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Abstract: In this paper, a mathematical model of a dual-channel supply chain network (DCSCN)
based on the Internet of Things (IoT) under uncertainty is presented, and its solution using algorithms
based on artificial intelligence such as genetic algorithm (GA), particle swarm optimization (PSO),
imperialist competitive algorithm (ICA), and gray wolf optimizer (GWO). The main goal of this
model is to maximize the total DCSCN profit to determine the amount of demand accurately, price
in direct and indirect channels, locate distribution centers, and equip/not equip these centers with
IoT devices. The results show that with the increase in the uncertainty rate, the amount of demand
and corresponding transportation costs have increased. This issue has led to a decrease in the total
DCSCN profit. By analyzing the mathematical model, it was also observed that deploying IoT
equipment in distribution centers has increased fixed costs. Examining this issue shows that by
increasing the savings factor by 0.2, the total DCSCN profit has increased by 6.5%. By ranking the
algorithms with the TOPSIS method, the GA was ranked as the most efficient algorithm, followed by
PSO, ICA, and GWO. This IoT-enhanced dual-channel supply chain model not only aims to optimize
traditional supply chain metrics but also introduces advanced, data-driven strategies for improving
demand management, pricing, and infrastructure allocation, ultimately driving profitability in
uncertain environments.

Keywords: dual-channel supply chain network; internet of things; fuzzy programming; robust
possibilistic programming; algorithm based on artificial intelligence

1. Introduction

In today’s competitive world and the production space, manufacturers produce and
provide products according to customer needs. The more manufacturers pay attention
to meeting customers’ needs, the more they can gain a larger market share and make
significant profits. Therefore, to gain more market share, manufacturers consider the total
process of supplying raw materials, production, and distribution to customers in the form
of a supply chain. In fact, the supply chain manages the flow of goods from suppliers to
customers to reduce total costs or increase revenues [1]. One of the most essential tasks
of the supply chain is pricing products in the competitive market so that it can provide
the most appropriate price and quality, in addition to gaining a greater share of sales. In
the DCSCN, products are usually sold to customers through intermediaries and without
intermediaries. This issue leads to creating a complex supply chain system, which requires
the presentation of a mathematical model to achieve the optimal solution. Dual channels
are intricate due to the interplay between direct and indirect sales, where pricing, demand
allocation, and competition between channels must be balanced to maximize profitability.
Their complexity arises from non-linear relationships, demand fluctuations, and channel-
specific costs. An optimal solution can be mathematically derived using multi-objective
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optimization techniques that navigate these complexities by identifying trade-offs and
converging on solutions that maximize total profit while satisfying operational constraints.

With the rapid development of e-commerce and information technology, many man-
ufacturers have engaged in e-commerce and selling their products to customers through
direct channels. Direct sales development channels have many advantages over indirect
or intermediary channels, such as reducing total costs, increasing production efficiency,
creating various products, saving time, etc. However, direct sales marketing is challenging
due to the presence of intermediaries. In both markets, there is competition for more market
share [2].

Direct sales become problematic when intermediaries are present due to potential
channel conflicts, as intermediaries may feel undermined and reduce their promotional
efforts or switch to competitors. Additionally, direct sales create competition for the same
customers, leading to pricing challenges and market confusion. Managing both channels
increases operational complexity and costs, as companies must maintain direct platforms
and logistics while ensuring intermediary support. This delicate balance requires strategic
pricing and relationship management to optimize dual-channel operations effectively.

The competition between the two channels is to achieve more market share. Therefore,
each two-channel is trying to convince consumers to buy from them. Among the factors
that influence the increase in demand in the direct sales channel are proper access, fast
delivery, and price of goods [3]. Among these factors, the most critical factor that will create
competition with the indirect sales channel is the cost of goods for the consumer. Therefore,
the main competition between the two sales channels occurs through determining the
appropriate price to attract a larger market share and increase profits. The first study of
DCSCN was initiated by Balasubramanian [4] in dual channel price competition. Since
then, much research has been conducted in this field, reflected in DCSCN decision-making,
DCSCN conflict, DCSCN pricing strategy, and DCSCN coordination mechanisms [5].

The development of research related to the DCSCN and the increase in customer
demand for various products have led to uncertainty in product manufacturing. When
there is uncertainty in customer demand, it is difficult to price products and determine the
optimal amount of production and distribution. Many studies have shown that uncertainty
has led to increased operational costs, including costs related to strategic and tactical
decisions [6].

In order to deal with this uncertainty in the supply chain, various methods have been
used in the literature, such as stochastic programming (SP), fuzzy programming (FP), RPP,
etc. Most of these methods seek robust, uncertain parameters to make optimal decisions [7].
In this paper, to solve this issue, a DCSCN model with three echelons of production centers,
distribution centers, and customers has been considered, in which there is uncertainty
in the demand and transportation costs. Four different methods were used to deal with
uncertain parameters in this supply chain network, such as BPCCP, RPP-I, RPP-II, and
RPP-III. These methods try to control the amount of customer demand in such a way that
the best decision can be made in line with the pricing of products in the direct channel
(online sales) and the indirect channel (offline sales).

However, what distinguishes the DCSCN studied in this research is using IoT tools to
increase the supply chain’s performance and reduce operating costs. IoT technology can
automate and digitize supply chain processes to achieve maximum operational efficiency
while lowering operational costs. The massive proliferation of IoT devices has revolution-
ized the supply chain. In the supply chain, IoT devices track and trace shipments using
the latest real-time monitoring technologies, including GPS. IoT devices are also used for
asset management using NFC technology and RFID tags. IoT devices are generally used in
almost every step of the supply chain process. The research on supply chain management
based on the IoT is still developing [8]. This issue’s importance has led to the modeling of
the DCSCN in conditions of uncertainty; IoT tools should also be used in the problem. So,
the use and non-use of IoT in the mathematical model is part of the important decisions
that must be taken to maximize profit.
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In this study, the aim is to maximize the total profit of a dual-channel supply chain
by integrating IoT under uncertainty. Key research questions include the following: How
can IoT enhance demand forecasting accuracy, optimize pricing in direct and indirect
channels, and determine the strategic location and IoT-equipment decisions for distribution
centers? The objectives are to develop a robust model that leverages IoT for precise demand
management, dynamic pricing, efficient infrastructure allocation, and overall supply chain
resilience and profitability.

Equipping or not equipping distribution centers with IoT is a part of strategic decisions
along with the location of distribution centers. Also, determining the optimal amount of
production, choosing the type of vehicle, determining the amount of product demand, and
its pricing in direct and indirect channels to maximize the total profit are other decisions of
the DCSCN based on the IoT. To solve the mathematical model in this paper, algorithms
based on artificial intelligence, such as GA, PSO, ICA, and GWO, are used. In general, the
flowchart of this paper is shown in Figure 1.
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Figure 1. Research flowchart.

This article has six sections. The Section 2 discusses the literature review and the
review of various articles in this field. Finally, the research gap is extracted and presented.
The Section 3 presents a mathematical model of the DCSCN based on the IoT under uncer-
tainty. A BPCCP, RPP-I, RPP-II, and RPP-II models were used to control the uncertainty
parameters of demand and transportation cost. In the Section 4, algorithms based on
artificial intelligence and initial solution design are introduced. The Section 5 discusses the
analysis of different sample problems with different solution methods. Also, sensitivity
analysis and algorithm efficiency are discussed in this chapter. Finally, in the Section 6,
conclusions are discussed.
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2. Literature Review

Determining the selling price of the product of each of the sales channels in the DCSCN
is a critical issue. Customers have different expectations in each of these channels. Most
of the research uses game theory to investigate the pricing problem in the supply chain,
but it cannot be used to cover this problem due to its mathematical complexity. However,
some researchers, such as Yu et al. [9], investigated the pricing problem with mathematical
programming, leading to the model’s non-linearity.

Gan et al. [10] presented a mathematical model to determine pricing factors in a dual-
channel system, where products have a short life cycle. They considered a closed-loop
supply chain that included the collector, manufacturer, and retailer in addition to the
manufacturer. The new product is distributed through the traditional channel and sold
through the direct channel. According to different government policies, Javadi et al. [11]
presented the pricing problem in a DCSCN. Due to the growth of e-commerce and green
production, some companies have changed their direction to provide environmentally
friendly products and use online sales channels to increase competition. Modak and
Kelle [12] investigated a DCSCN under stochastic customer demand dependent on price
and delivery time. They considered five decision variables, price and order quantity for
retail and online channels, and delivery time for online channels. The results showed that
uncertainty often occurs in retail and online channels. Ranjan and Jha [13] investigated
the pricing strategies and coordination mechanisms between members in a DCSCN. In
this study, three models (centralized, decentralized, and cooperative) were investigated. A
manufacturer offers a new interchangeable green (eco-friendly) product through the direct
channel and a non-green (traditional) product through the offline retail channel.

He et al. [14] considered a dual-channel closed-loop supply chain where a manufac-
turer can distribute new products through an independent retailer and remanufactured
products through a third-party company or platform in the presence of possible government
subsidies. He et al. [15] studied a single-retailer–single-vendor DCSCN model in which
the vendor sells perishable products through direct online and indirect retail channels. In
addition to the deterioration in the quantity, the quality of the products also decreases over
time. Peng et al. [7] discussed a buy-online–delivery-store (BODS) strategy in which the
manufacturer sells products through online and offline channels and the offline retailer de-
livers online orders from the retailer’s warehouse. Sales apply. By comparing the strategies,
the manufacturer manages the online channel, and the retailer manages the offline channel
independently. Zhang et al. [16] discussed a dynamic pricing strategy and green issues for
a DCSCN that includes a manufacturer and a retailer. In addition, they discussed pricing
and green strategies under decentralized and centralized decision-making scenarios.

IoT technologies have proven vital in strengthening supply chain resilience by enabling
real-time data collection and analytics. These capabilities allow organizations to promptly
identify and mitigate risks, such as delays or environmental disruptions. The real-time
tracking of goods, for instance, facilitates immediate responses to unexpected changes,
significantly reducing potential losses [17].

Despite its benefits, IoT implementation in supply chains faces various obstacles.
Ahmad et al. [18] identified regulatory compliance, network complexity, and data security
as significant challenges. Their study emphasized the importance of collaborative strategies
and comprehensive planning to overcome these barriers and fully realize IoT’s potential.
The IoT has demonstrated its value in temperature-sensitive supply chains by continuously
monitoring environmental conditions, such as temperature and humidity, and thereby
maintaining product quality. This capability ensures that perishable goods remain within
specified parameters, thereby reducing spoilage and safeguarding product integrity [18].

The combination of IoT with other advanced technologies, including artificial intelli-
gence (AI) and blockchain, has further enhanced supply chain operations. For example,
AI processes IoT-generated data to predict disruptions and optimize decision-making. At
the same time, blockchain technology fosters transparency and security by ensuring the
integrity of data shared across the supply chain network [17].
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IoT is expected to play a central role in creating more integrated and intelligent
supply chain systems capable of autonomously managing uncertainties. Advances in IoT
technologies, supportive regulatory policies, and industry collaborations will likely drive
the development of more resilient and adaptive supply chains [19].

Fan et al. [20] developed game theory models in a supply chain under traditional
retail channels and dual-channel structures to investigate whether the manufacturer adopts
an assembly delegation policy. Liu et al. [21] investigated the optimal pricing strategies
of a manufacturer and a retailer in a DCSCN with overconfident consumers. They first
introduced the concept of consumers’ overconfidence level, in addition to consumers’ chan-
nel preferences. Mu et al. [22] developed and analyzed DCSCN mathematical models for
expected profit maximization under centralized, decentralized, and coordinated decision
structures. In this paper, a decision framework is presented for a DCSCN that considers
credit sales competition and stochastic demand. Li and Mizuno [23] studied a periodic
survey, joint dynamic pricing, and inventory problem for a DCSCN with one manufacturer
and one retailer, where demand is stochastic and price sensitive. Pal et al. [24] studied
the production of environmentally friendly, innovative green products and their effects on
the environment. Considering the complexity of the problem in different players’ pricing
decisions, the level of green innovation and promotional efforts under centralized poli-
cies, they used the Stackelberg model and Nash equilibrium. He et al. [25] modeled the
two-period optimal pricing strategy of the manufacturer and the retailer and investigated
how consumer channel preference, price competition, and market change affect the strat-
egy’s equilibrium. Zhao and Zhao [26] investigated pricing strategies in a DCSCN under
uncertainty, focusing on profit optimization under different conditions by adjusting the
market potential. To solve the problem, they used the following three focused decision
models: Stackelberg of the manufacturer, Stackelberg of the retailer, and the vertical Nash
model. Liu et al. [27] in a study on the decision-making and optimal coordination problem
of a dual-channel fresh agricultural product supply chain analyzed the effect of informa-
tion sharing on optimal decisions and proposed a coordination mechanism to encourage
supply chain members to share information. Gao et al. [28], in order to help managers
make sustainable economic and environmental decisions, investigated a sustainable and
environmentally friendly closed-loop supply chain network with two channels (an online
and offline channel).

The literature review shows that various models have been presented for the DCSCN
regarding greenness, pricing, and centralized and decentralized policies. However, the use
of IoT tools in DCSCN models has not been seen in the meantime. In this study, the previous
research is advanced by integrating IoT into a dual-channel supply chain model, focusing
on maximizing profitability under uncertainty. Unlike similar studies, it incorporates
IoT-driven real-time data for precise demand forecasting, dynamic pricing, and strategic
decisions on the location and IoT-equipping distribution centers. The model uniquely
addresses the cost–benefit analysis of IoT implementation and provides a comprehensive
framework for managing uncertainty, making it more practical and adaptable for modern
supply chain networks. This paper’s IoT tools deviate from prior dual-channel supply chain
network models by directly addressing uncertainties through real-time data collection,
predictive analytics, and enhanced visibility. Unlike traditional models that often rely
on static or historical data, IoT-enabled tools in this research provide dynamic insights
into demand fluctuations, supply disruptions, and market volatility. These tools allow
for more precise forecasting, adaptive pricing strategies, and responsive decision-making,
making the model more robust and effective in managing the complexities and uncertainties
inherent in dual-channel operations. Therefore, the innovations of this research can be
stated as follows:

• Using the concept of the IoT in the form of a mathematical model;
• Development of a DCSCN model with the IoT;
• Using four different uncertainty methods to control model parameters;
• Using four algorithms based on artificial intelligence to solve problems.
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3. Problem Definition

The literature review showed that the implementation of the infrastructure of IoT tools
in the modeling of the DCSCN to optimize the total system has not been comprehensively
studied. Therefore, based on the research gap, this section presents a DCSCN model based
on the IoT under uncertainty. Since the uncertainty in demand and transportation costs can
lead to the wrong management decisions, the BPCCP model and different RPP models have
been used to control these two parameters. The model presented in this article is a three-
echelon supply chain model consisting of production centers, distribution centers, and
customers. To illustrate the issue, consider Figure 2, which shows two different channels in
the supply chain that meet customer demand. In the direct channel, customer demand is
met directly by production centers, and in the indirect channel, customer demand is fulfilled
by distribution centers. In the DCSCN based on the IoT, the pricing of products in direct
channels (from the production center) and indirect channels (from the distribution center)
depends on the elasticity of the product price according to demand, and this demand can
affect the pricing of products in two channels. Since IoT tools can reduce the costs of the
total supply chain and increase the total DCSCN profit. In this paper, the implementation of
the IoT infrastructure in the location of distribution centers is considered. Thus, by creating
the infrastructure of the IoT and equipping the distribution centers with various IoT tools,
operational and energy costs can be reduced, although the cost of equipment will lead to a
decrease in profitability.
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The proposed mathematical model is superior due to its comprehensive integration of
IoT-driven real-time data and multi-objective optimization to address demand forecasting,
dynamic pricing, and strategic infrastructure decisions in a dual-channel supply chain
under uncertainty. Its complexity lies in handling non-linear relationships, uncertainty
parameters, and the trade-offs between cost, efficiency, and profitability. By incorporating
IoT-equipped and non-equipped options for distribution centers and balancing direct and
indirect channel dynamics, the model provides a robust, scalable framework, surpassing
conventional models in adaptability and decision-making precision.

Various decisions are made to maximize the total DCSCN profit, which can be the
location of distribution centers, equipping/not equipping distribution centers with IoT,
allocating vehicles to each route, pricing products in direct and indirect channels, and de-
termining the exact amount of the demand indicated in these channels. Each mathematical
model also includes a set of assumptions that covers the general scope of the mathematical
model. Therefore, the assumptions of the mathematical model of the DCSCN based on the
IoT are as follows:

• it is a multi-product and single-period model;
• demand and transportation costs are considered trapezoidal fuzzy numbers;
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• vehicles are considered heterogeneously with different capacities;
• the capacity of the distribution and production centers is known;
• various IoT tools have been considered, and using several tools leads to more

cost reduction;
• the potential demand of each channel is uncertain and the actual demand is a function

based on price elasticity;
• it is possible to transfer products between distribution centers.

According to the above assumptions, the mathematical model’s sets, parameters, and
decision variables are defined as follows (Table 1):

Table 1. Sets, parameters, and decision variables.

Sets

K Set of production centers k ∈ K
J Set of distribution centers j ∈ J
I Set of customers i ∈ I
T Set of IoT tools t ∈ T
P Set of products p ∈ P
V Set of vehicles v ∈ V

Parameters
∼
d ip Potential demand of product p ∈ P for customer i ∈ I
λip Price elasticity of alternative product p ∈ P in the direct channel for customer i ∈ I
λ′

ip Price elasticity of alternative product p ∈ P in the indirect channel for customer i ∈ I
γi Price elasticity based on customer demand i ∈ I in the direct channel
γ′

i Price elasticity based on customer demand i ∈ I in the indirect channel
∼
ρv Transportation cost each product unit by vehicle v ∈ V
f j Fixed cost of choosing location j ∈ J to build a distribution center

ϖjp Maximum capacity of product p ∈ P for distribution center j ∈ J
χip Maximum capacity of product p ∈ P for production center i ∈ I
oj Operation and energy cost of distribution center j ∈ J
gjt The cost of equipping the distribution center j ∈ J to the IoT tool t ∈ T
βt Coefficient of saving energy and operational costs due to the use of IoT tools t ∈ T

Decision Variables

Dp The price of product p ∈ P in the direct channel
Ip The price of product p ∈ P in the indirect channel

φip Actual demand of product p ∈ P for customer i ∈ I in direct channel
ωip Actual demand of product p ∈ P for customer i ∈ I in indirect channel

Xkjpv
The amount of product p ∈ P transferred from production center k ∈ K to distribution center j ∈ J by vehicle

v ∈ V
Yjipv The amount of product p ∈ P transferred from distribution center j ∈ J to customer i ∈ I by vehicle v ∈ V
Zkipv The amount of product p ∈ P transferred from production center k ∈ K to customer i ∈ I by vehicle v ∈ V

Wjj′pv
The amount of product p ∈ P transferred from distribution center j ∈ J to distribution center j′ ∈ J by vehicle

v ∈ V

Nj
1; if distribution center is chosen in location j ∈ J

0; otherwise

Mjt
1; if distribution center j ∈ J is equipped to IoT tool t ∈ T

0; other wise
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The mathematical model of the DCSCN based on the IoT under uncertainty is
as follows:

Max P = ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

IpYjipv + ∑
k∈K

∑
i∈I

∑
p∈P

∑
v∈V

DpZkipv − ∑
j∈J

f jNj − ∑
j∈J

ojNj

− ∑
j∈J

∑
t∈T

gjt Mjt − ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

∼
ρvYjipv

− ∑
k∈K

∑
i∈I

∑
p∈P

∑
v∈V

∼
ρvZkipv − ∑

k∈K
∑
j∈J

∑
p∈P

∑
v∈V

∼
ρvXkjpv

− ∑
j′∈J

∑
j∈J

∑
p∈P

∑
v∈V

∼
ρvWj′ jpv + ∑

j∈J
∑

t∈T
βtoj Mjt

(1)

s.t :

φip =
∼
d ip − λipDp + γi Ip, ∀i ∈ I, p ∈ P (2)

ωip =
∼
d ip − λ′

ip Ip + γ′
i Dp, ∀i ∈ I, p ∈ P (3)

∑
j∈J

∑
v∈V

Yjipv ≤ ωip, ∀i ∈ I, p ∈ P (4)

∑
k∈K

∑
v∈V

Zkipv ≤ φip, ∀i ∈ I, p ∈ P (5)

∑
k∈K

∑
v∈V

Xkjpv + ∑
j′∈J

∑
v∈V

Wj′ jpv − ∑
j′∈J

∑
v∈V

Wjj′pv = ∑
i∈I

∑
v∈V

Yjipv, ∀j ∈ J, p ∈ P (6)

∑
i∈I

∑
v∈V

Yjipv ≤ ϖjpNj, ∀j ∈ J, p ∈ P (7)

∑
i∈I

∑
v∈V

Zkipv + ∑
j∈J

∑
v∈V

Xkjpv ≤ χip, ∀i ∈ I, p ∈ P (8)

Mjt ≤ Nj, ∀j ∈ J, t ∈ T (9)

Dp, Ip, φip, ωip, Xkjpv, Yjipv, Zkipv, Wjj′pv ≥ 0 (10)

Nj, Mjt ∈ {0, 1} (11)

Equation (1) shows the problem’s main objective function, which includes maximizing
the total DCSCN profit. Equations (2) and (3) determine the size of actual customer demand
based on potential demand and the price elasticity of the substitute product and market in
two direct and indirect channels. Equation (4) shows the amount of product transported
between distribution centers and customers using different vehicles. This amount of
transmission will be as much as the customers’ demand in the indirect channel. Equation
(5) shows the customer demand in the direct channel. Equation (6) shows the balance
of the product transfer flow in the distribution center. Equation (7) guarantees that the
amount of product transferred from each distribution center to customers will not exceed
the capacity of that center. Equation (8) guarantees that the amount of product transferred
from each production center in the direct and indirect channel will not exceed the capacity
of that center. Equation (9) shows that if a distribution center is selected and built, that
center can be equipped with all kinds of IoT tools. Equations (10) and (11) show the type of
decision variables.

Due to the uncertainty of potential demand and transportation costs in the presented
model, various methods have been used to control these parameters.

3.1. BPCCP Model

The indeterminacy of the parameters of the mathematical model and the lack of access
to historical data have led to such data being considered by experts’ opinions and in the
form of trapezoidal fuzzy numbers. Therefore, to face uncertainty limits, the uncertainty
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rate α is used. To control the uncertainty in demand and transportation cost, the basic

model is considered as follows, where the vectors p, f,
∼
c ,

∼
d, and s, respectively, represent

the selling price of the product, fixed cost, transportation cost, demand, and capacity.
Also, a and b are the matrix of coefficients and finally X and Y are continuous and binary

variables, respectively. Now, it is assumed that the vectors
∼
c ,

∼
d in the above model are

presented as uncertainty parameters. According to the general form of uncertainty-limited
programming, the expected value of the objective function and the pessimistic FP should
be obtained to deal with the objective function and the uncertainty constraint, respectively.
Now, according to the basic model, the BPCCP model is in the form of Equation (12):

Basic Model BPCCP Model Script Model

(12)
Max pX − f Y − ∼

c X
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Max pX − f Y−
(

c1+c2+c3+c4

4

)
X

s.t. : s.t. : s.t. :

aX ≤
∼
d NEC{aX ≤

∼
d} ≥ α aX ≤ (1 − α)d3 + αd4

bX ≤ sY bX ≤ sY bX ≤ sY
Y ∈ {0, 1}, X ≥ 0 Y ∈ {0, 1}, X ≥ 0 Y ∈ {0, 1}, X ≥ 0

According to the above relationships, the BPCCP model of the DCSCN based on the
IoT will be as follows:

Max P = ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

IpYjipv + ∑
k∈K

∑
i∈I

∑
p∈P

∑
v∈V

DpZkipv − ∑
j∈J

f jNj − ∑
j∈J

ojNj

− ∑
j∈J

∑
t∈T

gjt Mjt − ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Yjipv

− ∑
k∈K

∑
i∈I

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Zkipv − ∑

k∈K
∑
j∈J

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Xkjpv

− ∑
j′∈J

∑
j∈J

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Wj′ jpv + ∑

j∈J
∑

t∈T
βtoj Mjt

(13)

s.t. :

φip =
(

αd4
ip + (1 − α)d3

ip

)
− λipDp + γi Ip, ∀i ∈ I, p ∈ P (14)

ωip =
(

αd4
ip + (1 − α)d3

ip

)
− λ′

ip Ip + γ′
i Dp, ∀i ∈ I, p ∈ P (15)

Equations (4)–(11) (16)

3.2. RPP-I Model

In uncertainty models, the minimum level of confidence to establish the uncertainty
constraint should be determined by decision-making preferences. As can be seen, in the
presented model, the objective function is not sensitive to the deviation from its expected
value, which means that achieving stable solutions in the basic model is not guaranteed.
In such cases, a high risk may be imposed on the decision-making in many real cases,
especially in strategic decisions where the stability of the solution is critical to a large
extent. Therefore, to deal with this inefficient situation, the non-deterministic planning
approach based on possibility is used for the problem. This approach takes advantage of
the significant advantages of both RP and FP, which clearly makes it different from other
uncertainty programming approaches. In the following, the RPP-I model based on the
BPCCP model is explained:
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Max E[Z]− ξ
(

Z(max) − Z(min)

)
− η

[
d4 − (1 − α)d3 − αd4]

s.t. :
aX ≤ (1 − α)d3 + αd4

bX ≤ sY
Z(max) = c4X
Z(min) = c1X

E[Z] = pX − f Y −
[(

c1+c2+c3+c4

4

)]
X

Y ∈ {0, 1}, X ≥ 0

(17)

In Equation (17), the first term refers to the expected value of the objective function
using the average values of the uncertain parameters of the model. The second term
refers to the penalty cost for deviation from the expected value of the objective function
(robustness). The third sentence also shows the total cost of the penalty for deviation from
the demand (uncertainty parameter). Therefore, the parameter ξ is the weighting coefficient
of the objective function and η is the penalty cost of not estimating the demand. Based on
this, the RPP-I model will be as follows:

Max P = E[P]− ξ(Pmax − Pmin)− η∑
i∈I

∑
p∈P

(
d4

ip − αd4
ip − (1 − α)d3

ip

)
(18)

s.t :

E[P] = ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

IpYjipv + ∑
k∈K

∑
i∈I

∑
p∈P

∑
v∈V

DpZkipv − ∑
j∈J

f jNj − ∑
j∈J

ojNj

− ∑
j∈J

∑
t∈T

gjt Mjt − ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Yjipv

− ∑
k∈K

∑
i∈I

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Zkipv − ∑

k∈K
∑
j∈J

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Xkjpv

− ∑
j′∈J

∑
j∈J

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Wj′ jpv + ∑

j∈J
∑

t∈T
βtoj Mjt

(19)

Pmin = ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

ρ1
vYjipv + ∑

k∈K
∑
i∈I

∑
p∈P

∑
v∈V

ρ1
vZkipv + ∑

k∈K
∑
j∈J

∑
p∈P

∑
v∈V

ρ1
vXkjpv + ∑

j′∈J
∑
j∈J

∑
p∈P

∑
v∈V

ρ1
vWj′ jpv (20)

Pmax = ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

ρ4
vYjipv + ∑

k∈K
∑
i∈I

∑
p∈P

∑
v∈V

ρ4
vZkipv + ∑

k∈K
∑
j∈J

∑
p∈P

∑
v∈V

ρ4
vXkjpv + ∑

j′∈J
∑
j∈J

∑
p∈P

∑
v∈V

ρ4
vWj′ jpv (21)

Equations (14)–(16) (22)

3.3. RPP-II Model

Another type of robust possibilistic programming is one in which the decision maker
is not sensitive to deviations from the expected optimal value. For example, he may not
care about deviations in total costs below the expected optimal value. Still, the decision
maker should achieve a lower total cost than the expected optimum. In this case, the RPP-II
model can be introduced. In the following, the possible robust planning of the RPP-II
model based on the BPCCP model is explained:
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Max Z = E[Z]− ξ
(

Z(max) − E[Z]
)
− η

[
d4 − (1 − α)d3 − αd4]

s.t. :

aX ≤ (1 − α)d3 + αd4

bX ≤ sYZ(max) = c4X

E[Z] = pX − f Y −
[(

c1+c2+c3+c4

4

)]
X

Y ∈ {0, 1}, X ≥ 0

(23)

According to the above relationship, the RPP-II model will be as follows:

Max P = E[P]− ξ(Pmax − E[P])− η∑
i∈I

∑
p∈P

(
d4

ip − αd4
ip − (1 − α)d3

ip

)
(24)

s.t. :

E[P] = ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

IpYjipv + ∑
k∈K

∑
i∈I

∑
p∈P

∑
v∈V

DpZkipv − ∑
j∈J

f jNj − ∑
j∈J

ojNj

− ∑
j∈J

∑
t∈T

gjt Mjt − ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Yjipv

− ∑
k∈K

∑
i∈I

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Zkipv − ∑

k∈K
∑
j∈J

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Xkjpv

− ∑
j′∈J

∑
j∈J

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Wj′ jpv + ∑

j∈J
∑

t∈T
βtoj Mjt

(25)

Pmax = ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

ρ4
vYjipv + ∑

k∈K
∑
i∈I

∑
p∈P

∑
v∈V

ρ4
vZkipv + ∑

k∈K
∑
j∈J

∑
p∈P

∑
v∈V

ρ4
vXkjpv + ∑

j′∈J
∑
j∈J

∑
p∈P

∑
v∈V

ρ4
vWj′ jpv (26)

Equations (14)–(16) (27)

3.4. RPP-III Model

Another type of robust possibilistic programming is one in which the decision maker
only cares about excessive deviations from the optimal value; there is no need to calculate
the expected value and the minimum expected value. In the following, the possible robust
planning of the RPP-III model based on the BPCCP model is explained:

Max Z = E[Z]− ξ
(

Z(min)

)
− η

[
d4 − (1 − α)d3 − αd4]

s.t. :
aX ≤ (1 − α)d3 + αd4

bX ≤ sY
Z(min) = c1X

E[Z] = pX − f Y −
[(

c1+c2+c3+c4

4

)]
X

Y ∈ {0, 1}, X ≥ 0

(28)

According to the above relationship, the RPP-III model of the DCSCN based on IoT
will be as follows:

Max P = E[P]− ξ(Pmin)− η∑
i∈I

∑
p∈P

(
d4

ip − αd4
ip − (1 − α)d3

ip

)
(29)

s.t. :
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E[P] = ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

IpYjipv + ∑
k∈K

∑
i∈I

∑
p∈P

∑
v∈V

DpZkipv − ∑
j∈J

f jNj − ∑
j∈J

ojNj

− ∑
j∈J

∑
t∈T

gjt Mjt − ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Yjipv

− ∑
k∈K

∑
i∈I

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
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∑
j∈J

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
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4

)
Xkjpv

− ∑
j′∈J

∑
j∈J

∑
p∈P

∑
v∈V

(
ρ1

v + ρ2
v + ρ3

v + ρ4
v

4

)
Wj′ jpv + ∑

j∈J
∑

t∈T
βtoj Mjt

(30)

Pmin = ∑
j∈J

∑
i∈I

∑
p∈P

∑
v∈V

ρ1
vYjipv + ∑

k∈K
∑
i∈I

∑
p∈P

∑
v∈V

ρ1
vZkipv + ∑

k∈K
∑
j∈J

∑
p∈P

∑
v∈V

ρ1
vXkjpv + ∑

j′∈J
∑
j∈J

∑
p∈P

∑
v∈V

ρ1
vWj′ jpv (31)

Equations (14)–(16) (32)

4. Solution Methods

In this section, four algorithms based on artificial intelligence, including GA, PSO,
ICA, and GWO, have been introduced to solve the problem of DCSCN based on IoT. Also,
the TOPSIS method is briefly explained.

4.1. GA

The GA is an optimization method inspired by living nature, which can be introduced
in classifications as a numerical method, as well as a direct and random search. This algo-
rithm is repetition-based, and its basic principles are adapted from genetics and invented
by imitating several processes observed in natural evolution, and it effectively uses the
old trait in a population to create new and improved solutions [29]. The GA starts by
randomly generating an initial population of chromosomes while satisfying the bounds
or constraints of the problem. During each generation, these chromosomes are evaluated
according to the optimization goal, and the chromosomes that are considered to be a better
answer to the problem in question have a greater chance of reproducing the answers to
the problem [30]. To produce the next generation, new chromosomes called children are
created by combining two chromosomes from the current generation using the crossover
operator or by modifying the chromosome using the mutation operator.

In this article, the two-point crossover operator is used, according to Figure 3, and the
single-point mutation operator, according to Figure 4, for the new generation.
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4.2. ICA

Like other evolutionary algorithms, this algorithm also starts with some random
initial population. A few of the best elements in the population (equivalent to elites
in the genetic algorithm) are selected as imperialists. The rest of the population is also
considered as a colony. The colonizers, depending on their power, establish with a specific
process as follows: they pull towards themselves. Any empire’s total power depends on its
constituent parts, the imperialist country (as the core), and its colonies [31]. Mathematically,
this dependence is modeled by defining imperial power as the total power of the imperialist
country, plus a percentage of the average power of its colonies. The imperial competition
between the early empires begins with their formation. Any empire that cannot succeed
in the colonial competition and increase its power (or at least prevent its influence from
decreasing), will be removed from the colonial competition scene; therefore, the survival of
an empire will depend on its ability to absorb the colonies of rival empires and dominate
them. As a result, in the course of imperial competition, larger empires will gradually gain
power and weaker empires will be eliminated. Empires will be forced to develop their
colonies to increase their power. In short, this algorithm looks at colonization as an integral
part of the historical evolution and how it affects the colonizing and colonial countries as
well as the whole history being used as a source of inspiration for an efficient and new
algorithm in the field of evolutionary calculations. This algorithm consists of the following
steps [32]:

• formation of early empires;
• the policy of attracting colonies towards imperialism;
• revolution: a sudden change in the position of a country;
• displacement of colonial and imperialist positions;
• colonial competition;
• the fall of weak empires.

4.3. PSO

The particle cumulative movement algorithm has many similarities with algorithms
such as ACO or GA, but it also has serious differences, making this algorithm distinct and
straightforward. As an example, this algorithm does not use operators such as intersection
and mutation. As a result, this algorithm does not need to use strings of numbers and an
encryption stage. Thus, it is much simpler than algorithms such as GA. This algorithm
divides the solution space using a pseudo-probability function into multiple paths formed
by the movement of individual particles in space. The movement of a group of particles
consists of two main components, the deterministic component and the probable compo-
nent. Each particle is interested in moving toward the current best solution x∗ or the best
solution obtained so far g∗ [33].

For every particle moving through space, regardless of whether it obeys the collective
intelligence or not, there are position and velocity vectors. Now, for particle i (bird), which
continues to move using cumulative intelligence, if its current location vector is equal to
xi, its movement speed vector displayed as vi can be defined according to Equation (33),
as follows:

vt+1
i = vt

i + αϵ1 ⊙
[
g∗ − xt

i
]
+ βϵ2 ⊙

[
x∗i − xt

i
]

(33)

In this equation, ϵ1, ϵ2 are random vectors whose values are real numbers between zero
and one. Also, the symbol ⊙ indicates the inner product between two matrices. The α and
β parameters are considered learning and acceleration parameters, respectively. The initial
location of the particles should be uniformly distributed throughout space, so that they
can be found in most places; that is, the location of the particles should be produced with
a uniform distribution. In addition, the speed of the initial change in direction should be
considered equal to zero (vt

i = 0). According to the velocity vector defined in Equation (33),
the new location vector of each particle will also be in the form of Equation (34), as follows:
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xt+1
i = xt

i + vt+1
i (34)

In this regard, vi can take any value in the interval [0, vmax].

4.4. GWO

When designing the GWO, Alpha (α) is considered the most appropriate solution
to mathematically model the social hierarchy of wolves. Subsequently, (β) Beta and (δ)
Delta are the second and third suitable solutions. The remaining candidate solutions are
assumed to be Omega (X). To hunt, gray wolves must find and surround prey. Therefore,
the following equations update the positions of wolves around the prey [34]:

→
D = |

→
C .

→
Xp(t)−

→
X(t)| (35)

→
X(t + 1) =

→
X(t)−

→
A.

→
D (36)

In the above equation,
→
C and

→
A are coefficient vectors;

→
Xp is the position vector of prey;

and
→
X is the position vector of gray wolves. It is a balancing act between siege and hunting.

Therefore, the search radius must be optimized during the process; for this purpose, the
equations related to the two coefficients used in the above relationships are as follows:

→
A = 2

→
a .

→
r1 −

→
a (37)

→
C = 2

→
r2 (38)

The above equations enable the gray wolves to update their position around the prey,
which is why the following equations are used for hunting:

→
Dα =

∣∣∣∣→C1.
→
Xα −

→
X
∣∣∣∣, →Dβ =

∣∣∣∣→C2.
→
Xβ −

→
X
∣∣∣∣, →Dδ =

∣∣∣∣→C1.
→
Xδ −

→
X
∣∣∣∣ (39)

→
X1 =

→
Xα −

→
A1.

→
Dα,

→
X2 =

→
Xβ −

→
A2.

→
Dβ,

→
X3 =

→
Xδ −

→
A3.

→
Dδ (40)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(41)

4.5. Initial Solution

In this paper, four algorithms are used to solve sample problems of different sizes.
The most critical issue in using algorithms based on artificial intelligence is designing an
initial solution (initial chromosome) to solve the problem. In this paper, the initial solution
is considered in Figure 5.
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An initial solution to the random data problem between 0 and 1 of length 2|K|+ 4|J|+ 2|I|
is to decode the above solution; Algorithm 1 is performed for Sections 1–4.
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Algorithm 1. Decoding on initial solution for any two-echelon supply chain

Input : Set o f I, J, V, demip, Capjp, Trjiv, Cvv
Output : Xijpv, Zj
For t = 1 to P do
Select a node on d = argmax{v(j + i), ∀i ∈ I, j ∈ J}
Select a vehicle on v∗ = random selcetion between v ∈ V
If d ≤|J|
j∗ = d, Select a node on i∗ = min{Trj∗ iv∗ , ∀ i ∈ I and v(|J|+ i) ̸= 0}
Xj∗ i∗pv∗ = min(Cvv∗ , Capj∗p, Demi∗p)
If Cvv∗ = 0 then selecta vehicle on v∗ = random selcetion between v ∈ V
If Capj∗p = 0 then v(j∗) = 0 and Trj∗ iv∗ = ∞
If Demi∗p = 0 then v(|J|+ i∗) = 0 and Trji∗v∗ = ∞
End if
If d >|J|
i∗ = d − |J|, Select a node on j∗ = min{Trji∗v∗ , ∀ j ∈ J and v(j) ̸= 0}
Xj∗ i∗pv∗ = min(Cvv∗ , Capj∗p, Demi∗p)
If Cvv∗ = 0 then select a vehicle on v∗ = random selcetion between v ∈ V
If Capj∗p = 0 then v(j∗) = 0 and Trj∗ iv∗ = ∞
If Demi∗p = 0 then v(|J|+ i∗) = 0 and Trji∗v∗ = ∞
End if
End for

4.6. TOPSIS Method

The technique for order of preference by similarity to ideal solution (TOPSIS) method is
a multi-criteria decision-making (MCDM) technique for ranking and selecting alternatives
based on their closeness to an ideal solution.

Key steps in the TOPSIS method:

1. Construct the Decision Matrix:
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4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

List the alternatives (options) and criteria.
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4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Populate the matrix with values representing the performance of each alternative
for each criterion.

2. Normalize the Decision Matrix:
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4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Scale the values in the matrix to ensure comparability across criteria. The common
formula for normalization is as follows:

rij =
xij√

∑m
i=1 x2

ij

(42)

where rij is the normalized value for the i-th alternative and j-th criterion.

3. Weight the Normalized Matrix:
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Figure 6. Decoding on initial solution for any two-echelon supply chain. 

4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Multiply the normalized values by their respective criteria weights:

vij = wj.rij (43)

where wj is the weight of the j-th criterion.

4. Determine the Ideal and Negative-Ideal Solutions:
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Figure 6. Decoding on initial solution for any two-echelon supply chain. 

4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Ideal solution (A+): The best value for each criterion (e.g., maximum for benefit
criteria, minimum for cost criteria).
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Figure 6. Decoding on initial solution for any two-echelon supply chain. 

4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Negative-ideal solution (A−): The worst value for each criterion (e.g., minimum
for benefit criteria, maximum for cost criteria).

5. Calculate the Separation Measures:
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Figure 6. Decoding on initial solution for any two-echelon supply chain. 

4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Compute the Euclidean distance of each alternative from the ideal and negative-
ideal solutions, as follows:
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S+
i =

√√√√ n

∑
j=1

(
vij − v+j

)2
S−

i =

√√√√ n

∑
j=1

(
vij − v−j

)2
(44)

6. *Calculate the Relative Closeness (C)**:
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4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Compute the closeness coefficient for each alternative as follows:

C∗
i =

S−
i

S∓
i + S−

i
(45)
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4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

This value ranges between 0 and 1. A higher C*
i indicates that the alternative is

closer to the ideal solution.

7. Rank the Alternatives:
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4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Rank the alternatives based on their C*
i values in descending order. The highest

value represents the best alternative.

5. Results

After introducing algorithms based on artificial intelligence to solve the problem of
the DCSCN based on the IoT, it has been analyzed and has solved various sample problems
in this section. At first, GAMS 23.5.2 software (Baron solver) was used to validate the
mathematical model, and a small-size sample problem was solved. The sensitivity analysis
of the mathematical model using different uncertainty control methods is also performed
in a small size with GAMS software. In the following, algorithms based on artificial
intelligence such as GA, PSO, ICA, and GWO are used to solve different large-size sample
problems. Finally, the solution methods have been prioritized based on the proximity
indicators to the total DCSCN profit and CPU time.

5.1. Mathematical Model Validation

In this section, the validation of the mathematical model of the DCSCN based on the
IoT is discussed first. Hence, a sample problem is considered, including three production
centers, three distribution centers, four customers, three types of IoT tools, two types of
vehicles and two types of products. Due to a lack of access to real world data, random data
based on uniform distribution were used. Table 2 shows the random data considered based
on the uniform distribution function for the DCSCN based on the IoT.

Table 2. Problem data based on uniform distribution function.

Parameter Value Parameter Value

λip 0.3 χip ∼ U [1000, 1200] ton
λ′

ip 0.2 oj ∼U [3 8] $
γi 0.5 gjt ∼U [ 1000, 2000] $
γ′

i 0.4 βt 0.7
f j ∼U [10, 000, 12, 000] $ ϖjp ∼U [500, 800] ton

∼
d ip d1

ip∼U[100, 150] ton; d2
ip∼U[150, 200] ton; d3

ip∼U[200, 250] ton; d4
ip∼U[250, 300] ton

∼
ρv ρ1

v∼U[1, 3] $; ρ2
v∼U[3, 5] $; ρ3

v∼U[5, 7] $; ρ4
v∼U[7, 10] $

Due to the non-linearity of the mathematical model presented in this research, the
Baron solver was used in GAMS 23.5.2 software to solve the problem. Also, the indetermi-
nacy of the mathematical model led to the use of the following four methods of BPCCP,
RPP-I, RPP-II, and RPP-III to control the demand and transportation cost parameters. After
solving the mathematical model based on the four mentioned control methods, the optimal
value of the objective function (total DCSCN profit) is presented in Table 3.
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Table 3. The total profit obtained with different uncertainty control methods.

Model Profit IoT Deployment Costs Savings Due to the Deployment
of the IoT

BPCCP 53,912.35 2348.68 3268.98
RPP-I 46,358.15 2548.92 3518.25
RPP-II 48,354.68 2348.68 3268.98
RPP-III 44,938.49 2548.92 3518.25

The results of Table 3 show that the profit obtained using the BPCCP method is higher
than that of other RPP methods, because in the RPP methods, the penalty cost of facing
a lack of demand also exists in the objective function of the problem and leads to an
increase in total costs. Solving the mathematical model in a small size also shows that
the savings due to deploying IoT tools in distribution centers are higher than the cost of
deploying equipment.

In the BPCCP model, out of three distribution centers, two distribution centers, num-
bers 1 and 2, were selected, based on cost and income balance. IoT tool #2 was selected
for distribution center #1 and IoT tool #3 was selected for distribution center #2. In the
following, the decision-making variables in the BPCCP model have been investigated. The
most important issue in the DCSCN is to achieve the exact amount of customer demand
as well as the selling price of the product in the direct and indirect channels. Table 4
shows the actual demand of customers as well as the price of the product in the direct and
indirect channels.

Table 4. Actual customer demand along with their selling prices in direct and indirect channels.

Chanel Product
Customer

Selling Price
1 2 3 4

Direct
1 227.82 224.96 235.09 229.39 134.56
2 243.85 229.82 238.11 236.58 137.17

Indirect
1 211.6 208.73 218.86 213.17 157.74
2 227.22 213.19 221.48 219.95 160.92

The results of Table 3 show that due to the price elasticity of the substitute product,
the actual demand in the direct and indirect channels is different. As can be seen, the
average total customer demand in the direct channel is higher than the average customer
demand in the indirect channel. Meanwhile, the average price was also higher due to the
high demand for direct channels compared to indirect channels. The average price in the
direct channel is USD 235.83; in the indirect channel, it is USD 219.41. Figure 6 shows the
amount of transferred product numbers 1 and 2 between different echelons of the supply
chain network.

Figure 6 shows that distribution center number 3 was not selected, and therefore, no
products were transferred through this center. Also, both centers Nos. 1 and 2 are equipped
with IoT tools. Equipping these two centers with IoT tools has increased the total supply
chain costs by USD 2348.68 and decreased operational costs by USD 3268.98.
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5.2. Sensitivity Analysis

In this section, the effect of changing the different problem parameters on the profitabil-
ity of the DCSCN is investigated. These parameters include the change in the uncertainty
rate, the change in the price elasticity of the substitute product, the price elasticity based on
demand, and the profitability factor of using the IoT.

Sensitivity analysis shows how fluctuations in the uncertainty rate impact profitability,
demonstrating the model’s robustness and adaptability. It highlights profit resilience under
varying conditions, identifies critical thresholds for risk management, and justifies IoT
integration by linking real-time adjustments to enhanced performance. This analysis builds
confidence in the model’s viability for optimizing dual-channel supply chains in dynamic
and uncertain environments.

Demand and transportation cost parameters are presented with uncertainty in the
form of trapezoidal fuzzy numbers. Therefore, BPCCP, RPP-I, RPP-II, and RPP-III models
were used to control uncertain parameters. To investigate the effect of the uncertainty rate
on profit, a sensitivity analysis was performed with different models, and the value of the
uncertainty rate was considered to be between 0.1 and 0.9. Therefore, Table 5 shows the
effect of the uncertainty rate on the total DCSCN profit.

Table 5. The effect of uncertainty rate on the total profit.

α
Profit

BPCCP RPP-I RPP-II RPP-III

0.1 58,655.2 51,475.7 56,038.5 50,428.7
0.2 57,369.5 50,141.0 53,745.0 49,715.7
0.3 55,975.8 48,672.4 52,448.7 47,854.3
0.4 54,638.1 47,458.7 50,185.9 46,526.7
0.5 53,912.4 46,358.2 48,354.7 44,938.5
0.6 52,564.5 45,176.7 46,758.7 43,475.5
0.7 51,468.7 44,395.4 45,258.3 41,987.7
0.8 50,035.4 42,975.6 43,935.7 40,254.2
0.9 48,756.7 41,544.7 42,419.9 38,876.3
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The results of Table 4 show that with the increase in the uncertainty rate, the costs of
the supply chain network increase, and this problem leads to a decrease in total profit. The
reason for the increase in total costs is the direct impact of the uncertainty rate on the actual
demand and pricing. So, with the increase in the uncertainty rate, the demand of direct
and indirect channels increases and the price of products decreases to some extent. An
increase in product transportation costs due to increased demand leads to an increase in
total costs. On the other hand, by examining different methods, it can be seen that with the
increase in the uncertainty rate, the cost increase in the RPP-III method is more than RPP-I
and RPP-II. This issue has led to a decrease in the total DCSCN profit in the RPP-III model
compared to other models. The standard deviation of this model is lower than that of other
control models.

Table 6 also shows the total DCSCN profit for different values of the substitute prod-
uct’s price elasticity parameter.

Table 6. Effect of substitute product price elasticity on the total DCSCN profit.

λip λ’
ip Profit λip λ’

ip Profit

0.1 0.2 43,254.1 0.3 0.1 48,132.7
0.2 0.2 46,935.6 0.3 0.2 53,912.4
0.3 0.2 53,912.4 0.3 0.3 57,935.5
0.4 0.2 69,145.7 0.3 0.4 64,525.9
0.5 0.2 96,584.4 0.3 0.5 84,596.1

The results of Table 6 show that with the increase in the price elasticity of the substitute
product in the direct and indirect channels, the amount of demand and the sales price
in this channel have increased compared to other channels, leading to an increase in the
sales amount of the products. However, it can be seen that with the increase in the price
elasticity of the alternative product in the direct channel due to eliminating intermediaries,
the profitability is higher compared to the indirect channel.

In another analysis and in Table 7, the impact of price elasticity based on demand on
the total DCSCN profit is examined.

Table 7. The effect of price elasticity based on demand on the total DCSCN profit.

γi γ’
i Profit γi γ’

i Profit

0.3 0.4 40,248.7 0.4 0.3 46,144.7
0.4 0.4 44,250 0.4 0.4 48,636.3
0.5 0.4 53,912.4 0.4 0.5 53,912.4
0.6 0.4 69,248.7 0.4 0.6 63,415.6
0.7 0.4 88,144.3 0.4 0.7 78,155.3

By examining the results of Table 6, it can be seen that with the increase in the price
elasticity based on demand in the direct and indirect channels, the amount of demand and
sales price in this channel have increased compared to other channels and have led to an
increase in product sales. However, it can be seen that with the increase in product price
elasticity based on demand in the direct channel due to the elimination of intermediaries,
profitability is higher compared to the indirect channel.

Examining the output variables of the problem in a small sample showed that using
IoT tools in the DCSCN reduced operating costs in distribution centers. This section
investigates the impact of the energy-saving coefficient on the total DCSCN profit. The
savings factor is actually the reduction in costs related to workforce and energy in the
construction of distribution centers. This value is considered equal to 0.7 in the main model.
Table 8 shows the total DCSCN profit for energy-saving coefficient changes.
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Table 8. The effect of the energy-saving coefficient on the total DCSCN profit.

βt Profit Changes %

0.5 51,247.7 −4.94%
0.6 52,864.7 −1.94%
0.7 53,912.4 0
0.8 55,487.6 +2.92%
0.9 57,365.5 +6.40%

The results of Table 7 show that the profitability factor of the IoT increases, and the
total DCSCN profit increases. For example, with an increase of 0.2 in this coefficient, the
total DCSCN profit has increased by 6.4%.

After checking the validity of the mathematical model and analyzing its sensitivity
with different parameters, some sample problems were solved in large sizes. Since the
presented mathematical model is a non-linear and NP-hard model, algorithms based on
artificial intelligence such as GA, PSO, ICA, and GWO were used to solve the problem in
large sizes. In the following, the initial parameters of these algorithms are fine-tuned using
the Taguchi method.

5.3. Parameter Tuning of Algorithms Based on Artificial Intelligence

The Taguchi method is one of the methods first used to solve the algorithm parameters
in the literature. In this method, three levels are considered for each factor (parameter),
and achieving the best combination of these three levels can improve the efficiency of that
algorithm in searching the solution space.

To tune the algorithms’ parameters with the Taguchi method, the ratio of the mean
square of the squares is used with the help of a logarithmic scale because the results
behave more linearly with the help of the S/N ratio. According to the maximization of
the objective function, the most suitable S/N ratio for the mathematical model is “small is
better ratio”. This ratio is used if we want to minimize the response variable as much as
possible. Equation (46) shows this ratio, as follows:

S
N

= −10log10(MSD) = −10log10

[
∑ y2

n

]
(46)

After each experiment, the RPD is used to reduce the calculation error. Equation (47)
shows the calculation formula of the RPD.

RPD =
Best solution − solutioni

Best solution
(47)

In the above relationship, the best value of the objective function obtained among
all experiments is known as the Best solution and the objective function value of each
experiment is known as the solutioni. The levels defined for the parameters of the problem
and the best levels obtained from the analysis of experiments are shown in Table 9.

Table 9. Value of defined parameters for each level.

Algorithm Factor L1 L2 L3 Optimum L Optimum Value

GA

Max it 100 200 300 3 300
N pop 100 150 200 3 200

Pc 0.7 0.8 0.9 2 0.8
Pm 0.05 0.07 0.09 2 0.07

PSO

Max it 100 200 300 3 300
N particle 100 150 200 1 100

C1 1 1.5 2 2 2
C2 1 1.5 2 2 1.5
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Table 9. Cont.

Algorithm Factor L1 L2 L3 Optimum L Optimum Value

ICA

Max it 100 200 300 3 300
N coun 100 150 200 3 200
N imp 50 75 100 2 75

Rev Rate 0.2 0.3 0.5 3 0.5
Def Rate 0.2 0.3 0.5 3 0.5

GWO
Max it 100 200 300 3 300
N wolf 100 150 200 1 100

A 1 2 3 1 1

5.4. Solving Large-Size Sample Problems with Algorithms Based on Artificial Intelligence

The NP-hardness of the problem investigated in this research, as well as the length-
ening of the time to solve large-size sample problems with GAMS, has led to the use of
algorithms based on artificial intelligence in this section to solve the problem in large sizes.
Therefore, 15 sample problems in different sizes are designed according to Table 10.

Table 10. The size of sample problems in large sizes.

Sample Problem Production Center Distribution Center Customer Product IoT Tool Vehicle

1 3 3 4 3 3 2
2 4 4 10 3 3 3
3 6 6 13 3 3 3
4 6 6 15 4 3 4
5 8 8 18 4 4 4
6 8 8 22 4 4 4
7 10 10 26 5 4 5
8 10 10 30 5 4 5
9 12 12 34 5 5 5

10 15 15 38 6 5 6
11 15 15 42 6 5 6
12 18 18 45 6 5 6
13 22 22 48 8 6 7
14 25 25 52 8 6 7
15 30 30 55 8 6 7

After solving the sample problems in a large size with algorithms based on artificial
intelligence, the average solution (total DCSCN profit) obtained in three repetitions and
also the average CPU time obtained from solving sample problems are shown in Table 11.

Table 11. Average indices obtained in different sample problems.

Sample Problem
Profit CPU-Time

GA PSO ICA GWO GA PSO ICA GWO

1 79,650.60 79,639.00 79,660.20 80,556.60 27.690 29.880 31.480 34.800
2 99,856.4 100,950.9 102,002.9 101,574.6 30.670 32.570 34.390 37.430
3 116,939.1 117,646.8 117,482.0 116,686.5 34.290 36.940 38.750 42.850
4 118,151.7 119,124.6 118,776.7 118,200.8 39.480 41.300 43.930 47.310
5 119,964.9 121,535.0 119,844.7 121,300.5 46.840 49.970 51.420 56.110
6 122,163.9 123,206.1 121,223.9 122,263.6 57.340 60.150 63.300 68.140
7 123,903.2 122,520.2 123,888.6 122,793.2 69.210 72.820 75.980 81.900
8 138,784.1 139,017.1 139,244.0 141,191.2 82.490 86.320 90.310 96.920
9 151,493.6 151,051.5 154,198.1 152,883.1 97.280 101.61 105.29 111.24
10 157,172.0 157,752.9 160,455.4 158,980.2 115.68 121.07 127.32 135.57
11 162,307.1 162,448.0 163,267.6 162,244.0 135.24 140.42 145.04 155.71
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Table 11. Cont.

Sample Problem
Profit CPU-Time

GA PSO ICA GWO GA PSO ICA GWO

12 166,885.1 166,203.7 168,067.6 168,197.9 158.76 164.85 173.39 183.09
13 176,545.9 175,576.3 174,043.7 175,191.0 190.67 199.42 205.69 219.88
14 198,116.8 198,531.1 197,181.4 198,878.2 230.17 240.17 246.00 265.53
15 203,774.9 204,417.6 205,754.7 205,568.9 281.09 293.43 302.05 318.14

Mean 142,380.6 142,641.4 143,006.1 143,100.7 106.46 111.39 115.62 123.64

The results of solving the sample problem in a large size show that the GWO has
achieved the highest efficiency in terms of being close to the optimal solution (total cost).
The next priorities are the ICA, PSO, and GA. Also, the results show that the CPU time to
solve the mathematical model in large sizes with the GA is shorter than the PSO, ICA, and
GWO. Figure 7 shows the average total DCSCN profit and CPU time in large sizes with
algorithms based on artificial intelligence.
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Figure 7. Average profit and CPU time to solve sample problems in large sizes.

Figure 7 shows that the solution time has increased exponentially with the increase in
the problem size. This issue is proof of the NP-hardness of the DCSCN based on IoT, since
the algorithms in different indices have obtained different results. In the following, the
significant difference in the averages of each index between the algorithms was investigated,
and this was achieved through the t-test at the 95% confidence level. Table 12 shows the
results of the t-test at the 95% confidence level for a significant comparison of the difference
in the averages of the total DCSCN profit and CPU time between different solution methods.

The results of Table 11 show that there is no significant difference between the profit
among the solution methods. This issue is obtained through the p-value being higher than
the value of 0.05. Also, based on the results obtained, it can be seen that due to the high
values of p-value above 0.05, there is no significant difference between the CPU time of the
solution methods. Therefore, to rank algorithms based on artificial intelligence to solve
the problem of the DCSCV based on IoT, the TOPSIS method with a weight of 0.5 for each
index was used.

Table 13 shows each algorithm’s utility weight based on the proximity indicators to
the total DCSCN profit and time.
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Table 12. The results of the t-test statistical test at the 95% confidence level to compare the significance
of the difference in indicators.

Index Algorithm Mean
Difference

Lower
Bound

Upper
Bound T Value p Value

Profit

GA-PSO 261 −26,222 26,743 0.02 0.984
GA-ICA 625 −25,944 27,195 0.05 0.962

GA-GWO 720 −25,864 27,304 0.06 0.956
PSO-ICA 365 −26,134 26,863 0.03 0.978

PSO-GWO 495 −26,054 26,973 0.04 0.972
ICA-GWO 95 −26,505 26,695 0.01 0.994

CPU time

GA-PSO 4.9 −55.0 64.9 0.17 0.867
GA-ICA 9.2 −51.6 69.9 0.31 0.759

GA-GWO 17.2 −45.5 79.9 0.56 0.579
PSO-ICA 4.2 −57.5 66.2 0.14 0.89

PSO-GWO 12.2 −51.6 76 0.39 0.697
ICA-GWO 8 −56.6 72.6 0.25 0.801

Table 13. Summary of TOPSIS ranking method results.

Index GA PSO ICA GWO

Profit 1,422,380.63 142,641.38 143,006.10 143,100.68
CPU time 106.46 111.39 115.62 123.64

Utility Weight 0.967 0.712 0.467 0.033
Rank 1 2 3 4

Contrary to the high efficiency of the gray wolf algorithm in achieving a near-optimal
solution, in the general summary, the GA was recognized as a more efficient algorithm
than the other algorithms used in problem-solving.

6. Managerial Insights

The findings from this research provide the following actionable insights for managers
aiming to optimize their dual-channel supply chain operations using IoT under uncertainty:
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Strategic IoT Integration

Managers should prioritize integrating IoT technologies into their supply chain net-
works to enhance visibility, improve real-time decision-making, and respond proactively to
disruptions. IoT can significantly improve operational efficiency, particularly in demand
forecasting and inventory management.
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Profit-Driven Infrastructure Investments

Equipping distribution centers with IoT devices should be evaluated as a strategic
investment rather than a cost. Managers can use cost-benefit analyses to determine where
IoT deployment will yield the highest returns, particularly in centers that handle high-
demand variability or perishable goods.

Math. Comput. Appl. 2024, 29, x FOR PEER REVIEW 23 of 28 
 

 

Index Algorithm Mean Difference Lower Bound Upper Bound T Value p Value 

Pr
of

it 

GA-PSO 261 −26,222 26,743 0.02 0.984 
GA-ICA 625 −25,944 27,195 0.05 0.962 

GA-GWO 720 −25,864 27,304 0.06 0.956 
PSO-ICA 365 −26,134 26,863 0.03 0.978 

PSO-GWO 495 −26,054 26,973 0.04 0.972 
ICA-GWO 95 −26,505 26,695 0.01 0.994 

C
PU

 ti
m

e 

GA-PSO 4.9 −55.0 64.9 0.17 0.867 
GA-ICA 9.2 −51.6 69.9 0.31 0.759 

GA-GWO 17.2 −45.5 79.9 0.56 0.579 
PSO-ICA 4.2 −57.5 66.2 0.14 0.89 

PSO-GWO 12.2 −51.6 76 0.39 0.697 
ICA-GWO 8 −56.6 72.6 0.25 0.801 

The results of Table 11 show that there is no significant difference between the profit 
among the solution methods. This issue is obtained through the p-value being higher than 
the value of 0.05. Also, based on the results obtained, it can be seen that due to the high 
values of p-value above 0.05, there is no significant difference between the CPU time of 
the solution methods. Therefore, to rank algorithms based on artificial intelligence to solve 
the problem of the DCSCV based on IoT, the TOPSIS method with a weight of 0.5 for each 
index was used. 

Table 13 shows each algorithm’s utility weight based on the proximity indicators to 
the total DCSCN profit and time. 

Table 13. Summary of TOPSIS ranking method results. 

Index GA PSO ICA GWO 
Profit 1,422,380.63 142,641.38 143,006.10 143,100.68 

CPU time 106.46 111.39 115.62 123.64 
Utility Weight 0.967 0.712 0.467 0.033 

Rank 1 2 3 4 

Contrary to the high efficiency of the gray wolf algorithm in achieving a near-optimal 
solution, in the general summary, the GA was recognized as a more efficient algorithm 
than the other algorithms used in problem-solving. 

6. Managerial Insights 
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ers aiming to optimize their dual-channel supply chain operations using IoT under uncer-
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 Strategic IoT Integration 

Managers should prioritize integrating IoT technologies into their supply chain net-
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mand forecasting and inventory management. 
 Profit-Driven Infrastructure Investments 

Equipping distribution centers with IoT devices should be evaluated as a strategic 
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Uncertainty Mitigation and Risk Management

IoT can act as a critical tool for reducing the impact of uncertainties in the supply chain.
Managers should use IoT-generated predictive analytics to anticipate disruptions, optimize
safety stock levels, and develop contingency plans that ensure the continuity of operations.
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IoT deployment will yield the highest returns, particularly in centers that handle high-
demand variability or perishable goods. 
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Balancing IoT Implementation Costs and Benefits

While IoT implementation requires significant upfront investment, managers must
assess its long-term value in terms of increased efficiency, reduced waste, and higher
profitability. A phased approach to IoT adoption, starting with high-impact areas, can
provide measurable returns without overburdening budgets.
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Sustainability and Circular Supply Chains

IoT technologies also offer managers the opportunity to align their supply chains
with sustainability goals. Real-time tracking and analytics can support circular economy
initiatives, such as efficient resource utilization and waste reduction.
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Enhanced Customer Experience

The use of IoT for tracking and monitoring can improve transparency and reliability
across the supply chain, leading to higher customer satisfaction. Managers can leverage this
capability to build stronger relationships with customers and gain a competitive advantage.
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Collaborative Ecosystems

IoT adoption benefits from collaboration among supply chain stakeholders, including
suppliers, logistics providers, and retailers. Managers should foster partnerships and
shared data ecosystems to unlock the full potential of IoT in supply chain optimization.
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Scalability for Future Growth

IoT-driven supply chains offer scalability and adaptability to changing market condi-
tions. Managers should design IoT implementations with scalability in mind, ensuring that
infrastructure and processes can accommodate growth and evolving technology trends.

7. Conclusions

In this paper, a mathematical model was presented of a DCSCN based on IoT under
uncertainty, and its solution was presented using algorithms based on artificial intelligence
such as GA, PSO, ICA, and GWO. The main purpose is to present a strategic decision model
regarding the location of distribution centers and equipping/not these centers with IoT
tools in the first stage and tactical decision-making such as determining the actual demand
in direct and indirect channels and pricing products in each channel. For this, a supply
chain consisting of production centers, distribution centers, and customers was considered
to make appropriate decisions to increase the total DCSCN profit.

Due to the uncertainty of demand and transportation costs, four different models
were used to control them. In these models, we can refer to pessimistic FP, including the
BPCCP model, and robust possibilistic programming, including RPP-I, RPP-II, and RPP-III
models. In the analysis of a sample problem in a small size, it was observed that although
the RPP-III method is less profitable than other models, it is possible in the DCSCN, but it
has a lower standard deviation and higher reliability.

Examining the changes in the uncertainty rate on the BPCCP model also showed
that the amount of demand has increased with the increase in the uncertainty rate. This
issue has led to decreased income and, as a result, the total DCSCN profit. Among other
RPP models, the RPP-III model obtained the lowest profit among the methods. On the
other hand, by examining the parameters of price elasticity of the substitute product and
elasticity of the product price based on demand, it was observed that with the increase in
these two parameters, the amount of actual demand and the price of the product increased,
and this also led to an increase in total DCSCN profit. With a more detailed examination
of the problem, it was also observed that the increase in the price elasticity parameters
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of the alternative product and the elasticity of the product price based on demand in the
direct channel has led to more profitability due to the elimination of costs related to the
distribution center.

By analyzing the mathematical model in the conditions of use and non-use of IoT, it
was also observed that deploying IoT equipment in distribution centers has in fixed costs.
Profitability has also occurred due to the reduction in operating costs. The investigation of
this issue showed that by increasing the profitability factor of the IoT in the supply chain
by 0.2, the total DCSCN profit increased by 6.5%.

By solving 15 sample problems of a large size with algorithms based on artificial
intelligence, it was observed that in terms of total DCSCN profit, the GWO has the best
performance. In contrast, in terms of CPU time, the GA is more efficient than other
algorithms. To achieve a more definitive result, the t-test statistical test was used at the 95%
confidence level, and the results showed that there is no significant difference between the
total DCSCN profit and the CPU time between different solution methods. Therefore, by
ranking the algorithms with the TOPSIS method, the GA was ranked as the most efficient
algorithm, followed by PSO, ICA, and GWO. The TOPSIS method was chosen due to its
use and validity in similar articles and a review of the literature on the subject.

The integration of the Internet of Things (IoT) into supply chain networks has revo-
lutionized how organizations manage their operations, particularly in uncertain environ-
ments. Despite the numerous advantages IoT offers, such as real-time data monitoring,
enhanced visibility, and predictive analytics, significant challenges impede its full potential.
Addressing these limitations is crucial for ensuring IoT-driven supply chain systems are
resilient, efficient, and sustainable. Additionally, modern supply chains’ dynamic and
complex nature opens avenues for future research to further refine and optimize IoT ap-
plications. Below, the key limitations and prospective research directions are outlined to
guide advancements in this domain.

Some of the limitations of this research include the following:
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Figure 6. Decoding on initial solution for any two-echelon supply chain. 

4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Data Security and Privacy Issues

Despite its potential, IoT faces significant privacy data security and privacy challenges.
The vast amount of sensitive data generated by IoT devices increases the risk of cyberattacks,
which can compromise the integrity of supply chain networks. Future frameworks must
address these vulnerabilities to ensure safe data transmission and storage.
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4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

High Implementation Costs

Implementing IoT solutions requires substantial infrastructure, technology, and skilled
personnel investment. Many small and medium-sized enterprises (SMEs) struggle to afford
these initial costs, limiting widespread adoption.
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4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Scalability Concerns

IoT applications often perform well in isolated pilot projects but encounter scalability
issues when expanded to entire supply chain networks. Interoperability between IoT
devices and legacy systems remains a significant hurdle, impeding full-scale deployment.
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Figure 6. Decoding on initial solution for any two-echelon supply chain. 

4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Regulatory and Standardization Challenges

The lack of global standards for IoT integration in supply chains leads to regional
inconsistencies and compatibility issues. This limitation restricts the seamless flow of goods
and data in multinational supply chain networks.
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4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Environmental Concerns

IoT devices’ production, operation, and disposal contribute to environmental chal-
lenges, including electronic waste and energy consumption. Sustainable practices are
necessary to mitigate these impacts.

Some of the future research directions of this study include the following:
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4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Advanced Data Security Frameworks



Math. Comput. Appl. 2024, 29, 118 26 of 27

Future research should focus on developing robust cybersecurity protocols, includ-
ing blockchain integration and advanced encryption techniques, to protect IoT data in
supply chains.
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Figure 6. Decoding on initial solution for any two-echelon supply chain. 

4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Interoperability Standards

The creation of universal standards for IoT device interoperability is critical for achiev-
ing seamless integration in complex, multinational supply chain networks. Researchers
should collaborate with regulatory bodies to establish and promote these standards.
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4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

AI-Driven Predictive Analytics

Future studies could investigate the combination of IoT data with artificial intelligence
(AI) for predictive analytics. This approach can enhance the ability to foresee disruptions
and optimize decisions in uncertain conditions.
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4.6. TOPSIS Method 
The technique for order of preference by similarity to ideal solution (TOPSIS) method 

is a multi-criteria decision-making (MCDM) technique for ranking and selecting alterna-
tives based on their closeness to an ideal solution. 

Key steps in the TOPSIS method: 
1. Construct the Decision Matrix: 

 List the alternatives (options) and criteria. 
 Populate the matrix with values representing the performance of each alterna-

tive for each criterion. 
2. Normalize the Decision Matrix: 

 Scale the values in the matrix to ensure comparability across criteria. The com-
mon formula for normalization is as follows: 𝑟௜௝ = 𝑥௜௝ට∑ 𝑥௜௝ଶ௠௜ୀଵ  

(42)

where 𝑟௜௝ is the normalized value for the i-th alternative and j-th criterion. 

3. Weight the Normalized Matrix: 
 Multiply the normalized values by their respective criteria weights: 𝑣௜௝ = 𝑤௝. 𝑟௜௝ (43)

where 𝑤௝ is the weight of the j-th criterion. 

Digital Twin Technology Integration

Digital twins—virtual replicas of physical supply chains—can complement IoT by
simulating and predicting real-time scenarios. Future research should explore how IoT and
digital twin technology can work synergistically to address uncertainty.
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