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Abstract  19 

Background 20 

The improvement of protein efficiency (PE) is a key factor for a sustainable pig production as nitrogen 21 

excretion contributes substantially to environmental pollution. Protein efficiency has been shown to 22 

be clearly heritable and genetically correlated with some performance traits, such as feed conversion 23 

ratio (FCR) and average daily feed intake (ADFI). The study aimed to identify genomic regions 24 

associated with these traits through genome-wide association studies (GWAS) and regional 25 

heritability mapping (RHM) using imputed whole genome sequence variants for more than 1,000 26 

Swiss Large White pigs. 27 

Results 28 

The genomic-based heritability estimates using ~15 million SNPs were moderate, ranging from 0.33 29 

to 0.47. Using GWAS, no significant SNPs were found at the genome-wide Bonferroni and false-30 

discovery rate (FDR) thresholds for any of the traits, with the exception of ADFI, where 52 significant 31 

SNPs were found on chromosome 1 at the FDR threshold. No region was found to be significant at 32 

the Bonferroni threshold using RHM. Regional heritability mapping found two suggestive regions 33 

for PE on chromosomes 2 and 9 located between 31 and 32Mb and between 2 and 3Mb, respectively, 34 

one suggestive region for ADG on chromosome 5 between 104 and 105Mb, and four suggestive 35 

regions for ADFI on chromosomes 1 (270-271Mb, 272-273Mb and 273-274Mb) and 14 (133-36 

134Mb).  37 

Conclusions 38 

Our study identified suggestive regions for PE and the performance traits with RHM, except for FCR. 39 

However, the apparent difficulty in detecting significant regions probably reflects the relatively small 40 

sample size used in this study rather than a lack of true associations with PE. The finding of this study 41 
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helps to understand the polygenicity of PE and may help in the design of breeding for protein-efficient 42 

pigs in a genomic prediction.  43 

Background 44 

Efficient livestock production is gaining importance due to the increasing global demand for meat 45 

that has led to an increased environmental pollution. A key pollutant in livestock production is 46 

nitrogen, which forms harmful compounds such as nitrate, ammonia and nitrous oxide [1, 2, 3]. 47 

Although the environmental impact of pig production is lower than that of beef production, 48 

approximately 50% of the dietary protein consumed by pigs is excreted as waste [4, 5]. Methods such 49 

as reducing dietary nitrogen [6, 7] and selection to increase protein efficiency (PE; the proportion of 50 

total dietary protein intake retained in the carcass) in pigs [8] have been proposed to reduce the 51 

contribution of animal-based food production to environmental pollution. Varying heritability 52 

estimates between 0.21 and 0.59 have been recently reported for PE and related traits (e.g., nitrogen 53 

digestible coefficient), depending on the breed, fattening phase and diet type [8, 9, 10]. The 54 

heritability (h2) estimates for PE from these studies indicate that this trait can be genetically improved 55 

and thus presents a promising target towards a more sustainable pig production through reduced 56 

nitrogen excretion. Performance traits such as feed conversion ratio (FCR), average daily feed intake 57 

(ADFI), and average daily gain (ADG) are also important, considering their economic and 58 

environmental impacts. Several studies have reported moderate heritabilities for these traits [8, 11]. 59 

Genetic correlations (±SE) of -0.55 ± 0.14, -0.53 ± 0.14, and -0.19 ± 0.19 have also been previously 60 

reported between PE and FCR, ADFI, and ADG, respectively, in Swiss Large White pigs [8].  61 

Genome-wide association studies (GWASs) in pigs have reported loci associated with several 62 

important traits, such as meat quality [12], performance [13, 14], carcass [15], body composition [16], 63 

and efficiency-related traits [17]. However, despite the environmental importance of nutrient 64 



4 

 

efficiency traits, such as PE and nitrogen excretion, to date, only the study of Shirali et al. [18] has 65 

identified genomic regions associated with nitrogen-excretion traits in pigs. The study used 315 pigs 66 

from Pietrain grand-sires and grand-dams from a three-way cross, with pigs genotyped for 88 67 

microsatellite markers on 10 (of 18) chromosomes [18]. Their study identified three quantitative trait 68 

loci (QTL) associated with total nitrogen excretion throughout the 60 – 140 kg live body weight (BW) 69 

growth period on chromosomes (SSC) 2, 4, and 7 [18]. Three additional QTL were found for another 70 

excretion trait – average daily nitrogen excretion – on SSC 6, 9, and 14 for the same growth period 71 

[18]. However, the study by Shirali et al. [18] is limited by its very small sample size and the use of 72 

a small number of markers that are not evenly distributed across the genome. 73 

As FCR, ADG, and ADFI have either direct or indirect impacts on efficiency and production costs, a 74 

number of studies have identified QTL for FCR, ADG and ADFI [19, 20, 21, 22]. The majority of 75 

these QTL were found in Duroc and Landrace pigs, with only a few QTL identified in Large White 76 

pigs [23]. However, although FCR and RFI may be correlated with PE as reported in the studies by 77 

Ewaoluwagbemiga et al. [8] and Saintilan et al. [11], it has been suggested that selection for improved 78 

FCR and RFI with the aim of reducing nutrient excretion is clearly less efficient than direct selection 79 

for the nutrient efficiency trait itself (e.g., PE) in poultry [24]. 80 

Besides GWAS, regional heritability mapping (RHM) is another approach used to identify genotype–81 

phenotype associations [25, 26]. Unlike GWAS, RHM has been proposed to have the ability to detect 82 

regions that contribute to the genetic variance of a trait, but individually have too small an effect to 83 

be detected by GWAS, because it integrates multiple SNP effects by analysing regions rather than 84 

single SNPs [27]. Complex traits are typically influenced by many genes (i.e., are polygenic), with 85 

many genetic variants having too small effect sizes to be detected at the Bonferroni-corrected or false-86 

discovery rate (FDR) threshold of GWAS [28, 29], giving RHM some advantage over GWAS. RHM 87 
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is done by dividing the genome into small segments or regions, building a genomic relationship 88 

matrix (GRM) by using all the SNPs in each region, followed by estimating the variance of the trait 89 

explained by each region [27]. RHM has been applied by Resende et al. [30], who detected 26 QTL 90 

altogether associated with 7 traits in Eucalyptus, whereas GWAS detected only 13 QTL. Sutera et al 91 

[31] found 5 QTL associated with fat percentage in sheep by using RHM, but RHM has, so far, been 92 

applied rarely to livestock body composition.  93 

The aim of this study was therefore to investigate the genetic basis of PE and performance traits in 94 

Swiss Large White pigs. We did that by estimating genomic heritability and performing GWAS and 95 

RHM using a low-pass sequence data. 96 

Methods 97 

Animals and phenotypes 98 

We analysed a total of 1,036 pigs, which were previously included in several nutrition experiments 99 

and one genetic study. The data set is described in detail in Ewaoluwagbemiga et al. [8]. Briefly, all 100 

experiments were carried out at Agroscope Posieux in Switzerland. Pigs had ad libitum access to 101 

isocaloric diets that differed in crude protein or fibre content, leading to five dietary treatment groups 102 

including the control. The control group had no reduction in dietary crude protein, and diets were 103 

formulated according to the Swiss feeding recommendations for pigs1; the diets of the protein-104 

restricted groups contained 80% of the crude protein and digestible essential amino acids content of 105 

the control diets. In all experiments, pigs were fed a grower diet from approximately 20 to 60 kg live 106 

BW and a finisher diet from 60 kg to slaughter at 100 kg. Pigs were slaughtered at about 100 kg BW 107 

 

1 Fütterungsempfehlungen und Nährwerttabellen für Schweine (Feeding recommendations and nutrient tables for pigs). 

Agroscope, Posieux, Switzerland. Retrieved 31 January 2017 from 

https://www.agroscope.admin.ch/agroscope/fr/home/services/soutien/aliments-pour-animaux/apports-alimentaires-

recommandes-pour-les-porcs.html 
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in all experiments except one, where 52 pigs and 41 pigs were kept until 120 kg and 140 kg live BW, 108 

respectively, and fed another specially formulated finisher diet from 100 to 140 kg [32]. Every week, 109 

pigs were weighed individually, and, once a pig reached a live BW of approximately 20 kg, it was 110 

allocated to grower-finisher pens and the experimental treatments were started. This was done until 111 

a maximum number of 12 (or 24 or 48) pigs per pen (depending on the pen layout; minimum 1m2 per 112 

pig and maximum 12 pigs/feeder) was reached. Pigs remained in their pen until slaughter. 113 

Piglets were weaned at an average age of 27 ± 2 days after birth by removing the sow and were fed a 114 

standard starter diet with crude protein levels following the recommendation. At 22.3 (± 1.6) kg, pigs 115 

were placed in pens equipped with automatic feeders (single-spaced automatic feeder stations with 116 

individual pig recognition system by Schauer Maschinenfabrik GmbH & Co. KG, Prambachkirchen, 117 

Austria) and stayed on the starter diet. The automatic feeder recorded all visits and feed consumption 118 

per visit, from which the total feed intake of each pig was calculated. The protein content of feed was 119 

monitored during production by near-infrared spectroscopy for each 500 kg batch. To obtain more 120 

accurate data on feed composition at the time of consumption, a sample was taken from each 121 

automatic feeder station each week, and the crude protein content was determined by wet-chemistry 122 

methods. 123 

Phenotype data 124 

The phenotypes were derived as reported in Ewaoluwagbemiga et al. [8]. Total and average daily 125 

feed (ADFI) were recorded, and average daily gain (ADG) and the feed conversion ratio (FCR) were 126 

calculated as follows: 127 

𝐴𝐷𝐺 =
𝑙𝑖𝑣𝑒 𝐵𝑊 (𝑘𝑔) 𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 − 𝑙𝑖𝑣𝑒 𝐵𝑊 (𝑘𝑔) 𝑠𝑡𝑎𝑟𝑡

𝑎𝑔𝑒 (𝑑𝑎𝑦𝑠) 𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 − 𝑎𝑔𝑒 (𝑑𝑎𝑦𝑠) 𝑠𝑡𝑎𝑟𝑡
 128 



7 

 

𝐹𝐶𝑅 =  
𝐴𝐷𝐹𝐼

𝐴𝐷𝐺
 129 

where 𝑙𝑖𝑣𝑒 𝐵𝑊 (𝑘𝑔) 𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 and 𝑎𝑔𝑒 (𝑑𝑎𝑦𝑠) 𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 are the live pre-slaughter body weight 130 

in kg and the age in days at slaughter, respectively, and 𝑙𝑖𝑣𝑒 𝐵𝑊 (𝑘𝑔) 𝑠𝑡𝑎𝑟𝑡 and 𝑎𝑔𝑒 (𝑑𝑎𝑦𝑠) 𝑠𝑡𝑎𝑟𝑡 131 

are the exact body weight in kg and the age in days at the start of the grower phase, respectively. To 132 

measure PE, the left carcass half, including the whole head and tail, was scanned with a dual-energy 133 

X-ray absorptiometry (DXA; GE Lunar i-DXA, GE Medical Systems, Glattbrugg, Switzerland) to 134 

determine the lean tissue content, which was used in the equation of Kasper et al. [33] to estimate the 135 

protein content retained in the carcass. This method of estimating carcass protein content using DXA 136 

yields a highly precise and accurate phenotype with an R2 between 0.983 – 0.998 [33, 34]. PE was 137 

calculated as 138 

𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝐶𝑃𝑐𝑎𝑟𝑐𝑎𝑠𝑠 (𝑔) 𝑠𝑙𝑎𝑢𝑔ℎ𝑡𝑒𝑟 − 𝐶𝑃𝑐𝑎𝑟𝑐𝑎𝑠𝑠 (𝑔) 𝑠𝑡𝑎𝑟𝑡 

𝐶𝑃𝑓𝑒𝑒𝑑 𝑖𝑛𝑡𝑎𝑘𝑒 (g)
 139 

The protein content of pigs at the start of this experiment (𝐶𝑃𝑐𝑎𝑟𝑐𝑎𝑠𝑠 (𝑔)𝑠𝑡𝑎𝑟𝑡) was estimated from a 140 

sample of 38 piglets (12 females, 12 castrated males and 14 entire males). These 38 piglets were 141 

slaughtered at an average of 20.98 ± 1.85 kg BW in a previous experiment, and their carcass protein 142 

content was chemically determined [32]. The average protein content per kg carcass for each sex 143 

(female, entire male, castrated male) was used to estimate 𝐶𝑃𝑐𝑎𝑟𝑐𝑎𝑠𝑠 (𝑔) 𝑠𝑡𝑎𝑟𝑡 for the pigs by 144 

multiplying the actual live BW of pigs when they entered the experiment (i.e., at approximately 20 145 

kg body weight) with the protein content per kg carcass of piglet, as previously determined from the 146 

38 piglets [32].  147 
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Genotype data and imputation 148 

DNA was extracted from blood, and the sampled pigs were genotyped on three different platforms, 149 

namely the Affymetrix 600K axiom porcine genotyping array, whole-genome sequence data at an 150 

intended 4-fold coverage, and low-pass sequence data at an intended 1-fold coverage with Gencove. 151 

Thus, the three genotyping/sequencing platforms comprised of (i) 258 pigs genotyped at 600K 152 

obtained with the Axiom Porcine Genotyping array; (ii) 297 pigs sequenced at an intended read depth 153 

of 4×; and (iii) 492 pigs sequenced at an intended read depth of 1×. The array genotyping data was 154 

imputed to whole genome sequence level with a reference panel consisting of 421 pigs (Landrace and 155 

Large White) that were sequenced at a coverage ranging between 4× and 37.5× [23, 36]. For pigs 156 

sequenced at 4× coverage, imputation of sporadically missing genotypes was done using Beagle (v 157 

4.1 [36]). Finally, the low-pass genetic data sequenced at an intended depth of 1× was imputed by 158 

Gencove using their loimpute pipeline v0.1.5 [37]. Therefore, the imputed array data finally contained 159 

29,469,425 SNPs, the sequenced 4× genetic data contained 30,179,303 SNPs and the sequenced 1× 160 

genetic data contained 45,100,556 SNPs (including 13,361,070 non-variant sites). Eight pigs without 161 

phenotypes and three pigs with a mis-match between pedigree and genomic-based relationship matrix 162 

were excluded from the further analyses. PLINK (v1.9) [38, 39] was used to merge the three different 163 

SNP panels based on their physical positions according to the Sus Scrofa 11.1 assembly [40]. After 164 

merging, there were 23,171,650 intersecting biallelic SNPs (including indels) and 1,036 individuals. 165 

Genome-wide association study 166 

Prior to GWAS, we tested for outliers in the phenotypes, and removed individuals with phenotypes 167 

not in the range of µ ± 3σ. This resulted in 1025, 1033, 1034, and 1024 individuals remaining for PE, 168 

ADG, ADFI, and FCR, respectively. For each trait, we removed SNPs with minor allele frequency 169 

(MAF) < 5% and SNPs that deviated from Hardy-Weinberg equilibrium (P<0.0001). After quality 170 
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control, 15,269,953, 15,192,400, 15,200,584, and 15,220,328 SNPs were included for PE, ADFI, 171 

ADG, and FCR, respectively. 172 

The residuals for each trait were used as phenotypes in GWAS by adjusting for environmental effects 173 

using the linear model in R software v 4.2.1 [41]. The environmental effects included the fixed effects 174 

from a model selection step prior to estimating genetic parameters as described in Ewaoluwagbemiga 175 

et al. [8]. In brief, the fixed effects included year (factor variable), treatment (factor variable), sex 176 

(factor variable), slaughter weight, ambient temperature in the barn at the start of the experiment, 177 

slaughter age, interaction of slaughter weight and sex, interaction of treatment and sex, interaction of 178 

treatment and slaughter age, and interaction of year and slaughter age.  179 

The GWAS was performed with GCTA using the fastGWA method [42], where SNP effects were 180 

tested using a linear mixed effects model approach, incorporating the genomic relationship matrix 181 

(GRM) to account for relatedness in the sampled population. The linear mixed effects model fitted to 182 

the data was 183 

𝑌𝑗 = µ + 𝑏𝑖𝑗𝑀𝑖 + 𝑎𝑗 + 𝑒𝑖𝑗 184 

where 𝑌𝑗 is a vector of residuals of phenotypes corrected for environmental effects; µ is the overall 185 

mean; 𝑏𝑖𝑗 are the marker genotypes, coded as 0, 1, and 2, of the ith SNP for the jth individual; 𝑀𝑖  is 186 

the additive effect of the ith SNP; 𝑎𝑗  is the random polygenic effect of the jth individual following the 187 

distribution 𝑎𝑗 ~ N(0,Gσ2
a), G is the GRM and σ2

a is the additive genetic variance; 𝑒𝑖𝑗 is the random 188 

residual effect with 𝑒𝑖𝑗 ~ N(0,Iσ2
e), I is an identity matrix and σ2

e is the residual variance. We used 189 

the Bonferroni-corrected significance threshold at an alpha level of 0.05 and a 5% FDR [43] to correct 190 

for multiple testing. We inspected the quantile-quantile (QQ) plots for the inflation of small p-values, 191 

which could indicate false-positive association signals. The genomic inflation factors were calculated 192 
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to compare the deviation of the distribution of the observed to the distribution of the expected chi-193 

square test statistics.  194 

Regional heritability mapping 195 

Regional heritability mapping was performed using GCTA software [42]. For this analysis, each 196 

chromosome (SSC1 to SSC18) was divided into 1Mb-window regions (i.e., 0-1Mb, 1-2Mb, 2-197 

3Mb…...), and the variance was estimated for each region. The linear mixed effects model below was 198 

used to test the effect of all SNPs within each genomic region, which included the random regional 199 

genomic effect and the random genomic effect of the rest of the genome excluding a specific region: 200 

𝑌𝑗 = µ + 𝑏𝑖𝑗𝑀𝑖 + 𝑎𝑘 + 𝑎𝑢 + 𝑒𝑖𝑗 201 

where 𝑌𝑗 is a vector of residuals of phenotypes corrected for environmental effects; µ is the overall 202 

mean; 𝑏𝑖𝑗 are the marker genotypes, coded as 0, 1, and 2, of the ith SNP for the jth individual; 𝑀𝑖  is 203 

the additive effect of the ith SNP; 𝑎𝑘 is the random regional additive genomic effect of the kth region 204 

following the distribution 𝑎𝑘 ~ N(0, Gkσ
2

k) and 𝑎𝑢 is the random polygenic effect of the rest of the 205 

SNPs following the distribution 𝑎𝑢 ~ N(0, Guσ
2

u). Gk is the regional GRM, σ2
k is the regional variance, 206 

Gu is the GRM that excludes a region and σ2
u is the additive genetic variance excluding a region. 207 

Regional and genome heritability were estimated as h2
k = (σ 2

k/ σ
2
p) and h2

u= (σ 2
u/ σ

 2
p), respectively, 208 

where σ2
p is the sum of the regional variance (σ2

k), genome variance (σ2
u), and residual variance (σ2

e). 209 

The statistical significance of the variance of a region was tested using the likelihood ratio test (LRT), 210 

which compares the log likelihood of the full model (including regional and genome variance) with 211 

the reduced model (including only genome variance). This was done by specifying the –reml-lrt 1 212 

option in GCTA, which gives the LRT and p-value of the first genetic variance.  213 



11 

 

For a total of 2,146 regions, a Bonferroni correction for multiple testing was applied at 0.05 alpha 214 

level. It should be noted that the thresholds presented for GWAS and RHM, in addition to the 215 

Bonferroni correction, differ between the methods. Instead of an FDR, we set a suggestive threshold 216 

for RHM following the procedure described in [31]. The suggestive threshold implies that, at every 217 

genome scan, one false positive is expected [31]. The thresholds applied in the current study were 218 

thus at p-values of 4.66 × 10-5 (-log10(p) = 4.34) and 9.32 × 10-4 (-log10(p) = 3.03) for the genome-219 

wide 5% significance and the suggestive threshold, respectively.  220 

Results 221 

GWAS 222 

The Bonferroni and FDR threshold for all traits, at the alpha level of 0.05, was 3.29 × 10-9 and 3.00 223 

× 10-8, respectively, except for ADFI where the FDR threshold was 1.65 × 10-7. No significant SNP 224 

was found at the Bonferroni and FDR thresholds for PE (Figure 1), FCR (Figure 2), and ADG (Figure 225 

3). For ADFI, there was no significant SNP at the Bonferroni threshold, but there were 52 significant 226 

SNPs at the FDR threshold on SSC1 (Figure 4). Although no significant associations were found for 227 

PE, FCR and ADG, the genomic heritability for these traits, including ADFI, ranged from 0.33 to 228 

0.47 using all available SNPs for each trait (Table 1), with ADG having a slightly higher genomic 229 

heritability (0.47) than pedigree-based heritability (0.45). The 52 siginificants SNPs at the FDR 230 

threshold for ADFI explained 3% of the total variation observed for this trait (Table 2). The QQ plots 231 

of the GWAS analyses (Figure 5) and the genomic inflation factor, which was close to 1 for all the 232 

traits, suggested that the influences of population structure and inflation have been sufficiently 233 

corrected for.   234 
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Regional heritability mapping 235 

A total of 2,146 genomic regions were subjected to RHM, with the genomic regions including 236 

between 6,687 and 6,721 SNPs on average per region for all traits. For all traits, no region was found 237 

significant at the genome-wide level (Figure 1 – Figure 4). Two regions reached the suggestive 238 

threshold for PE on SSC9 (2Mb – 3Mb) and SSC2 (31Mb – 32Mb) (Table 2 and Figure 1); no region 239 

reached the suggestive threshold for FCR (Figure 2), one region on SSC5 reached the suggestive 240 

threshold for ADG (Table 2 and Figure 3), and four regions reached the suggestive threshold for 241 

ADFI on SSC1 (270 – 271Mb), SSC1 (272 – 273Mb), SSC1 (273 – 274Mb), and SSC14 (133 – 242 

134Mb) (Table 2 and Figure 4). For PE, the suggestive region identified by RHM on SSC9 was 243 

present in the top 50 SNPs (ordered from the lowest p-value) of GWAS, and 7 of the top 10 SNPs by 244 

GWAS were seen on SSC2 (~80Mb) and SSC9 (2 and 3Mb) (Table S1). For ADG, the suggestive 245 

region identified by RHM was on SSC5 (104 – 105Mb), and GWAS identified a SNP on SSC5 246 

(~102Mb), which was the second top SNP by GWAS (Table S2). For ADFI, the suggestive regions 247 

identified by RHM on SSC1 were present in the top 50 SNPs of GWAS, and 9 of the top 10 SNPs by 248 

GWAS were seen on the 273 and 274Mb region (Table S3). The heritability captured by each of the 249 

suggestive regions was between 0.04 – 0.05 for PE, 0.04 - 0.09 for ADFI, and the single region at the 250 

suggestive threshold for ADG had a heritability of 0.26. The heritability captured by the suggestive 251 

regions for ADFI was similar to the heritability captured by the siginificant SNPs with GWAS at the 252 

FDR threshold.   253 
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Table 1: Descriptive statistics and pedigree and genomic heritability estimates for protein 254 
efficiency and performance traits 255 

Trait  N Mean ± SD Min - Max h2
ped (SE) h2

geno (SE) 

PE 1025 0.39 ± 0.03 0.28 – 0.49 0.54 (0.10) 0.42 (0.05) 

FCR 1024 2.68 ± 0.21 1.99 – 3.77 0.39 (0.12) 0.33 (0.04) 

ADG 1033 0.85 ± 0.11 0.51 – 1.20 0.45 (0.11) 0.47 (0.04) 

ADFI 1034 2.26 ± 0.31 1.30 – 3.14 0.53 (0.12) 0.43 (0.05) 

PE: Protein efficiency; FCR: feed conversion ratio; ADG: average daily gain; ADFI: average daily feed intake  256 
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Table 2: SNPs at the FDR threshold for GWAS and at the suggestive threshold for RHM 257 

 Trait  SSC Number of 

SNPs in a 

region 

SNP position 

(bp) 

-log10(p) h2 

GWAS       

 PE - - - - - 

 ADG - - - - - 

 ADFI 1 52 270,589,693 

- 

273,545,902 

6.80  

- 

7.96 

0.03 

RHM PE 9 13,440 2,000,246 

- 

2,998,788 

3.17 0.04 

 PE 2 5399 31,000,420 

- 

31,998,421 

3.02 0.05 

 ADG 5 1911 104,000,464 

- 

104,517,994 

3.21 0.26 

 ADFI 1 14,224 273,000,002 

- 

273,999,851 

4.16 0.04 

 ADFI 1 12,799 272,000,033 

- 

272,999,968 

3.24 0.04 

 ADFI 14 12,993 133,000,013 

- 

133,999,879 

3.86 0.09 

 ADFI 1 11,327 270,000,182 

- 

270,999,980 

3.03 0.03 

The FDR threshold (-log10(p)) for ADFI is 6.79, and the suggestive threshold (-log10(p)) for all traits with RHM is 3.03 258 

PE: Protein efficiency; FCR: feed conversion ratio; ADG: average daily gain; ADFI: average daily feed intake  259 
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 260 

Figure 1. Manhattan plot of the genome-wide association analysis (above) and regional 261 

heritability mapping (below) of protein efficiency. The x-axis and the y-axis represent the 262 

chromosomes and the observed -log10(P-value), respectively. The red line is the Bonferroni 263 
threshold, the blue line in the Manhattan plot is the False discovery rate (FDR) threshold, and 264 
the green line in the regional heritability mapping plot is the suggestive threshold.  265 



16 

 

 266 

Figure 2. Manhattan plot of the genome-wide association analysis (above) and regional 267 

heritability mapping (below) of feed conversion ratio. The x-axis and the y-axis represent the 268 

chromosomes and the observed -log10(P-value), respectively. The red line is the Bonferroni 269 
threshold, the blue line in the Manhattan plot is the False discovery rate (FDR threshold), and 270 
the green line in the regional heritability mapping plot is the suggestive threshold.  271 



17 

 

 272 

Figure 3. Manhattan plot of the genome-wide association analysis (above) and regional 273 

heritability mapping (below) of average daily gain. The x-axis and the y-axis represent the 274 

chromosomes and the observed -log10(P-value), respectively. The red line is the Bonferroni 275 
threshold, the blue line in the Manhattan plot is the False discovery rate (FDR threshold), and 276 
the green line in the regional heritability mapping plot is the suggestive threshold.  277 
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 278 

Figure 4. Manhattan plot of the genome-wide association analysis (above) and regional 279 

heritability mapping (below) of average daily feed intake. The x-axis and the y-axis represent 280 

the chromosomes and the observed -log10(P-value), respectively. The red line is the Bonferroni 281 
threshold, the blue line in the Manhattan plot is the False discovery rate (FDR threshold), and 282 
the green line in the regional heritability mapping plot is the suggestive threshold.   283 
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 284 

Figure 5. Quantile-Quantile plot for A) protein efficiency B) feed conversion ratio C) Average 285 
daily gain (ADG) and, C) Average daily feed intake (ADFI).  286 
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Discussion 287 

This study aimed to identify genomic regions associated with PE, ADG, ADFI and FCR by using 288 

both genome-wide association and regional heritability mapping (RHM). The RHM approach 289 

identified two regions for PE at the suggestive threshold on SSC9 and SSC2, located at the 2–3 Mb 290 

and at 31–32Mb position, encompassing 13,440 and 5,399 SNPs, respectively. Similar to our study, 291 

Shirali et al. [23] found associations on SSC2 and SSC9 for total nitrogen excretion and average daily 292 

nitrogen excretion, respectively, during the 60 – 140kg growth stage, but these associations were not 293 

confirmed in our study. Our study also found four suggestive regions associated with ADFI located 294 

at 270–271Mb, 272–273Mb and 273–274Mb on SSC1, and at 133–134Mb on SSC14. Nosková et al. 295 

[23] conducted a multi-trait meta-GWAS in 5,109 Swiss Large White pigs with 60K array data 296 

imputed to sequence level and found QTL associated with ADFI on SSC1 at the 270 Mb – 272Mb 297 

position, confirming that this region is important for production traits in pigs. The associated 298 

chromosomal region also harbours QTL for ADFI in other pig populations [44, 45], possibly 299 

suggesting an ancestral origin of the QTL. Similar to our study, Onteru et al. [46] found QTL for 300 

ADFI on SSC14 located at 61Mb and at 107Mb for Yorkshire pigs, suggesting that this chromosome 301 

may also harbour associations with ADFI for Swiss Large White pigs.  302 

The genomic heritability estimates for the suggestive regions by RHM ranged from 3% - 9% in our 303 

study, and similar range of regional heritability estimates have been found by other studies [30, 54, 304 

55]. However, ADG showed a much a higher regional heritability of 26% at the suggestive region on 305 

SSC 5 in our study. The reason for this comparatively high regional heritability for ADG is unclear. 306 

Additionally, although it was expected that RHM has greater statistical power to identify regions 307 

associated with the traits than GWAS due to the combined effects of multiple variants contained in a 308 

region, the heritability estimate by RHM at the suggestive threshold was similar to that by GWAS in 309 

our study. The reason for the similar proportion of heritability observed between RHM and GWAS 310 
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may be due to linkage disequilibrium (LD), as genomic heritability depends on the LD structure 311 

between causal variants and non-causal variants [47]. Another possible reason is that there are several 312 

variants in the region with small effects and very few with an average effect, which dilutes the overall 313 

heritability estimate for that region. A similar discrepancy was observed in the study of Resende et 314 

al. [30], who observed that a region with a large single SNP effect detected in GWAS may not reach 315 

significance in RHM, and vice versa, due to multiple small SNP effects in the RHM region that 316 

cancels the overall effect of the region.  317 

At the FDR threshold, GWAS found significant associations only for ADFI on SSC1. In general, the 318 

Manhattan plots illustrating the GWAS and RHM results showed similar patterns for all traits, and so 319 

the most significant SNPs found by GWAS were present in the regions found by RHM, suggesting 320 

that our sample size was not large enough to detect statistical significance for these SNPs. However, 321 

for ADFI, GWAS indicated some associations on SSC9 although they do not reach the FDR 322 

threshold, but RHM did not show any association on this chromosome. Similar patterns were 323 

observed in the study of Matika et al. [54], where GWAS found associations for muscle density at 8th 324 

thoracic vertebra on sheep’s chromosomes 1 and 16, but RHM did not find associations for 325 

chromosome 16. Therefore, although RHM can detect additional regions not found by GWAS, for 326 

example the additional suggestive region found by RHM on SSC14 for ADFI in our study, there may 327 

be cases where RHM did not find associations identified by GWAS.  328 

In this study, the inability to detect more associations is likely due to sample size, which is a key 329 

factor in detecting genotype-phenotype associations. According to Goddard and Hayes [48], the 330 

number of animals required for a GWAS depends on the size of the QTL effects that one aims to find, 331 

and the heritability of the trait. For instance, for a QTL that explains 3% of the genetic variation and 332 

a heritability of 0.54, the number of animals required would be about 2,500. For this study, between 333 
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1,025 and 1,034 animals were available for the GWAS and at a genomic heritability of 0.42 for PE, 334 

one could only detect QTL with large effects (e.g., >5%). Since our study had QTL effects ranging 335 

from 0% to 1.4%, according to the calculation by Goddard and Hayes [48] a sample size of at least 336 

7,000 individuals would be required to detect associations at the Bonferroni threshold. Achieving 337 

such a sample size for PE is very challenging due to the difficulty of phenotyping this trait, as high-338 

throughput phenotyping tools for measuring PE are not yet available. For example, using a dual-X-339 

ray absorptiometry (DXA) scanner as in this study, it takes about 15 minutes to measure the lean meat 340 

content of one pig carcass, from which the protein content is estimated. In addition, measurement 341 

errors may affect the identification of QTL [49], but DXA was used in our study in order to reduce 342 

measurement errors and to obtain highly accurate PE phenotypes [33]. In addition, we generated 343 

whole-genome sequence data rather than array genotypes, which is expected to help identify more 344 

QTL, but has not yet been shown to do so in GWAS. As in genomic prediction, the use of whole-345 

genome sequence data may have an advantage over high-density genotyping arrays, in that the first 346 

allows for the inclusion of candidate or causal mutations [56]. Moreover, the use of whole-genome 347 

sequence data can improve prediction accuracy if the correct prior information can be included in the 348 

model (e.g., using Bayesian models) [57, 58]. However, in a simulation study, using whole-genome 349 

sequence data rather than high-density genotyping array data did not automatically improve the 350 

accuracy of genomic prediction models, especially when biological information was not included 351 

[57]. This might be valid for GWAS as well, which might also explain why our study identified no 352 

significant associations for the traits except for ADFI. 353 

Our study found that, despite identifying only a few or even no significant associations with the traits, 354 

the genomic heritability captured by using all available SNPs was considerable and yielded low 355 

standard errors, ranging from 0.33 ± 0.04 to 0.47 ± 0.05. Considering the high heritability estimates 356 

for both pedigree-based and genomic-based relationships, the identification of only two suggestive 357 
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regions for PE suggests that PE is highly polygenic and that many variants with small effects underlie 358 

this trait [50]; therefore, marker-assisted selection may not be possible because of the difficulty in 359 

identifying loci that contribute substantially to trait variation. The application of genomic selection 360 

might be a more promising approach to breed for protein efficient pigs. However, the accuracy of 361 

genomic prediction depends on the size of the reference population whose phenotypes are required, 362 

which is a limiting factor for PE in pigs. For difficult-to-measure and novel traits with limited sample 363 

size like PE, a cross-validation genomic prediction approach may be applied [51]. Alternatively, a 364 

multi-breed genomic selection approach can be used, requiring other breeds to be phenotyped for the 365 

same trait. Hayes et al. [52] reported up to 13% higher accuracy when using the multi-breed reference 366 

population than when a using a single-breed reference population in Bayesian models. Additionally, 367 

Raymond et al. [53] reported that the use of a multi-breed multi-genomic relationship matrix (i.e., 368 

fitting selected and unselected markers in separate GRMs) gave a higher accuracy than a multi-breed 369 

single-genomic relationship matrix.  370 

Conclusions 371 

The GWAS and RHM analysis did not show significant SNPs or regions at the Bonferroni threshold 372 

for any of the traits analysed, but identified significant SNPs at the FDR threshold for ADFI on SSC 373 

1, which is the same region identified by Nosková et al. (2023) for the same breed of pig (i.e., Swiss 374 

Large White). Regional heritability mapping identified suggestive regions for PE, ADG and ADFI. 375 

Significant or close-to-significant SNPs by GWAS were also present in the suggestive regions 376 

identified by RHM, thus corroborating the evidence for a potential effect. We attribute the reason for 377 

the identification of very few to no significant SNPs to the relatively small sample size used in this 378 

study. However, the genomic heritability for these traits were moderate, ranging between 0.33 – 0.47. 379 

Our inability to identify major QTL influencing these traits, despite their genomic heritability, 380 

suggests that the traits are influenced by many genes with small effects. Our results clearly show that 381 
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PE is under genetic influence and can be considered in downstream analyses such as genomic 382 

prediction. However, a large reference population with phenotypes is required for genomic selection, 383 

and therefore, faster phenotyping method may be needed to easily determine the PE of hundreds to 384 

thousands of pigs.  385 
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