To perform MBE(3) at the ωB97X-V/def2-
ma-QZVP level requires ∼ 1.1× 106 h of computer time
to complete for the largest of these systems, 1BOZ.

Supersystem-corrected MBE(2) + δfrag interaction en-
ergies for 1MMQ are quite close to those obtained using
uncorrected MBE(3), but at a fraction of the cost. Re-
sults for the other systems do not align quite as well. The
average difference between MBE(3) and MBE(2) + δfrag
estimates of ∆Eint is ≈ 20 kcal/mol across all basis sets,
although the difference increases marginally with increas-
ing basis set size. The supersystem correction actually
increases the disparity between MBE(2) and MBE(3) in
several cases. In these cases, it seems that the two-layer
approach is no substitute for MBE(3), at least when the
supersystem correction is performed using the minimal-
basis HF-3c model.

In view of the success of MIM3 methods using
PM6+D3 as the lowest level of theory (and B97+D3/
6-311++G** as the highest),37–39 it is worth consider-
ing whether alternative semi-empirical models would fare
better. In previous work on enzyme thermochemistry,25

supersystem correction computed using either HF-3c
or HF/6-31G afforded nearly identical results. The
performance of the PBEh-3c model,147 which uses a
double-ζ basis set rather than a minimal one, was also
comparable.25 As such, it is perhaps more beneficial to
work on ways to reduce the cost of MBE(3) calculations
via screening, rather than cycle through a long list of low-
cost electronic structure methods that could be used for
the supersystem correction, with no clear physical reason
why one performs better than others.
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Table 4: Interaction Energies for the Large-Ligand Complexes Computed using ωB97X-V.a

System Basis Set

MBE(2) MBE(3) MBE(2) + δfrag
b

∆Eint CPU time ∆Eint CPU time ∆Eint CPU time

(kcal/mol) (hours) (kcal/mol) (hours) (kcal/mol) (hours)c

1O48

def2-ma-SVP −101.6 629 −103.6 8,736 −97.8 1,500

def2-ma-TZVP −82.5 2,440 −86.3 35,642 −78.8 3,311

def2-ma-QZVP −80.6 32,032 −85.6 470,973 −76.8 32,903

1MMQ

def2-ma-SVP −132.1 1,150 −154.0 15,885 −153.4 4,329

def2-ma-TZVP −118.7 4,350 −142.4 62,962 −140.0 7,529

def2-ma-QZVP −118.0 53,052 −142.9 776,176 −139.4 56,231

1ZP5

def2-ma-SVP −110.1 1,285 −77.5 19,827 −110.1 4,939

def2-ma-TZVP −94.2 5,005 −61.5 81,679 −94.1 8,658

def2-ma-QZVP −91.8 60,585 −59.9 1,004,143 −91.8 64,238

1BOZ

def2-ma-SVP −53.6 1,349 −68.0 22,942 −48.1 6,405

def2-ma-TZVP −34.1 5,351 −51.1 92,890 −28.6 10,407

def2-ma-QZVP −30.4 68,310 −48.9 1,128,189 −24.9 73,366

aMBE(n) calculations use Rcut = 8 Å . bUsing HF-3c to evaluate δfrag in eq. 7. cIncludes the cost to compute
δfrag (Table S4).

Basis set trends are similar to what is observed for
the T4-lysozyme data set, with a reduction in BSSE
as the basis-set quality improves leading to a reduction
in |∆Eint|. Numerical values change much more dra-
matically than they did for the T4 lysozymes, however,
because the much larger LIDS ligands engender larger
BSSE, which increases with system size because the num-
ber of neighbor atoms increases.83 For example, swapping
def2-ma-SVP for def2-ma-QZVP changes ∆Eint by an av-
erage of 7.0 kcal/mol for the T4 lysozyme data set but
for LIDS the change is a staggering 19.2 kcal/mol. For
the large ligands, results obtained using the def2-ma-SVP
basis set seem inappropriate to use. This is important in-
formation given that many DFT calculations of protein–
ligand interactions continue to use double-ζ basis sets for
reasons of cost. Many-body counterpoise corrections may
facilitate the use of double-ζ basis sets and we intend to
explore this in future work.

4 Conclusions

Fragment-based approximations provide the means to
address dramatically larger systems sizes using quantum
chemistry calculations. In recent work,25,26,34 we have
pursued a stripped-down n-body expansion that makes
no attempt at classical electrostatic embedding, as a ro-
bust means to converge fragment-based calculations to
a well-defined supersystem limit, at essentially arbitrary
levels of electronic structure theory including arbitrary
basis sets. In the present work, we have extended this
approach to protein–ligand interaction energies ∆Eint,
exploring the affect of distance cutoffs (both for the n-
body terms and for the enzymatic model itself), and con-
sidering up to four-body terms. These considerations are
unprecedented in studies of this kind. As in previous

work on enzyme thermochemistry,25 we aim to present
results that are fully converged with respect to the size
of the enzyme model, while systematically testing the ef-
fects of basis set and higher n-body interactions. Our
goal is to present robust protocols that can be widely de-
ployed with relatively minor modifications, using a new
software framework called Fragme∩t.26,30

For non-covalent binding of small ligands with fewer
than 20 atoms to T4 lysozyme proteins, we are able to
achieve remarkable accuracy for ∆Eint, as assessed by
comparison to a conventional supramolecular calculation
at the same level of theory. Fragmentation errors are
smaller than 0.01 kcal/mol/fragment, in converged en-
zyme models with 1,000+ atoms. This level of fidelity
is an order-of-magnitude better than the very conser-
vative standard of 0.1 × (3/2)kBT that has been sug-
gested for fragment-based ab initio molecular dynamics
simulations.118 This can be achieved in a total comput-
ing time (aggregated across all processors) that is only
a tiny fraction of what is required for a conventional su-
persystem calculation at the DFT level. The cost is also
small in comparison to supramolecular calculations using
semi-empirical models.

For significantly larger ligands, exemplified by the
“LIDS” data set assembled for this work, we are able
to obtain tightly converged results in some cases but two
metalloenzymes prove to be problematic due to the pres-
ence of Zn2+ near the ligand binding site. In these cases,
we were unable to obtain results that were converged to
sub-kcal/mol accuracy at reasonable cost. However, if
the intent of these calculations is to generate ab initio
data sets for ML approaches, then there is some question
as to whether sub-kcal/mol accuracy is a reasonable stan-
dard given significant disparities between ∆Eint (com-
puted for a single binding pose) and ∆G◦

bind. Although
further testing is needed, the protocols developed here
may already be sufficiently accurate to generate ab initio

https://doi.org/10.26434/chemrxiv-2024-7v7pv ORCID: https://orcid.org/0000-0002-1663-2278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-7v7pv
https://orcid.org/0000-0002-1663-2278
https://creativecommons.org/licenses/by/4.0/


13

training data that do not rely on experimental inhibition
constants, thus can be trusted for novel ligands that do
not resemble existing drugs.

Ours is the first systematically improvable fragmenta-
tion protocol to be applied to systems of this size. Our
approach is robust in high-quality basis sets (up to aug-
mented quadruple-ζ quality) and can be extended beyond
the two-body level should the desired accuracy prove
to be unobtainable using MBE(2). In future work, we
will consider the use of counterpoise corrections that are
compatible with MBE(n),84,85 and will implement energy
screening to identify the most important subset of three-
body terms, as we showed that these are few in num-
ber even for the problematic Zn2+-containing enzymes.
Our scheme holds the potential to enable rigorous elec-
tronic structure theory calculations for large-scale com-
putational biochemistry applications.

5 Supporting Information

Additional calculations and data (PDF)
Coordinates for the relaxed structural models (zip)

6 Notes

The authors declare the following competing financial in-
terest(s): J.M.H. is part owner of Q-Chem Inc. and serves
on its board of directors.

Acknowledgments

Work by P.E.B. was supported by the National Insti-
tute of General Medical Sciences of the National Insti-
tutes of Health under Award No. 1R43GM148095-01A1.
Development of the Fragme∩t software (by D.R.B.)
was supported by the U.S. Department of Energy, Of-
fice of Basic Energy Sciences, Division of Chemical Sci-
ences, Geosciences, and Biosciences under Award No.
DE-SC0008550, Calculations were performed at the Ohio
Supercomputer Center.148

References

1 Zhang, L.; Tan, J.; Han, D.; Zhu, H. From machine
learning to deep learning: Progress in machine intelligence
for rational drug discovery. Drug Discov. Today 2017, 22,
1680–1685.

2 Lavecchia, A. Deep learning in drug discovery: Oppor-
tunities, challenges and future prospects. Drug Discov.
Today 2019, 24, 2017–2032.

3 Klambauer, G.; Hochreiter, S.; Rarey, M. Machine learn-
ing in drug discovery. J. Chem. Inf. Model. 2019, 59,
945–946.

4 Patel, L.; Shukla, T.; Huang, X.; Ussery, D. W.;
Wang, S. Machine learning methods in drug discovery.
Molecules 2020, 25, 5277.

5 Wei, B.; Zhang, Y.; Gong, X. DeepLPI: A novel deep
learning-based model for protein–ligand interaction pre-
diction for drug repurposing. Sci. Rep. 2022, 12, 18200.

6 Di Palma, F.; Abate, C.; Decherchi, S.; Cavalli, A. Lig-
andability and druggability assessment via machine learn-
ing. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2023, 13,
e1676.

7 Kim, J.; Chang, W.; Ji, H.; Joung, I. Quantum-informed
molecular representation learning enhancing ADMET
property prediction. J. Chem. Inf. Model. 2024, 64, 5028–
5040.

8 Nguyen, D. D.; Wei, G.-W. AGL-score: Algebraic graph
learning score for protein–ligand binding scoring, ranking,
docking, and screening. J. Chem. Inf. Model. 2019, 59,
3291–3304.

9 Yasuo, N.; Sekijima, M. Improved method of structure-
based virtual screening via interaction-energy-based
learning. J. Chem. Inf. Model. 2019, 59, 1050–1061.

10 Li, H.; Sze, K.-H.; Lu, G.; Ballester, P. J. Machine-
learning scoring functions for structure-based drug lead
optmization. Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2020, 10, e1465.

11 Shen, C.; Ding, J.; Wang, Z.; Cao, D.; Ding, X.; Hou, T.
From machine learning to deep learning: Advances in
scoring functions for protein–ligand docking. Wiley In-
terdiscip. Rev.: Comput. Mol. Sci. 2020, 10, 1429.

12 Guedes, I. A.; Barreto, A. M. S.; Marinho, D.;
Krempser, E.; Kuenemann, M. A.; Sperandio, O.; Dar-
denne, L. E.; Miteva, M. A. New machine learning and
physics-based scoring functions for drug discovery. Sci.
Rep. 2021, 11, 3198.

13 Bucinsky, L.; Gall, M.; Matúška, J.; Pitoňák, M.;
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77 Řezáč, J.; Stewart, J. J. P. How well do semiempirical
QM methods describe the structure of proteins? J. Chem.
Phys. 2023, 158, 044118.

78 Boz, E.; Stein, M. Accurate receptor-ligand binding free
energies from fast QM conformational chemical space
sampling. Int. J. Mol. Sci. 2021, 22, 3078.

79 Chen, Y.; Sheng, Y.; Ma, Y.; Ding, H. Efficient cal-
culation of protein–ligand binding free energy using GFN
methods: The power of the cluster model. Phys. Chem.
Chem. Phys. 2022, 24, 14339–14347.

80 Chan, B.; Dawson, W.; Nakajima, T. Sorting drug con-
formers in enzyme active sites: The XTB way. Phys.
Chem. Chem. Phys. 2024, 26, 12610–12618.

81 Spicher, S.; Grimme, S. Robust atomistic modeling of ma-
terials, organometallic, and biochemical systems. Angew.
Chem. Int. Ed. Engl. 2020, 59, 15665–15673.

82 Wolter, M.; von Looz, M.; Meyerhenke, H.; Jacob, C. R.

https://doi.org/10.26434/chemrxiv-2024-7v7pv ORCID: https://orcid.org/0000-0002-1663-2278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-7v7pv
https://orcid.org/0000-0002-1663-2278
https://creativecommons.org/licenses/by/4.0/


16

Systematic partitioning of proteins for quantum-chemical
fragmentation methods using graph algorithms. J. Chem.
Theory Comput. 2021, 17, 1355–1367.

83 Gray, M.; Bowling, P. E.; Herbert, J. M. Systematic ex-
amination of counterpoise correction in density functional
theory. J. Chem. Theory Comput. 2022, 18, 6742–6756.

84 Richard, R. M.; Lao, K. U.; Herbert, J. M. Achieving
the CCSD(T) basis-set limit in sizable molecular clusters:
Counterpoise corrections for the many-body expansion.
J. Phys. Chem. Lett. 2013, 4, 2674–2680.

85 Richard, R. M.; Lao, K. U.; Herbert, J. M. Approach-
ing the complete-basis limit with a truncated many-body
expansion. J. Chem. Phys. 2013, 139, 224102.

86 Chung, L. W.; Sameera, W. M. C.; Ramozzi, R.;
Page, A. J.; Hatanaka, M.; Petrova, G. P.; Harris, T. V.;
Li, X.; Ke, Z.; Liu, F.; Li, H.-B.; Ding, L.; Mo-
rokuma, K. The ONIOM method and its applications.
Chem. Rev. 2015, 115, 5678–5796.

87 Mayhall, N. J.; Raghavachari, K. Molecules-in-molecules:
An extrapolated fragment-based approach for accurate
calculations on large molecules and materials. J. Chem.
Theory Comput. 2011, 7, 1336–1343.

88 Tschumper, G. S. Multicentered integrated QM:QM
methods for weakly bound clusters: An efficient and ac-
curate 2-body:many-body treatment of hydrogen bonding
and van der Waals interactions. Chem. Phys. Lett. 2006,
427, 185–191.

89 Wen, S.; Nanda, K.; Huang, Y.; Beran, G. J. O. Practi-
cal quantum mechanics-based fragment methods for pre-
dicting molecular crystal properties. Phys. Chem. Chem.
Phys. 2012, 14, 7578–7590.

90 Sahu, N.; Gadre, S. R. Molecular tailoring approach: A
route for ab initio treatment of large clusters. Acc. Chem.
Res. 2014, 47, 2739–2747.

91 Gray, M.; Herbert, J. M. Comprehensive basis-set testing
of extended symmetry-adapted perturbation theory and
assessment of mixed-basis combinations to reduce cost.
J. Chem. Theory Comput. 2022, 18, 2308–2330.

92 Gray, M.; Bowling, P. E.; Herbert, J. M. Comment
on “Benchmarking basis sets for density functional the-
ory thermochemistry calculations: Why unpolarized basis
sets and the polarized 6-311G family should be avoided”.
J. Phys. Chem. A 2024, 128, 7739–7745.

93 Epifanovsky, E. et al. Software for the frontiers of quan-
tum chemistry: An overview of developments in the Q-
Chem 5 package. J. Chem. Phys. 2021, 155, 084801.

94 Mardirossian, N.; Head-Gordon, M. ωB97X-V: A 10-
parameter, range-separated hybrid, generalized gradient
approximation density functional with nonlocal correla-
tion, designed by a survival-of-the-fittest strategy. Phys.
Chem. Chem. Phys. 2014, 16, 9904–9924.

95 Mardirossian, N.; Head-Gordon, M. Thirty years of den-
sity functional theory in computational chemistry: An
overview and extensive assessment of 200 density func-
tionals. Mol. Phys. 2017, 115, 2315–2372.

96 Weigend, F.; Ahlrichs, R. Balanced basis sets of split
valence, triple zeta valence and quadruple zeta valence
quality for H to Rn: Design and assessment of accuracy.
Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

97 Rappoport, D.; Furche, F. Property-optimized Gaussian
basis sets for molecular response calculations. J. Chem.
Phys. 2010, 133, 134105.

98 Sure, R.; Grimme, S. Corrected small basis set Hartree-
Fock method for large systems. J. Comput. Chem. 2013,

34, 1672–1685.
99 Gilson, M. K.; Honig, B. H. The dielectric constant of a

folded protein. Biopolymers 1986, 25, 2097–2119.
100 Gilson, M. K.; Honig, B. Calculation of the total elec-

trostatic energy of a macromolecular system: Solvation
energies, binding energies, and conformational analysis.
Proteins 1988, 4, 7–18.

101 Rodgers, K. K.; Silgar, S. G. Surface electrostatics, re-
duction potentials, and internal dielectric constant of pro-
teins. J. Am. Chem. Soc. 1991, 113, 9419–9421.

102 Nakamura, H. Roles of electrostatic interaction in pro-
teins. Q. Rev. Biophys. 1996, 29, 1–90.

103 Grochowski, P.; Trylska, J. Continuum molecular elec-
trostatics, salt effects, and counterion binding—A review
of the Poisson–Boltzmann theory and its modifications.
Biopolymers 2008, 89, 93–113.

104 Alexov, E.; Mehler, E. L.; Baker, N.; Baptista, A. M.;
Huang, Y.; Milletti, F.; Nielsen, J. E.; Farrell, D.;
Carstensen, T.; Olsson, M. H. M.; Shen, J. K.; War-
wicker, J.; Williams, S.; Word, J. M. Progress in the
prediction of pKa values in proteins. Proteins 2011, 79,
3260–3275.

105 Lange, A. W.; Herbert, J. M. Polarizable continuum
reaction-field solvation models affording smooth potential
energy surfaces. J. Phys. Chem. Lett. 2010, 1, 556–561.

106 Herbert, J. M. Dielectric continuum methods for quan-
tum chemistry. Wiley Interdiscip. Rev.: Comput. Mol.
Sci. 2021, 11, e1519.

107 Rowland, R. S.; Taylor, R. Intermolecular nonbonded
contact distances in organic crystal structures: Compar-
ison with distances expected from van der Waals radii.
J. Phys. Chem. 1996, 100, 7384–7391.

108 Lange, A. W.; Herbert, J. M. A smooth, nonsingular, and
faithful discretization scheme for polarizable continuum
models: The switching/Gaussian approach. J. Chem.
Phys. 2010, 133, 244111.

109 Lange, A. W.; Herbert, J. M. Symmetric versus asymmet-
ric discretization of the integral equations in polarizable
continuum solvation models. Chem. Phys. Lett. 2011,
509, 77–87.

110 Herbert, J. M.; Lange, A. W. Polarizable continuum mod-
els for (bio)molecular electrostatics: Basic theory and re-
cent developments for macromolecules and simulations.
In Many-Body Effects and Electrostatics in Biomolecules;
Cui, Q.; Ren, P.; Meuwly, M., Eds.; CRC Press: Boca
Raton, 2016; Chapter 11, pages 363–416.

111 Summers, T. J.; Daniel, B. P.; Cheng, Q.; DeY-
onker, N. J. Quantifying inter-residue contact through in-
teraction energies. J. Chem. Inf. Model. 2019, 59, 5034–
5044.

112 Summers, T. J.; Cheng, Q.; Palma, M. A.; Pham, D.-T.;
Kelso III, D. K.; Webster, C. E.; DeYonker, N. J. Chem-
informatic quantum mechanical enzyme model design:
A catechol-O-methyltransferase case study. Biophys. J.
2021, 120, 3577–3587.

113 Cheng, Q.; DeYonker, N. J. A case study of the glycoside
hydrolase enzyme mechanism using an automated QM-
cluster model building toolkit. Front. Chem. 2022, 10,
854318.

114 Cheng, Q.; DeYonker, N. J. The glycine N -
methyltransferase case study: Another challenge for QM-
cluster models? J. Phys. Chem. B 2023, 127, 9282–9294.

115 Agbaglo, D. A.; Summers, T. J.; Cheng, Q.; DeY-
onker, N. J. The influence of model building schemes and

https://doi.org/10.26434/chemrxiv-2024-7v7pv ORCID: https://orcid.org/0000-0002-1663-2278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-7v7pv
https://orcid.org/0000-0002-1663-2278
https://creativecommons.org/licenses/by/4.0/


17

molecular dynamics on QM-cluster models: The choris-
mate mutase case study. Phys. Chem. Chem. Phys. 2024,
26, 12467–12482.

116 Kulik, H. J.; Zhang, J.; Klinman, J. P.; Mart́ınez, T. J.
How large should the QM region be in QM/MM calcula-
tions? The case of catechol O-methyltransferase. J. Phys.
Chem. B 2016, 120, 11381–11394.

117 Heifetz, A., Ed.; Quantum Mechanics in Drug Discovery;
volume 2114 of Methods in Molecular Biology Springer
Science+Business Media: New York, 2020.

118 Ouyang, J. F.; Bettens, R. P. A. Many-body basis set
superposition effect. J. Chem. Theory Comput. 2015, 11,
5132–5143.

119 Dziedzic, J.; Helal, H. H.; Skylaris, C.-K.; Mostofi, A. A.;
Payne, M. C. Minimal parameter implicit solvent model
for ab initio electronic-structure calculations. Europhys.
Lett. 2011, 95, 43001.

120 Grimme, S. Supramolecular binding thermodynamics by
dispersion-corrected density functional theory. Chem.
Eur. J. 2012, 18, 9955–9964.

121 Pracht, P.; Grimme, S. Calculation of absolute molecular
entropies and heat capacities made simple. Chem. Sci.
2021, 12, 6551–6568.

122 Sitkoff, D.; Sharp, K. A.; Honig, B. Accurate calcula-
tion of hydration free energies using macroscopic solvent
models. J. Phys. Chem. 1994, 98, 1978–1988.

123 Tan, C.; Tan, Y.-H.; Luo, R. Implicit nonpolar solvent
models. J. Phys. Chem. B 2007, 111, 12263–12274.

124 Glick, Z. L.; Metcalf, D. P.; Koutsoukas, A.;
Spronk, S. A.; Cheney, D. L.; Sherrill, C. D. AP-Net:
An atomic-pairwise neural network for smooth and trans-
ferable interaction potentials. J. Chem. Phys. 2020, 153,
044112.

125 Glick, Z.; Metcalf, D.; Sargent, C.; Spronk, S.; Kout-
soukas, A.; Cheney, D.; Sherrill, C. D. A physics-aware
neural network for protein-ligand interactions with quan-
tum chemical accuracy. Chem. Sci. 2024, 15, 13313–
13324.

126 Prentice, J. C. A. et al. The ONETEP linear-scaling den-
sity functional theory program. J. Chem. Phys. 2020,
152, 174111.

127 Liu, J.; Rana, B.; Liu, K.-Y.; Herbert, J. M. Variational
formulation of the generalized many-body expansion with
self-consistent embedding charges: Simple and correct an-
alytic energy gradient for fragment-based ab initio molec-
ular dynamics. J. Phys. Chem. Lett. 2019, 10, 3877–3886.

128 Grassano, J. S.; Pickering, I.; Roitberg, A. E.; Le-
brero, M. C. G.; Estrin, D. A.; Semelak, J. A. Assess-
ment of embedding schemes in a hybrid machine learning/
classical potentials (ML/MM) approach. J. Chem. Inf.
Model. 2024, 64, 4047–4058.

129 Valdés, H.; Klusák, V.; Pitoňák, M.; Exner, O.; Starý, I.;
Hobza, P.; Ruĺı̌sek, L. Evaluation of the intramolecu-
lar basis set superposition error in the calculations of
larger molecules: [n]helicenes and Phe-Gly-Phe tripep-
tide. J. Comput. Chem. 2007, 29, 861–870.

130 Shields, A. E.; van Mourik, T. Comparison of ab initio
and DFT electronic structure methods for peptides con-
taining an aromatic ring: Effect of dispersion and BSSE.
J. Phys. Chem. A 2007, 111, 13272–13277.

131 van Mourik, T. Determining potential energy surfaces
for flexible peptides. Problems caused by intramolecular
BSSE and dispersion. In Molecular Potential Energy Sur-
faces in Many Dimensions; Law, M. M.; Ernesti, A.,

Eds.; Collaborative Computational Project on Molecu-
lar Quantum Dynamics (CCP6): Daresbury Laboratory,
Daresbury, Warrington, UK, 2009.

132 Hameed, R.; Khan, A.; van Mourik, T. Intramolecular
BSSE and dispersion affect the structure of a dipeptide
conformer. Mol. Phys. 2017, 116, 1236–1244.

133 Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A. J.
Recent developments in fragment-based drug discovery.
J. Med. Chem. 2008, 51, 3661–3680.

134 Murray, C. W.; Rees, D. C. The rise of fragment-based
drug discovery. Nat. Chem. 2009, 1, 187–192.

135 Kumar, A.; Voet, A.; Zhang, K. Y. J. Fragment based
drug design: From experimental to computational ap-
proaches. Curr. Med. Chem. 2012, 19, 5128–5147.

136 Efremov, I. V.; Erlanson, D. A. Fragment-based lead gen-
eration. In Lead Generation: Methods, Strategies, and
Case Studies, First ed.; Holenz, J., Ed.; Wiley-VCH:
Weinheim, 2016; Chapter 6, pages 133–157.

137 Doak, B. C.; Norton, R. S.; Scanlon, M. J. The ways and
means of fragment-based drug design. Pharmacol. Thera-
peut. 2016, 167, 28–37.

138 Kirsch, P.; Hartman, A. M.; Hirsch, A. K. H.; Empt-
ing, M. Concepts and core principles of fragment-based
drug design. Molecules 2019, 24, 4309.

139 Hopkins, A. L.; Keserü, G. M.; Leeson, P. D.;
Rees, D. C.; Reynolds, C. H. The role of ligand efficiency
metrics in drug discovery. Nat. Rev. Drug Discov. 2014,
13, 105–121.

140 Kola, I.; Landis, J. Can the pharmaceutical industry re-
duce attrition rates? Nat. Rev. Drug Discov. 2004, 3,
711–715.

141 Bunnage, M. E. Getting pharmaceutical R&D back on
target. Nat. Chem. Biol. 2011, 7, 335–339.

142 Hay, M.; Thomas, D. W.; Craighead, J. L.; Econo-
mides, C.; Rosenthal, J. Clinical development success
rates for investigational drugs. Nat. Biotechnol. 2014, 32,
40–51.

143 Waring, M. J.; Arrowsmith, J.; Leach, A. R.; Lee-
son, P. D.; Mandrell, S.; Owen, R. M.; Pairaudeau, G.;
Pennie, W. D.; Pickett, S. D.; Wang, J.; Wallace, O.;
Weir, A. An analysis of the attrition of drug candidates
from four major pharmaceutical companies. Nat. Rev.
Drug Discov. 2015, 14, 475–486.

144 Stewart, J. J. P. Optimization of parameters for semiem-
pirical methods V: Modification of NDDO approximations
and application to 70 elements. J. Mol. Model. 2007, 13,
1173–1213.

145 Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A con-
sistent and accurate ab initio parameterization of density
functional dispersion correction (DFT-D) for the 94 ele-
ments H–Pu. J. Chem. Phys. 2010, 132, 154104.

146 Xu, M.; He, X.; Zhu, T.; Zhang, J. Z. H. A frag-
ment quantum mechanical method for metalloproteins.
J. Chem. Theory Comput. 2019, 15, 1430–1439.

147 Grimme, S.; Brandenburg, J. G.; Bannwarth, C.;
Hansen, A. Consistent structures and interactions by den-
sity functional theory with small atomic orbital basis sets.
J. Chem. Phys. 2015, 143, 054107.

148 Ohio Supercomputer Center,
http://osc.edu/ark:/19495/f5s1ph73 (accessed 2024-
10-23).

https://doi.org/10.26434/chemrxiv-2024-7v7pv ORCID: https://orcid.org/0000-0002-1663-2278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-7v7pv
https://orcid.org/0000-0002-1663-2278
https://creativecommons.org/licenses/by/4.0/


18

TOC Graphic

≈

https://doi.org/10.26434/chemrxiv-2024-7v7pv ORCID: https://orcid.org/0000-0002-1663-2278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-7v7pv
https://orcid.org/0000-0002-1663-2278
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Data Sets.
	System Preparation.
	Fragmentation.
	Quantum Chemistry Calculations.

	Results and Discussion
	T4 Lysozyme Data Set.
	Radial Enzyme Models.
	Convergence with N and n.
	Basis-Set Convergence.
	Discussion.

	Large Inhibitor Data Set.
	Radial Enzyme Models.
	Convergence of the MBE.
	Two-Layer Approach.


	Conclusions
	Supporting Information
	Notes

