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Abstract. The rapid growth of the Internet of Things has significantly increased data volumes, 
leading to heightened concerns over security risks such as data theft and leakage. As machine 
learning becomes increasingly integral to various applications, data security in training processes 
has emerged as a critical issue. The Internet of Vehicles (IoV), as a crucial branch of the IoT, faces 
particular challenges in securely and efficiently training data. While current machine learning 
frameworks enable fast and efficient data training in IoV environments, security risks remain a 
pressing concern. This study explores the use of a federated learning framework enhanced with 
homomorphic encryption to address these issues. The research involves simulating real-world 
environments to test the basic performance and feasibility of the selected framework in IoV 
applications. Additionally, the impact of homomorphic encryption on the framework's effectiveness 
is assessed. Finally, a comparative analysis with traditional machine learning frameworks 
demonstrates that the chosen federated learning framework, when combined with homomorphic 
encryption, offers superior efficiency and security in IoV scenarios. This study underscores the 
potential of integrating advanced encryption techniques in machine learning frameworks to enhance 
data security in the IoV. 

Keywords: Internet of Things, Internet of Vehicles, Technology, Federated Learning. 

1. Introduction 

The Internet of Things (IoT) has revolutionized the way objects interact by connecting them and 

processing data through sensors, leading to advanced applications across various fields. In the medical 

industry, for instance, IoT enables automatic control of treatment environments, enhancing patient 

care. In circular business models, IoT’s tracking and monitoring capabilities significantly reduce 

energy consumption, while in smart cities, IoT data optimizes resource allocation and other urban 

functions [1]. The Internet of Vehicles (IoV) represents another crucial application area, linking data 

from sensors between vehicles, drivers, and the cloud to optimize driving routes, monitor driver 

behavior, and enhance vehicle safety [3]. 

Despite the advancements brought by IoV, significant security risks accompany its growth, making 

security a critical concern. Since 2010, more than 900 public security incidents related to connected 

vehicles have been reported, with attacks increasing in scale, frequency, and complexity [4]. Frequent 

issues like data leakage and tampering have severely hampered the development and trust in 

connected vehicles, underscoring the urgent need for secure and efficient machine learning solutions 

that can handle discrete data in IoV environments. Addressing these challenges is essential for the 

future of connected vehicle technology. 

This study focuses on demonstrating the applicability of a selected machine learning scheme 

tailored for the secure, rapid processing of discrete data in the IoV context. By conducting 

experiments, this research aims to validate the feasibility of the chosen machine learning approach, 

ensuring that it can meet the demanding security and efficiency requirements of connected vehicle 

systems. The findings will contribute to advancing IoV technologies by offering a robust solution to 

current security challenges, thereby fostering safer and smarter vehicle networks. 
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2. Related Work 

The data of the Internet of Vehicles includes the location information of connected vehicles 

themselves, as well as the location of non connected vehicles and other obstacles that affect vehicle 

movement detected by roadside devices; Including owner information, vehicle body information, 

vehicle speed information, and vehicle control information contained in the in vehicle network end; 

This includes information about connected cars and their surrounding environment, including images 

of the exterior and interior of the vehicle captured by visual sensors, examples of the distance between 

the vehicle and the roadside detected by radar, as well as information about traffic signals, and so on. 

These pieces of information have the characteristics of discretization, partially satisfying independent 

and identically distributed, privacy, and requiring high-speed processing, time-varying, etc. Therefore, 

the processing difficulty of these data is relatively high. Encryption technology is a technique that 

transforms plaintext data into a meaningless ciphertext by processing it. The recipient decrypts the 

ciphertext using the key provided by the encryptor to obtain the plaintext. Homomorphic encryption 

technology is a special encryption technique, and its uniqueness lies in the fact that the result obtained 

from processing encrypted data is consistent with the result obtained from processing decrypted 

original data. This means that processing encrypted data is equivalent to processing the original text. 

By utilizing this feature, user data can be processed under encryption, greatly improving the security 

of data processing. The current federated learning technology has made significant contributions to 

the path planning and resource management of the Internet of Vehicles. The improved method of 

traditional federated learning FedAVG has been applied in fields such as traffic flow prediction and 

weather prediction. The resource management of vehicles can rely on the combination of federated 

learning and deep reinforcement learning (DRL) to achieve intelligent traffic resource allocation. 

Therefore, federated learning currently has certain application examples, but its data security issues 

are still threatened. Through existing research, it has been found that some attackers can even infer 

the user's raw data from the parameters uploaded by the user. Moreover, because federated learning 

requires each edge device to train personal data and upload parameters to the terminal, the training 

time of each user also affects the update time of the final model. However, due to the different 

computing capabilities of each user, computing may require a large amount of resources. Once a 

certain resource is insufficient, it will seriously slow down the overall model training time, so the 

lightweighting of the model is also a major problem [5]. 

3. Methodology 

The selected method is a new federated learning method based on a single-layer feedforward 

neural network. The key steps of the selected scheme will be briefly introduced next [6]. 

3.1. Data Preprocessing and Model Design 

The optimal weight is usually obtained by iteratively minimizing the cost function in neural 

networks, and mean square error (MSE) is the most widely used cost function. The most intuitive and 

commonly used approach is to calculate the MSE at the network output by comparing the expected 

and actual outputs. Another approach is to minimize the measured MSE before the activation function 

which is before 𝐗𝑇𝐛 and 𝐎𝐮𝐭 = 𝑓−1(𝑂𝑢𝑡). (where X represents the dataset input through the input 

matrix, b represents the weight vector of the neural network parameters, where the weight values are 

biased, and Out represents the output), and then based on the L2 norm regularization term, to avoid 

overfitting of the model, the cost function is finally generated. 

𝐽(𝐛) =
1

2
[(𝐅(𝐎𝐮𝐭̅̅ ̅̅ ̅ − 𝐗𝑇𝐛))

𝑇
(𝐅(𝐎𝐮𝐭̅̅ ̅̅ ̅ − 𝐗𝑇𝐛)) + 𝑘𝐛𝑇𝐛]                   (1) 

Among them, k is called the hyperparameter, and if k=0, the basic MSE is obtained. However, the 

cost function in (1) also has its drawbacks. Although the activation function is nonlinear, it is convex 

and its global optimum can be obtained through the closed solutions of X and Out. His solution b has 
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a high computational complexity and is related to the number of input samples. Once the sample size 

is high, even if it is a non iterative method to determine b, it requires high computational requirements. 

To solve this problem, using singular value decomposition (SVD) for transformation can rewrite the 

conditional expression that d satisfies 

(𝑈𝑆𝑉𝐹𝑋 + 𝑘𝐼)𝑏 = 𝑋𝐹𝐹 𝑂𝑢𝑡                                 (2) 

Among them, U is a rare orthogonal matrix, and S is a diagonal matrix with non-zero elements, 

called the singular value of S. The optimal solution of this equation is to provide the solution with the 

minimum error given the training set, as shown in equation (3) 

𝑏 = 𝑈(𝑆𝑆 + 𝑘𝐼)𝑈𝑋𝐹𝐹 𝑂𝑢𝑡                                 (3) 

However, the scheme proposed in equation (3) is only applicable to centralized learning scenarios. 

In the original algorithm, matrices U and S were calculated by XF's centralized SVD. Research has 

found that SVD can also be calculated in an incremental and distributed manner. Therefore, by 

applying the incremental method, we can use the partial SVD calculated on all clients in the joint 

scenario to calculate XF's SVD. 

SVD(𝐀) = SVD([𝐀1|𝐀2| … |𝐀𝑃])
= SVD([𝐔1𝐒1|𝐔2𝐒2| … |𝐔𝑃𝐒𝑃])

                           (4) 

This SVD calculation scheme is robust to rounding errors and data corruption errors. 

Finally, the factor is calculated using equation (5) 

𝐧 = 𝐗𝐅𝐅𝐝̅ = [𝐗1|𝐗2| … |𝐗𝑃] [

𝐅1

𝐅2

⋮
𝐅𝑃

] [

𝐅1

𝐅2

⋮
𝐅𝑃

]

[
 
 
 
𝐎𝐮𝐭̅̅ ̅̅ ̅

1

𝐎𝐮𝐭̅̅ ̅̅ ̅
2

⋮
𝐎𝐮𝐭̅̅ ̅̅ ̅

𝑝]
 
 
 

= 𝐗1𝐅1𝐅1𝐎𝐮𝐭̅̅ ̅̅ ̅
1 + ⋯+ 𝐗𝑝𝐅𝑝𝐅𝑝𝐎𝐮𝐭̅̅ ̅̅ ̅

𝑝

                        (5) 

Due to the lack of a process of aggregating client information through network transmission, only 

each user's own US and n are used, so this solution is currently private. Therefore, each client sends 

it to the coordinator mvector, who then aggregates it. Due to the aforementioned data security issues, 

homomorphic encryption is required before the mvector sends it to the coordinator to further enhance 

data security. 

3.2. Application of Homomorphic Encryption Technology 

Next, a brief introduction will be given to the homomorphic encryption technology of the selected 

scheme [7]. 

[[𝐧]] = [[𝐧]] + [[𝐧𝑝]]                                     (6) 

[[.]] is a homomorphic operator that directly calls the encapsulation tool using the CKKS CH 

scheme. Since this scheme operates using matrices, it has a higher level of security. 

3.3. Implementation and Optimization of Federated Learning 

Briefly introduce the implementation of the selected federated learning scheme, which consists of 

m participants and an aggregation server (coordinator) to train an ML model. After each participant 

performs FL on the client to execute the above formulas (1) to (5), the basic parameters are obtained. 

Finally, the information is encrypted through (6) and sent to the coordinator. The coordinator then 

uses equations to gradually merge all the information and sends it back to each participant, completing 

the model update. 

Next, provide pseudocode for the client and coordinator to facilitate readers in reproducing the 

results. As show in the table 1 and table 2. 
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Table 1. Algorithm 1 Client-side pseudocode 

Algorithm 1 Client-side pseudocode 

 Client input section: 

 𝐗𝑝 ∈ ℝ𝑚×𝑛𝑝 

 𝐝𝑝 ∈ ℝ𝑛𝑝×1 

 f 

 Client output section: 

 [[𝐦𝑝]] 

 𝐔𝐒𝑝 

1: 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐅𝐄𝐃𝐇𝐄𝐎𝐍𝐍𝐂𝐋𝐈𝐄𝐍𝐓(𝐗𝑝, 𝐝𝑝𝑓) 

2: 𝐗𝑝 = [𝑜𝑛𝑒𝑠(1, 𝑛𝑝); 𝐗𝑝]; 

3: 𝐝
¯

𝑝 = 𝑓−1(𝐝𝑝); 

4: 𝐟𝑝 = 𝑓′(𝐝
¯

𝑝); 

5: 𝐅𝑝 = 𝑑𝑖𝑎𝑔(𝐟𝑝); 

6: [𝐔𝑝, 𝐒𝑝, ∼] = 𝑆𝑉𝐷(𝐗𝑝 ∗ 𝐅𝑝); 

7: 𝐔𝐒𝑝 = 𝐔𝑝 ∗ diag (𝐒𝑝) 

8: 𝐦𝑝 = 𝐗𝑝 ∗ (𝐟𝑝.∗ 𝐟𝑝.∗ 𝐝
¯

𝑝); 

9: [[𝐦𝑝]] = ckks−encryption(𝐦𝑝) 

10: return[[𝐦𝑝]], 𝐔𝐒𝑝 

11: endfunction 

Table 2. Algorithm2 Coordinator pseudocode 

Algorithm2 Coordinator pseudocode 

 Input: 

 𝐌−list 
 client 

 US_list 

 𝜆 

 Output: 

 [[𝐰]] ∈ ℝ𝑚×1 

1: 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐹𝐸𝐷𝐻𝐸𝑂𝑁N C𝑂𝑂𝑅𝐷𝐼𝑁𝐴𝑇𝑂𝑅(𝑀𝑙𝑖𝑠𝑡, 𝑈𝑆𝑙𝑖𝑠𝑡, 𝜆) 

2: if previous[[m]], USmatricesareavailable: 
3: [[𝐦]] = Stored[[𝐦]] 
4: 𝑈𝑆 = 𝑆𝑡𝑜𝑟𝑒𝑑 𝑈𝑆 

5: Else: 

6: [[𝐦]] = 𝟎 

7: 𝐔𝐒 = [ ] 
8: for[[𝐦𝑝]], 𝐔𝐒𝑝in(𝐌list, USlist): 

9: [[𝐦]] = [[𝐦]] + [[𝐦𝑝]] 

10: [𝐔, 𝐒, ∼] = SVD([𝐔𝐒 ∣ 𝐔𝐒𝑝]); 

11: 𝐔𝐒 = 𝐔 ∗ diag(𝐒) 

12: [[𝐰]] = 𝐔 ∗ 𝑖𝑛𝑣(𝐒 ∗ 𝐒 + 𝜆𝐈) ∗ (𝐔𝑇 ∗ [[𝐦]]) 

13: Save [[m]].US 

14: return [[W]] 

15: end function 
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4. Experiment and Results Analysis 

The experiment is divided into three phased objectives. Firstly, basic performance testing is 

conducted on the selected model, analyzing accuracy and error rate to test the basic performance of 

the model; In addition, the homomorphic encryption module is used to test the performance of the 

model and assess the impact of homomorphic encryption on its performance; Finally, the model will 

be compared with traditional federated learning models to determine if it outperforms most models 

[8]. 

During the experiment, in order to observe the robustness of the model to the data, both 

independent and identically distributed (IID) data and non IDD data were used simultaneously. In 

order to study the impact of encryption on the model, the data was also divided into encrypted and 

unencrypted data. The number of clients in this experiment ranges from 200 to 20000, increasing in 

increments of 200 each time. Different experiments are conducted to observe whether the number of 

clients has a significant impact on the model. The training dataset used six large datasets with logistic 

function as the activation function for neurons. Due to limitations in conditions, these experiments 

were only simulated on one computer and did not run on 20000 independent computers (specifically, 

the training time refers to the time from the start of training to the last client data being uploaded to 

the coordinator and completed, as this is an experiment conducted on the same computer and not on 

multiple joint computers; CPU usage is reflected in the CPU training time and energy consumption 

(unit: Wh) during the experiment). 

4.1. Experimental Setup and Parameter Configuration 

The experiment was conducted in the Python 3.9 environment, equipped with the third-party 

library numpy for homomorphic encryption and federated learning, scipy,tenseal,pandas,scikit_ learn. 

Experimental hardware environment: Intel (R) Core (TM) i7-1260P 2.10 GHz processor, 16GB 

RAM. 

4.2. Performance Testing and Data Analysis 

Tge expirmental shows the model is very good in accuracy and MSE.  

 

Figure 1. MiniBoone (Photo credit: Original) 
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Figure 2. Dry Bean x10 (Photo credit: Original) 

 

Figure 3. Skin (Photo credit: Original) 

 

Figure 4. SUSY (Photo credit: Original) 
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Figure 5. HEPMASS (Photo credit: Original) 

 

Figure 6. Higgs (Photo credit: Original) 

 

Figure 7. Higgsx4 (Photo credit: Original) 
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one colored line could be observed on the graph because of the overlapping relationship of the four 

lines. This also means that regardless of whether the data is IID or non IID, the accuracy of model 

training will not be affected by data encryption and non encryption. Comparing the number of 

different clients in each large dataset before and after, it was found that the result is very smooth, 

indicating that the model Has good robustness to the number of clients. 

 

Figure 8. Minboone (Photo credit: Original) 

 

Figure 9. Experimental results chart (Photo credit: Original) 

 

Figure 10. Experimental results chart 10 (Photo credit: Original) 
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Figure 11. Experimental results chart 11 (Photo credit: Original) 

 

Figure 12. Experimental results chart 12 (Photo credit: Original) 

 

Figure 13. Experimental results chart 13 (Photo credit: Original) 

 

Figure 14. Experimental results chart 14 (Photo credit: Original) 
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Figure 15. Experimental results chart 15 (Photo credit: Original) 

 

Figure 16. Experimental results chart 16 (Photo credit: Original) 

 

Figure 17. Experimental results chart 17 (Photo credit: Original) 

 

Figure 18. Experimental results chart 18 (Photo credit: Original) 
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Figure 19. Experimental results chart 19 (Photo credit: Original) 

 

Figure 20. Experimental results chart 20 (Photo credit: Original) 

 

Figure 21. Experimental results chart 21 (Photo credit: Original) 
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Figure 22. Experimental results chart 22 (Photo credit: Original) 
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As show in the table 3. Finally, comparing the accuracy of the selected model with other authors' 

published models trained on large datasets, it can be found that the accuracy is not significantly 

different from other models. However, in the test results of the three large datasets, the overall 

accuracy of the three tests is still more stable than that of the general model. 

4.3. Discussion and Model Evaluation 

Therefore, overall, through testing the model itself and comparing it with the traditional federated 

model FedAVG and other models published by authors, it is found that the selected model is relatively 

stable in accuracy, has high precision, and has a fast computing speed. It also has a homomorphic 

encryption module, and has strong robustness to the impact of the number of clients and data types 

on whether they meet IID requirements. Therefore, it is believed that the model can handle dispersed, 

fast computing, and high security data in the Internet of Vehicles well, and is a high-quality model 

that can handle Internet of Vehicles data well. 

5. Discussion 

Federated learning can train models without uploading user raw data, only uploading parameters 

and aggregating the results through a demodulator for model training. According to existing findings, 

attackers can tamper with user uploaded data to affect the results of federated learning, obtain the 

user's original data by uploading parameters, and so on [10]. Therefore, encrypting parameters 

through homomorphic encryption can make data more secure. Enhance the anti attack capability of 

federated learning. Of course, the trade-off between data security and computational efficiency is also 

important. Enhancing data security by encrypting data inevitably results in a loss of computational 

efficiency. However, the selected model, even after encryption, is still faster and more accurate than 

traditional federated learning FedAVG. Therefore, it can be considered that this model has an 

excellent trade-off between security and computational efficiency. So it can be basically considered 

that this model is an excellent model that can run in the Internet of Vehicles environment. However, 

through the above research, it can also be found that although the training speed of the model is fast 

when the number of clients is less than 10000, when the number of clients is greater than about 15000, 

the computation time of the model will significantly increase, which is also a problem that needs to 

be further solved. 

6. Conclusion 

This paper provides a comprehensive review of the current state of Wireless Sensor Networks 

(WSNs) in smart home environments, highlighting their significant potential and identifying the key 

challenges that hinder their widespread adoption. The study delves into the various applications of 

WSNs in smart homes, such as remote control, monitoring, and security, while also examining the 

integration of advanced technologies like artificial intelligence. Despite the promising developments, 

the research underscores the ongoing challenges in energy efficiency, protocol interoperability, and 

data privacy that need to be addressed to fully realize the potential of WSNs in smart homes. Looking 

forward, future research should focus on developing more energy-efficient algorithms, enhancing the 

security and privacy of data in WSNs, and establishing universal standards for protocol 

interoperability. Additionally, there is a need for interdisciplinary collaboration to tackle ethical 

concerns and ensure that the deployment of WSNs in smart homes is both technically robust and 

ethically sound. By addressing these challenges, the smart home industry can move closer to creating 

more secure, efficient, and user-friendly environments that fully leverage the capabilities of WSN 

technology. 
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