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ABSTRACT 18 
This study explores the potential of a novel genome-wide association study (GWAS) 19 
approach for identifying loci underlying quantitative polygenic traits in natural 20 
populations. Extensive population genetic forward simulations demonstrate that the 21 
approach is generally effective for oligogenic and moderately polygenic traits and 22 
relatively insensitive to low heritability, but applicability is limited for highly polygenic 23 
architectures and pronounced population structure. The required sample size is 24 
moderate with very good results being obtained already for a few dozen populations 25 
scored. The method performs well in predicting population means even with a 26 
moderate false positive rate. When combined with machine learning for feature 27 
selection, this rate can be further reduced. The data efficiency of the method, 28 
particularly when using pooled sequencing, makes GWAS studies more accessible for 29 
research in biodiversity genomics. Overall, this study highlights the promise of this 30 
popGWAS approach for dissecting the genetic basis of complex traits in natural 31 
populations. 32 
 33 
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Introduction  37 

A major goal as well as a major challenge in evolutionary biology is to understand how genes 38 
influence traits, i.e. the genotype-phenotype link, (Brandes et al., 2022; Uffelmann et al., 2021). 39 
The difficulties in achieving this goal are primarily due to the fact that the heritable variation of 40 
many, if not most, relevant phenotypes is determined by small contributions from many genetic loci 41 
(Sella & Barton, 2019). Such complex traits are usually influenced by a few dozen genes that are 42 
mechanistically directly involved in their expression, but often also by numerous, if not almost all, 43 
other genes as well as the environment in the widest sense (Boyle et al., 2017).  44 

Genome-wide association studies (GWAS) are commonly used to link complex phenotypic traits 45 
to their genomic basis (Brandes et al., 2022; Visscher et al., 2012). However, given the complexity 46 
of causal mechanisms and the small effects of individual loci, often only a small fraction of the 47 
genetic variation underlying phenotypic variance is often identified, despite the considerable logistic 48 
effort in terms of the number of phenotyped and genotyped individuals (Brandes et al., 2022; 49 
Visscher et al., 2017). As a result, accurate predictions of phenotypes from genomic data are still 50 
quite limited and there is currently no other strategy than to keep increasing sample sizes (Brandes 51 
et al., 2022). This is a problem in the medical sciences (Shendure et al., 2019), but the greater 52 
challenge for science and society probably lies in addressing the global biodiversity crisis. It would be 53 
highly desirable to have affordable methods to accurately understand the genomic basis of relevant 54 
traits and predict (non-model) species responses to all aspects of global change (Bernatchez et al., 55 
2023; Waldvogel et al., 2020).  56 

GWAS with wild populations has been advocated for some time (Santure & Garant, 2018). 57 
However, despite recent progress in high throughput, automated phenotyping (Dunker et al., 58 
2022; Tills et al., 2023; Xie & Yang, 2020), the advances of biodiversity genomics in obtaining 59 
high quality reference genomes for almost every species (Exposito‐Alonso et al., 2020; 60 
Formenti et al., 2022) and the possibility to gain cost-effective genome-wide population data 61 
(Czech, Peng, Spence, Lang, Bellagio, Hildebrandt, Fritschi, Schwab, Rowan, & Weigel, 2022; 62 
Schlötterer et al., 2014), relatively few empirical studies are currently available. This gap between 63 

the possibilities and actual practical application in biodiversity conservation (Heuertz et al., 2023; 64 
Hogg, 2023) is probably as much due to the still existing logistic and financial challenges as to a lack 65 
of data- and resource-efficient methods.  66 

Here, I explore the potential of a new GWAS approach using phenotypic population 67 
means and genome-wide allele-frequency data. The rationale behind the approach is 68 
straightforward. If a quantitative polygenic trait has an additive genetic component, an 69 
individual's phenotypic trait value should at least roughly correlate with the number of 70 
trait-increasing alleles at the underlying loci (Uffelmann et al., 2021). Consequently, it was 71 
theoretically expected (Orr, 1998; Pritchard & Di Rienzo, 2010) and empirically shown 72 
(Turchin et al., 2012) that trait-increasing alleles will tend to have greater frequencies in the 73 
population with higher mean trait values, compared to the population with a lower trait 74 
mean. When examining populations with a range of different phenotypic trait means, we 75 
may therefore expect that the allele frequencies at the trait-affecting loci show a linear or at 76 
least steady relation with the observed trait means (Barton, 1999). I hypothesise here that 77 
this predicted relation can be exploited to distinguish potentially causal loci (and the linked 78 
variation) from loci not associated with the focal trait. In case of a successful evaluation, the 79 
major advantages of the proposed approach would be the reduced sequencing effort by the 80 
possibility to use pooled population samples (PoolSeq) and the opportunity to use bulk 81 



phenotyping (e.g. by satellite imaging, flow-cytometry, etc.) on traits for which individual 82 
phenotyping is difficult or tedious.  83 

The most important assumption for the approach is obviously that observed population 84 
differences in the focal trait means have at least partially a genetic basis. Since the 85 
environment has usually an effect on the phenotype (Sella & Barton, 2019), total phenotypic 86 
variance should be adjusted for known fixed environmental effects, because this increases 87 
the fraction of variance due to genetic factors (Visscher et al. 2008). Predicting additive 88 
genetic values with even higher accuracy can be achieved by taking into account GxE 89 
interactions through repeated phenotypic measurements of the same individuals under 90 
different environmental conditions, e.g. by time series (Visscher et al. 2008). I assumed 91 
therefore that environmental influence on the phenotypic trait variance among populations 92 
has been statistically removed as much as possible. Similarly important is the assumption 93 
that the genetic variance of the focal quantitative trait can be adequately described by an 94 
additive model. Both empirical and theoretical evidence suggests that this is indeed the case 95 
for most complex traits (Hill et al., 2008). Even though epistatic interactions are wide spread 96 
(Mackay, 2014), Sella and Barton (Sella & Barton, 2019) argue that the marginal allelic effects 97 
on quantitative traits are well approximated by a simple additive model.  98 

The aims of this study were i) to understand whether and under which circumstances 99 
the hypothesised pattern of a linear relation between the population allele frequencies at 100 
causal loci and the phenotypic population means of the respective trait emerges, ii) to 101 
evaluate the influence of population genetic parameters of typical natural systems and the 102 
experimental design on the likelihood of identifying causal loci underlying an additive 103 
quantitative trait, in particular to elucidate the limits of the approach with regard to genetic 104 
architecture and population structure, iii) to explore the possibilities for statistical genomic 105 
prediction of phenotypic population means from the allele frequencies at the identified loci, 106 
and iv) to evaluate the statistical power of the method for a realistic range of effective 107 
genome sizes. I used individual-based population genomic forward simulations and 108 
machine learning approaches (minimum entropy feature selection) for prediction and 109 
utilised an information theory-based framework for evaluation of the proposed method.  110 

Material and methods  111 

Expectation of a positive correlation between quantitative trait loci allele frequencies and 112 
phenotypic population means.  113 

Consider a biallelic, codominant system for the additively heritable component of a 114 
quantitative trait with n loci contributing to the trait. In this system, all loci contribute 115 
equally to the phenotypic trait, with one allele per locus making a greater contribution than 116 
the other. The phenotypic trait value x of an individual can then be determined by simply 117 
adding up the number of trait-increasing alleles (g with values of 0, 1 or 2) over all n 118 
quantitative trait loci (QTL) and multiplying this sum with a scaling constant k: 119 

(1) x � k � �g� � g� � � � g�	 120 

When adding more individuals, the phenotypic population trait mean is defined as the 121 
mean of the row sums: 122 
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The columns of this matrix can be used to calculate the population allele frequency (AF) 124 
of the trait increasing allele for each QTL.  125 

(3) 
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The mean population allele frequency at QTL loci is thus directly proportional to the 127 
phenotypic population trait mean. This relationship remains unchanged even if the 128 
individual locus contributions are not identical, with some loci contributing more or less to 129 
the phenotypic trait value. In this case, a scaling vector is required to weigh the individual 130 
locus contributions to individual trait values, and those of the AFs to the population trait 131 
mean. Since the AFs are by definition bounded by zero and one, the population trait mean is 132 
minimal when the allele frequencies of the trait-increasing allele at all QTL are zero and 133 
maximal when all QTL AFs are one. This proportionality links the individual genotypes and 134 
the AFs at the QTL linearly with the population trait mean.  135 

If we extend this to a set of populations and order them with decreasing phenotypic 136 
population means, we can be sure that the mean QTL AFs of the populations will also be 137 
ordered in decreasing sequence: 138 

(4) 

Pop� Pop� � Pop�

population trait mean x�8 9 x���� 9 � x����

~ ~ � ~

/*&" ��  01 AF�
����� 9 AF�

����� 9 � AF�
�����

QTL� AF�� AF�� � AF��

QTL� AF�� AF�� � �

� � � � �

QTL� AF�� � � AF��

 139 

The answer to whether the allele frequencies in every row i.e. at every contributing 140 
locus can be used to predict the population trait mean depends on whether the expected 141 
covariance between these two vectors is positive: 142 

(5) E;cov�QTL�, population trait mean	> 9 0 143 

where 144 



(6) cov;QTL� , population trait mean> �  E;∑ �AF�� @ E;AF�>	 A � x�8 @ E;X8>	�
��� > 145 

with X8 representing the grand mean over all populations. As all elements in the QTL 146 
matrix are positive, they inherently tend to contribute positively to their column means. 147 
Therefore, AF larger than the overall AF mean at his locus tend to be on the left side of the 148 
population closest to the overall phenotypic mean in the ordered matrix above. Conversely, 149 
AF smaller than the locus AF mean are rather on the right. This leads intuitively to a 150 
positive expected covariance between each row and the column mean, in particular if the 151 
number of populations becomes large. Conversely, the AF at (unlinked) loci not 152 
contributing to the phenotypic population trait mean have an expectation of zero.  153 

I tested these general expectations and the effect of different scaling vectors for the 154 
effect size distribution of QTL with a first set of simulations. I generated a matrix of size n x 155 
m populated with random AF between zero and 1. To avoid stochastic effects due to sample 156 
size, the number of populations n was fixed at 10,000. The number of QTL m was varied 157 
from oligogenic to highly polygenic (10, 20, 50, 100, 200, 500, 1000, 2000, 5000). Three 158 
different distributions of loci effects were tested, i) a flat distribution with all loci 159 
contributing equally, ii) a mildly decreasing exponential function and iii) a steeply 160 
decreasing exponential function with few loci contributing much and many very little 161 
(Supplemental Figure 1).  162 

Each of the m columns was used to calculate the phenotypic population mean of the 163 
respective population by adding up the AF multiplied with the respective locus weight. The 164 
resulting n phenotypic population means were then correlated to the n AF of each of the m 165 
loci and the resulting m Pearson correlation coefficients (i.e. the standardized covariance) 166 
recorded. From these, mean and standard deviation were calculated and tested, whether 167 
they conform to a normal distribution (scipy.stats.normaltest). Furthermore, a second 168 
matrix of identical size was populated with random AF, and the correlation of these non-169 
contributing loci to the population means derived from the QTL matrix was computed. The 170 
simulations were repeated 10 times in every possible parameter combination and the 171 
results averaged (Supplemental Script 1). 172 

Individual based Wright-Fisher forward model 173 

A Wright-Fisher individual forward genetic simulation model was used to investigate the 174 
potential of a genome-wide association study based on the means of a population trait and 175 
population allele frequency data. In the simulation, all loci were assumed to be unlinked, 176 
thus representing haplotypes in LD rather than single SNPs. (Visscher et al., 2017). For each 177 
simulation run, the initial allele frequencies for all loci in the total population were 178 
randomly drawn from a range of 0.1 to 0.9. To generate a hermaphroditic and diploid 179 
individual, two alleles were randomly drawn with a probability based on their frequency at 180 
the respective locus, and the resulting genotype at this locus was recorded. This process 181 
was repeated for all loci. As a result, each individual was represented by a vector of biallelic 182 
genotypes (AA = 0, Aa;aA = 1, aa = 2). To model a quantitative, fully additive trait, a 183 
variable number of loci were assigned as quantitative trait loci (QTL). In addition, a much 184 
larger number of neutral loci was modelled.  185 

Genetic architecture of the quantitative trait 186 

The continuous trait value was measured in arbitrary units. The allele (A) at each QTL 187 
had no effect on the individual's trait value, resulting in a completely homozygous A 188 



individual at the QTL having a phenotypic trait value of 0. The alternative allele (a) added a 189 
locus-specific value to the trait. Two distributional extremes have been considered for the 190 
allelic effects on the trait value: i) a uniform distribution where each locus contributes 0.5 191 
units to the trait. An individual that is completely homozygous for the alternative allele a 192 
therefore had a trait value equal to the number of QTL, ii) an exponential distribution with 193 
few loci having large effects and many having very small effects, scaled such that the 194 
maximum possible trait value was also equal to the number of QTL (see Supplementary 195 
Figure 2A). To model the effect of phenotyping errors, unaccounted environmental 196 
influence (i.e. phenotypic plasticity), and/or the unspecific contribution of the genomic 197 
background to the trait, a random value drawn from a Gaussian distribution with a mean of 198 
zero and selectable standard deviation between 0.1 and 3 could be added to the genetically 199 
determined phenotype value of each individual. The phenotypic value of each individual's 200 
trait was determined by summing the allelic effects of all genotypes at all QTL loci plus the 201 
random value and the result recorded. 202 

Reproduction and selection 203 

Subpopulations in each run were created from the same initially drawn random allele 204 
frequency array, mimicking a common descent. Due to sampling variance, the realised allele 205 
frequencies and thus the mean subpopulation trait value differed from the initial 206 
frequencies of the total (ancestral) population. A subpopulation always comprised 500 207 
adult individuals.  208 

Each subpopulation was reproduced at least once to obtain a genotype distribution in 209 
Hardy-Weinberg equilibrium. For reproduction, two random individuals were chosen with 210 
replacement from the adult population. The genotype of an offspring individual at a locus 211 
was determined by randomly choosing one of the two alleles from each designated parent 212 
at this locus. Each parent fostered n_juv offspring; therefore, 2 x n_juv were produced in 213 
each mating. After reproduction, the parental generation was discarded to prevent 214 
overlapping generations. Each generation had N/2 matings, resulting in an offspring 215 
population of N*n_juv individuals. 216 

Because the offspring population was much larger than the the size of the adult 217 
population, it was necessary to reduce it. This was achieved by a combination of 'hard' 218 
natural selection and random mortality. An individual's survival to the adult stage was 219 
determined by the absolute deviation of its phenotypic trait value from a pre-specified 220 
selective trait optimum for the respective subpopulation. This selective trait optimum for a 221 
subpopulation was determined by adding a random value taken from a Gaussian 222 
distribution with a mean of zero and a standard deviation of 2.5 to the initial population 223 
mean. An individual's survival probability was determined by an exponential decline 224 
function with strength s (the exponent of the function, see Supplementary Figure 2B). 225 
Individuals were randomly selected one by one from the offspring population and their 226 
survival probability calculated. A respectively biased coin was then tossed to determine 227 
their fate. This process was repeated until the adult population size was reached, and any 228 
remaining offspring individuals were indiscriminately discarded. If the phenotypic mean of 229 
the subpopulation was close to or at the selective optimum (see below), this process 230 
resulted in stabilising selection. If the population was away from the optimum, rapid 231 
directed selection towards the optimum was observed, depending on the strength of 232 
selection. For the assessment of the effect of population structure, the subpopulations could 233 
evolve in complete isolation from each other for a predetermined number of generations 234 



(2-50). This introduced random genetic drift among the populations at both QTL and 235 
neutral loci. Both drift and selection towards different trait optima led to variation in 236 
population trait means among the subpopulations.  237 

Simulation scenarios 238 

I considered scenarios were subpopulations with quantitative phenotypic population 239 
differences in mean for the trait in question were screened from a larger total population. 240 
Although the population trait mean differences in the simulation of this scenario were 241 
created by drift and local adaptation, any other source of heritable phenotypic population 242 
differentiation, such as maladaptation, introgression, or e.g. in the case of managed species, 243 
human choice, may also be the reason for differentiation in population means. The range of 244 
phenotypic variation among the subpopulations was not predetermined, but an emergend 245 
feature of the simulation parameters.  246 

After evolving the subpopulations for the desired number of generations, phenotypic 247 
trait means, and genome-wide allele frequencies were recorded. While the phenotypic 248 
means for each subpopulation was calculated over all individuals, the allele frequencies 249 
were estimated in a PoolSeq (Kofler et al., 2011) like fashion from subsamples of 50 250 
individuals. The range of phenotypic trait means of the population sample was recorded. 251 
Trait heritability was determined in the last generation by regressing the phenotypic values 252 
of the offspring against the mean of their respective parents (Lynch & Walsh, 1998). As 253 
measure for population subdivision due to drift, FST among all subpopulations was 254 
calculated from the variance of the true allele frequencies (Wright, 1949).  255 

Population GWAS 256 

Assuming a linear relation between the phenotypic (sub)population means, and the 257 
population allele frequencies of the causal loci on the other, I calculated an ordinary linear 258 
regression between these two variables for all loci in the genome. I used the resulting -log10 259 
p value as measure of regression fit and effect size. I recorded the number of true positive 260 
loci (TPL) among the loci beyond a predefined outlier threshold. As GWAS performance 261 
measures, the true positive rate (TPR = recall, sensitivity, discovered proportion of all 262 
QTL), positive predictive value (PPV = precision, proportion of TPL among outliers 263 
considered) and false discovery rate (FDR = proportion of false positive loci among outliers 264 
considered, type I error) were calculated.  265 

Influence of natural system and experimental design factors 266 

In a first set of simulations, I explored the influence of factors inherent to the natural 267 
system and the experimental design on population GWAS performance. As factors of the 268 
natural system, I assumed characteristics that are beyond control of the researcher, such as 269 
heritability of the trait and its genetic architecture (number of QTL, distribution of allele 270 
trait contribution). While the degree of population differentiation and range of phenotypic 271 
differentiation are also inherent to the organism studied, the choice of samples may allow a 272 
certain control over these parameters. The number of subpopulations screened is clearly a 273 
study design decision (Table 1).  274 

Table 1. Simulation parameters, their abbreviations, values used in simulations, their 275 
biological meaning and whether the parameter is a feature of the natural system 276 
under scrutiny or under the control of the researcher.  277 



Parameter Abbreviation Values in the simulation Biological meaning Degree of knowledge in 

natural systems/under the 

control of study design 

Number of subpopulations 

scored for phenotypic 

population means and 

genome wide allele 

frequencies 

n_pop 12, 24 36, 48, 60 - Full control 

Number of quantitative trait 

loci contributing to the focal 

trait 

n_qtl 30, 50, 70, 110, 500 Genetic architecture of 

the trait 

A priori unknown 

Distribution of allelic effects 

on the focal trait 

allelic_contr Flat, exponential Genetic architecture of 

the trait 

A priori unknown 

Standard deviation of random 

phenotypic variation added to 

individuals 

pheno_plast 0.1, 1, 2, 3 Heritability of the trait A priori unknown 

Number of generations of 

independent evolution of the 

subpopulations 

gen 2, 5, 10, 30, 50 Population structure Partial control 

A genetic trait architecture of 30, 50, 70, 110 and 500 loci, flat and exponential allelic 278 
effect distributions, as well as phenotypic plasticity coefficients of 0.1, 1, 2 and 3 were 279 
applied. Selection strength was fixed at 0.5 (Suppl. Fig. 1B). Simulations were run for 2, 5, 280 
10, 30 and 50 generations among 12, 24, 36, 48 and 60 subpopulations of 500 individuals 281 
each. For this set of simulations, 1000 neutral loci and a fixed outlier threshold (upper 5% 282 
quantile, either 21 or 22 outlier loci, respectively) were applied. Each possible parameter 283 
combination was run in five replicates, resulting in 5000 simulation runs.  284 

The effect of each parameter on PPV was assessed with ANOVA over all simulations, 285 
grouped after the respective parameter classes. The relative influence of the number of 286 
populations, QTL loci, distribution of allelic contributions, trait heritability, phenotypic 287 
range and population subdivision on the proportion of TPL among the outlier loci was 288 
determined with a General Linearized Model (GLM).  289 

Genomic prediction and validation 290 

The loci identified by GWAS were used to devise a statistical genomic prediction model 291 
to obtain a score that uses observed allele frequencies at the identified loci to predict the 292 
mean population phenotype of unmeasured populations. To remove remaining 293 
uninformative or redundant loci, I applied feature selection, which is particularly suitable 294 
for bioinformatic data sets that contain many features but comparatively few data points. 295 
The minimum entropy feature selection (MEFS) technique uses mutual information to 296 
measure the dependence between each feature and the target variable. For a given number 297 
of features (k), the data set of the allele frequencies at selected outlier loci and the 298 
respective phenotypic population means was repeatedly randomly divided in training 299 
(80%) and test set (20%), a multiple regression model fitted and the r²-fit of the test sets to 300 
the predicted phenotypes recorded. The best model for the current k was recorded and the 301 
process repeated for all k in a range between 2 and the number of selected loci – 1. Finally, 302 
the best model (i.e. highest r²) among all k was chosen as best prediction model. MEFS was 303 
implemented with the Python module scikit-learn 1.3.2 (Pedregosa et al., 2011) 304 

The performance of the selected best prediction model for each run was tested with 305 
independent data. Ten additional populations were created under the same parameters as 306 
the initial set of populations and their mean population phenotypes calculated as described 307 
above. Then the allele frequencies at the predictive loci as identified by the best prediction 308 
model were extracted and phenotypic prediction scores according to the best prediction 309 
model calculated. The performance of the statistical genomic prediction was then evaluated 310 



by calculating the Pearson correlation coefficient r between the observed mean population 311 
phenotypes and the phenotypic prediction scores for the ten validation populations 312 
(Supplemental Script 2).  313 

Method performance with realistic genome sizes 314 

Whether and which proportion of TPL, i.e. causal loci can be expected to be reliably 315 
identified with the proposed method depends crucially on the total number of loci screened 316 
as this number determines the length and size of the distributional tail of random 317 
associations of neutral loci with the mean population phenotypes. The number of effectively 318 
independently evolving loci in a population depends on genome size, effective population 319 
size (including all factors that affect it locally and globally) and LD structure (Chakraborty, 320 

1981; Taylor & Higgs, 2000). There are hardly any empirical estimates in the literature, but 321 
dividing typical genome sizes by typical mean genome-wide LD ranges suggested that a few 322 
tens of thousands to a few hundreds of thousands of independent loci per genome is a 323 
realistic range for a large number of taxa (see Supplemental Table 1). I have therefore 324 
considered 1,000, 5,000, 10,000, 30,000, 50,000 and 100,000 independent neutral loci for 325 
samples of 12, 24, 36, 48 and 60 populations with a restricted set of parameters (number of 326 
QTL and allelic contribution). As the true number of QTL underlying a trait is rarely a priori 327 
known, I considered 10, 30, 50, 70 and 110 QTL loci in this analysis. I therefore recorded 328 
the number of TPL found in sets of loci with the absolutely highest 10, 30, 50 and 100 -329 
log10p values, as well as outlier proportions of 0.0001, 0.001, 0.01, 0.02, 0.05 and 0.1 of the 330 
total number of loci in the respective simulation. As above, all simulations were run in all 331 
possible parameter combinations with five replicates each (Supplemental Script 3).  332 

I analysed the performance of the method in an Area Under the Curve – Receiver 333 
Operator Curve (AUC-ROC) and – Precision, Recall (AUC-PR) framework as suggested by 334 
Lotterhos et al. (Lotterhos et al., 2022). For each combination of effective genome size and 335 
number of population scored, mean TPR, PPV and FDR were calculated over all replicates 336 
and parameter combinations for the respective set of simulations. The maximum F1 score 337 
(Rijsbergen, 1979) was used in addition to identify the optimal number of outliers to select.  338 

All simulations were implemented in Python 3.11.7 (Van Rossum & Drake, 2009) and run 339 
under pypy 3.10 (Team, 2019), the respective scripts can be found in the Supplementary 340 
Material (Scripts 1-3). General statistical tests were performed with R (R Core Team, 2013).  341 

Results 342 

Allele frequencies at QTL loci co-vary positively with the population trait mean 343 

The mean correlation coefficient between all QTL and the respective phenotypic 344 
population means was positive in every parameter combination and in every single 345 
simulation (Table 2).  346 

Table 2. Expected mean Pearson’s correlation coefficients between QTL AF and 347 
phenotypic population means for three different locus contribution distributions and 348 
varying number of QTL.  349 

n_QTL Flat Mildly exponential Strongly exponential 

1 1 1 1 

10 0.322 0.307 0.165 

20 0.227 0.218 0.085 

50 0.142 0.116 0.035 

100 0.101 0.064 0.017 



200 0.070 0.033 0.008 

500 0.045 0.013 0.003 

1000 0.031 0.006 0.001 

2000 0.023 0.003 0.001 

5000 0.014 0.001 0.000 

 350 
The expected mean correlation coefficient decreased with increasing number of 351 

contributing QTL (Figure 1). This decay was best described by a negative exponential 352 
function of the form number of QTL-1/x with x ranging from 1.26 in case of the strongly 353 
unbalanced locus contributions to 2 for the flat distribution.  354 

Figure 1. Plot of the expected correlation coefficient between individual QTL loci and 355 
the population trait mean in dependence of the number of QTL loci.  356 

 357 

The distribution of the correlation coefficients did not deviate from a normal 358 
distribution for the flat locus contribution distribution, while it did for all other parameters. 359 
The correlation coefficients for the non-contributing loci had an expectation of zero and a 360 
mean standard deviation of 0.01, regardless of the number of loci. 361 

Influence of simulation parameters on parameters of the simulated populations 362 

In the second set of simulations with 1000 neutral loci and an outlier threshold of the 363 
most extreme 5% -log10p values, the permutation of all parameters with five replicates 364 
yielded 4984 completed independent simulation runs. The 16 missing to the expected 5000 365 
runs were due to one or more subpopulations going extinct during the simulation. In total, 366 
more than 30 billion individuals were simulated.  367 

The number of independently evolving generations strongly influenced the population 368 
structure (r² = 0.996). FST estimates increased on average by 0.0018 per additional 369 
generation, with large variation. Resulting FST values ranged between 0.012 and 0.111 370 
(Supplemental Figure 3A). Heritability of the trait depended strongly on the plasticity 371 
parameter (r² = 0.942, Supplemental Figure 3B). It decreased on average by 0.24 per unit 372 
standard deviation, with variations of up to 0.05 even among runs with identical 373 
parameters. Trait heritability estimates ranged from 0.16 to 1.02.  374 



Factors influencing the proportion of detected true positive loci among outliers 375 

Over all simulations in the first set with 1000 neutral loci, on average about 14.1 (mean 376 
proportion 0.62) true positive loci (TPL) were among the highest 5% outliers. The TPL 377 
values ranged between none (0) and 23 (1.0); the 25 percentile was 10 (0.38), the 75 378 
percentile 20 (0.90). This exceeded in >95% of cases random expectations, when excluding 379 
the highly polygenic case (n_qtl = 500), this proportion rose to more than 99%.  380 

Figure 2. Effect of simulation parameters and emergent features on the proportion of 381 
identified true positive loci. A) Phenotypical plasticity parameter as a proxy for 382 
heritability. B) Number of QTL. C) Distribution of allelic contributions to phenotypic 383 
trait. D) Generations of independent evolution as proxy for population structure. E) 384 
Number of populations scored for population phenotypic means and allele 385 
frequencies. F) Range of population phenotypic means as an emergent feature.  386 

 387 



The phenotypic plasticity parameter had a significant effect on PPV (F = 8.37, p = 1.51 x 388 
10-5), however, as the data plot already indicated (Figure 2A), this was due to the drop of 389 
the mean in the class with the lowest heritability only (from about 0.64 in the other classes 390 
to 0.59), as indicated by Dunn’s post-hoc test (z statistic > 2.8 and p below 4.8 x 10-4 in all 391 
comparisons with class 3). The number of QTL showed a systematic effect on mean PPV 392 
(ANOVA F = 226, p = 6.42 x 10-177, Figure 2B). This was mainly due to the highly polygenic 393 
class; while the mean PPV for all different QTL numbers up to 110 was above 62.5%, it was 394 
as low as 39.8% for 500 QTL (z statistic > 17 and p below 2.1 x 10-69 in all comparisons). 395 
The distribution of allelic effects on the trait showed a moderate but highly significant effect 396 
on the mean PPV (mean equal contribution = 0.67, mean exponential = 0.57, F = 154,5 p = 397 
6.58 x 10-35, Figure 2C). The relation of mean proportion of detected TPL and population 398 
structure was non-linear. Both very weak (2 generations) and strong population (30+ 399 
generations) structure led to a relatively lower proportion of TPL (0.62 and 0.46, 400 
respectively, Figure 2D), while for intermediate values TPL proportions of 0.72 (5 401 
generations) and 0.70 (10 generations) were observed. The by far strongest effect on 402 
proportion of TPL among the selected loci had the number of populations screened (F = 403 
514, p = 0). The values ranged from a mean PPV of 0.35 (s.d. = 0.18) with 12 populations to 404 
over 0.78 (s.d. = 0.23) with 60 populations. Given the chosen threshold, a diminishing 405 
return was observed above 36 populations sampled (Figure 2E). The phenotypic range in a 406 
simulation run had a moderate (r = 0.42, p = 5.36 x 10-203), yet significantly positive effect 407 
on detection of TPL. The realised range of population trait means in the simulations covered 408 
on average 15.4% (range = 0.1-56%) of the possible range. An increase of one unit in range 409 
increased the proportion of TPL by 0.07 (Figure 2F). 410 

When jointly considering the effect of all parameters on PPV in a GLM, it turned out that 411 
all had a significant effect (Table 2). Their relative influence increased from FST (r² = 0.008) 412 
over distribution of allelic trait contribution (r² = 0.013), heritability (r² = 0.024), the 413 
number of populations (r² = 0.100), phenotypic range (r² = 0.130) to the number of QTLs, 414 
that had by far the greatest influence (r² = 0.343). In total, the parameters explained 61.8% 415 
of variance.  416 

Table 2. Generalised Linear Model of factors influencing the proportion of TPL among 417 
outliers (PPV) in simulations.  418 

Factor Coefficient Std.err. t p r² 

Constant 
0.243 0.022 10,859 3.86E-23 

FST -2.954 0.150 -19,749 2.21E-79 0.008 

allelic_contr 
0.153 0.009 16,122 6.46E-53 0.013 

heritability 
0.042 0.019 21,964 2.81E-02 0.024 

n_pop 
0.006 0.000 22,089 8.01E-99 0.100 

range_pheno 
0.037 0.002 19,492 2.33E-77 0.130 

n_qtl 
-0.001 0.304 -46,314 0.00E+00 0.343 

 419 
Minimum Entropy Feature Selection and statistical phenotype prediction 420 

Minimum Entropy Feature Selection (MEFS) removed on average 8.72 (range = 2-14, 421 
s.d. = 4.14) loci, corresponding to a proportion of 0.38 (s.d. = 0.19) from the statistically 422 
chosen initial outlier set. The procedure removed on average a larger proportion of FP than 423 
TPL (mean difference 0.14, t = -19.9, p = 6.7 x 10-79). This increased the proportion of TPL 424 



in the final prediction set on average by 0.05 (range = -0.23-0.48, s.d. = 0.09) to a mean of 425 
0.66 (range = 0-1, s.d. = 0.29, Figure 2).  426 

Figure 3. Effect of Minimum Entropy Feature Selection (MEFS) on the proportion of 427 
TPL and FP in the selected set.  428 

 429 

The predictive accuracy of the SNP loci sets selected by MEFS was on average r = 0.58 430 
(s.d. = 0.44). It ranged from -0.95 to 1.0. The distribution was highly skewed with 75% 431 
being higher than 0.30, the median was found at 0.76 and still 25% being higher than 0.94 432 
(Supplemental Figure 3).  433 

The accuracy of mean population phenotype prediction depended linearly on the 434 
number of TPL in the prediction set (r² = 0.28, p = 0), with any additional TPL increasing 435 
the correlation coefficient by 0.05 (Supplemental Figure 4A). Inversely, the accuracy of 436 
prediction decreased with a rising number of FP, but even with a considerable number of 437 
FP in the prediction set, accurate prediction was possible in a large number of cases 438 
(Supplemental Figure 4B). Overall, the prediction accuracy increased with increasing 439 
proportions of TPL among the prediction set, although even 100% TPL in the prediction set 440 
did not guarantee a highly accurate prediction (r > 0.8) in all cases (Supplemental Figure 441 
4C).  442 

Figure 4. Influence of simulation parameters on the accuracy of statistical population 443 
mean phenotype prediction. A) Phenotypic plasticity parameter as proxy for 444 
heritability. B) Distribution of allelic trait contributions. C) Number of trait-445 
underlying QTLs. D) Generation of independent evolution as proxy for population 446 
structure. E) Number of populations scored. F) Proportion of TPL in the prediction 447 
loci set after MEFS.  448 



 449 

As the prediction accuracy depended on the proportion of selected TPL, their relation to 450 
the individual simulation parameters was very similar to the results described in the 451 
previous section (Figure 4A-F). The number of populations screened was the most 452 
important factor. With 36 or more populations screened, 97.8% of simulations showed a 453 
prediction accuracy of 0.8 or better, independent of the other simulation parameters 454 
applied. In a GLM with all factors simultaneously considered, the proportion of TPL selected 455 
had the largest influence on prediction accuracy (r² = 0.48), followed by the number of QTL 456 
(0.34), the range of mean phenotypes (0.13), the number of populations screened (0.10). 457 
Heritability, distribution of allelic contributions and FST had only a minor influence on the 458 
prediction accuracy (<= 0.02, Table 3).  459 



Table 3. Generalised Linear Model of factors influencing the accuracy of statistical 460 
phenotypic population mean prediction. 461 

Factor Coefficient Std.err. t p r² 

Constant -0.0304 0.02 -14183 0.1562  

FST  -0.1981 0.16 -12778 0.2014 0.01 

allelic_contr 0.1611 0.01 19 0.0000 0.01 

heritability 0.0216 0.02 1265 0.2059 0.02 

n_pop 0.0014 0.00 45782 0.0482 0.10 

range_pheno 0.0104 0.00 56485 0.0002 0.13 

n_qtl -0.0009 0.03 -30692 0.0000 0.34 

prop_TPL_FS 0.7761 0.02 34676 0.0000 0.48 

Method performance with realistic effective genome sizes 462 

The values for AUC-ROC ranged between 0.067 and 0.833, for AUC-PR between 0.013 463 
and 0.730. There was an interaction between the effective genome size and number of 464 
populations scored. According to both AUC measures, the method performed best, when the 465 
number of populations scored was high and the genome small (Figure 5). An at least 466 
satisfactory (> 0.66 for AUC-ROC and > 0.53 for AUC-PR) overall performance was 467 
observed for 24 populations for the smallest genomes considered (1,000), for 36 468 
populations up to 30,000 independent loci and for genome sizes up to 100,000 for 48 and 469 
60. The similar values in both statistics and the plots suggested that there are diminishing 470 
returns for samples larger that about 48 populations. Moreover, closer inspection of the 471 
corresponding plots (Figure 6) suggested that for samples of 48 and 60 populations, an 472 
optimal ratio between TPL and FPL exists for approximately the 25 highest outlier loci, 473 
independent of genome size. For combinations with good performance, the maximum F1 474 
score suggested that choosing the 30 highest outlier provided the optimal compromise 475 
between maximising TPR and minimising FPR (Supplemental Figure 6).  476 

Figure 5. Heat-map of AUC-ROC (area under the curve – receiver operator 477 
characteristics) and AUC-PR (area under the curve – precision recall) in relation to 478 
effective genome size and number of populations scored. 479 

 480 

Figure 6. AUC-ROC and AUC-PR for a range of effective genome sizes. In the left 481 
column are the plots of AUC-ROC, i.e. FDR on the x-axis versus TPR on the y-axis. The 482 
right column shows AUC-PR plots, i.e. TPR on the x-axis versus PPV on the y-axis. The 483 
dotted lines indicate the threshold for a random effect.  484 



 485 

Discussion 486 

This study used extensive forward simulations to explore the potential of a novel GWAS 487 
approach utilising phenotypic population means and genome-wide allele-frequency data to 488 
identify loci potentially underlying quantitative polygenic traits. While the approach seems 489 
to be generally useful in a wide range of cases, there are also clear limits to its applicability.  490 



General validity of the underlying assumptions  491 

The initial simulations demonstrated that the expectation for the covariance of random 492 
population "allele frequencies" at contributing quantitative trait loci (QTL) and the 493 
respective population trait mean is consistently positive when an additive model applies. 494 
This is an inherent consequence of the common dependence of both variables on the QTL 495 
genotypes of the individuals in a population, as demonstrated in (3). Additive models seems 496 
to be an appropriate statistical approximation for most quantitative traits at population 497 
level (Hill et al., 2008), despite the description of many epistatic interaction on the molecular 498 
level (Moore & Williams, 2005).  499 

The relation appeared to be largely independent of the distribution shape of locus 500 
contributions to the trait. While in the case of equal contributions i.e. a flat distribution, the 501 
correlation coefficients of individual loci are themselves a random variate, normally 502 
distributed around the expected mean. As the distribution becomes increasingly skewed, 503 
locus contribution becomes predictive of the correlation to the trait. Loci contributing more 504 
to the trait and thus accounting for more of the phenotypic variance will likely have a higher 505 
correlation of their allele frequencies to the population mean. Conversely, the expectation 506 
for non-contributing loci is zero. Therefore, it is principally possible to exploit the 507 
correlation between allele frequencies and population trait means for the identification of 508 
loci underlying an additive quantitative trait. However, some statistical limitations became 509 
obvious. Firstly, as the number of QTL increases, the expected mean correlation coefficients 510 
become so small that they are likely to be indistinguishable from the tail of the zero-511 
centered normal distribution of non-contributing loci, even with an unrealistically high 512 
number of samples. Consequently, the method for identifying QTL by the positive 513 
covariance of their allele frequencies with the population trait means is a priori more suited 514 
for oligogenic to moderately polygenic traits. Secondly, the number of QTL and the 515 
distribution of locus contributions may influence the statistical identifiability of individual 516 
QTL. In particular, loci that contribute only minimally to the trait or that fall by chance 517 
below the expected mean correlation coefficient may overlap with the tail of the 518 
distribution of non-contributing loci. 519 

These predictions remind of similar conditions for the contribution of different QTL 520 
architectures to phenotypic adaptation described by (Höllinger et al., 2023). They assert that 521 
phenotypic adaptation of oligogenic traits is achieved by detectable allele frequency shifts 522 
at some but not very many loci, while adaptation in highly polygenic traits is rather 523 
achieved by subtle perturbations of standing variation, with respective consequences for 524 
their detectability. Just as expected here, they stress the importance of stochastic effects 525 
that may lead to apparently heterogeneous locus contributions (Höllinger et al., 2023).  526 

Limiting factors in natural settings 527 

The Wright-Fisher forward simulations of a quantitative trait in a subdivided population 528 
with realistic properties and sample sizes largely confirmed the theoretical expectations. In 529 
particular when a sufficient number of populations was scored (>60), a large proportion of 530 
true positive loci could be reliably identified, with the exception of a few parameter 531 
combinations. The genetic architecture of the trait was an important predictor for the 532 
ability to identify causal loci. The most important other factor was the genetic trait 533 
architecture. While the loci underlying oligogenic and moderately polygenic traits could be 534 
fairly reliably identified, the highly polygenic scenario tested (500 loci) performed poorly. 535 
The difference between the two tested locus contribution distributions was not very 536 



pronounced. This was likely due to the tendency of higher correlations between higher 537 
contributing loci and the trait, which ensured the inclusion of a substantial proportion of 538 
true positive loci in the selected outliers under a wide range of conditions.  539 

The influence of mean heritability was similarly not marked. Even down to trait 540 
heritability estimates of 0.3, the success rate was only slightly reduced. This effect may be 541 
attributed to the averaging of phenotypes and genotypes across multiple individuals, which 542 
is likely to mitigate the inherent noise associated with individual data (Johri et al., 2022; 543 
Stinchcombe & Hoekstra, 2008). This finding is consistent with observations by (Zhang et al., 544 
2018), who employed pooled data for GWAS. From a practical standpoint, the findings 545 
suggest that inevitable errors in phenotyping, which can compromise GWAS performance 546 
on individuals (Barendse, 2011), are likely to be less problematic when using the mean 547 
measured over many individuals. Furthermore, this finding indicates that the failure to 548 
entirely remove non-additive variance from the analysis does not necessarily compromise 549 
the method’s ability to reliably identify trait-associated loci.  550 

From a statistical perspective, it was anticipated that the range of phenotypic population 551 
means would influence the identification of true positive loci to some extent, given that a 552 
larger range of phenotypic means is inherently associated with on average larger allele-553 
frequency differences among populations. The choice of populations with a large range of 554 
environmentally unexplained variance is therefore crucial. It is, however, important to 555 
emphasise that the underlying causes of the observed differences in trait means among 556 
populations are not of primary concern. These may be attributed to local adaptation, but 557 
also to maladaptation, human choice, or other factors. Likewise, increasing the number of 558 
populations screened increased the statistical power of the approach. However, it seemed 559 
that increasing the number of samples led to diminishing returns in statistical power gain 560 
beyond a certain threshold.  561 

A pronounced population structure (FST > ~ 0.07) was a major factor impeding reliable 562 
identification of true positive loci, even with a high number of samples. This is probably due 563 
to distinct evolutionary trajectories in independently evolving populations. The genetic 564 
redundancy of polygenic traits can lead to evolution of the same phenotypes from different 565 
genomic bases(de Vladar & Barton, 2014; Kaneko & Furusawa, 2006), even if evolving from the 566 
same ancestral population (Barghi et al., 2019, 2020; Pfenninger et al., 2015). If different 567 
loci in different populations are causal for the observed phenotypic differences, a linear 568 
relation between population means and allele frequencies is not to be expected. It is 569 
therefore important that the allele frequencies in the studied populations are correlated 570 
either by recent common descent and/or recurrent gene-flow, i.e. that the population 571 
structure between the population scored is weak (Mathieson, 2021). 572 

A situation where the overall genetic distance and the phenotypic differences are 573 
correlated, e.g. if an environmental gradient is correlated to the geographic distance 574 
between populations (IBD) and the trait value is an adaptation to this gradient, should as 575 
well be prone to produce false positives. To avoid such a situation, it is recommended to 576 
test for (the absence of) a correlation between genome-wide genetic distance and 577 
differences in phenotypic means (e.g. by a Mantel’s test).  578 

Accurate statistical genomic prediction in a wide range of conditions 579 

Genomic prediction is deemed to be one of the major tools for the mitigation of climate 580 
change on biodiversity (Aguirre-Liguori et al., 2021; Bernatchez et al., 2023; Capblancq et al., 581 
2020; Waldvogel et al., 2020). Contrary to its application in medicine or selective breeding 582 



(Wray et al., 2019), however, accurate prediction of population responses is probably more 583 
important than the prediction of individual phenotypes. However, there is no theoretical 584 
obstacle, why the identified loci could not be used for individual genomic phenotype 585 
prediction, but this was not investigated here. Within the limits outlined above, the 586 
proposed method delivered very accurate predictions (r > 0.8) of population mean 587 
phenotypes. It should be noted, however, that the prediction is statistical in the sense that it 588 
produces a prediction score (de Los Campos et al., 2018) that correlates with the mean 589 
population phenotype and not the phenotype itself. Just like with any other genomic 590 
prediction (Kachuri et al., 2024), this limits the transferability of the prediction to other, 591 
more distantly related lineages or species.  592 

Reducing the false positive rate is in any case advisable, as it proved to be the most 593 
important factor of prediction success with independent data. The application of a Machine 594 
learning approach, in this case Minimum Entropy Feature Selection (MEFS), prior to 595 
prediction reduced the already low false positive rate among the initially selected loci 596 
further. Other, comparable methods, such as e.g. , likely perform comparably or even better. 597 
Other factors influenced prediction success in a very similar fashion as the true positive 598 
rate. One notable exception was distribution of locus contributions. While true positive loci 599 
were more reliably identified from a flat distribution, prediction worked better when many 600 
loci of large effect were among the prediction set, most likely because these loci contribute 601 
more to phenotypic variance (Jain & Stephan, 2015).  602 

Typical genome sizes of real species are no obstacle 603 

The perhaps most important challenge was showing that the proposed method has 604 
enough statistical power to distinguish at least a part of the unknown, but likely relatively 605 
small number of QTL reliably from the large number of non-contributing loci in real 606 
genomes of real species. The evaluation of method performance with AUC-ROC and AUC-PR, 607 
as recommended recently (Lotterhos et al., 2022), showed a satisfactory performance even 608 
for genomes with moderately high effective sizes, provided a sufficiently high number of 609 
populations is screened. In particular restricting the selection of potentially causal QTL on a 610 
few dozen of the highest outliers promises to yield very low false positive rates. As shown 611 
above, already a limited number of true positive loci may be sufficient for reliable genomic 612 
prediction. 613 

Practical considerations 614 

The proposed method finds rather genomic regions or haplotypes associated to the trait 615 
in question than directly causal SNPs. However, this is true for most GWAS methods (Wang 616 
et al., 2010) and therefore fine-mapping and inference of causal processes remain to be 617 
done (Wallace, 2021). In practice, this requires that regions with high SNP outlier density 618 
need to be collapsed to haplotypes prior to further analysis. Knowledge on the local LD-619 
structure, mean haplotype length, respectively recombination landscape can aid haplotype 620 
identification (Flister et al., 2013). Recently developed machine learning approaches makes 621 
such information available for pooled data (Adrion et al., 2020).  622 

The possibly largest advantage of the proposed method is its data efficiency, if pooled 623 
sequencing is applied. Because the Pool-Seq approach (Schlötterer et al., 2014) yields highly 624 
accurate estimates of genome-wide allele frequencies at SNP sites (Czech, Peng, Spence, 625 
Lang, Bellagio, Hildebrandt, Fritschi, Schwab, Rowan, & consortium, 2022) the necessary 626 



sequencing effort is marginal compared to individual based approaches (Ziyatdinov et al., 627 
2021). This makes GWAS studies accessible for the usual funding in the field of biodiversity. 628 
Pooled sequencing for GWAS has been proposed (Yang et al., 2015) and applied (Giorello et 629 
al., 2023; Kumar et al., 2022; Pfenninger et al., 2021) with extreme phenotypes. What is now 630 
required is the application of the method to a real-world data set, a work which is in 631 
progress.  632 

Conclusion 633 

This study demonstrated the potential of the proposed GWAS approach for biodiversity 634 
genomics. By carefully considering the factors influencing its performance and addressing 635 
the limitations, this method can be a valuable tool for identifying the genetic basis of 636 
complex traits in natural populations.  637 
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