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ABSTRACT

Epigenetic variation contributes to explaining the missing heritability of complex traits.
In order to understand the genome-wide methylation variation in spring barley, our objec-
tives were to gain fundamental insight into the barley methylome through whole genome
bisulfite sequencing, characterizing methylation variation among 23 parental inbreds of a
community resource for genetic mapping of phenotypic traits, and assessing the association
of differentially methylated regions (DMRs) with single nucleotide polymorphisms (SNPs)
and gene expression variation. Compared to other angiosperms, barley was found to have a
highly methylated genome with an average genome wide methylation level of 88.6%, 58.1%,
and 1.4% in the CpG, CHG, and CHH sequence context, respectively. We identified just
below 500000 differentially methylated regions (DMRs) among the inbreds. About 64%,
64%, and 83% of the DMRs were not associated with genomic variation in the CpG, CHG,
and CHH context, respectively. The methylation level of around 6% of all DMRs was sig-
nificantly associated with gene expression, where the directionality of the correlation was
depended on the relative location of the DMR to the respective gene with a recognizable
pattern. Notably, this pattern was much more specific and spatially confined than the
association of methylation with gene expression across genes in a singular inbred line. We
exemplified this association between DNA methylation and gene expression on the known
flowering promoting gene VRN-HI and identified a highly methylated epiallele associated
with earlier flowering time. Finally, methylation was shown to improve the prediction abil-
ities of genomic prediction models for a variety of traits over models using solely SNPs
and gene expression as predictors. These observations highlight the independence of DNA

methylation to sequence variation and their difference in information content. Our discov-



eries suggest that epigenetic variation provides a layer of information likely not predictable

by other means and is therefore a valuable addition to genomic prediction models.



INTRODUCTION

Barley (Hordeum vulgare) is one of the world’s oldest and most produced crops with world-
wide importance for animal feed and alcohol production [1]. In addition, it is not only im-
portant for global food security, but also serves as an important model organism for other
cereals due to its smaller diploid genome and simple inbreeding genetics [2]. This raises the
need for a greater understanding of its genetics, genomics, and physiology to increase the
yield and meet global demands. However, in any species, genetic variation alone cannot
explain all of the phenotypic variation of any macroscopic or microscopic phenotype, a
phenomenon known as missing heritability [3]. Epigenetic variation was proposed as one

of the possible molecular reasons for it [4].

Many definitions of epigenetics have been proposed over the years [5, 6]. However,
today it is commonly accepted that epigenetics summarizes those variations that are not
necessarily associated with changes in the DNA sequence, which includes chromatin and
histone modifications, non-coding RNAs, and DNA methylation [5, 7-9]. Histone modifica-
tions are involved in many important processes like plant development and stress response
by primarily recruiting chromatin remodeling enzymes, which effects the accessibility of
chromatin and, thus, regulating gene expression [10, 11]. Like histone modifications, non-
coding RNAs are involved in many important processes including plant growth, develop-
ment, stress response, cell differentiation, and cell cycle progression through transcriptional
and post-transcriptional gene expression regulation [11, 12]. Both histone modifications
and non-coding RNAs regulate the response to biotic and abiotic stresses in barley and

its close relative wheat [11]. For example, during drought stress, barley increases its H3-



density at response genes and establishes euchromatic marks that increase their expression

[13].

One of the most researched aspects of epigenetics is DNA methylation. This is because
evidence for its heritability is rather well-established in comparison to other epigenetic vari-
ations [7, 14-16]. DNA methylation is the addition of a methyl or hydroxymethyl group to
the C5 position of cytosine forming 5-methylcytosine or 5-hydroxymethylcytosine, respec-
tively [17]. In plants, methylation occurs in three sequence context: CpG, CHG (where
H refers to any base but G), and CHH [18]. De novo methylation of cytosines is cat-
alyzed by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) [19]. CpG
methylation is then maintained by DNA METHYLTRANSFERASE 1, CHG by CHRO-
MOMETHYLASE, and the asymmetric CHH methylation is maintained by continuous de
novo methylation by DRM2. DNA methylation in plants largely targets repetitive elements
like transposons [19-21]. Genes are usually only CpG methylated except for transcription

start sites (T'SS) and transcription termination sites (TTS) where methylation is absent.

Investigation of the methylation landscape is important due to its various regulatory
functions. It plays an important role in plant development through zygotic gene expression
regulation and imprinting, resulting in the differential expression of maternal or paternal
alleles [22, 23]. It is a conserved epigenetic modification that can alter the state of chro-
matin and therefore influence chromosome interactions. For example, hypermethylation
decreases the frequency of crossovers [24]. Methylation can silence transposable elements

(TEs) and consequently contribute to the overall genome stability [25]. Furthermore, pro-



moter methylation can lead to downregulation of gene expression by inhibiting transcription
activators, promoting repressors or even influencing histone modifications. On the other
hand, gene body methylation can increase gene expression, which is strongly conserved
between orthologs and therefore a long-term property of evolutionary consequence [21, 26].
For example, DNA methylation regulates many abiotic stress responses in plants and is
able to produce a short- and long-term memory without sequence changes [27] and, thus,
such epialleles may be inherited independently from the DNA sequence [28]. Barley has
been shown to also regulate its drought and moisture stress responses by DNA methylation

29, 30].

Finding differences in methylation between individuals is usually done by first test-
ing for differentially methylated cytosines (DMCs) and then collapsing regions of multiple
DMCs into differentially methylated regions (DMRs), but DMRs can also be identified
directly [31]. Interestingly, about half of the common DMRs in a maize study were not
associated with local genetic state [32]. In a second study in maize by Xu et al. [33] even
60% of the DMRs showed no association with sequence variation. However, these DMRs
were strongly correlated with gene expression and even associated with phenotypic traits
that could not be explained by single nucleotide polymorphisms (SNPs). Human genetics
show that especially the combination of genetic and epigenetic information is improving the
phenotypic prediction score for complex traits [34]. Studies with plants also indicate a huge
benefit in the addition of epigenetics to phenotypic prediction for many important traits
especially seed quality, yield components, energy-use efficiency, and respiration, which are

of high interest to plant breeders [35-38]. For example, in a study aiming to predict plant



height of Arabidopsis thaliana, epigenetic variation explained 65% of the phenotypic vari-

ance [39]. However, such information is not yet available for any small grain cereal.

Several studies of DNA methylation in barley are available. However, most of these
studies focused on finding differences among two groups, typically a treatment and a con-
trol group. For example, the mediation of heat or drought stress through methylation was
frequently assessed in different barley varieties [29, 40-42]. While these studies provide
insight into methylation changes in barley upon exposure to stress, they fail to character-
ize the methylome variation among inbred lines, as well as its association with genomic,
trancriptomic, and phenotypic variation on a broad scale.

First efforts have been made by Malinowska et al. [43] to characterize methylome varia-
tion in barley, however the study was based on reduced representation bisulfite sequencing
(RRBS) only covering 0.7% of the barley genome. The same limitation is also true for the
study of Hansen et al. [44]. Therefore, in order to understand the genome-wide methyla-
tion variation and support quantitative trait loci cloning projects that rely on the alleles

segregating among the 23 spring barley inbreds, the objectives of this study were to:

i. Gain fundamental insight into the spring barley methylome through whole genome

bisulfite sequencing (WGBS)

ii. Characterize its variation among 23 parental inbreds of a community resource for

mapping phenotypic traits

iii. Assess the association of DMRs with SNPs and gene expression variation



MATERIAL AND METHODS
Plant material

From a total of 224 spring barley accessions [45], 23 were selected for maximal combined
phenotypic and genotypic richness as previously described by Weisweiler et al. [46].

These inbreds are the parental inbreds of the barley double round robin population (Hv-
DRR, [47]). Seeds of the 23 inbreds were sown in a greenhouse in mid-July. Seedlings
were placed in the vernalization chamber with 16 hours of light at 22 °C for five weeks and
subsequently repotted to ensure homogeneous growth. Tissue samples of 3 x 1 ¢cm were col-
lected from the youngest leaf one week after the transfer to the greenhouse. Apex samples
were collected when stage 47 of the Zadoks scale was reached [48]. Seedling samples were
grown under the same conditions in petri dishes and collected five days after germination.
HOR7985, HOR8160, Sissy, SprattArcher, Unumli-Arpa and W23829/803911 tissue sam-
ples were mixed, respectively. The remaining inbred line samples consist only of leaf tissue
(Table S1). For Sissy, three additional samples were collected: one for leaf, apex and

seedling, respectively. The data set comprised no biological replicates.

SNP and gene expression data

A set of 79348211 SNPs from whole genome DNA sequencing for the 23 barley inbred
lines was available from Weisweiler et al. [49]. In order to reduce the covariance due to
environmental factors between methylation and gene expression, we used two gene expres-
sion datasets that were available from Weisweiler et al. [46] which were generated for the
same genotypes but different plants. The first dataset consisted of leaf expression data for

21 inbred lines, not including Kombyne and Sanalta. The second set consisted of seedling



expression data for 21 inbred lines, not including 1G128216 and Sanalta. Raw data was
remapped against the Morex v3 reference and subsequently normalized using DESeg2 [50].

Finally, missing inbreds were mean imputed.

Phenotypic data

Six phenotypic traits were assessed in seven environments (Cologne, 2017 to 2019; Mecher-
nich and Quedlinburg, 2018 to 2019) in Germany. The 23 inbreds were sowed as replicated
checks in an augmented row-column design of other genetic material. The heading time
trait was measured as days after planting. Plant height (cm) was measured after head-
ing in Cologne and Mechernich. Seed area (mm?), seed length (mm), seed width (mm),
and thousand grain weight were measured using grains from Cologne, 2017 to 2019, and
Quedlinburg, 2018, with a MARVIN seed analyzer (GTA Sensorik, Neubrandenburg, Ger-

many) [49].

Sequencing

Genomic DNA was extracted using DNeasy Mini Kit Plant (Qiagen). 1 pg of genomic
DNA was submitted to mechanical shearing using a Covaris instrument with target frag-
ment length set to 300-500 bp. Library preparation was performed with the NEBNext(®)
Ultra™ II DNA Library Prep Kit for Illumina kit. Methylated adapters were used to
prevent conversion of adapters (NEB single methylated index (Catalog €7535)). Prior
to PCR amplification, adapter ligated libraries were bisulfite treated using the EZ DNA-
Methylation Lightning™ Kit (Zymo) following manufacturer’s instructions. The resulting

paired end libraries were sequenced with Illumina Hiseq2000 and NovaSeq.



Bisulfite mapping

Raw reads were adapter and quality trimmed with Trimgalore [51] and mapped with Bis-
mark [52] using Bowtie 2 [53], which is recommended especially for large genomes with
many repetitive sequences [54].

To increase the mapping efficiency, the reference sequence Morex v3 [55] was SNP corrected
with known SNPs for each inbred, respectively. Insertion and deletion correction was also
evaluated but the increase in mapping efficiency was less than 0.5 % compared to solely
SNP correction (Table S2). This was not enough to justify the added complexity of shifted
genomic positions among the genotypes and was therefore not further evaluated.

The Bismark options --score_min 1.,0,-0.6 -X 1200 were selected to optimize the mapping
efficiency without sacrificing quality (Table S3). This decreased the minimum alignment
score required and increased the maximum insert size of paired end reads [56, 57]. The
option -N 1 which sets the number of allowed mismatches to one was also evaluated, but
resulted in a worse mapping efficiency.

PCR duplicates were subsequently removed and DNA strands joined using the --comprehensive

option.

Quality control

Identification of sample identity

To ensure that none of the samples have been swapped during library preparation, the
identity of each sample was verified by comparing SNP calls in the bisulfite data with
known SNPs. Firstly, SNPs were identified with Bis-SNP [58] using the uncorrected Morex

reference sequence. SNPs were then filtered for shared genomic positions between both
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datasets. For each shared SNP, the allele calls were compared between the samples. If two
samples have the same genotype, they should have the highest number of matching allele

calls.

Conversion rate

Bisulfite conversion rates were assessed using standard protocols utilizing unmethylated
chloroplast DNA and counting the number of methylated reads among all reads for each

sample [59].

Reproducibility

In order to assess the technical error of our procedure, Pearson correlations of the pro-
portion of methylated reads between the mixed Sissy inbred line sample and the weighted
average across the three separate tissue samples of Sissy were calculated. Only sites with

a minimum coverage of 5 in all samples were included.

DMR identification and characterization

DMRs were called using Methylscore at default settings [60]. Since methylscore does not
natively support large chromosomes a customized version was used.

DMRs were classified as TE or genic when they overlapped to at least 50% of their physical
length with TEs or annotated genes, respectively. The proportional overlap was calculated
relative to the shorter feature so that the shorter length was the dividend. If DMRs
intersected both genomic features simultaneously, they were classified as gene + TE. The

remaining DMRs were classified as intergenic. The experiment was repeated a second time



11

assessing overlaps of DMRs with specific TE classes present in the barley genome. The

number of overlaps was normalized by the respective TE class frequency.

Population structure analysis

The population structure of the 23 spring barley inbreds was analyzed with Principal
Coordinates Analyses (PCoAs) based on euclidean distances of DMRs, SNPs and both
expression datasets separately. To quantify the similarities between the population struc-
tures derived from the different data sets, a generalized procrustes analysis (GPA) was
performed with FactoMineR [61]. Subsequently, 1 — the procrustes similarity indexes were
used as dissimilarity measurements in a final PCoA [62]. DMR population structures were

calculated separately for each sequence context for the GPA.

Local association
Local association among DMRs and SNPs

To identify DMRs with a significant association to SNPs, the approach of Eichten et al.
[32] was modified to save computation time. This procedure was applied to all DMRs for
the three sequence contexts separately.

Firstly, DMRs were filtered for a maximum of 50% missing data. SNPs were filtered for
a maximum of 20% missing data, maximum 20% heterozygosity, minimum minor allele
frequency of 5% and to include only biallelic SNPs. Each SNP in the region of any DMR
+10 kb was tested individually, in contrast to the study of Eichten et al. [32] with a
Wilcoxon rank-sum test, since the residuals were not normally distributed. To define a

significance threshold, each DMR that has at least one SNP in the vicinity was tested with
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10 regions of 100 random SNPs, which are not in proximity to any DMR. The significance
threshold was set to the 5% quantile of all control P values across the three methylation
contexts. DMRs were filtered again for at least three significantly associated SNPs. For
only those DMRs, 90 additional SNP regions were tested. The significance threshold was
revised to the 1% quantile of all control P values. For each DMR that still has at least
three significantly associated SNPs, a ranking was conducted between the proportion of
associated SNPs in its proximity and the proportion of associated SNPs in each control
region. Only when the SNPs in the proximity of the DMR were in the top 5% of the

ranking, the DMR was classified as SNP associated.

Local association among DMRs and gene expression

Spearman’s rank correlation coefficients were calculated between the methylation levels of
each DMR and the expression of the closest gene for those DMRs, where the variation of
gene expression in inbred lines with the same epiallele was >0 for at least one epiallele.
Association between DMRs and their closest gene expression state were performed for both
expression datasets and the three sequence contexts separately. Benjamini-Hochberg false
discovery rate control (FDR) was applied to find significant associations. Additionally,
1000 random DMRs were correlated with 1000 randomly selected genes for each context

for comparison.
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Genomic prediction

A linear mixed model was used to analyze each phenotypic trait across all seven environ-

ments and estimate adjusted entry means for all barley inbred lines:
Yijk = b+ Ej + Gi+ (G * E); + i,

where ;5 corresponds to the observed phenotypic value of inbred 4 in environment j of
replicate k. The general mean is denoted as u. G; defines the genetic effect of inbred
i, Ej the effect of the j environment, and (G * E)Z-j the interaction effect of the given
inbred and environment. The random error is represented by €. A variety of predictors
was evaluated with respect to their performance to predict the adjusted entry means of
all inbreds for each trait measured as the prediction ability (r), a Pearson’s correlation
between the observed y and the predicted §. The predictors for the genomic best linear
unbiased prediction (GBLUP) [63] model were: a Illumina 50K barley SNP array [49, 64],
DNA sequencing SNPs [49], seedling gene expression data [46], and DNA methylation data
from this study. Both the SNP Array and DNA sequencing SNPs were filtered to remove
markers which were monomorphic, had >20% missing data, and had a minor allele fre-
quency <=5%. Only biallelic SNPs were retained. Missing data were mean imputed. The
DNA methylation data was filtered to remove sites with >20% missing data, monomorphic
cytosine sites and was mean imputed.

W for predictor m had the dimensions of the number of barley inbreds (n = 23) x the num-
ber of features of the given predictor (msnparray = 38285, mgnps = 38 725 848, mEgpression =
43769, mpsethylation CpG = 238842649, msethyiation cG = 204877046, masethylation CHH =

789553379). All W matrices were column centered, standardized to unit variance and de-

noted as W*. Additive relationship matrices were defined as G = W*WVY*T, where W*T' was
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the transposed W* matrix. To combine the methylation information of the three sequence
contexts into one G matrix, a joined weighted relationship matrix [65] was formed using
the number of cytosines as weights. As the focus of our study lied on the question if
methylation can improve genomic prediction using multi-omics predictors, joined weighted
relationship matrices of DNA sequencing SNPs and expression; DNA sequencing SNPs and
methylation; and DNA sequencing SNPs, expression, and methylation were formed with
all possible weight combinations ranging from 0 to 1 in steps of 0.1, where the summation
of all weights needed to equal 1 for each combination, respectively.

For the investigation of the prediction ability, 200 five-fold cross-validation runs were used.
The median correlation of the five folds was determined and the median of the median

correlation across the 200 replicates was calculated as the prediction ability [49].
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RESULTS

The methylation dataset consisted of >15.2 billion read pairs which were aligned to a
SNP corrected Morex v3 reference sequence with customized parameters to increase the
alignment rate (Table S2 and S3). This resulted in >10.8 billion unique alignments with a
mapping efficiency of 70.8%. The number of uniquely aligned read pairs per sample reached
from 152339694 to 601070430. A negative correlation of -0.39 between the mapping
efficiency and the genetic distance of each inbred line and Morex was observed. The
average conversion rate across all 26 samples was >99%. The coverages of Cytosine sites
were on average across all samples 9.4, 9.6, and 10.4 in the CpG, CHG, and CHH sequence
context, respectively. Since the main objective of our study was to assess methylation
variation as a characteristic of genotypes instead of different tissues, Pearson correlation
coeflicients between a pool of three Sissy tissues and the average of the three individual
tissues was calculated. The correlation coefficients were 0.86, 0.89, and 0.66 for the CpG,
CHG, and CHH sequence context, respectively (Figure S1). This approach also served to

assess the reproducibility of the methylation levels in this study.

The barley methylome

The average methylation levels across the 23 barley inbred lines were 88.6%, 58.1%, and
1.4% in the CpG, CHG, and CHH sequence context, respectively. Mean methylation levels
calculated in bins of 5 Mbp across 23 inbred lines were tending to be lower at the distal
regions of the chromosomes in the CpG and CHG context where the repeat content was
also lower (Figure 1). For CHH methylation, the opposite trend was observed. CpG

methylation levels showed local minima in the centromeric region, while CHH methylation
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showed a minor peak in that region. The overall shape of the curves was largely uniform
across the chromosomes with a mean standard deviation of 8.71%, 10.71%, and 0.28% in
the CpG, CHG, and CHH context, respectively (Figure S2).

In order to assess DNA methylation on a local level around genes, these were averaged
in 100 bp bins between 10 kb up- and downstream of all T'SS and T'TS and then averaged
across the inbreds (Figure 2). In all contexts, DNA methylation minima were observed at
TSS and TTS. The slope of methylation was generally more steep on the side before a
TSS and after a TTS compared to after a T'SS and before a TTS. The trend of the curves
at T'SS and TTS was largely symmetric. CpG and CHG methylation levels varied strongly
between the genotypes around TSS and TTS, but the overall shape of the curves showed
the same trend. CpG methylation displayed, in comparison to the other two sequence
contexts, the steepest decline and increase right before and after a T'SS and the steepest
increase after a T'TS. CHG methylation showed a less steep increase over a long genomic
sequence after a TSS in comparison to CpG methylation. Interestingly, CHH methylation
appeared to have a peak right before a TSS, followed by a minimum before returning to
the normal level. The opposite trend was observed at TTS. However, the peak in CHH

methylation was more pronounced before a TSS than after a TTS.

Gene methylation and expression

Genes of the leaf expression dataset of Sissy were categorized based on their expression
level in five groups (100% quantile > High > 75% quantile; 75% quantile > Medium
High > 50% quantile; 50% quantile > Medium Low > 25% quantile; 25% quantile >
Low > 0% quantile; None = 0) and divided together with their corresponding 2 kb up-

and downstream regions into 200 bins, respectively, across their physical length to assess
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methylation levels among genes of different expression levels in one genotype. Subsequently,
average methylation levels were calculated for each bin in the Sissy leaf tissue bisulfite
data (Figure 3). Highly expressed genes were strongly methylated in the CpG context and
moderately methylated in the CHG context. They were also only slightly more methylated
in the CHH context compared to less expressed or silenced genes. On the other hand, CpG
and CHG methylation in the up- or downstream regions of the gene body were associated
with a low expression. This was in contrast to CHH methylation, which was positively
associated with an increase of expression. Interestingly, silenced genes showed the highest
CHG methylation levels in the gene body region, while highly expressed genes were only
slightly less methylated. The same results were obtained using the Sissy seedling gene

expression and methylation data (Figure S3).

Differential methylation

Among the 23 barley inbred lines, 244 689, 151992, and 103 115 DMRs with a minimum of
five DMCs per DMR in the CpG, CHG, and CHH context were discovered, respectively.
Even though CHH sites were about 2.1 times more common than CpG and CHG sites
together, they showed the least amount of differential methylation with a proportion of
20.63% of all DMRs. DMRs tended to be located at the ends of the chromosomes with up
to 22.78 fold more DMRs compared to the pericentromeric regions (Figure 4a). This was
especially noticeable towards the 3’ end. Nevertheless, a local maximum in the number of
DMRs was found right at the centromere in all chromosomes when considering all three
sequence contexts. DMRs of the CHG and CHH context were distributed similarly to that
of the CpG contexts. However, CHH DMRs not only tended to be fewer, but were also

generally shorter than DMRs of the other two contexts (Figure 4c).
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In addition to the correlation of methylation levels between the physically bulked Sissy
tissues and the mean of the separate tissues, also DMRs between the three tissue samples
of Sissy were called. In comparison to the mean of 100 replications of three randomly
selected unique combinations of barley inbred lines, the amount of DMRs between the
three tissues were about 224, 24193, and 2 times lower in the CpG, CHG, and CHH
context, respectively (Table 1).

DMRs were classified as TE, genic, gene + TE, or intergenic based on positional inter-
sections (Figure 5a). The majority of all DMRs were classified as TE in the CpG and CHH
context with a share of 45% and 70%, respectively. Intergenic was the second most common
category with 40% and 25% for the CpG and CHH context, respectively. In contrast, CHG
DMRs were most often classified as intergenic with a share of 48% and TE was the second
most common class with 40%. For CpG, the highest proportion of genic DMRs across
the three sequence contexts was observed with 13%. Repeating the experiment with no
minimum required overlap-size did not change the results considerably. Since the majority
of DMRs were classified as TE, a more detailed analysis was conducted to determine which
TE classes most frequently overlapped with DMRs. In total as well as in the CpG context,
intersections with retrotransposons of the RXX class were the most common (Figure 5b).
In the CHG sequence context, intersections with transposons of the DHH class were more

frequent, while DTX transposon intersections were the most common in the CHH context.

Population structure analysis

Euclidean distances were calculated from DMRs and subjected to a PCoA (Figure 6a).
The axes explained 11.48% and 7.54% of the total variance. The resulting population

structure formed three clusters. One cluster consisted of two-row landraces and cultivars,
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while six-row inbred lines were clustered in a separate cluster. The cluster in the center
of the PCoA consisted out of two- and six-row inbred lines. Inbred lines from the same
country of origin mostly fell into the same cluster like the Syrian 1G31424 and HOR12830,
the Turkish HOR7985 and HOR8160, or the Indian Lakhan and Kharsila.

Comparing the population structures derived from SNPs, the two gene expression
datasets and DMRs, separate for each context, using GPA, revealed considerable differ-
ences (Figure 6b). The DMR based population structures clustered closely together, while
the SNP and expression population structures were spread out. Interestingly, the distances
between the SNP and expression population structures were smaller between each other
than to the DMRs. Furthermore, we observed a correlation of -0.07 between the distance

matrices calculated from SNPs and DMRs using a Mantel test with 99 permutations.

Local association of DMR

In the CpG, CHG, and CHH sequence context, 36.37%, 36.20%, and 16.59% of the DMRs
were significantly (p < 0.01) associated with at least three local SNPs, respectively. SNP
associated DMRs largely accumulated at the ends of the chromosomes in all three sequence
contexts, notably towards the 3’ end (Figure S4). This trend was similar to the distribution
of all DMRs with an average Pearson’s correlation coefficient of 0.91 across all chromosomes
and sequence contexts (Figures 7 and 4a). In addition, we observed that the Kolmogorov-
Smirnov test of uniformity of the number of SNP associated DMRs corrected for the number
of DMRs per bin was not significant (p < 0.05) for all chromosomes and contexts. This
shows, that when corrected for the total amount of DMRs, the SNP associated DMRs
distributed more towards the far chromosome ends than the total amount of DMRs. Most

notably, some chromosomes showed local maxima in the proportion of SNP associated
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DMRs among all DMRs in the pericentromeric region, while others show local minima
even when corrected for the total amount of DMRs (Figure 7).

The distribution of the Spearman’s correlation coefficients between the methylation
level at DMRs and the gene expression of the closest gene illustrated that only a low pro-
portion of all genes was highly positively or also negatively correlated with methylation
across the inbreds, while most genes showed low to medium correlations in all sequence
contexts (Figure S5). The same was also the case for 1000 random DMR correlations
with 1000 randomly selected genes. Except for CpG and CHG, where a negative trend of
correlation between gene expression and methylation at DMRs was found in close prox-
imity to the TSS, all distributions were symmetric around 0 across the various distance
groupings and did not differ from the random correlations. Only if significant correlations
(FDR < 0.05) were considered, the distributions showed a negative correlation trend in
the CpG and CHG contexts upstream of, and most notably at, the TSS (Figure 8). Cor-
relations downstream of the TSS tended to be positive in the CpG context, while they
were strongly negative in the CHG context up to 2kb from the TSS. In the CHH context,
all correlations between the DMRs and gene expression were strongly positive regardless
of the distance to the TSS. However, a slight pattern can be recognized in stronger pos-
itive correlations closer to the T'SS. Spearman’s correlation coefficient distributions of all

contexts were similar between the leaf and seedling expression datasets.

Association of DMR and phenotypic variation

One of the CHG DMRs with a high correlation of its methylation level with gene expression
of +0.53 with one gene in the seedling expression dataset was indentified in an intronic

region of VERNALIZATION1 (VRN-H1; Figure 9). VRN-H1 transcribes a MADS-box
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transcription factor which promotes flowering and is part of the main genes regulating
vernalization response [66]. We observed two epialleles at this DMR: epiallele 1 with a
mean CHG methylation level of 73% and epiallele 2 with a mean CHG methylation level
of 52% (Figures 9a and 9b). The inbred lines carrying epiallele 1 showed an increased
expression of VRN-H1 in both expression dataset and an earlier flowering time compared
to the inbreds carrying epiallele 2 (Figure 9c). The DMR was not associated with SNPs
or structural variants in the regulatory or coding region of VRN-H1 [49]. Methylscore was
unable to assign an epiallele to inbreds HOR1842, 1G128104, and Sissy, which showed an

average CHG site coverage of 1.3, 2.6, and 1.6 within the DMR, respectively.

Methylation as a predictor of phenotypic variation

A SNP array, DNA sequencing SNPs, gene expression, and methylation data were used as
single predictors to assess the median prediction ability for six traits in a GLUP framework.
In addition, for the DNA sequencing SNPs, gene expression and methylation data, joined
weighted relationship matrices were created with all possible weight combinations between 0
and 1 in steps of 0.1 to select the one with the highest median prediction ability (Figure 10).
The prediction abilities across all six traits ranged from 0.17 to 0.85. The joined relationship
matrices of DNA sequencing SNPs, gene expression, and methylation (S+M+E) and the
ones of DNA sequencing SNPs with methylation (S+M) had the highest prediction ability
across the six traits followed by the SNP array and the DNA sequencing SNPs alone. The
mean optimal weight across all traits in the S+M scenario was the highest for methylation
with 0.63. In the S+E scenario, DNA sequencing SNPs had the highest mean optimal
weight of 0.83. The highest mean optimal weight in the S+E+M scenario was observed for

methylation with 0.52.
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For the traits plant height and seed length, methylation outperformed any other predictor,
which was indicated by a weight of 1 in the optimal joined relationship matrices. The
prediction ability of plant height and seed length was improved by 0.1 and 0.16, respectively,
using methylation data as a predictor compared to the SNP array.

For the traits seed area, seed width, and thousand grain weight, the combination of S+M
outperformed the combination of expression data and DNA sequencing SNPs (S+E) and
DNA sequencing SNPs alone with improvements ranging from 0.01 to 0.03 compared to
the DNA sequencing SNPs. Instead, the prediction ability for the traits seed area and
thousand grain weight was the highest using the SNP array. The prediction ability could
not be improved by adding methylation data for the prediction of the trait heading time

in comparison to S+E.
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DISCUSSION

From the observed high conversion rates of >99%, which are comparable to those reported
in literature [67, 68], it can be concluded that the methylation data for all inbred lines is
of high quality and that there is no bias due to the bisulfite treatment. In addition, we
observed high and significant correlation coefficients among the technical replicates which
indicates a good reproducibility of this experiment in the CpG and CHG context. In con-
trast, for the CHH context, the reproducibility was only medium (Figure S1). Furthermore,
this observation of a high correlation between the methylation rates of a bulk sample and
an artificial bulk sample created from individual tissue sequence data suggested that the
bulking of tissue samples is a reasonable approach to assess a genotype specific methylation
profile at moderate costs. This conclusion is also supported by the observation of several
orders of magnitude less differential methylation among the tissues, especially in the CpG
and CHG context, compared to the amount of differential methylation among the inbreds
(Table 1). This illustrates that it is possible to investigate methylation differences of inbred
lines even if the samples consisted of different or mixed tissues.

In our study, no full genome sequence was available for all 23 inbreds. Instead, we have
used the SNPs of whole genome sequencing of the 23 inbreds to create a SNP corrected
reference sequence from the typically used barley reference sequence Morex [55]. This
approach, however, did not fully remove the mapping bias. We observed a negative cor-
relation between the mapping efficiency and the genetic distance of each inbred line and
Morex of -0.39. However, as only sufficiently covered cytosine sites are considered for dif-
ferential methylation analyses and the lowered mapping efficiency of distant inbreds effects

both methylated reads and unmethylated reads equally, we expect that no methylation



24

level bias is introduced by the differing relatedness of the characterized inbreds to Morex.

The barley methylome

The average methylation level of barley was exceptionally high when comparing it to A.
thaliana or rice [69, 70]. Compared to maize, the average methylation levels of barley in
the CpG and CHG context were about 10% higher and 1% lower in the CHH context [71].
The higher methylation levels in the CpG and CHG context can be explained by barley’s
large genome with many repetitive elements (Figure 1). Furthermore, the results for the
CpG and CHG context are in line with a previously introduced RRBS study in barley [43].
However, the average CHH methylation level observed in our study was about 48% lower
compared to the study using the RRBS approach. This might be due to sampling bias as
the previously mentioned study employing RRBS just covered 0.7% of the barley genome,
whereas we used the gold standard approach of WGBS (cf. Yong et al. [72]).

On a genome level, CpG and CHG methylation levels largely followed the distribution
of the repeat content with correlation coefficients of 0.67 and 0.82 (data not shown, Fig-
ure 1). Interestingly, barley showed a slight enrichment of CHH methylation around the
centromere like A. thaliana and contrary to rice [73]. Previous research in A. thaliana has
shown that centromere methylation plays an essential role in chromosomal stability and
regulates the frequency of meiotic recombinations [74-76].

On the level of genes, the steep drop in methylation level at TSS and T'TS is in agreement
with Malinowska et al. [43], though the rise of CHH methylation right before a TSS and
after a TT'S has not been reported earlier in A. thaliana, Brachypodium distachyon or rice
[20, 69, 70]. However, similar patterns of increased CHH methylation at the respective 5’

and 3’ flanking regions of T'SS and T'TS were observed in soybean, where CHH methylation
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was suggested to regulate gene expression during seed development [77]. However, the con-
crete function or effect of this rise in CHH methylation upstream of T'SS and downstream
of TTS especially in barley requires further research.

The approximation of the 95% confidence interval of methylation across inbreds indicates
that the course of the methylation level around genes is the same among the inbred lines.
However, this analysis also suggested the presence of large differences in the extend of

methylation among inbred lines (Figure 2), which will be discussed later.

Gene methylation and expression

On the level of a single inbred line, a clear relationship between the methylation levels of
genes and their expression was observed (Figure 3 and S3). Our observation indicated a
high potential to predict the expression of genes based on methylation level changes when
considering one genotype. Promoter methylation in the CpG and CHG context represses
gene expression, while CHH methylation in the upstream 2kb region increases gene expres-
sion on the genotype level, which is in line with previous research in barley and other crops
[33, 42]. The highly expressed genes had the highest methylation level in the gene body in
the CpG and CHH context, however in the CHG context, the most methylated genes were
not expressed, which is also observed in the previous study [42]. These observations could
potentially be explained by a high correlation of CHG methylation and dimethylation of
histone H3 lysine 9 (H3K9me2), a histone modification that typically leads to transcrip-
tion silencing. This aspect, however, is debated [78, 79] and requires further investigation.
These findings highlight the importance of accounting for the methylation context as well

as the location of the DNA methylation when investigating its influence on gene expression.
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Differential methylation

Explaining the variation of plant phenotypes is one of the key aspects in plant genetics
[80]. However, relying on sequence variation alone has resulted in missing heritability in
previous research [3]. As suggested by the tight relationship between methylation and gene
expression within one genotype, investigating the differences in DNA methylation may be
one of the key aspects to unravel more of the missing heritability [3, 4].

More CpG DMRs were identified than CHG DMRs (Figure 4a). The CHH context shows
the least amount of DMRs despite being the most frequent site (Figure 4a). This can prob-
ably be accounted to CHH sites being largely unmethylated (Figure 1). The accumulation
of DMRs towards the chromosome arms that was observed in our study (Figure 1) might
be explained by methylation being less conserved in the euchromatic chromosome arms
between the inbred lines e.g. epimutation rates are more prevalent in euchromatic regions
with many genic and intergenic sequences and depleted in pericentromeric regions [81].
A potential explanation might be that errors during meiosis lead not only to structural
variants [82] but also differences in methylation. This hypothesis is supported by a very
high average correlation between the amount of DMRs and the recombination rate of 0.76
across all chromosomes and contexts (data not shown, Casale et al. [83]). However, why
this finding can not be observed in soybean and is either not present in maize or only to a
far lower extent requires further investigation (Xu et al. [33], Shen et al. [84], and Li et al.
[85]; Figure 4a).

Additionally, we characterized the DMRs based on their overlaps with genic, intergenic or
TE features. DMRs in barley largely targeted TE, especially of the RXX class, which is

unsurprising given their high methylation ratio and the overall high repeat content in the
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barley genome (Figure 5a and 5b). This association of DMRs and TEs was also observed in
other crops, as DNA methylation is a key factor regulating their expression [84-86]. CpG
DMRs are located more frequently at annotated genes than DMRs of the other contexts.
This is likely because genes are predominantly CpG methylated [21].

We observed local maxima of DMRs at the centromeres that might be explained by se-
quence variation among the studied inbred lines. In rice, functional centromeres were either
hyper- or hypomethylated compared to the pericentromeric regions, which may be the re-
sult of sequence variation as hypothesized by Yan et al. [87]. This means, depending on the
sequence composition of the inbred line, different centromeres can either have a higher or
lower methylation level compared to the pericentromeric regions in the same cultivar. As
local maxima of sequence variation between the same barley inbred lines were previously
reported at centromeres [49], it may be possible that in our study the sequence variation
among the inbred lines is a cause for the local maximal of DMRs at the same centromeres.
This hypothesis is supported by the high amount of differential methylation that targeted

repeat rich genome regions (Figure 5a) but still requires further research.

Linkage disequilibrium of DMRs and SNPs

Investigating the linkage disequilibrium of DMRs and SNPs is crucial to understand the
independence of epigenetic variation to sequence variation as only such variation is able to
explain the missing heritability. In barley, 32% of all DMRs across all three contexts were
associated with SNPs (Figure 7 and S4). Similar results were observed in other crops like
maize with less than 40% SNP associated DMRs and soybean with about 23% [33, 84]. We
observed that SNP associated DMRs distributed more towards the far chromosome arms

than the total amount of all DMRs (Figure 7). However, unraveling the reasons of the lo-
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cal minima of SNP associated DMRs in the pericentromeric regions of some chromosomes,
while others show local maxima, requires further research.

The low amount of SNP associated DMRs highlights that there is a considerable differ-
ence in information content derived from DNA methylation compared to sequence varia-
tion. This hypothesis is also supported by the GPA of population structures derived from
DMRs and SNPs (Figure 6b), where these differences in information content can be ob-
served. This is further supported by the observation of a correlation of -0.07 between the
distance matrices calculated from SNPs and DMRs. A low level of linkage disequilibrium
between SNPs and DMRs emphasizes that DMRs reveal new levels of genotypic informa-
tion not accessible by other means. As we observed a tight relationship between the gene
expression and the extent of methylation within one genotype, as previously discussed, we
were interested in understanding the predictive power of methylation differences among

inbreds on the respective gene expression.

Association of DMRs with gene expression

The 23 inbred lines showed large differences in their methylation level around TSS and
TTS (Figure 2). We observed that most DMRs at genic loci were of the CpG context
(Figure 5a), as described previously. However, when looking at the number of significant
associations of DMRs with the expression of the closest gene, most of them were in the
CHG context (Figure 8). This highlights that the relevance of CHG methylation for the
regulation of gene expression, at least in barley, is higher than previously described in
literature [79, 88]. This can also be observed for the gene VRN-H1, which regulates the
vernalization response in barley (Figure 9).

When considering the association of DMRs with the expression levels of adjacent genes, it
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can be concluded that these differences are having only minor effects on gene expression
(Figure S5). Only when considering significant associations, strong correlations between
DMRs and gene expression were observed (Figure 8). However, significant associations
were only observed for 5.69% out of all annotated genes across the 7 chromosomes, which
is of the same order of magnitude as the 3.38% observed gene-DMR associations in maize
[33]. This illustrates, that the effect of methylation on gene expression across inbred lines is
limited and suggests that other cis-[89] or possibly trans-effects [90] are responsible for the
differential expression of the majority of genes. However, this requires further research.
As described above for barley (Figure 3) but also earlier in literature [21, 42], a pat-
tern of promoter methylation in the CpG and CHG context leading to downregulation of
expression emerges when considering different genes in a singular genotype, while CHH
methylation results in the contrary. When observing the methylation differences and gene
expression variation of the same genes across a diverse set of inbreds instead, a similar,
however more specific and spatially confined, pattern was recognized. A slight trend to-
wards negative correlations was observed between the extent of CpG methylation between
-10kb and -500bp upstream of the TSS. Right at the T'SS, a strong negative correlation
was observed. In contrast, in the downstream regions of the TSS from 500bp to 5kb a slight
trend towards positive correlations can be observed. These observations are in contrast to
the observations made across maize inbreds, where methylation at CpG DMRs associated
with repressed expression in gene body regions [33].

The trend of association between methylation at CHG DMRs was largely consistent with
that of CpG DMRs in the upstream region of the TSS from -5kb to -500bp and at the TSS

from -500kb to 500kb. However, the trend of association between methylation at CHG
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DMRs in the downstream regions from 500bp to 5kb was strongly negative and consistent
with the findings in maize [33]. This may be explained by the association of H3K9me2
with CHG methylation, though this is subject for further investigation due to conflicting
studies in the past [78, 79].

Methylation at DMRs of the CHH context were positively correlated with gene expression
throughout all distance groupings. This trend towards positive correlation was less promi-
nent in the distal regions from the TSS and consistent with the observations in one barley
inbred line and with previous observations in maize [33].

In conclusion, differences in gene expression are associated with more specific spatially
confined differences in methylation across inbred lines than across different genes in one

inbred line, especially in the CpG and CHG context.

Association of DMR and phenotypic variation

Assessing the association of DMRs as a characteristic of genotypes with phenotypic vari-
ation is an important step to understand the origin of the missing heritability better. It
is well known that VRN-H1 is a key regulator of flowering time in cereal crops and one
of the main actors in vernalization response [66, 91]. Previous research illustrated that a
large deletion of around 5kb in an intronic region of VRN-HI in spring barley compared
to winter barley is one of the reasons for an increased basal expression of VRN-HI in non
vernalized seedlings [91]. Morex, a spring barley variety, showed high levels of histone 3
lysine 4 trimethylation (H3K4me3), a histone modification associated with increased tran-
scription, at VRN-H1. Our results suggest that not only a deletion in the intronic region
determines the expression of VRN-HI among inbred lines, but also DNA methylation. We

identified within spring barley two epialleles where a increased CHG methylation lead to a



31

significantly increased VRN-H1 expression and therefore earlier flowering time (Figure 9c¢).
Noteworthy, this DMR was not associated with local sequence variation. The regulation of
flowering time by non-CG methylation has already been revealed in winter wheat as a con-
sequence of vernalization treatment [92]. Here we propose that non-CG DNA methylation
may regulate the basal expression of VRN-H1 as a characteristic of spring barley genotypes
contributing to earlier flowering times of inbred lines carrying epiallele 1. Previous research
with the inbred lines of our study has already reported a flowering time quantitative trait
loci (QTL) which confidence interval included VRN-H1 in the progeny of parents 1G31424,

carrying epiallele 2, and Kharsila, carrying epiallele 1 at VRN-H1 [93].

Methylation as a genomic predictor

Incorporating methylation information in genomic prediction has the potential to explain
more of the missing heritability, and thereby getting a wider understanding of the causes
of phenotypic variation, as methylation is largely independent to sequence variation (Fig-
ure 7) and also partially independent to gene expression variation (Figure 8). The predic-
tion ability of DNA methylation data in genomic prediction models in barley was largely
dependent on the predicted trait (Figure 10). About half of the examined phenotypic
traits showed noteworthy improvements by using methylation information as a predictor.
These differences are presumably caused thereby that the traits differ in the importance
of polymorphisms in the coding sequence versus gene expression effects. Nevertheless, our
results highlight that especially the combination of DNA sequencing SNPs and methyla-
tion is valuable for many traits and performs generally better than the combination of
DNA sequencing SNPs and gene expression. These observations in barley are in line with

previous studies [33, 39, 94, 95].
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Summary

The average CpG and CHG methylation level of barley was found to be high in compar-
ison to other cereal crops, though the CHH methylation level was lower than previously
reported. The genome-wide pattern of barley’s methylome were consistent to that of other
crops with the exception of increased CHH methylation levels upstream of T'SS and down-
stream of TT'S, which was rarely reported earlier. The low extent of linkage disequilibrium
between DMRs and SNPs highlights that methylation provides a unique layer of informa-
tion not accessible through sequence variation and not predictable by SNPs in the majority
of cases. Although the correlation between DMRs and gene expression was mostly low to
moderate, about 5.69% of all annotated genes showed strong correlations with DMRs. We
observed that the direction of the associations between methylation at DMRs with gene
expression of the same gene across inbred lines was much more specific and spatially con-
fined than associations of methylation with the expression of different genes in one inbred
line. This was exemplified for the association of the known MADS-box transcription fac-
tor encoding gene VRN-H1 with gene expression and flowering time. These observations
underline the importance to extend prediction models to use epigenetic variation in com-
bination with genomic predictors for a more accurate genomic prediction as exemplified in
this study. In many cases methylation was able to outperform SNPs and gene expression
as a predictor for phenotypic variation depending on the trait of interest, illustrating that

methylation variation is one of the factors explaining the missing heritability.
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Table 1: Summary of the number of differentially methylated regions (DMRs) between
three tissues of inbred Sissy and the average of 100 random unique combinations of three

inbred lines.

Sequence Context DMRs

Tissues CpG 303
Inbreds CpG 67790
Tissues CHG 1
Inbreds CHG 24193
Tissues CHH 11830

Inbreds CHH 27425
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Fig. 1: Mean methylation levels of the three sequence contexts calculated in bins of 5 Mbp
across 23 inbred lines. The dashed gray lines indicate the centromere with the pericen-
tromeric regions highlighted in gray [47]. Proportions of genes and repeats were extracted

from the Morex v3 GFF [55].
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Fig. 2: Mean methylation levels of 10 Kbp up- and downstream regions of transcription
start sites, left and transcription termination sites, right calculated in bins of 100 bp across
23 inbred lines. Variability among the inbreds is illustrated by an approximation of the

95% confidence interval for each sequence context as the colored area.
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Fig. 3: Average methylation levels of genes in Sissy’s leaf tissue categorized based on their
expression levels in the same tissue (100% quantile > High > 75% quantile; 75% quantile >
Medium High > 50% quantile; 50% quantile > Medium Low > 25% quantile; 25% quantile

> Low > 0% quantile; None = 0).
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Fig. 4: a) Distribution of differentially methylated regions (DMRs) in bins of 5 Mbp across
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of all three methylation contexts. ¢) DMR length distribution on a logarithmic scale.
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Fig. 6: a) Principal coordinate analysis (PCoA) of 20 inbred lines based on euclidean dis-
tances determined by differentially methylated regions (DMRs). The percentage values on
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paring the information content of CpG DMRs, CHG DMRs, CHH DMRs, single nucleotide

polymorphisms (SNPs), and expression based on a generalized procrustes analysis.
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gray lines show the middle of the centromere with the pericentromeric regions highlighted

in gray.
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Fig. 8: Spearman’s rank correlation coefficient distributions of differentially methylated re-
gions (DMRs) with gene expression filtered using Benjamini-Hochberg’s false discovery rate
control (FDR<0.05) and grouped by the DMR’s distance to the respective transcription
start site (T'SS) +10 kb in intervals of 5 kb to 500 bp for the leaf and seedling expression
data separately. Additionally, 1000 DMRs were randomly correlated with 1000 random
genes, presented in the last category of each subplot. The numbers above the categories
reflect the number of correlations, as well as the number of unique genes in the respective

category.
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CHG methylation level at the DMR, gene expression of VRN-H1 in the seedling dataset,
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Fig. 10: Prediction abilities for 6 traits from 200 five-fold cross-validation runs using either

a single nucleotide polymorphism (SNP) Array, DNA sequencing SNP, combined SNP

and methylation (S+M), combined SNP and gene expression (S+E), or combined SNP,

methylation and gene expression (S+E-+M) to establish relationship matrices among 23

barley inbred lines. The numbers below the combined datasets show the weights for the

joined weighted relationship matrix with the highest prediction ability.



Table S1: Barley inbred lines with their country of origin, row type and tissues that were

part of this study.

Bisulfite sequencing

Inbred line County of origin Row type Leaf Seedling Apex
Ancap2 URY 6 X

CM67 USA 6 X

Georgie GBR 2 X

HOR12830 SYR 6 X

HOR1842 AFG 6 X

HOR383 BGR 6 X

HORT985 TUR 2 X X X
HORS8160 TUR 2 X X X
1G128104 PAK 6 X

1G128216 LBY 6 X

1G31424 SYR 2 X

ItuNative CHN 6 X

K10693 RUS 6 X

K10877 TKM 6 X

Kharsila IND 6 X

Kombyne USA 6 X

Lakhan IND 6 X

Nambhaebori KOR 6 X

Sanalta CAN 2 X

Sissy GER 2 X X X
Spratt Archer GBR 2 X X X
Unumli-Arpa UZB 2 X X X

W23829/803911 ISR 2 X X X




Table S2: Average mapping efficiency of respective one million read subsets of the 23
barley inbreds against the uncorrected, single nucleotide polymorphism (SNP) corrected,

and SNP and insertion/deletion (Indel) corrected Morex reference.

SNP corrected Indel Corrected Mapping Efficiency [%)]

No No 59.9

Yes No 61.8

Yes Yes 62.2




Table S3: Average mapping efficiency of respective one million read subsets of the 23
barley inbreds mapped against the single nucleotide polymorphism (SNP) corrected Morex
reference under varying parameters. Parameter values marked with an asterisk reflect

default values.

Scoring Function Maximum Insert-size Allowed Mismatches Mapping Efficiency [%]

0+ —02x%L* 500* 1 60.0
0+ —0.2xL" 500* 0* 61.8
0+ —-02x%L* 1200 0* 64.0
0+—-04xL 500* 0* 67.2
0+—-04xL 1200 0* 69.6
0+—-06x*L 500* 0* 70.0

0+ —-0.6%L 1200 0* 72.4
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Fig. S1: Pearson correlation of the average methylation levels across the Sissy tissue samples

and the methylation levels of the bulked Sissy sample for the a) CpG, b) CHG, and ¢) CHH

context.
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Fig. S2: Average chromosome methylation of each sequence context calculated in 200 bins

across 23 inbred lines and 7 chromosomes.
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Fig. S3: Average methylation levels of genes in Sissy’s seedling tissue categorized based

on their expression levels in the same tissue (100% quantile > High > 75% quantile; 75%

quantile > Medium High > 50% quantile; 50% quantile > Medium Low > 25% quantile;

25% quantile > Low > 0% quantile; None = 0).
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methylated regions (DMRs) in bins of 5 Mbp across the genome. The dashed gray lines

show the middle of the centromere with the pericentromeric regions highlighted in gray.
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Fig. S5: Spearman’s rank correlation coefficient distributions of differentially methylated
regions (DMRs) with gene expression grouped by the DMR’s distance to the respective
transcription start site (TSS) £10 kb in intervals of 5 kb to 500 bp for the leaf and seedling
expression data separately. Additionally, 1000 DMRs were randomly correlated with 1000
random genes, presented in the last category of each subplot. The numbers above the
categories reflect the number of correlations, as well as the number of unique genes in the

respective category.
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