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Abstract 
 
Recently, Marek, Tervo-Clemmens et al.1 leveraged consortium neuroimaging data to answer a 

question on most researchers’ minds: how many subjects are required for reproducible brain-wide 

association studies (BWAS)? Their approach could be considered a framework for testing the 

reproducibility of several neuroimaging models and measures. Here we test part of this framework, 

namely estimates of statistical errors of univariate brain-behaviour associations obtained from 

resampling large datasets with replacement. We suggest that reported estimates of statistical errors 

are largely a consequence of bias introduced by random effects when sampling with replacement 

close to the full sample size. We show that these biases can be largely avoided by only resampling 

up to 10% of the full sample size. Using this unbiased approach, sample size requirements for 

reproducible univariate BWAS tested by Marek, Tervo-Clemmens et al. are even worse. 
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Main 
 

Among numerous analyses in their study, Marek, Tervo-Clemmens et al.
1 estimated statistical 

errors of univariate BWAS as a function of sample size. Such univariate BWAS often involve tens 

of thousands of correlations between a brain measure and a behavioural measure, the vast majority 

of which fail to replicate even with thousands of participants. These replication failures can be 

explained by statistical errors of a study design such as statistical power2–4. To estimate statistical 

errors in univariate BWAS, Marek, Tervo-Clemmens et al. used a data-driven approach in which 

they treated a large discovery dataset as a population; they then drew replication samples by 

resampling with replacement (henceforth resampling) from that population. Here, we tested the 

validity of this data-driven approach by using ground truth simulated data.  

 

First, we simulated a discovery null-sample with n = 1,000 subjects each with 1,225 brain 

connectivity measures (random Pearson correlations) and a single behavioural measure (normally 

distributed across participants). We correlated each brain connectivity measure with the behaviour 

across all subjects to obtain 1,225 brain-behaviour correlations. Since brain connectivity estimates 

and behavioural factors were simulated independently from each other, any resulting brain-

behaviour correlations were entirely random. Data dimensions were chosen to be computationally 

feasible for reproducibility, however we invite readers to adjust these and re-run analyses using the 

openly available code (analyses recoded in R with supporting packages5–7 for open-source 

accessibility https://github.com/charlesdgburns/rwr/). We then resampled our null-sample for 100 

iterations across logarithmically spaced sample size bins (n = 25, to 1,000) and estimated statistical 

errors, following the methods described in Marek, Tervo-Clemmens et al.1.  Surprisingly, we saw 

https://github.com/charlesdgburns/rwr/
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the same trends of statistical errors and reproducibility as those reported by Marek, Tervo-Clemmens 

et al.1 but with random data (see Fig. 1), with strongly biased statistical power estimates. 

 

 

Figure 1: Estimated statistical errors and reproducibility of random noise (ρ = 0). We reproduce 
statistical errors estimated by Marek, Tervo-Clemmens et al.1 after resampling from a discovery null-
sample where observed significant effects are random (ρ = 0). We refer to Fig. 3 in Marek, Tervo-Clemmens 
et al.1 for comparison and detailed descriptions of each plot. Here we further note that in a,d, only four lines 
are drawn because 1,225 random brain-behaviour correlations should only pass significance thresholds α = 
.05, .01, .001, and .0001 (1/8 chance). Similarly, for e,f, we consider correlations which are significant in 
resamples and notice that these pass thresholds as small as α = 10-7. The fact that false positive rates are 
greater than the significance threshold should be alarming, as it shows that simulating a replication by 
resampling will, on average, reject the null more frequently than we would expect even under the null.  

 

These trends in statistical errors do not depend on absolute sample size, but the resample size 

relative to the full sample size. By repeatedly generating new null-samples, rather than resampling 

from a single null-sample, we verified that these statistical error estimates are indeed biased under 

the null as the resample size approaches the full sample size (Extended Data Fig. 1). For example, 

uncorrected (α = .05), statistical power was estimated to be 63% when resampling at the full 
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sample size (n = 1,000, Fig 1. d), rather than the expected 5% obtained when generating new null-

samples (n = 1,000, Extended Data Fig 1. d). One concern is that power is the most inflated while 

also being the most relevant for failed replications3,4, which could potentially result in misleading 

meta-science. 

 

To explain why this bias arises under the null, we investigated the underlying brain-behaviour 

correlations used in the calculation of statistical errors. Here we focused on resampling at the full 

sample size (n = 1,000) where these biases are most dramatic. As indicated by the false positive rate 

(Fig. 1 f.), the null distribution of brain-behaviour correlations is not preserved when resampling at 

the full sample size (Fig. 2). Instead, resampling subjects and computing correlations again results 

in a distribution wider than expected (comparing Fig. 2 a. and c.). This is because resampling 

involves two sources of sampling variability, first at the level of the discovery sample and again for 

the resampled replication sample. For instance, if a correlation in the discovery sample is randomly 

observed to be r = 0.11, then resampling participants and computing the same correlation again 

results in a correlation which varies around r = 0.11 (Fig. 2 e.). The influence on statistical error 

estimates such as power is two-fold. First, random correlations in the tail of a discovery sample are 

more likely to be in the tail of correlations in a resampled replication sample. This inflates power 

when estimated as the proportion of significant effects in the discovery sample which are significant 

again in the resampled replication sample (1 – false negative rates). Secondly, increased sampling 

variability alone leads to a wider-than-expected distribution of correlations with more extreme tails. 

These more extreme tails lead to an inflation of P values close to 0 in our resample (compare Fig. 

2 b. and d.) when calculated using a standard correlation function (e.g., ‘corr’ in MATLAB). 
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In short, when resampling close to the full sample size, random correlations are more likely 

to be significant again in each resample due to the resampling process alone, biasing the statistical 

power estimates described above (see supplementary information for further details). 

 
Figure 2: Null distributions not preserved when resampling with replacement at the full sample size 
(ρ = 0). a, Distribution of simulated random brain-behaviour correlations (1,225 total) treated as a discovery 
sample. There are n = 1,000 subjects for each random Pearson correlation, here compared to a Gaussian 
curve with mean µ = 0 and variance σ1

2 = .001 drawn in black. b, We verify that the two-tailed P values 
of our 1,225 random brain-behaviour correlations are uniformly distributed. c, Distribution of all 1,225 brain-
behaviour correlations computed after resampling subjects at full sample size (n = 1,000).  This distribution 
is clearly wider than our discovery sample null-distribution. The solid black line shows a parametric fit 
derived from an interaction of sampling variability (see e.), namely a Gaussian distribution with mean µ = 
0 and variance σ1

2 +σ2
2 = .002. d, Distribution of two-tailed P values of all 1,225 brain-behaviour 

correlations computed after resampling at full sample size (n = 1,000). The distribution is inflated around 
0 due to the wider tails in our null distribution. e, To help explain the widened distribution, we track the 
largest correlation observed in our original null-sample (r = 0.11), plotting the distribution of corresponding 
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brain-behaviour correlations across the 100 iterations of resampling at the full sample size (n = 1,000). The 
solid black line represents a Gaussian with mean µ = 0.11 and variance σ2

2 = .001. The interaction of 
variability across iterations (e) and variability in the discovery sample (a) results in the widened distribution 
(c) by additive variance8.  

 

 While we have shown clear biases when there are no true effects, this does not directly imply 

biases when true effects are present. We note that Marek, Tervo-Clemmens et al.1 already showed 

that the largest univariate effect is highly replicable even for moderate sample sizes, so there are at 

least some true BWAS effects in the real world. However, as the average true effect size remains 

unknown, we systematically simulated a range of discovery samples, each representing a study where 

the size of the underlying true effects corresponded with different levels of statistical power. While 

we refer to supplementary information for detailed methods, we note that since the bias under the 

null is driven by the false rejection of null hypotheses, we adopt a fixed significance threshold after 

Bonferroni correction which controls for at least one false positive. Focusing on statistical power 

estimates, we see that the bias near the full sample size depends on the true statistical power of the 

discovery sample (Fig. 3.). Power estimates are inflated if the discovery sample is underpowered, but 

on the other hand a highly powered discovery sample may give conservative power estimates. 

 

Figure 3: Bias in estimated statistical power depends on true statistical power. a, Simulated discovery 
samples are represented for each of the underlying power scenarios. For each scenario, grey violin plots 
show the distribution of 54,778 random effects and red violin plots represent the distribution of 500 true 
effects. The dashed line represents the critical Pearson r for a Bonferroni corrected significance level (α = 
0.05/55278). b, We estimated power across sample size by simulating resampling methods in Marek, Tervo-
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Clemmens et al.1 using a Bonferroni corrected significance threshold. Line colour represents the ground 
truth statistical power of the study at full sample size (n = 1,000, α = 0.05/55278). c, To demonstrate bias 
across different sample sizes, we subtracted analytical power curves from the estimated power (panel b), 
with lines coloured as in panel b. Note that underpowered discovery samples inflate statistical power 
estimates. 

 

Note that regardless of power at the full sample size, bias in statistical power is largely 

avoided when subsampling up to around 10% of the full sample size, which is consistent with the 

use of resampling techniques in a recent meta-scientific paper evaluating statistical power and false 

discovery rates for genome-wide association studies (GWAS)9. 

 

What are the implications for the results presented by Marek, Tervo-Clemmens et al.1? For 

the strictly denoised Adolescent Brain Cognitive Development (ABCD) sample (n = 3,928), they 

reported around 68% power at n = 3,928 after Bonferroni correction when resampling at the full 

sample size (Marek, Tervo-Clemmens et al.1 Fig. 3 d.). Our true effect simulation results indicate 

that this could be inflated from a true average power anywhere between 1% and 40%. Furthermore, 

in their Supplementary Figure 9 d. Marek, Tervo-Clemmens et al.1 report around 1% power for n 

= 4,000 and α = 10-7 when subsampling from the UK Biobank with a full sample size of n = 32,572. 

We therefore argue that the 68% power reported for the full ABCD sample (n = 3,928, α = 10-7) 

more likely reflects methodological bias, rather than a result of increased signal after strict 

denoising of brain data. While the largest BWAS effects may be highly reproducible with 4,000 

participants, the average univariate BWAS effect is most likely not reproducible. On the other 

hand, our true effect simulations also indicate that the UK Biobank estimates at the full sample 

size are more reliable, with an underlying power likely between 70% and 90% at n = 32,572 after 

Bonferroni correction, suggesting that replicable univariate BWAS tested in Marek, Tervo-
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Clemmens et al. require tens-of-thousands of individuals. 

 

We strongly agree with Marek, Tervo-Clemmens et al.1 that their results shouldn’t be 

overinterpreted beyond BWAS10. Stressing this further, their results should be interpreted in the 

context of the specific study design they tested. For example, we may remind ourselves that inter-

individual correlation studies offer “as little as 5%-10% of the power” of within-subject t-test 

studies with the same number of participants4. Other methodological choices, such as data 

modelling, should also be carefully considered. The lack of power in univariate BWAS considered 

by Marek, Tervo-Clemmens et al. could also be influenced by the choice of a group-averaged brain 

parcellation11, which fails to account for individual level variations in resting state functional 

connectivity11. Brain models which do account for such individual variability generalise better, as 

demonstrated by stronger out-of-sample prediction12,13, and could also lead to higher replication 

rates. 

 

In summary, we showed that statistical error estimates of univariate correlations are 

methodologically biased, when obtained by resampling with replacement close to the full sample 

size of a large dataset. Notably, statistical power is inflated when the true power of the discovery 

sample is low and slightly deflated when true power is high. We further showed that this bias is 

largely avoided when subsampling only up to 10% of the full sample size after Bonferroni 

correction. When we avoided this bias in Marek, Tervo-Clemmens et al.’s1 results, by subsampling 

from the UK Biobank results, we argued that the univariate BWAS tested are generally not 

reproducible even with thousands of individuals. We stress that this may not have wider implications 

outside of the specific study design tested by Marek, Tervo-Clemmens et al. and ultimately 
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emphasize the importance of study design and model selection in neuroimaging approaches. To 

demonstrate this, further investigations of reproducibility of wider BWAS methods should be 

carried out. We hope such future studies may take into account the methodological considerations 

for obtaining statistical error estimates when resampling with replacement which we discussed here. 
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Extended Data 
 

 

 
 

Extended Data Figure 1: Expected statistical errors and reproducibility of random noise (ρ = 0). We 
obtain a ground truth of statistical errors under the null by iteratively generating null-samples at increasing 
sample sizes (n = 25, ... , 1,000) instead of resampling from a single null-sample. This corresponds to 
sampling from an infinite-size population. We average estimates for each sample size over 100 simulations. 
a, False negative rates under the null are constant across sample sizes and equivalent to 1 - α for a given 
significance threshold (α = .05, .01, .001 plotted). b, Since inflation rates are given as a proportion of 
replicated (same sign, and significant across discovery and replication sample) correlations, we can expect 
these to be high for small sample sizes as the critical r for significance is higher, and so the likelihood of 
being inflated decreases as sample sizes increase. Since we are averaging across correlations, few of these 
will be very inflated while many will be less inflated so we obtain a weighted average of 50% across inflation 
thresholds for large sample sizes. Noisy estimates are obtained for p<0.01 as only 1,225 edges were 
simulated, very few were significant across discovery and replication samples (12 expected) and even fewer 
of the same sign (6 expected). c, We expect 50% sign errors regardless of sample size as the sign of a given 
correlation in a replication null-sample will be random. d, e, f, estimates of statistical power, probability of 
replication, and false positives are based on proportions of significant correlations in replication null-
samples, so in each case the probability of a correlation being significant in a newly generated null-sample 
is exactly determined by the significance threshold (α = .05, ..., 10-7). 


