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Driving Applications
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Abstract—Spurred by consistent advances and innovation
in deep learning, object detection applications have become
prevalent, particularly in autonomous driving that leverages
various visual data. As convolutional neural networks (CNNs)
are being optimized, the performances and computation speeds
of object detection in autonomous driving have been significantly
improved. However, due to the exponentially rapid growth in
the complexity and scale of data used in object detection, there
are limitations in terms of computation speeds while conducting
object detection solely with classical computing. Motivated by this,
quantum convolution-based object detection (QCOD) is proposed
to adopt quantum computing to perform object detection at high
speed. The QCOD utilizes our proposed fast quantum convolution
that uploads input channel information and re-constructs output
channels for achieving reduced computational complexity and
thus improving performances. Lastly, the extensive experiments
with KITTI autonomous driving object detection dataset verify
that the proposed fast quantum convolution and QCOD are
successfully operated in real object detection applications.

Index Terms—Quantum Machine Learning, Quantum Convo-
lutional Neural Network, Object Detection, Autonomous Driving

I. INTRODUCTION

With the consistent advancement of deep learning, many deep
learning-based applications have improved performance and be-
come practical. These deep learning-based applications require
significant computational power due to the expected increase
in dataset sizes and algorithm complexity [1]. In particular, the
computational complexity becomes more significant in object
detection due to the growing complexity of data, which expands
from 2D images to 3D point clouds and multi-modal data [2].
To cope with the growing complexity, several research aims to
enhance the model architectures and the algorithmic advantages
for improving the computation speed and performance of
applications [3], [4]. In the era of classical computing, these
algorithmic improvements yield highly positive results [5], [6].
However, they encounter fundamental challenges in efficiently
conducting highly complex and complicated applications due
to the inherent limitations of classical computing resources [7].
A classical convolutional neural network (CNN) is one of the
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(a) 1-qubit system. (b) Quantum object detection.

Fig. 1. A brief illustration of quantum computing and its application.

representatives that shows these limitations [8]. While CNN-
based algorithms demonstrate rapid execution and viable perfor-
mance, the computational complexity of CNN is significantly
contingent upon the input size, with a computational cost of
O(X ·Cin ·Cout), where X , Cin, and Cout denote the product
of input data size and kernel size, input channel, and output
channel, respectively [9]. This can pose a substantial challenge
when applying the convolution process to extensive and intricate
datasets, impeding its scalability in dealing with the rapidly
expanding dataset. These challenges are exacerbated in complex
applications based on CNNs, such as object detection. As
the model’s architecture grows in complexity and the dataset
employed becomes more intricate, it is evident that relying
solely on classical computing for such applications for real-time
execution is not practical due to computational limitations [10].

Quantum computing is regarded as a promising solution
to resolve these computational limitations. The emergence of
the noisy intermediate-scale quantum (NISQ) era suggests
that the number of available quantum bits, i.e., qubits, will
exceed thousands by 2025, potentially achieving quantum
advantage [11]. This achievement is based on the intrinsic
nature of quantum computing, superposition, which enables
quantum computing to excel in classical computing in various
complex tasks. Fig. 1 (a) represents an example of an 1-
qubit superposition. In contrast to classical bit, the state of
a qubit can be depicted as |Φ⟩ = α0 |0⟩ + α1 |1⟩, where α0

and α1 are the probabilistic complex amplitudes of qubit,
satisfying α2

0+α
2
1 = 1. This representational capacity becomes

increasingly more extensive as the number of qubits grows,
because the number of bases, e.g., |00⟩ and |01⟩, expands
to 2q, where q denotes the number of qubits. On the other
hand, there are challenges in implementing quantum computing-
based applications in the NISQ era. As quantum computing
and its algorithms are still in their early stages, there is
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a lack of optimization methods for tasks using quantum
computing [12]. Additionally, quantum computing fails to
replace classical computing entirely because it cannot perform
structured tasks like convolution in CNNs [13]. Moreover,
the limited availability of deep learning techniques, datasets,
and optimization tools for classical computing, along with the
complexities of quantum computing, make the advancement
of deep learning applications through quantum advantage in
the realm of quantum machine learning challenging.

Inspired by this, this paper focuses on the object detection,
one of the most complicated applications using CNN. To
cope with the growing complexity of the object detection
and achieve faster operation time, this paper proposes quantum
convolution-based object detection (QCOD). Fig. 1 (b) shows
a brief example result of QCOD. With our proposed quantum
convolution, named fast quantum convolution, which boosts
the encoding process. The fast quantum convolution optimizes
the advantages of quantum computing. As our fast quantum
convolution encodes multi-channel data into an identical
quantum system, QCOD achieves fast quantum speed-ups.
In addition, to leverage classical optimization schemes and
deep learning techniques for QCOD, this paper proposes
heterogeneous knowledge distillation, a modified version of
knowledge distillation, to train the region proposal layer of
QCOD. Knowledge distillation is a well-known training method
that transfers the knowledge of the pre-trained teacher model
to the un-trained student models. In this paper, heterogeneous
knowledge distillation selects the pre-trained classical region
proposal network and quantum convolution region proposal
network as teacher and student model, respectively. Via
heterogeneous knowledge distillation, QCOD addresses the
lack of quantum optimization schemes in object detection.

Furthermore, this paper verifies the superiority of fast
quantum convolution in QCOD and substantiates the probability
of achieving quantum object detection in the near future through
extensive experiments and ablation studies. It is difficult to
definitively state that quantum object detection is superior to
classical object detection in the view of performance. However,
this paper observes that quantum object detection can be
realized, and the proposed QCOD shows significant speed-
ups in object detection. Serving as a foundational step toward
the implementation of quantum object detection, this paper
provides an outlook for future research in quantum object
detection.
Contributions. The major contributions of QCOD are as
follows. First of all, This paper designs a novel quantum
convolution named fast quantum convolution, considering
the qubits’ representation ability. The fast quantum convo-
lution encodes multiple channels into quantum states and
achieves quantum speed-ups. Second, this paper proposes
heterogeneous knowledge distillation to leverage classical
optimization schemes and the knowledge from classical pre-
trained models, addressing the lack of knowledge in the
quantum domain. Third, this paper verifies the superiority of the
fast quantum convolution when utilizing with quantum random
access memory (QRAM). Finally, this paper conducts numerous
experiments and, to the best of our knowledge, implements
the first quantum object detection.

II. RELATED WORK

This section introduces previous research that is closely
aligned with our fast quantum convolution and QCOD develop-
ment. The pivotal topics include i) quantum machine learning
implementation, ii) data re-uploading, and iii) knowledge
distillation for subset model training.
Quantum machine learning implementation. The implemen-
tation of quantum machine learning hinges on two fundamental
categories: i) optimizing qubits’ representation abilities and
ii) employing fast QRAM searching algorithms to minimize
complexity. These properties enable quantum computing to
outperform classical counterparts. Among these categories, the
research related to our considering quantum convolutional
neural network (QCNN) is as follows. Baek et al. [14]
address the scalability limitation of available qubits in quantum
convolution filters by incorporating these filters into massive
3D data classification applications. In this project, they leverage
the concept of fidelity to achieve robust performance. Shen et
al. [15] focus on the architecture of classical CNN, replacing the
fourier transform process of the CNN with a quantum circuit,
thereby enhancing the speed of the entire CNN. Furthermore,
several studies aim to realize quantum advantage by combining
QCNN and QRAM. Oh et al. [16] implement QCNN on QRAM
to store large-sized data. In addition, Kerenidis et al. [17] prove
the quantum advantage when utilizing QCNN and QRAM with
small errors.
Data re-uploading. Data re-uploading is an encoding technique
based on the quantum information theory that the states of
qubits can represent multiple information [18]. Pérez-Salinas
et al. [19] firstly propose and prove the feasibility of data
re-uploading using the 1-qubit system of quantum machine
learning. Friedrich et al. [20] combine data re-uploading
techniques with QCNN to encode multiple data within a few
qubits for avoiding barren plateaus 1. Schuld et al. [23] confirm
that data re-uploading allows quantum models to represent
progressively richer frequency spectra while using a limited
number of qubits. In this paper, we propose channel uploading,
a modified version of data re-uploading, to cope with numerous
number of channels of practical object detection applications.
Knowledge distillation for subset model training. Knowledge
distillation is a training method to handle variations in deep
learning resources and enhance robust training in real-world
applications [24]. Knowledge distillation is typically incorpo-
rated as a regularizer in the loss function, aiming to minimize
the difference between the logits of the teacher model and
those of the target student model. The target student model can
conduct robust training by transferring pre-trained knowledge
from the teacher to the student model. Cui et al. [25] adopts a
knowledge distillation regularizer as a loss function for semi-
supervised learning, aiming to process real-world images. In
this paper, we take a step further by employing knowledge
distillation between models in a heterogeneous domain. We

1The phenomenon of barren plateaus, a characteristic of quantum machine
learning, impedes the trainability of quantum machine learning models [21].
Similar to the local minima in classical machine learning, barren plateaus give
rise to problems where parameters are not efficiently optimized. In addition,
it is well-known that the increase of the number of qubits induces barren
plateaus [22].
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set a classical CNN-based model as the teacher model and our
fast quantum convolution-based model as the student model.

III. QUANTUM MACHINE LEARNING

Quantum machine learning is a machine learning framework
that leverages the quantum advantages of quantum computing
to address challenges previously tackled by classical neural
networks. The quantum machine learning comprises encoding,
parameterized quantum circuits, and decoding. In this section,
we dive into each process within quantum machine learning es-
sentials for constructing our proposed fast quantum convolution
and QCOD.
Basic quantum operations. In contrast to classical bits, which
have deterministic values of either 0 or 1, quantum computing
allows for the superposition of two states simultaneously.
This unique characteristic is expressed using Dirac notation
as |Φ⟩ ≜

∑2q

k=1 αk |k⟩, where |k⟩ represents a basis in the
Hilbert space, and ∀q ∈ N[1,∞) and

∑2q

k=1 |αk|2 = 1. The
initialized q-qubit system can be expressed as |0⟩⊗q. Similar
to classical computer logic gates, quantum gates are operators
capable of manipulating the state of qubits. From a physics
perspective, operations of the quantum gates can be interpreted
as transitions of qubit states on the Bloch sphere from one
point to another [26]. Note that these quantum gates are in the
form of unitary matrices. In this paper, we denote the unitary
matrices used for encoding as UE and the unitary matrices
used for training as UT , depending on their purposes.
Encoding. It is essential to convert classical information into
quantum information to facilitate the integration of quantum
machine learning with classical computing. This transformation
is achieved through the implementation of the quantum gates
denoted as UE . Mathematically, UE can be expressed as a 2q×
2q unitary matrix within a q-qubit quantum system. Therefore,
with the classical data x, the encoded q-qubit quantum states
can be represented as |ψx⟩ = UE(x)|0⟩⊗q , where the encdoed
quantum state |ψx⟩ is on 2q-dimension Hilbert space. In this
work, we design quantum gates UE without any trainable
parameters to encode classical information into quantum states
consistently.
Parameterized quantum circuit. After encoding the classical
information on the target quantum system, the parameterized
quantum circuit (PQC) trains the parameter as in attention [27]
in classical machine learning. Each PQC has trainable unitary
matrices UT

2, which comprises trainable rotation gates RΓ(θ)
and trainable Controlled-Γ gates CΓ, where ∀Γ ∈ {X,Y, Z}.
Here, θ denotes the trainable parameters where ∀θ ∈ [0, 2π]|θ|.
Revisiting the encoded quantum states |ψx⟩, the output of the
PQC can be expressed as |ψx,θ⟩ = UT(θ)|ψx⟩. Note that the
trainable unitary matrices UT use trainable parameters and
encoded quantum states as inputs.
Decoding. To use the transformed quantum state |ψx,θ⟩ with
classical computing, we consider using the expectation quantum
value [28]. These expectation value can be designed as
⟨Ox,θ⟩ =

∏
M∈M ⟨ψx,θ|M |ψx,θ⟩, where ⟨Ox,θ⟩ denotes the

2The general expression is a parameterized or variational unitary matrices.
In this paper, we emphasize the significance of a PQC, which comprises
trainable unitary matrices for a straightforward explanation.
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(a) Red (b) Green (c) Blue (d) Proposed
Fig. 2. Comparison between existing channel uploading strategies (a-c) and
our proposed channel uploading strategy (d).

expectation of quantum measured values on Hermitian matrices
M . To decode the quantum information of each qubit, this
paper designs M = {Ml}ql=1, where Ml = I⊗l−1⊗Z⊗ IL−l.
Here, I denotes an identity matrix and Z denotes a Pauli-Z

matrix
[
1 0
0 −1

]
[29]. As a result, the output expectation values

exist in ⟨Ox,θ⟩ ∈ [−1, 1]q .

IV. FAST QUANTUM CONVOLUTIONAL NEURAL
NETWORKS

This section presents the details of our proposed fast
quantum convolution, which can mitigate the computational
overheads via patch processing, channel uploading, and channel
reconstruction.

A. Motivation

This paper aims to overcome the structural limitations of
CNNs and existing QCNNs to cope with the growing complex-
ity of real-world datasets in the field of object detection. To
solve the limitations, we design our fast quantum convolution
depicted in Fig. 3. The fast quantum convolution employs i)
patch processing, ii) channel uploading, iii) quantum feature
extraction, and iv) channel reconstruction layer. Particularly,
by employing channel uploading, we successfully mitigate the
computational complexity. Fig. 2 briefly illustrates our proposed
channel uploading strategy. In existing quantum computing
systems, the approach of uploading data from the same channel
is employed, as depicted in Fig. 2 (a-c). However, in real-world
applications involving computations using numerous channels,
a limitation arises where the operations must be repeated,
corresponding to the number of channels (C). In contrast to
the classical encoding scheme, our proposed channel uploading
strategy focuses on the qubit’s representation ability that is able
to contain multiple pieces of information, depicted in Fig. 2
(d). Accordingly, our proposed fast quantum convolution can
reduce entire computational complexity.

B. Architecture of fast quantum convolutional neural network

This paper employs three steps to design our fast quantum
convolution: i) patch pre-processing, ii) quantum state encoding,
and iii) quantum state decoding. The first step enables an
optimized quantum convolutional process, while the other
processes are necessary to attain quantum-induced image
features. The overall process of fast quantum convolution is
detailed in Algorithm 1.
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Fig. 3. An illustration of the proposed fast quantum convolutional neural network.
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(a) The process of channel uploading. (b) The process of channel re-construction.

Fig. 4. Detailed illustration of the proposed fast quantum convolution.

Patch processing. Inspired by classical image pre-processing
optimization [30], this paper employs patch processing op-
eration, named im2col, which is widely implemented in
classical CNN to fast quantum convolution. Fig. 3 illustrates
the patch processing in our fast quantum convolution. In
contrast to classical patch processing operations, our methods
can reduce the number of operations by uploading the data
in different channels in each qubit. A classical 3D tensor
image X l ∈ RH×W×Cl

is transformed to 2D tensor matrix
P l ∈ R(Hl+1W l+1)×(HWCl). Here, each patch in the input
image is flattened to the part of each row of the 2D tensor
matrix P l. Therefore, the number of rows equals the one of
operations.
Encoding via quantum channel uploading. Based on the
ability of qubits to maintain multiple pieces of information
simultaneously, in contrast to classical bits, we sequentially
upload the channels onto the same qubits. Fig. 4 (a) pro-
vides a clear representation of quantum channel uploading.
Each row of the 2D tensor matrix P l is uploaded on
our quantum circuits. We use three different rotation gates

Rx =

[
cos

(
α
2

)
−i sin

(
α
2

)
−i sin

(
α
2

)
cos

(
α
2

) ]
, Ry =

[
cos

(
β
2

)
− sin

(
β
2

)
sin

(
β
2

)
cos

(
β
2

) ]
and Rz =

[
e−i δ

2 0

0 ei
δ
2

]
. α, β and δ are constant values that

can be modified according to the number of uploaded channels.
Our proposed quantum channel uploading encoding strategy
can be described as

|ψ⟩i =
∏HWCl

j=0
UE(p

l
i,j)|0⟩⊗q, (1)

where pli,j denotes the components at the i-th row and j-
th column of the 2D tensor matrix P l. Note that ∀i ∈
N[0, H l+1W l+1). Because the number of input components
HWCl in each row is larger than the number of available qubits

q in the recent NISQ era, where the number of qubits is small,
we design the encoding layer UE can employ additional data
uploading strategy. Note that the quantum channel uploading
process occurs in encoding, and the set of encoding layer UE

doesn’t have trainable parameters.
Quantum convolution. The fast quantum convolution utilizes
the PQC to perform convolution on the information of the
encoded quantum feature |ψ⟩i. This use of PQC can be
compared with the convolution filters of classical CNNs. Unlike
classical CNNs that employ element-wise products, PQC
performs convolution through a trainable layer UT consisting
of trainable Controlled-Γ gates and rotation gates RΓ(θ), where
∀Γ ∈ {X,Y, Z}. Particularly, by using trainable Controlled-Γ,
PQC is designed to induce mutual information referencing
between qubits, creating entanglement [31]. This design allows
the PQC to incorporate the spatial information of input data
into the convolution more effectively. The quantum convolution
can be represented as

f(|ψ⟩i ; θ) : |ψθ⟩i ← UT (θ) |ψ⟩i , (2)

where |ψθ⟩i is the output convoluted quantum states with
trainable parameters θ.
Quantum feature extraction via decoding. Compared to
classical CNNs, where convoluted features have discrete values,
quantum features possess a probabilistic nature. This paper
considers the quantum expectation value ⟨Ox,θ⟩, represented
in Sec. III as quantum features. To ensure stable learning in
quantum computing for machine learning, we evaluate and
utilize the probabilistic values associated with each basis’
amplitude. In addition, as demonstrated in the example in Fig. 1
(a), a quantum state can be represented as |ψ⟩k = α |0⟩+β |1⟩,
where k ∈ N[1, q], and it satisfies α2+β2 = 1. In this context,
we set the output of quantum convolution as the probabilistic
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difference in amplitudes for each basis, i.e., α2 − β2. This
approach allows us to represent the output of each qubit as
⟨Ox,θ⟩k ∈ R[−1, 1]. We implement channel reconstruction
layer to the entire output ⟨Ox,θ⟩ ∈ R[−1, 1]⊗q. Fig. 4 (b)
illustrates our channel reconstruction layers. By employing a
linear function and an activation layer on the output, our fast
quantum convolution succeeds in achieving scalability.

C. Strategy of fast quantum convolution

Quantum backpropagation. Based on the quantum machine
learning theory in [32], the gradients of quantum gates cannot
be calculated directly. This is due to the intrinsic nature
of quantum computing, where the output corresponds to
the expectation of the corresponding computation outcome.
Similarly, our fast quantum convolution outputs are also
expressed as expectations, making the derivative of such
expected outputs an invalid operation within the framework
of quantum expectations. To solve this, this paper considers
parameter-shift rule [33].

∂⟨Ox,θ⟩
∂θ

=
1

2
[⟨Ox,θ+π

2
⟩ − ⟨Ox,θ−π

2
⟩], (3)

where ⟨Ox,θ+π
2
⟩ and ⟨Ox,θ−π

2
⟩ denote the extracted outputs

with modified parameters θ + π
2 and θ − π

2 , respectively.
QRAM for quantum speed-ups. As a counterpart to the
random-access memory (RAM) in classical computing, quan-
tum random-access memory (QRAM) stores the address of
information in the state of the qubit. QRAM technology is
a significant part to achieve quantum advantages and has
drawn attention. One of the general QRAM structures is the
bucket-brigade architecture, which inputs the address of the
information in the quantum state and retrieves the data in the
quantum state as the output [34]. The QRAM process of our
considering fast quantum convolution can be described as

∑
i

|i⟩address|0⟩data
QRAM−→

∑
i

|i⟩address |ψi⟩data , (4)

where |·⟩address and |·⟩data denote the storage address of
QRAM and corresponding data, respectively. Based on the
following Lemma 1 [15], and Lemma 2 [17], we observe
quantum speed-ups as depicted in Theorem 1.

Lemma 1. (Advantages of QRAM) Let target input P ∈
Rn×d, there exists a QRAM structure that conducts inserting,
deleting, and updating each datum pi,j in time O(log

(
n2

)
). In

addition, there exists a quantum algorithm |i⟩address|0⟩data →
|i⟩address |ψi⟩data in time O(log2 n).

Lemma 2. (Running time of quantum gates) Let symmetric
matrix M ∈ Rd×d, datum x ∈ Rd and error δ > 0. When the
matrix is stored in appropriate QRAM, there exists an algorithm
that satisfies ∥ |z⟩ − |Mx⟩ ∥2 ≤ δ in time O((

√
dκ(M) +

Txκ(M)) log(1/δ)) with probability at least 1− 1
poly(d) , where

κ(M) and Tx denote the condition number of M and setting
time for |x⟩.

Theorem 1. (Running time of the fast quantum convolution)
Let the input classical 3D tensor image X l ∈ RHl×W l×Cl

in

Algorithm 1: Fast quantum convolution procedure.
1 Notation. Input number of qubits: q, 3D tensor: Xl,

transformed 2D tensor matrix: P l, components at the i-th
row, j-th column of the P l: pli.j , Channel Reconstruction
function T ;

2 Input: Input classical image Xl;
3 Patch processing. P l ← Xl;
4 for i ∈ {1, 2, · · · , Hl+1W l+1} do
5 Initialize quantum state |0⟩⊗q;
6 for j ∈ {1, 2, · · · , HWCl} do
7 |ψ⟩i ← UE(p

l
i,j)|0⟩⊗q;

8 |ψθ⟩i ← UT (θ) |ψ⟩i;
9 for k ∈ {1, 2, · · · , q} do

10 Achieve ⟨O⟩k ∈ R[−1, 1];

11 Reshaping & Pooling;
12 Channel Reconstruction T : Rq → RCl+1

;

13 Achieve extracted features Xl+1;
14 Output: Extracted features

l-th fast quantum convolution layer and the number of qubits
q = H l+1 ×W l+1 , where ∀l ∈ L and H l ×W l ≥ 2 and let
the running time of encoding gates UE and UT as TE and TT ,
respectively. With condition numbers of l-th encoding κ(ME)
and PQC layer κ(MT ) that satisfy κ(MT ) = ρl · κ(ME), the
running time of entire fast quantum convolution process Ttotal
is conducted in the time of

O(log2(H l+1W l+1) + log(1/δ)κ(ME)(C
ltE + ρltT )). (5)

Proof. Based on the patch processing, the 2D patch ma-
trix can be generated as P l ∈ R(Hl+1W l+1)×(HWCl). With
(4) and Lemma 1, the total setting is conducted in time
TS = O(log(H l+1W l+1)2 + log2(H l+1W l+1)). Here, with
the assumption H l+1 ×W l+1 ≥ 2, then the time complexity
of TS can be expressed as,

TS ≈ O(log2(H l+1W l+1)). (6)

To conduct quantum convolution on the data in QRAM, it
is necessary to design ME ∈ R2q×2q for encoding and
MT ∈ R2q×2q for PQC. Based on Lemma 2, the encoding
process complexity and convolution process complexity can
be described as

TE = O((
√
2qκ(ME) + Cl · tE · κ(ME)) log(1/δE)). (7)

Similarly, the convolution process of fast quantum convolution
can be described as

TT = O((
√
2qκ(MT ) + tT · κ(MT )) log(1/δT )). (8)

Here, we observe that the trainable gate tT is called only once
due to the advantages of channel uploading. For simplicity, by
setting δE ≈ δT and CltE + ρltT ≫

√
2q(1 + ρl). The total

time Ttotal = TS + TE + TT is conducted in time

O(log2(H l+1W l+1) + log(1/δ)κ(ME)(C
ltE + ρltT )). (9)

On the other hand, with existing quantum convolution
method, (7)-(8) is modified as T

′

E = O(Cl(
√
2qκ(ME) +

tE · κ(ME)) log(1/δE)) and T
′

T = O(Cl(
√
2qκ(MT ) + tT ·
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Fig. 5. Proposed QRPN with our fast quantum convolution (The green and orange quantum convolution filter is designed for classification and box regression.
The purple quantum convolution filter is designed for 2-dimensional convolution).

κ(MT )) log(1/δT )), respectively. With a large number of
channels Cl, we observe the advantage of proposed fast
quantum convolution.

V. QUANTUM OBJECT DETECTION

This section provides a detailed description of our method for
implementing our fast quantum convolution in object detection.
Note that the quantum version of the region proposal network
(RPN) proposed below is a significant component of our
QCOD.

A. Motivation of quantum region proposal network

The RPN is a major network utilized in object detection
applications [35]. It is due to the role of RPN that localizes and
proposes the target object. The RPN employs convolutional
layers composed of spatial filters with dimensions n×n, where
n ≥ 1. In addition, convolutional layers containing 1 × 1
spatial filters for box regression and classification are employed,
respectively. Using these convolutional filters, the RPN takes an
extracted feature as input, which is obtained from an extractor,
and generates a set of rectangular object proposals, each of
them accompanied by an objectness score. The outputs, i.e.,
object proposals and objectness scores, serve as the foundation
for enabling the classifier to categorize objects within the target
proposal. However, Despite excellent performance, RPN is still
a computationally expensive network owing to the numerous
number of proposed regions and channels involved in [36].

B. Architecture of quantum region proposal network

To solve the limitations, this paper modifies the RPN [37]
to a quantum version of the RPN (QRPN) using our fast
quantum convolution. QRPN aims to calculate object proposals
and objectness scores using our fast quantum convolution. In
contrast to RPN, which slides spatial filters on target tensor and
utilizes element-wise multiplication, QRPN encodes multiple
channel inputs jointly convolute the features via unitary gates
(e.g.,Rx, Ry and CNOT gates). By utilizing our fast quantum
convolution, QRPN mitigates the time complexity as proved
in Theorem 1. In classical RPN structure, 1× 1 convolution
filters are utilized for computing two different loss functions
(i.e., classification loss and box regression loss). Here, due to
the 1× 1 scale filter operation strategy, they can be considered
as scalar-multiplied fully connected layers. To implement these

characteristics of 1 × 1 filter-based convolution using fast
quantum convolution, we design another structure of our fast
quantum convolution. With a initialized single qubit |0⟩ and
each 1× 1 quantum convolution can be expressed as

|ψθ⟩i =
∏HWCl

j=0
U1×1(θ) · UE(p

l
i,j)|0⟩⊗1, (10)

where ∀i ∈ N[0, H lW l), and U1×1 ⊂ UT denotes unitary
matrices which is activated on each qubit. Note that the
difference between UT and U1×1 comes from the usage of 2-
qubit gates, which can induce the entanglement in the designed
quantum circuit.

C. Heterogeneous knowledge distillation training

Training the QRPN is challenging due to the limited avail-
ability of quantum computing resources and optimization tools,
especially when considering object detection applications that
rely on the pre-trained and well-optimized convolution-based
RPN. Thus, to cope with these challenges and optimize QRPN-
based object detection, we train QRPN using heterogeneous
knowledge distillation. We set the pre-trained classical RPN
and QRPN as a teacher and student model, respectively.
Accordingly, well-optimized convolution knowledge of pre-
trained model can be transferred to QRPN. Here, as the logits
of fast quantum convolution are in range [-1, 1] and the logits
of the classical convolution are in the range (−∞,∞), we
normalize both logits of the classical convolution and quantum
convolution using ReLU. Therefore, we make both logits are
in the same space [0,∞). With the normalization, we design
the classical to quantum (C2Q) loss function as

LC2Q(θ
Q) = ∥Ω(x;θQ)− Ω(x;θC)∥, (11)

where θQ and θC denote the trainable parameters of QRPN
and classical RPN, respectively. Ω(x;θQ) and Ω(x;θC) denote
the outputs of QRPN and RPN when the input tensor x,
respectively. Note that the dimensions and sizes of the inputs
and outputs of QRPN are designed to be identical to those of
RPN.

D. Loss of QRPN

As our QRPN is designed to be activated similarly to the
classical RPN, which first regresses the box and then classifies
the image within the box, we incorporate the heterogeneous
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TABLE I
NOTATIONS AND IMPLEMENTATION DETAILS.

Notations for quantum computing

|ψx⟩ The quantum state encoded with data x.
q The number of available qubits.
⟨Ox⟩ The observable derived by quantum state |ψx⟩.
Γ Pauli-Γ gate, e.g., Γ ∈ {X,Y, Z}.
RΓ Rotation-Γ gate, e.g., Γ ∈ {X,Y, Z}.
CΓ Controlled-Γ gate, e.g., Γ ∈ {X,Y, Z}.
M Measurement operator.
I Identity matrix.

Notations for fast quantum convolution

Xl The classical 3D tensor image of l-th layer.
P l The transfomed 2D tensor matrix of l-th layer.
|ψ⟩i The transformed i-th row quantum states.
UE The un-trainable encoding gates.
UT The trainable PQC gates.
U1×1 The unitary matrices with 1-qubit.

(Hl,W l, Cl) (Height, width, channels) of l-th layer.

Notations for QCOD.

C The number of activated channels {16, 32,64}.
γ The distillation coefficients {0.1, 0.3, ..., 0.9}.

L(C2Q,cls,reg) The utilized losses (KD, cls, reg ).
Ω(x;θQ) Output logit from quantum convolution layers.
Ω(x;θC) Output logit from classical convolution layers.

knowledge distillation regularizer into each loss function of the
QRPN (Lcls and Lreg). The total loss functions are designed as

Ltotal =
1− γ
Nc

Nc∑
c=1

Lcls +
λ(1− γ)
Nr

Nr∑
r=1

Lreg + γLC2Q (12)

where Lreg and Lcls are formulated as presented in [37]. In
addition, γ denotes the heterogeneous knowledge distillation
parameter 0 ≤ γ ≤ 1. Lastly, λ denotes the normalization
parameters between Lreg and Lcls.

E. Implementation details

To realize and simulate our fast quantum convolution and its
application, QCOD, we implement QCOD with the following
details. Table. I shows our implementation details. Particularly,
in all experiments, we set the number of channels C = 64
among 256 total channels utilized in [37]. The 2d-conv
illustrated in Fig. 5 is designed as a 4-qubit PQC. Both cls and
reg in Fig. 5 are designed with 1-qubit PQC. To design PQC,
this paper employs trainable U3CU3 layers which is composed
of CNOT gates and other rotation gates [38]. The trainable
gate is employed for the 1-qubit PQC. As an activation layer,
we utilize ReLU function.

VI. PERFORMANCE EVALUATION

First of all, this section introduces following three hypotheses
those are the main items which shoould be verified and
discussed.

• Hypothesis 1. Our fast quantum convolution has the
potential to incorporate multiple pieces of information.

• Hypothesis 2. Channel uploading has advantages in re-
ducing computational complexity rather than classical
quantum information encoding strategy.

• Hypothesis 3. QCOD has trainability, and heterogeneous
knowledge distillation has advantages in training QCOD.

To corroborate Hypothesis 1, we visualize quantum states
with corresponding encoded channels. As multi-qubit states
are challenging to be described [39], we utilize 1 × 1 PQC.
In addition, to compare the advantages of channel uploading
by adjusting the number of channels uploaded to corroborate
Hypothesis 2. Finally, to verify Hypothesis 3, we visualize the
results of QCOD and measure the performance of QCOD with
various training strategies.

A. Setup

This paper conducts all the experiments using classical
computing with a Linux-based machine which has Intel i9-
10990k, NVIDIA Titan X (2ea), and RAM 128GB. Python
v3.8.10 and quantum computing simulation libraries (e.g.,
torchquantum v0.1.5 [40], pytorch v1.8.2 LTS) are employed
for simulating the fast quantum convolution. For QCOD
simulation, we use KITTI dataset [41] which is a well-
known object detection dataset for autonomous driving. All
of the comparative models are trained with 15 epochs. This
paper utilizes a pre-trained feature extraction module and
classification module using VGG-16 [42]. Each module is
pre-trained using IMAGENET [42]. The initial learning rate is
set to 10−2.
Comparison techniques. To corroborate the advantages of
the fast quantum convolution and its application, QCOD,
we designed various simulations involving classification and
object detection. The brief explanation for each model used in
simulations is as follows:

1) FQC (proposed): FQC (proposed) is a simple convolution
layer designed using the fast quantum convolution. The
input features are encoded via channel uploading and the
output features are decoded via channel reconstruction.

2) QCOD (proposed): The QCOD (proposed) is designed
using the fast quantum convolution for object detection.
This model is trained via heterogeneous knowledge
distillation.

3) QCOD (w/o kd): QCOD (w/o kd) is a ablation version
of QCOD (proposed). The heterogeneous knowledge
distillation parameter γ is set to 0.

4) F-RCNN (baseline): F-RCNN (baseline) is a baseline
model to implement QCOD. F-RCNN (baseline) is also
used as a teacher network to train QCOD (proposed) via
heterogeneous knowledge distillation.

5) Quantum convolution: Quantum convolution is designed
as an existing quantum convolution with patch processing.
This model utilizes PQC for each channel.

B. Evaluation Results

This paper corroborates the performance and feasibility of
our fast quantum convolution through experiments represented
in Fig.6 and Fig.7(a). In addition, this paper conducts object
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(a) Green (Rx). (b) Red (Ry).

Re-uploaded 
States

(c) Blue (Rz). (d) Proposed.

Fig. 6. Visualization of quantum states using various encoding strategies. (a-c)
represents quantum states encoded with the classical quantum convolution
strategy. (d) represents the states of fast quantum convolution. To visualize the
quantum state, a 1-qubit (PQC) is utilized. The (green, orange, blue) vectors in
(d) represent the (first, second, final) quantum states with uploaded channels.

TABLE II
MAP @0.5 (%) OF QCOD AND COMPARATIVE MODELS

WITH 64 CHANNELS ON KITTI DADASET.

Dataset Model Heterogeneous KD (γ)
0 0.1 0.3 0.5

KITTI
QCOD (proposed) - 48.5 51.2 49.1
QCOD (w/o KD) 21.1 - - -

F-RCNN (baseline) 68.4 - - -

detection computation using various training methods and
numbers of channels in experiments, as represented in Table II
and Fig.7(b-c). Finally, Fig.8 shows the results of object
detection computation using our proposed QCOD with our
fast quantum convolution on KITTI dataset.
Performance of fast quantum convolution. Fig. 6 and Fig. 7
(a) corroborate the feasibility and trainability of fast quantum
convolution. We observe that features extracted from our
fast quantum convolution in Fig. 7 (a) can be trained using
classical optimization techniques. In Fig. 6 (a-c), the encoded
states with classical quantum convolution achieve each channel
information. Therefore, the number of required qubits equals the
number of the input channels. However, As represented in Fig. 6
(d), our fast quantum convolution generates superpositioned
quantum states that contain information about the channels.
Furthermore, compared with Fig. 6 (c), our proposed model
shows more clear representation ability even using same
encoding gate. Based on the results presented in Fig. 7 (a),
we observe that our fast quantum convolution executes more
quickly than other quantum convolution methods. However,
a significant decrease in performance is also observed as the
number of uploaded channels exceeds the threshold value.
This phenomenon is attributed to information loss resulting
from the overlap of encoded information on qubits rather than
a one-to-one encoding. It is a remaining challenge of our
fast quantum convolution, and with the rapid advancement of
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Fig. 7. Performance and loss comparison of various convolution strategies and
their object detection applications (a) is conducted on the 32×32 size CIFAR10
dataset. (b) and (c) are measured on the resized 1382× 512 KITTI dataset
with 1 batch-size. In experiments (b) and (c), we set knowledge distillation
parameter γ = 0.1. We utilize the set of Ry gates for uploading.

quantum computing, this challenge can be mitigated as more
qubits become available.
Feasibility of QCOD. Through extensive experiments, we
verify the feasibility of QCOD as an actual object detection
application. Fig 7 (b) and (c) represent the performance and
activation time of our QCOD according to the number of
utilized channels. With the 64 channels, our QCOD shows high
performance, even in complex object detection application. As
illustrated in Fig.8, QCOD effectively draws bounding boxes
tailored to objectives and transfers information, enabling object
classification. As the first quantum version of object detection,
QCOD shows the feasibility of quantum applications using our
fast quantum convolution. To improve our QCOD, finding the
optimal number of uploaded channels remains challenging. As
QCOD increases the number of channels 32 to 64, the QCOD
achieves 38% performance gain. On the other hand, when
the number of channels becomes 128, a severe performance
degradation is observed. In addition, Fig. 7 (c) represents
that the performance and activation time are not proportional.
Therefore, considering the performance and activation time,
finding the optimal number of uploaded channels is crucial.
Advantages and disadvantages of heterogeneous knowledge
distillation. We investigate the impact of heterogeneous knowl-
edge distillation on the performance of QCOD, which affects
the practical utilization of quantum-based applications. Table II
shows the results of heterogeneous knowledge distillation.
When we apply heterogeneous knowledge distillation with a
parameter value of λ = 0.3, classical knowledge is effectively
transferred, leading to an enhancement in QCOD performance.



9

Fig. 8. QCOD on KITTI dataset with heterogeneous knowledge distillation parameter γ = 0.3 and with 64 number of channels. The yellow, green and pink
boxes include pedestrians, cyclists and cars, respectively.

However, when we do not utilize heterogeneous knowledge
distillation, our QCOD achieves a score of 21.1. These results
highlight the substantial performance improvement can be
achieved when utilizing heterogeneous distillation. On the
other hand, when training with γ > 0.3, we observe a
performance degradation. This result indicates a existence of
the threshold value for γ, underscoring the significance of
finding the appropriate γ value tailored to the objectives of

each QCOD applications.

VII. CONCLUDING REMARKS

This paper proposes the fast quantum convolution and its
practical application in object detection, named QCOD. With
our fast quantum convolution, which uploads input channel
information and reconstructs output channel information, we
observe the feasibility of quantum-based applications. To
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implement our fast quantum convolution in QCOD, we design
a training method using heterogeneous knowledge distillation.
By adopting knowledge distillation to transfer knowledge
from the classical object detection domain to the quantum
object detection domain, QCOD achieves robustness in object
detection and adequately training the PQC. We analyze the
complexity of our fast quantum convolution and QCOD
to verify the advantages of our fast quantum convolution.
Through extensive simulations, this paper corroborates i) the
trainability of our fast quantum convolution, ii) the advantages
of heterogeneous knowledge distillation, and iii) the feasibility
of our QCOD.
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