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Abstract 

Research on structural networks often suffers from limited sample sizes and inherent selection biases in individual studies, which 

restrict their ability to address complex questions regarding human brain organization. Pooling data across studies is crucial for 

achieving a more comprehensive representation of the population and effectively managing individual heterogeneity; however, 

structural networks acquired from multiple sites are susceptible to significant site-related differences. This necessitates 

harmonization to mitigate biases and reveal true biological variability in multi-site analyses. Our work marks the first effort to 

develop and evaluate harmonization frameworks specifically for structural networks. We adapt several statistical approaches for 

harmonizing structural networks and provide a comprehensive evaluation to rigorously test their effectiveness. Our findings 

demonstrate that the adaptation of the Gamma Generalized Linear Model (gamma-GLM) outperforms other methods in modeling 

structural network data, effectively eliminating site-related effects in structural connectivity matrices and downstream graph-based 

analyses while preserving biological variability. Additionally, we highlight gamma-GLM's superiority in addressing confounding 

factors between site and age. Two practical applications further illustrate the utility of our harmonization framework in tackling 

common challenges in multi-site structural network studies. Specifically, harmonization using gamma-GLM enhances the 

transferability of brain age predictors to new datasets and facilitates data integration in patient studies, ultimately improving 

statistical power. Together, our work offers essential guidelines for harmonizing and integrating multi-site structural network 

studies, paving the way for more robust discoveries through collaborative research in the era of big data. 
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1. Introduction 

Investigating brain disorders through structural brain networks faces major challenges due to the high individual 

heterogeneity and small sample sizes of single studies [1-3]. This often leads to inconclusive or divergent findings 

within the field [4, 5]. To tackle these issues, the scientific community has initiated efforts to pool and maintain 

imaging data from various clinical sites, aiming to address sample size limitations and reduce selection biases 

inherent in individual studies, thereby achieving a more comprehensive representation of the population. As a result, 

several large-scale structural network datasets have been developed, including the UK Biobank [6], Autism Brain 

Imaging Data Exchange (ABIDE) [7], and Action-Based Conversations Dataset (ABCD) [8]. However, integrating 

structural network data from multiple sources and utilizing large datasets retrospectively necessitates effective 

harmonization methods to eliminate site-specific differences that are unrelated to the underlying biology. 

Structural networks are typically mapped non-invasively using diffusion-weighted MRI (dMRI) [9] and represented 

as connectivity matrices, with nodes denoting brain regions and edges representing their axonal connections. Data 

collected from different sites often exhibits substantial variability due to technical differences in scanner 

manufacturers, acquisition protocols, preprocessing pipelines, tractography algorithms, and definition of networks 

[10-12]. Although several studies have attempted to reduce site-related effects by standardizing acquisition protocols 

and parameters [13-15], significant multi-site variations persist. These discrepancies can introduce site-related bias 

in brain network analysis, compromise data comparability in collaborative research, obscure biologically meaningful 

associations, and even lead to spurious associations [16-18]. 

Current efforts to mitigate site-related variations primarily focus on harmonizing dMRI signals. Mirzaalian et al. 

[19] introduced a technique that transforms dMRI signals into spherical harmonic space and learns site-to-site 

mapping by matching their rotation-invariant spherical harmonic (RISH) features. This approach has proven 

effective in harmonizing dMRI signals from similar acquisitions. Additionally, deep learning methods based on 
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RISH features have been developed and evaluated [20, 21]. Huynh et al. [22] employed the method of moments 

(MoM), which directly harmonizes dMRI signals without transforming them into other domains, offering greater 

flexibility for integrating dMRI data with varying numbers of gradient directions. 

However, these approaches address site effects only at the dMRI signal level, assuming that downstream outcomes, 

such as structural networks, will be harmonized accordingly. Kurokawa et al. [23], using a traveling-subject design, 

observed that even after the harmonization of dMRI signals, cross-scanner differences in structural networks and 

their graph metrics still persisted. This highlights the need to address inter-site variability at the connectivity matrix 

level before conducting network analyses or downstream tasks, to avoid biases in multi-site studies. 

The complexity of structural network data—marked by non-Gaussian distributions, high dimensionality, and graph-

structured organization— demands specialized methods and rigorous evaluation to develop effective harmonization 

tools. Although various statistical models have been proposed for harmonizing other neuroimaging modalities, their 

suitability for structural networks remains unexplored. ComBat, originally designed to address 'batch effects' in 

genomic data [24], uses parametric empirical Bayes [25] to mitigate site-related effects by adjusting the data for 

mean and variance while accounting for biological covariates such as age and sex. Fortin et al. [26] extended 

ComBat to harmonize dMRI scalar maps such as fractional anisotropy (FA) and mean diffusivity (MD), and Yu et 

al. [27] applied ComBat to resting-state functional networks. In addition to ComBat, methods such as the 

generalized linear model (GLM) [28, 29] and CovBat [30] have been proposed for neuroimaging data 

harmonization. However, most of these methods are limited to harmonizing measures that follow normal 

distribution. To date, no harmonization tools have been specifically designed and validated for structural networks. 

In this work, we fill the gap by extending harmonization framework to the structural network data. We adapt several 

statistical harmonization models specifically for structural networks and provide a comprehensive evaluation of 

these methods. Each harmonization method is rigorously tested to eliminate site-specific effects in structural 

connectivity matrices and downstream graph-based analyses [31], while preserving biological variability and 

ensuring robustness against confounding factors across different sites. Furthermore, we present two practical use 

cases that demonstrate how these harmonization approaches can overcome common challenges in multi-site 

structural network studies: first, we evaluate their application in enhancing the transferability of machine learning 

models to new datasets, particularly in the context of brain age prediction; second, recognizing that most structural 

network studies involve both control and patient groups, we illustrate the effectiveness of harmonization methods 

for both diagnostic groups, facilitating data integration in patient studies and enhancing their statistical power. 

Collectively, our work provides valuable guidelines for the harmonization and integration of multi-site structural 

network studies, supporting more robust findings in collaborative research and contributing to innovative diagnostic 

and therapeutic strategies. 

2. Methods 

2.1. Overview of Datasets 

We assess several harmonization approaches on diffusion MRI datasets collected from six separate sites, including 

the Philadelphia Neurodevelopmental Cohort (PNC) [32], the Center for Autism Research (CAR) [33], TimRobert 

[34], and three clinical sites from Autism Brain Imaging Data Exchange II (ABIDEII-NYU, ABIDEII-SDSU, 

ABIDEII-TCD) [7]. A total of 1503 participants (890 males, 613 females) are included in this study. The detailed 

demographic information and acquisition parameters of each dataset are described in Table 1 . 

Table 1 Demographic information and acquisition parameters for six datasets. 

Dataset TDC ASD Scanner dMRI T1-w MP-RAGE 

Age range 

(years) 

Sex 

(M, F) 

Sample 

size 

Age range 

(years) 

Sex 

(M, F) 

Sample 

size 

b values 

(s/mm2) 

Gradient 

directions 

TR 

(ms) 

TE 

(ms) 

Resolution 

(mm) 

TR 

(ms) 

TE 

(ms) 

TI 

(ms) 

Flip 

angle 

Resolution 

(mm) 

PNC 8.17-21.00 

(15.06±3.33) 

M=421 

F=533 

954 - - - Siemen 

Trio 3T 

0, 1000 64 8100 82 1.875× 

1.875 × 2 

1810 3.5 1100 9° 0.9375 × 

0.9375 × 1 

CAR 6.26-17.90 

(11.81±2.85) 

M=112 

F=30 

142 6.37-18.82 

(12.05±2.73) 

M=129 

F=22 

151 Siemens 

Verio 3T 

0, 1000 30 11000 76 2 × 2 × 2 1900 2.54 900 9° 0.8 × 0.8 × 

0.9 



TimRobert 6.17-13.83 

(9.97±2.04) 

M=32 

F=6 

38 6.17-16.92 

(10.65±2.18) 

M=61 

F=9 

70 Siemens 

Verio 3T 

0, 1000 30 11000 76.4 2 × 2 × 2 1900 2.87 1050 9° 1 × 1 × 1 

ABIDEII-

NYU 

6.66-12.90 

(9.55±1.77) 

M=19 

F=0 

19 6.05-17.93 

(8.33±2.17) 

M=35 

F=4 

39 Siemens 

Allegra 

0, 1000 64 5200 78 3 × 3 × 3 2530 3.25 1100 7° 1.3 × 1 × 

1.33 

ABIDEII-

SDSU 

8.10-17.70 

(13.50±3.05) 

M=21 

F=2 

23 7.40-18.00 

(12.95±3.35) 

M=24 

F=7 

31 GE 

MR750 

0, 1000 61 8500 84.9 1.875 × 

1.875 × 2 

8.136 3.172 600 8° 1 × 1 × 1 

ABIDEII-

TCD 

10.25-20.00 

(16.18±2.97) 

M=18 

F=0 

18 10.00-19.50 

(14.47±3.32) 

M=18 

F=0 

18 Philips 

Achieva 

0, 1500 61 20244 79 1.94 × 1.94 

× 2 

8.4 3.9 1150 8° 0.9 × 0.9 × 

0.9 

1Mean and standard deviation of age are shown in parentheses. 
2Abbreviations: M, male; F, female, TR, repetition time; TE, echo time; TI, inversion time 

 

To evaluate the effectiveness of harmonization methods in different scenarios, we create four cohorts using several 

subsets of these datasets. 

2.1.1. Paired PNC-CAR cohort 

We carefully select typically developing children from our two largest datasets, the PNC and CAR sites, ensuring 

they are closely matched in age and sex. This approach aims to mimic the traveling-subject research paradigm, 

minimizing confounding effects that could impact the harmonization results. As a result, we form two groups from 

different sites, each consisting of 100 participants (76 males, 24 females). The age of participants from the PNC site 

ranges from 8.17 to 18.08 years, with a mean of 12.31 years and a standard deviation of 2.70 years at enrollment. 

Participants from the CAR site range in age from 8.08 to 17.83 years, with a mean of 12.27 years and a standard 

deviation of 2.73 years. This cohort will be used to assess whether harmonization methods effectively remove 

scanner effects and preserve biological variability with minimal confounding biases involved. 

2.1.2. Confounded NYU-TCD cohort 

We use all typically developing children from the ABIDEII-NYU and ABIDEII-TCD datasets to create a cohort 

where age and site are confounded. The ABIDEII-NYU dataset includes the youngest participants among the six 

datasets, with an age range of 6.66 to 12.90 years, a mean of 9.55 years, and a standard deviation of 1.77 years. In 

contrast, the ABIDEII-TCD dataset consists of the oldest participants, with an age range of 10.25 to 20.00 years, a 

mean of 16.18 years, and a standard deviation of 2.97 years. Since no female subjects were included in these 

datasets, no sex-related biases are present. This cohort will be used to validate different harmonization techniques in 

datasets that involves confounding between age and site. 

2.1.3. TDC cohort 

We pool all TDC data from our datasets, resulting in a total of 1194 participants (623 males, 571 females). The age 

of participants ranges from 6.17 to 21.00 years, with a mean age of 14.41 years and a standard deviation of 3.53 

years. This cohort represents a more generic case in which age and sex are unbalanced with respect to site, 

potentially introducing statistical confounding. It will be used to evaluate the robustness of harmonization methods 

in the presence of such confounding factors. Additionally, the cohort will be applied in brain age prediction to assess 

whether harmonization approaches can effectively remove site-related variations and enhance the transferability of 

machine learning-based prediction models to new datasets. 

2.1.4. ASD cohort 

All datasets, except for the PNC site, also contain neuroimaging data from children with autism. We pool the ASD 

data from these five datasets to create a cohort of 309 participants (267 males, 42 females) aged from 6.05 to 19.50 

years, with a mean age of 11.49 years and a standard deviation of 3.05 years. The structural networks in the ASD 

cohort will be harmonized by adjusting for site effects, which are estimated from the corresponding TDC cohort. 

This cohort will be used to evaluate the effectiveness of harmonization methods in removing site-related variations 

while preserving biological and diagnostic features, with the goal of improving the statistical power of analyses 

through data integration. 

2.2. Image preprocessing 

The dMRI data underwent a series of preprocessing steps, including denoising using joint local principal component 

analysis (PCA), correction for eddy currents and movements, and skull stripping with BET2. The constrained 



spherical deconvolution (CSD) of dMRI is then conducted using DIPY, with the fiber response function estimated 

using dhollander algorithm [35, 36] and the fiber orientation distribution (FOD) fitted using the method proposed by 

Jeurissen and others [37]. Probabilistic fiber tracking is performed using the iFOD2 algorithm and anatomically 

constrained tractography (ACT) [38], with 500 seeds placed at random inside each voxel of the grey-matter white-

matter interface (GMWMI). The high-resolution T1-w images are first preprocessed using FreeSurfer recon-all 

pipeline (http://surfer.nmr.mgh.harvard.edu) [39], followed by registration to the dMRI data of each subject using 

restricted deformable SyN algorithm in ANTs [40]. Quality control is conducted manually, and the ones with poor 

quality are excluded from the analysis. 

2.3. Construction of structural networks 

We parcellate the brain into 86 regions of interest (ROIs) using the Desikan-Killiany atlas [41] and calculate the 

number of streamlines intersecting each pairwise combination of these ROIs, yielding an 86x86 connectivity matrix. 

Post-processing of the structural networks involves removing self-connections and symmetrizing the connectivity 

matrix. Additionally, we normalize the structural networks by dividing edge weights by each subject's total 

WMGMI volume. Since structural networks derived from probabilistic tractography may include numerous spurious 

connections that could affect downstream analysis, we apply consistency-based thresholding to filter out spurious 

connections and retain only the most consistent ones. For our primary analyses, the consistency-based thresholding 

at 40% density has been applied to retain edges that are highly consistent across the population. Results using other 

thresholding levels are reported in the Supplementary Materials. All harmonization methods are performed with sex, 

age, and age2 included as covariates. 

2.4. Harmonization methods 

We propose to use and adapt five statistical approaches for the harmonization of structural networks at the level of 

connectivity matrices. Table 2 presents a comparison of these harmonization methods. Consider structural network 

data gathered from 𝑀 imaging sites, where 𝑚 = 1, 2, … , 𝑀 denotes the index of the site, and each site comprises 𝑁𝑚 

samples, with 𝑛 = 1, 2, … , 𝑁𝑚 representing the index of the subject. Let 𝑌𝑚𝑛𝑒 represent the observed edge value 

before harmonization at a given edge index 𝑒 ∈ 𝐸(𝐺) within the structural network of subject 𝑛 from site 𝑚. In the 

following sections, we provide detailed descriptions of each technique and explain their implementation in the 

context of structural network data.  

Table 2 Comparison of mainstream harmonization methodologies. 

Harmonization method Addresses mean 

site effects 

Addresses variance 

site effects 

Addresses covariance 

site effects 

Address 

skewness 

Assure non-negative 

edge values 

Assumption for 

data distribution 

ComBat Yes Yes    Normal 

CovBat Yes Yes Yes   Normal 

log-ComBat Yes Yes  Yes Yes Log-normal 

log-CovBat Yes Yes Yes Yes Yes Log-normal 

gamma-GLM Yes   Yes Yes Gamma 

2.4.1. ComBat 

The ComBat model, originally developed by Johnson et al. [24] to mitigate batch effects when integrating multiple 

microarray datasets for gene expression analysis, has been adapted for harmonizing multiple scalar metrics in 

neuroimaging studies [26, 27, 42-45]. ComBat formulates each edge value as: 

𝑌𝑚𝑛𝑒 = 𝛼𝑒 + 𝑿𝒎𝒏
𝑻 𝜷𝒆 + 𝛾𝑚𝑒 + 𝛿𝑚𝑒𝜖𝑚𝑛𝑒 

In this model, 𝛼𝑒 represents intercept of the connectivity value at edge 𝑒, the vector 𝑿𝒎𝒏 incorporates covariates of 

interest, such as age and sex, with 𝜷𝒆 representing the vector of regression coefficients corresponding to 𝑿𝒎𝒏 at 

edge 𝑒. 𝛾𝑚𝑒 and 𝛿𝑚𝑒 denote the mean and variance of the site effect for site 𝑚 at edge 𝑒. Combat assumes that the 

error term 𝜖𝑚𝑛𝑒 follows an independent normal distribution 𝜖𝑚𝑛𝑒 ∼ 𝑁(0, 𝜎𝑒
2). It first estimates �̂�𝑒, �̂�𝑒 using ordinary 

least-squares by constraining Σ𝑚𝑁𝑚𝛾𝑚𝑒 = 0 for all edges. To estimate empirical statistical distributions of 𝛾𝑚𝑒 and 

𝛿𝑚𝑒, ComBat employs an empirical Bayes approach with the assumption that all edges share a common yet site-
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specific prior distribution, with hyperparameters estimated empirically using method of moments. This allows 

information from all edges to be leveraged to infer the statistical properties of the site effect. Specifically, 𝛾𝑚𝑒 is 

assumed to have an independent normal prior distribution, and 𝛿𝑚𝑒 follows an independent inverse gamma prior 

distribution. The estimates 𝛾𝑚𝑒
∗  and 𝛿𝑚𝑒

∗  are obtained by computing the conditional posterior means. Finally, 

ComBat adjusts for the estimated site effects to obtain the harmonized connectivity edge: 

𝐶𝑜𝑚𝐵𝑎𝑡(𝑌𝑚𝑛𝑒) =
𝑌𝑚𝑛𝑒 − �̂�𝑒 − 𝑿𝒎𝒏

𝑻 �̂�𝒆 − 𝛾𝑚𝑒
∗

𝛿𝑚𝑒
∗

+ �̂�𝑒 + 𝑿𝒎𝒏
𝑻 �̂�𝒆 

ComBat harmonization may introduce spurious connections for those originally with 0 edge values (indicating no 

connection between two nodes), altering the physical interpretation of the connectivity. To correct this, we follow 

the approach of Onicas et al. [46] by reassigning zeros to those connections. Specifically, we apply a binary 

connectivity matrix derived pre-harmonization to the harmonized weighted connectivity matrix for each subject. 

2.4.2. CovBat 

ComBat treats each edge in the structural networks independently, without accounting for the covariance between 

edges. However, in structural networks, site effects might be edgewise correlated and exhibit varying covariances 

across sites. To address these potential covariance effects, Chen et al. [30] adapted the ComBat framework into 

CovBat. CovBat posits that the error vector 𝝐𝒎𝒏 = (𝜖𝑚𝑛1, 𝜖𝑚𝑛2, … , 𝜖𝑚𝑛𝑒 , … , 𝜖𝑚𝑛𝐸)𝑇 ∼ 𝑁(𝟎, 𝚺𝒎), where 𝐸 denotes 

total number of edges. CovBat initially applies ComBat to remove the mean and variance of the sites and obtain 

ComBat-adjusted residuals: 

𝜖𝑚𝑛𝑒
𝐶𝑜𝑚𝐵𝑎𝑡 =

𝑌𝑚𝑛𝑒 − �̂�𝑒 − 𝑿𝒎𝒏
𝑻 �̂�𝒆 − 𝛾𝑚𝑒

∗

𝛿𝑚𝑒
∗

 

It then performs principal component analysis (PCA) on the residuals. These residuals can be projected onto the 

principal components, expressed as: 

 𝝐𝒎𝒏
𝑪𝒐𝒎𝑩𝒂𝒕 =  ∑𝑙=1

𝐿 
𝑚𝑛𝑙

𝚽𝒍 

Here, 𝚽𝒍 represent the eigenvectors of the covariance of the residual data, and 𝐿 = min (∑𝑚=1
𝑀 𝑁𝑚, 𝐸) denotes the 

rank. 
𝑚𝑛𝑙

 indicates the principal component scores. Assuming that the covariance site effect is captured within 

these principal component scores, we can harmonize them to mitigate the covariance site effects. Suppose: 


𝑚𝑛𝑙

= 𝜇𝑚𝑙 + 𝜌𝑚𝑙𝜖𝑚𝑛𝑙 

Where 𝜇𝑚𝑙 and 𝜌𝑚𝑙  are location and scale shifts on principal component scores for site 𝑚 at principal component 𝑙. 

The CovBat adjusts these site-related shifts in principal component scores: 


𝑚𝑛𝑙
𝐶𝑜𝑣𝐵𝑎𝑡 = (

𝑚𝑛𝑙
− 𝜇𝑚𝑙̂ )/𝜌𝑚�̂� 

The covariance-adjusted residuals can be obtained by projecting the adjusted principal component scores back into 

the original space, with a hyperparameter 𝐾 controlling the desired portion of principal component scores to be 

adjusted: 

𝒆𝒎𝒏
𝑪𝒐𝒗𝑩𝒂𝒕 = ∑𝑘=1

𝐾 
𝑚𝑛𝑘
𝐶𝑜𝑣𝐵𝑎𝑡𝚽𝒌 + ∑𝑙=𝐾+1

𝐿 
𝑚𝑛𝑙
𝐶𝑜𝑣𝐵𝑎𝑡𝚽𝒍 

In this study, we select 𝐾 such that the principal components explain 95% of the variation. The final harmonized 

connectivity edge values can be represented by replacing the residuals: 

𝐶𝑜𝑣𝐵𝑎𝑡(𝑌𝑚𝑛𝑒) = 𝑒𝑚𝑛𝑒
𝐶𝑜𝑣𝐵𝑎𝑡 + �̂�𝑒 + 𝑿𝒎𝒏

𝑻 �̂�𝒆 

Similar to the post-processing in ComBat, we reassign zeros to connections that had zero edge values prior to 

harmonization. 



2.4.3. log-ComBat 

The ComBat algorithm relies on the assumption of data conforming to a normal distribution. However, this premise 

may not hold true for structural network data, where edge values frequently demonstrate notable skewness. In 

biomedical research, the log-scaling technique is commonly employed to transform skewed data to approximate a 

normal distribution [47, 48]. The log-scaling approach assumes that edgewise structural connectivity strength 

follows a log-normal distribution or closely approximate it. Consequently, the ComBat algorithm can be 

reformulated as follows: 

ln(𝑌𝑚𝑛𝑒) = 𝛼𝑒 + 𝑿𝒎𝒏
𝑻 𝜷𝒆 + 𝛾𝑚𝑒 + 𝛿𝑚𝑒𝜖𝑚𝑛𝑒 

and the harmonized connectivity values can be obtained from the inverse of a logarithm: 

𝑙𝑜𝑔𝐶𝑜𝑚𝐵𝑎𝑡(𝑌𝑚𝑛𝑒) = exp (
ln (𝑌𝑚𝑛𝑒) − �̂�𝑒 − 𝑿𝒎𝒏

𝑻 �̂�𝒆 − 𝛾𝑚𝑒
∗

𝛿𝑚𝑒
∗

+ �̂�𝑒 + 𝑿𝒎𝒏
𝑻 �̂�𝒆) 

log-ComBat ensures that harmonized connectivity values remain non-negative. To handle numerical errors with the 

logarithm when original connectivity values 𝑌𝑚𝑛𝑒  are zero, we add a small positive constant 𝑐 to 𝑌𝑚𝑛𝑒 . Those 

connections with zero edge values prior to harmonization will be reassigned to zeros to ensure no spurious 

connections are introduced by the harmonization process 

2.4.4. log-CovBat 

We also adapt the CovBat algorithm by incorporating log-scaling to tackle the skewness of the edge weights in 

structural networks. First, we apply CovBat to log-transformed connectivity values, and then we apply the inverse of 

logarithm to obtain the final harmonized connectivity values: 

𝑙𝑜𝑔𝐶𝑜𝑣𝐵𝑎𝑡(𝑌𝑚𝑛𝑒) = exp (𝐶𝑜𝑣𝐵𝑎𝑡(ln(𝑌𝑚𝑛𝑒))) 

log-CovBat ensures that connectivity edges remain non-negative after harmonization. Similarly, we add a small 

positive constant 𝑐 to original connectivity value 𝑌𝑚𝑛𝑒  during log-CovBat harmonization and restore connections 

that originally had zero edge values back to zeros. 

2.4.5. gamma-GLM with log-link 

The generalized linear model (GLM) provides an alternative for regression when the assumptions of normality and 

homoskedasticity are not met [49]. By employing a gamma distribution with a log-link function, GLM offers greater 

flexibility in modeling a wide range of data shapes, particularly well-suited for positive and right-skewed data.  We 

model the effects of site and other covariates on expected structural networks with a log-link function, expressed as: 

ln (𝐸𝑚𝑛[𝑌𝑚𝑛𝑒]) = 𝛼𝑒 + 𝑿𝒎𝒏
𝑻 𝜷𝒆 + 𝛾𝑚𝑒 

In the gamma-GLM, the edge values for each connection are assumed to follow a gamma distribution, 𝑌𝑚𝑛𝑒 ∼

Γ(𝑘𝑒 , 𝜃𝑒), where 𝑘𝑒 and 𝜃𝑒 denote the shape and scale parameters, respectively. The expected value for edge 𝑒 is 

given by: 

𝐸𝑚𝑛[𝑌𝑚𝑛𝑒] = 𝑘𝑒𝜃𝑒 

The parameters 𝑘𝑒 and 𝜃𝑒 can be fitted using GLM regression, enabling the estimation of the mean site effects 𝛾𝑚𝑒
∗  

for site 𝑚 at edge 𝑒 can be then estimated. To obtain the final harmonized connectivity values, the estimated mean 

site effects 𝛾𝑚𝑒
∗  are regressed out, followed by applying the inverse logarithm transformation: 

𝑔𝑎𝑚𝑚𝑎𝐺𝐿𝑀(𝑌𝑚𝑛𝑒) = exp(ln(𝑌𝑚𝑛𝑒) − 𝛾𝑚𝑒
∗ ) = 𝑌𝑚𝑛𝑒/exp (𝛾𝑚𝑒

∗ ) 

The gamma-GLM with a log-link function ensures that the harmonized edge values remain non-negative. As gamma 

fitting also requires positive edge values, we add a small positive constant 𝑐 to original connectivity value 𝑌𝑚𝑛𝑒  and 

restore connections with zero edge values back to zeros after harmonization.  



2.5. Test for distributional properties of structural network connections 

To assess the validity of the distributional assumptions underlying different statistical harmonization methods, we 

conduct goodness-of-fit tests to evaluate the distributional characteristics of the structural network data. Specifically, 

we fit a normal distribution (as required by ComBat and CovBat), a log-normal distribution (for log-ComBat and 

log-CovBat), and a gamma distribution (for gamma-GLM) to the observed structural networks at each site. We 

employ the Kolmogorov–Smirnov (KS) test to quantify the distance between the observed data distribution and the 

fitted distributions. 

2.6. Evaluation of harmonization methods 

2.6.1. Tests on edgewise site effects 

We first examine whether each harmonization method can eliminate site-related biases in the mean, variance, and 

covariance of edgewise connectivity strength. To evaluate mean site effects, we perform a two-sample t-test to 

assess edgewise site differences for the paired PNC-CAR cohort, with sex, age, and age2 included as covariates. For 

the TDC cohort, where multiple sites are involved, we conduct a one-way analysis of variance (ANOVA) to test for 

mean site effects, followed by post-hoc analysis to identify specific site differences when the ANOVA results are 

significant. To evaluate variance site effects, we use Brown-Forsythe test on the residuals of edgewise connectivity 

strength, after regressing out sex, age, and age2. Brown-Forsyth test is the non-parametric version of Levene's test to 

examine whether two comparing groups have equal variances. For site-specific covariance effects, we first calculate 

the empirical covariance for each site and then compute the Frobenius distance between the within-site covariance 

matrices for each pair of sites, both before and after harmonization. Additional Box-M test is conducted to evaluate 

whether the site-specific covariance matrices are equal. 

2.6.2. Evaluation on derived graph topological measures 

Since structural networks are represented as graphs with specific topological properties rather than merely edgewise 

connections, it is essential that harmonizing edgewise connectivity also ensures the derived graph topological 

measures to be harmonized. We calculate graph topological measures at two levels for the brain networks: node-

level features (node strength, betweenness centrality, local efficiency, clustering coefficient) and global graph 

measures (global strength, intra- and inter-hemisphere strength, characteristic path length, global efficiency, 

modularity). We then examine site-related differences in these metrics before and after applying ComBat, CovBat, 

log-ComBat, log-CovBat, and gamma-GLM harmonization methods. We perform a two-sample t-test to assess site 

differences for each metric for the paired PNC-CAR cohort and use a one-way ANOVA test for the multi-site TDC 

cohort. Effect sizes are calculated using Cohen's d for the paired PNC-CAR cohort and Cohen's f for the multi-site 

TDC cohort. 

2.7. Preservation of biological variability 

An ideal harmonization method should eliminate non-biological variability introduced by different sites and 

scanners while retaining the statistical power to detect biologically meaningful associations To validate this, we 

calculate the Pearson correlation between edgewise connectivity strength and subjects’ chronological age within 

each site, controlling for sex covariates. We expect that the harmonized structural networks to recover the age-

connectivity relationships observed in the original data. The restoration is quantified by the true positive rate 

(sensitivity) of detected connections exhibiting significant age correlations. Additionally, we rank the connections 

by the absolute values of their age correlations and compute the overlap between the top k correlations in the 

harmonized and original data across all values of k, visualizing the results using concordance at the top (CAT) 

curves [50]. A CAT curve closer to one indicates better overlap between the two sets of correlation relationships. 

2.8. Harmonization with confounding factors 

Confounding between age and site poses a major challenge for harmonization, as removing site-related variation can 

inadvertently change age-related variation if not handled carefully. To assess different harmonization methods in the 



presence of such confounding, we perform a Pearson’s correlation analysis, testing the association between 

edgewise connections and subjects’ chronological age within each site for the confounded NYU-TCD cohort. CAT 

plots are used to visualize the replicability of these age associations before and after applying different 

harmonization methods, and the true positive rate is employed to quantify the recovery of connections with 

significant age correlations. Additionally, we compute the Frobenius distance between the edgewise age correlation 

matrices of the two sites. We expect this distance to remain similar before and after harmonization, indicating that 

age-related site differences are preserved. Lastly, we jointly test the replicability of age associations with two sites 

combined after harmonization. We also include the scenario where the two sites are combined without proper 

harmonization. By comparing the results from the paired PNC-CAR cohort and the confounded NYU-TCD cohort, 

we highlight the critical role of harmonization in addressing confounding factors for data integration. 

2.9. Application of harmonization for multi-site analysis 

To further demonstrate the importance of harmonization in multi-site data analysis, we assess the effectiveness of 

these harmonization methods through two practical use cases: 1) improving the transferability of prediction models 

to new datasets. We use brain age prediction as an example. 2) enhancing statistical power for clinical studies 

through data integration. Here we focus on detecting group differences and clinical associations in ASD. 

2.9.1. Brain age prediction on new datasets 

Brain development is accompanied by structural changes in brain networks, and the gap between predicted brain age 

from neuroimaging data and chronological age has been linked to various health conditions [51-55]. While many 

researchers have used machine learning to model neurotypical brain development trajectories and predict brain age, 

these predictors often struggle with transferability across datasets due to site and scanner variability. We use brain 

age prediction as a case study to assess whether harmonization methods can eliminate site-related effects while 

preserving age-related biological variability in structural networks, thereby improving the prediction performance of 

machine learning models on new datasets. 

We train a support vector regression (SVR) model to predict brain age from structural networks, using data from 

typically developing children at the PNC site. Features are extracted from the upper triangular portion of the 

structural connectivity matrices, with PCA applied for dimensionality reduction. We randomly split the PNC dataset 

into 50:50 for the training set and the testing set. To optimize the model, we apply 5-fold cross-validation on the 

training set to tune hyperparameters of the model. The final SVR model is trained on all subjects in the training set 

using the optimal hyperparameters. The performance of the model is reported using the testing set of the PNC 

dataset. We then assess the model's transferability by testing it on data from other sites in the TDC cohort, 

evaluating prediction performance through root mean square error (RMSE), mean absolute error (MAE), and 

Pearson correlation coefficient (R). 

2.9.2. Enhancing statistical power for ASD studies 

Previous research has identified several connectivity profiles in individuals with ASD [56-60]. However, most 

studies are conducted at single sites and often suffer from small sample sizes, which limit their statistical power and 

make it difficult to draw generalizable conclusions. Pooling data from multiple sources may introduce site-related 

biases which can obscure the detection of clinical associations. Thus, harmonizing structural networks becomes 

crucial for revealing reliable ASD-related characteristics with multi-site datasets. 

We validate the effectiveness of harmonization algorithms in this context by estimating site-related effects using the 

TDC cohort and applying the resulting site-specific coefficients to both the TDC and ASD cohorts. We calculate 

global and nodewise graph topological features of structural networks before and after harmonization, assessing age-

related differences in these features between the ASD and TDC groups. Due to pronounced sex differences in 

autistic children and the small sample size of autistic females, we exclude female subjects from this analysis to 

minimize potential sex bias. Additionally, to detect clinical associations for those graph topological features before 

and after harmonization, we perform correlation analyses to test their relationship to various clinical measures for 

ASD, including the Autism Diagnostic Observation Schedule (ADOS) [61] and the Social Responsiveness Scale 

(SRS-2) [62], while controlling for age and age2. 



3. Results 

The results are organized as follows: Section 3.1 examines the distributional properties of structural network 

connections before harmonization, validating the data assumptions underlying different harmonization methods. 

Section 3.2 presents evidence of substantial mean, variance and covariance site effects in edgewise connectivity 

strength, and evaluates how effectively harmonization methods reduce site variability. Section 3.3 explores the site 

effects on derived graph measures of structural networks. Section 3.4 assesses the replicability of biological patterns 

such as age associations. Section 3.5 tests the robustness of harmonization methods in a more generic context 

involving confounding factors. Sections 3.6 and 3.7 highlight two practical applications of harmonization: enhance 

the transferability of machine learning-based brain age predictors to new datasets, and improve the statistical power 

of detection for clinical associations. 

3.1. Distributional properties of structural network connections 

For each pairwise connection in the structural connectivity matrices, we fit the edge values across the population to 

three hypothesized probability distributions: normal, log-normal, and gamma. The edge distributions are fitted 

separately for each site and diagnostic group (TDC or ASD). Figure 1A shows the KS distances between the 

observed distributions and three hypothesized probability distributions for structural network connections in the 

PNC dataset, our largest site for the TDC group. A larger KS distance indicates that the observed data deviate more 

from the hypothesized distribution. The gamma distribution demonstrates the best fit, with significantly lower KS 

distances compared to the other two hypothesized distributions (p<0.0001, paired t-test), followed by the log-normal 

distribution. Figure 1B illustrates the heatmaps of KS distances for each connection. For each hypothesized model, 

only connections with significant differences from the observed distributions are shown in the heatmaps (p<0.05, 

FDR-adjusted). Among the top 40% of highly consistent connections (1480 edges in total), 97% do not follow a 

normal distribution, while 31% have distributions that are significantly different from the log-normal distribution, 

and fewer than 5% of these connections show significant differences from the gamma distribution fitting. 

 

Figure 1 Goodness of fit test for the PNC site. A) Edgewise KS distances between the observed distributions of structural 
connectivity strengths and three hypothesized distributions (normal, log-normal, and gamma). Asterisks denote significant group 
differences (p < 0.0001, paired t-test). The gamma distribution provides a significantly better fit than the other two hypothesized 
models. B) Heatmaps of edgewise KS distances for each hypothesized model, showing only connections with significant 
differences from the observed distributions in structural networks (p < 0.05, FDR-adjusted). 

Similar distributional properties of structural network connections are also observed in the TDC group across the 

other five sites and hold true for the ASD group as well, as shown in Figure S1. Notably, the normality assumptions 

underlying ComBat and CovBat are not met for most structural network connections. These connections are more 

likely to follow a gamma distribution, regardless of site or diagnostic group, while the log-normal distribution may 

also provide a satisfactory fit in some cases. 

3.2. Evaluation of site effects on edgewise connectivity strength 

We utilize the paired PNC-CAR cohort to assess the site effects on edgewise connectivity strength. The MA-plot 

[63] is a common method for visualizing differences in measurements taken from two sites. In this plot, the 



edgewise mean connectivity strength is calculated for each site, and the between-site differences in log-transformed 

means are displayed as a function of the average log-transformed site means. Figure 2A presents the MA-plots 

comparing the PNC and CAR sites for participants paired by age and sex. If the structural network data were free of 

site-related effects, the scatterplot would align along the horizontal line at zero, as indicated by the dashed lines. Pre-

harmonization, we observe striking site differences in edgewise connectivity strength between the two sites. These 

site differences are largely reduced after applying any of those tested harmonization approaches. 

Figure 2B illustrates site-related biases in the mean and variance of edgewise connectivity strength, with t-statistics 

shown for mean site effects (first row) and F* statistics from the Brown-Forsythe test for variance site effects 

(second row). The log-CovBat and gamma-GLM approaches are favorable in eliminating mean site effects, and log-

ComBat and log-CovBat show superiority in harmonizing site effects in variance. Specifically, among the 1480 

most consistent connections in the structural networks, 1035 (70%) show significant differences in site means before 

harmonization (p<0.05, two-sample t-test). After ComBat harmonization, this number drops to just 11 connections 

(0.74%), while logComBat reduces the number to 5 (0.34%). CovBat harmonization leaves only 3 connections 

(0.2%) with significant site differences in means, and no significant site differences are observed after log-CovBat 

and gamma-GLM harmonization. For variance site effects, 741 connections (50%) exhibit significant site 

differences in the unharmonized data (p<0.05, Brown-Forsythe test). After ComBat harmonization, 110 connections 

(7.4%) still show significant differences, with 104 (7%) remaining significant after CovBat, and 7 (0.47%) after 

gamma-GLM. Following log-ComBat and log-CovBat harmonization, all connections are free from site-related 

effects on variance. 

 

Figure 2  Site-related effects on mean and variance of edgewise connectivity strength. A) MA-plots for visualization of site 

differences between the PNC site and the CAR site with paired subjects. The x-axis represents the averaged log-transformed 

means across sites and the y-axis represents between-site differences in log-transformed means. The horizontal line at 

zero indicates no site-related effects. B) Edgewise site effects on mean (first row) and variance (second row) 

connectivity strength. The t-statistics are shown for mean site effects and F* statistics from the Brown-Forsythe test 

for variance site effects. 

Table 3 shows the site-specific covariance effects on edgewise connectivity strength before and after harmonization, 

quantified by the Frobenius distance between covariance matrices of two sites. We regress out the effects of site 

demographics, including sex, age, and age², jointly across both sites using a linear model for the connectivity 

strength at each edge. The log-CovBat harmonization approach performs best in addressing site effects on 

covariance, followed by log-ComBat and gamma-GLM. However, the results of the Box's M test indicate that 



covariance site effects on structural networks in the paired PNC-CAR cohort are not significant across all tested 

cases, including the pre-harmonization data. 

Table 3 Frobenius distances between site-specific covariance matrices 

Pairwise Site 

differences 
Pre-harmonization ComBat CovBat log-ComBat log-CovBat gamma-GLM 

Paired PNC-CAR 0.1022 0.0924 0.0912 0.0728 0.0726 0.0786 

 

3.3. Evaluation of site effects on derived graph topological measures 

We then examine the derived graph topological measures of structural networks to determine whether harmonizing 

edgewise connectivity strength can lead to harmonized downstream outcomes. Figure 3 illustrates the Cohen's d 

effect sizes of site differences across six global graph topological measures, with asterisks denoting significant site 

effects. All six global measures show significant site effects before harmonization (p<0.05, two-sample t-test), with 

three strength-based graph measures exhibiting large effect sizes (Cohen's d > 1.0), characteristic path length 

displaying a moderate effect size (Cohen's d=0.68), and global efficiency showing a smaller effect size (Cohen's 

d=0.30). After ComBat harmonization of edgewise connections, site effects on four global measures are eliminated. 

However, site effects on characteristic path length and global efficiency remain significant (p<0.05, two-sample t-

test), though their effect sizes are reduced to small (Cohen's d = 0.20 for characteristic path length, Cohen's d = 0.27 

for global efficiency). Among CovBat, log-ComBat, log-CovBat, and gamma-GLM, all of which address site effects 

on each global measure, gamma-GLM demonstrates the best overall harmonization performance, achieving the 

smallest effect sizes for most measures. 

 

Figure 3 Effect size of site differences on global graph topological measures. For each harmonization method, the Cohen's d 
effect sizes of sites are evaluated on six global graph topological measures (global strength, intra- and inter-hemisphere 
strength, characteristic path length, global efficiency, modularity). Significant site effects are indicated by asterisks (p < 0.05, 
two-sample t-test). 

We then explore the site effects on nodewise graph topological features. Figure 4 presents the effect sizes of sites on 

four nodewise graph topological measures, with significant site effects marked by asterisks. The number of nodes 

with significant site effects is indicated in the top left corner of each plot. While all tested harmonization approaches 

address most site effects on node strength and clustering coefficient, ComBat and CovBat fail to correct site effects 



on betweenness centrality and local efficiency, leaving a substantial number of nodes with significant site effects 

(p<0.05, two-sample t-test).  

 

Figure 4 Effect size of site differences on nodal graph topological measures. Four nodewise topological measures (node strength, 
betweenness centrality, local efficiency and clustering coefficient) are evaluated. Significant site effects (p < 0.05, two-sample t-
test) are indicated by asterisks. The number of nodes with significant site effects is noted in the top left corner of each plot. 

3.4. Preservation of biological variability 

We then assess the replicability of age-related biological variability after applying different harmonization methods. 

For each site, Pearson correlations between edgewise connectivity strength and subjects' chronological age are 

calculated before and after harmonization, controlling for sex as a covariate. Figure 5A shows the edgewise 

correlations for the PNC site (first row) and the CAR site (second row) before and after harmonization with paired 

subjects, displaying only connections with significant age associations (p < 0.05, Pearson’s R). Notably, the gamma-

GLM method most closely resembles the pre-harmonization patterns of age associations. Table 4 quantifies the 

replicability of these age associations using the true positive rate (TPR) of connections with significant correlations, 

compared to the pre-harmonization data. Our results show that gamma-GLM outperforms other methods by 

recovering all the positive and negative correlations in the original structural networks across both sites in the paired 

PNC-CAR cohort, followed by log-ComBat and log-CovBat. 

We visualize the replicability of age associations with CAT plots, where each curve represents the concordance of 

rankings for all edgewise age correlations before and after harmonization, again controlling for sex (Figure 5A). In 

the absence of confounding, gamma-GLM performs the best at both PNC and CAR sites, showing an almost flat 

CAT curve near 1. The log-ComBat and log-CovBat methods exhibit good overlap, performing slightly behind 

gamma-GLM, while ComBat and CovBat rank last. 

Table 4 Recovery of connections with significant age correlation 

Cohort Site 

# positive 

correlations 
TPR of positive correlations 

# negative 

correlations 
TPR of negative correlations 

pre-

harmonization 
ComBat CovBat 

log-

ComBat 

log-

CovBat 

gamma-

GLM 

pre-

harmonization 
ComBat CovBat 

log-

ComBat 

log-

CovBat 

gamma-

GLM 

Paired 

PNC-CAR 

PNC 228 94.30% 94.30% 99.56% 95.61% 100% 143 82.51% 82.51% 98.60% 97.90% 100% 

CAR 227 72.69% 74.89% 94.27% 92.95% 100% 253 90.12% 92.09% 92.49% 92.09% 100% 

Confounded 

NYU-TCD 

ABIDEII-

NYU 
19 84.21% 78.95% 94.74% 84.21% 100% 78 80.76% 78.21% 82.05% 73.08% 100% 

ABIDEII-

TCD 
36 86.11% 58.33% 94.44% 66.67% 100% 95 84.21% 70.53% 85.26% 80.00% 100% 

Abbreviations: TPR, true positive rate; # positive (or negative) correlations, number of connections with positive (or negative) age correlations 

 



 

Figure 5 Replicability of age associations with edgewise connectivity after applying different harmonization methods. Two 
scenarios are tested: (A) the paired PNC-CAR cohort and (B) the confounded NYU-TCD cohort. For each scenario, edgewise 
correlations between connectivity strength and age are shown for each site and harmonization method, displaying only 
significant age-associated connections (p < 0.05, Pearson’s R). The CAT curves visualize the concordance of edgewise age 
associations before and after harmonization for each method. A CAT curve closer to one indicates better overlap in age 
associations. 

3.5. Harmonization with confounding factors 

The previous results are obtained by harmonizing two sites that paired for age and sex to minimize potential 

confounding of those variables across sites. However, this kind of pairing is not always feasible in multi-site studies. 

In the confounded NYU-TCD cohort where there is a poor overlap between age across sites, enough paired samples 

can be used to estimate site-related effects. A better harmonization method should be applied on all available data 

across sites without the pairing process and should be robust to confounding. Figure 5B shows the edgewise within-

site correlations with age for ABIDEII-NYU (first row) and ABIDEII-TCD (second row) before and after 

harmonization. We note that, compared to the paired cohort, the confounded cohort demonstrates different edgewise 

patterns between two sites, which may be due to the effects of age on structural networks are different across 

different age groups. The CAT plots show that the site-specific age-related patterns are best preserved for each site 

after using gamma-GLM harmonization, followed by log-ComBat, log-CovBat, ComBat, and CovBat. The gamma-

GLM harmonization can recover all connections with significant positive and negative correlations in presence of 

confounding between age and sites (Table 4).  

To assess the age-effects between sites, we calculate the Frobenius distances between the edgewise correlation 

patterns of two sites, as shown in Table 5. Ideally, we expect the between-site distance for age-related patterns 

should remain the same before and after harmonization. The gamma-GLM most successfully perseveres the age-

related differences across sites, while log-ComBat and log-CovBat inadvertently reduce these differences. The 

ComBat and CovBat increase the age-related differences across sites, which may be due to the poor fitting using the 

normal distribution for edges. 

Table 5 Frobenius distances between site-specific edgewise patterns of age associations 

Pairwise Site 

differences 
Pre-harmonization ComBat CovBat log-ComBat log-CovBat gamma-GLM 



Confounded 

NYU-TCD 
11.7748 13.6246 12.8325 11.3402 11.4245 11.7764 

Lastly, we evaluate the replicability of age associations when combining two sites. Figure S2 shows the CAT curves 

for the paired PNC-CAR cohort and the confounded NYU-TCD cohort. Our results demonstrate that, in the presence 

of confounding, the replicability of age associations drops dramatically compared to the paired cohort if sites are 

combined without proper harmonization, whereas properly harmonized ones maintain high replicability.  

3.6. Application 1: Brain age prediction on new datasets 

In the following sessions, we evaluate the effectiveness of different harmonization methods in addressing several 

common challenges that encountered in multi-site structural network studies.  

Many studies face limitations in the transferability of prediction models when applied to new datasets, as these 

datasets may exhibit substantial differences in data distribution compared to the training cohort. Harmonization is 

one approach to mitigate these data differences, which are often caused by scanner variations and other site-specific 

factors. For this analysis, we use the entire TDC cohort. The site effects before and after harmonization are reported 

in the Supplementary Materials. 

We train a brain age predictor using an SVR model on the PNC site's training set and apply it to the remaining sites 

before and after different harmonization methods. Table 6 shows the model's prediction performance at each new 

site, as well as for the combined data from all new sites. For reference, the original performance of the trained brain 

age predictor on the PNC site's test set is provided (underlined). Our results demonstrate that using proper 

harmonization to remove site-specific variations between the PNC and new sites can largely improve the 

transferability of the brain age predictor to new datasets. The gamma-GLM-harmonized data achieve the lowest 

MAE and RMSE, along with the highest Pearson R correlation, across most new sites with unseen data and for the 

overall results. Although log-ComBat attains the lowest MAE and RMSE in two sites (TimRobert, ABIDEII-TCD), 

it does not match gamma-GLM's performance in terms of Pearson R correlation.  

Table 6 Impact of harmonization on the transferability of brain age predictors to new datasets 

Dataset Metric Pre-harmonization ComBat CovBat log-ComBat log-CovBat gamma-GLM 

PNC 

MAE 1.7321 1.6752 1.6433 1.7078 1.7001 1.7281 

RMSE 2.1681 2.0683 2.0400 2.1396 2.1329 2.1651 

Pearson R 0.7405 0.7662 0.7734 0.7483 0.7504 0.7414 

CAR 

MAE 3.7216 2.4807 2.4579 1.9644 1.9739 1.8536 

RMSE 4.3141 3.1131 3.0585 2.3928 2.4044 2.2631 

Pearson R 0.0548 0.3260 0.3175 0.6400 0.6446 0.7074 

TimRobert 

MAE 5.0619 2.7072 2.5526 1.9518 2.0532 2.0260 

RMSE 5.4438 3.2332 3.0941 2.2854 2.4712 2.3330 

Pearson R 0.2194 0.2418 0.2436 0.5063 0.4355 0.5426 

ABIDEII-

NYU 

MAE 5.5198 3.1685 3.1896 1.8013 2.0526 1.7870 

RMSE 5.7817 3.7338 3.9420 2.2315 2.5171 2.2105 

Pearson R -0.5111 -0.2693 -0.3182 0.4385 0.3965 0.4676 

ABIDEII-

SDSU 

MAE 2.8504 3.4530 3.4925 2.5960 2.6739 2.3822 

RMSE 3.3662 4.1185 4.1908 3.1410 3.2959 2.9947 

Pearson R 0.2313 -0.4330 -0.4747 0.2078 0.1278 0.3514 

ABIDEII-

TCD 

MAE 2.5921 2.5443 2.9942 2.0126 2.1363 2.0621 

RMSE 3.0745 3.2309 3.6377 2.3909 2.5667 2.4667 

Pearson R 0.5522 0.0682 -0.1160 0.6647 0.5909 0.6804 

All New 

Sites 

MAE 3.9080 2.6690 2.6702 2.0137 2.0719 1.9419 

RMSE 4.4883 3.3017 3.3100 2.4460 2.5346 2.3653 

Pearson R 0.2027 0.3935 0.3433 0.6790 0.6587 0.7201 

1The performance of brain age predictors is reported on the testing set of the PNC site (underlined). The brain age predictors are directly applied 

to other sites to evaluate the transferability of the model to new datasets. 
2The best-performing harmonization method for each metric is highlighted in bold. 
3Abbreviations: MAE, mean absolute error; RMSE, root mean square error; Pearson R, Pearson’s correlation. 



 

3.7. Application 2: Enhancing statistical power for ASD studies 

4. Discussion 

This study addresses a key challenge in multi-site structural network research: how to effectively harmonize data 

collected from various sources to enable integration of multi-site studies and retrospective use of existing datasets. 

By doing so, it seeks to expand sample sizes and provide a more comprehensive representation of both neurotypical 

and disordered populations, supporting more robust findings in the field. While previous studies have proposed 

various harmonization approaches at the level of dMRI signals [19, 22], they fail to remove site effects at the level 

of structural networks [23], introducing biases in downstream network-level analyses. Therefore, we believe these 

site effects should be specifically addressed and evaluated at the network level. To the best of our knowledge, this is 

the first effort to develop harmonization frameworks and provide comprehensive evaluations specifically tailored to 

structural networks. 

Structural networks have distinct distributional properties in edgewise connectivity strength, requiring careful 

consideration when modeling and removing site-related effects. Many commonly used statistical harmonization 

approaches in neuroimaging, such as ComBat, CovBat, or simple linear regression, assume that the data follow a 

normal distribution. However, most connections in structural networks do not follow a normal distribution but rather 

a gamma distribution (Section 3.1). Some researchers have applied harmonization methods without validating the 

underlying data assumptions [46], which can lead to unintended consequences. For instance, ComBat and CovBat 

may produce negative values, which lack physical meaning in structural networks where edges represent 

(normalized) numbers of streamlines connecting brain regions. Moreover, inappropriate use of harmonization 

methods that do not align with the correct data distribution may introduce additional biases. We demonstrate that 

applying harmonization techniques based on normal or log-normal distributions to structural network data may fail 

to remove mean site effects at some connections (Section 3.2), potentially resulting in spurious findings in 

downstream analyses. 

Importantly, structural networks are graph-structured, so harmonization should not only remove edgewise site 

effects but also eliminate site-related variations in the graph properties, commonly measured by graph topological 

measures [31]. Prior work only evaluated graph measures at the global level [27, 46], but our results indicate that 

structural networks showing no site differences in global measures may still exhibit site differences at the nodal 

level. For example, while CovBat effectively removes site effects in all tested global graph measures, significant site 

effects persist in nodal measures such as betweenness centrality and local efficiency (Section 3.3). Therefore, we 

argue that the effectiveness of harmonization for structural networks should be evaluated at all three levels—

edgewise, nodal, and global graph properties—to ensure that site effects are fully eliminated. Our results show that 

gamma-GLM performs best across all three levels, followed by log-CovBat and log-ComBat. 

Since the major goal of harmonization is to reveal true biological variability through data integration, it is crucial 

that biologically relevant properties are not inadvertently altered or removed. To assess this, we test the replicability 

of biological patterns, such as edgewise associations with age, pre- and post-harmonization, as age-related 

connectivity changes are critical for many studies investigating neurodevelopment or neurodegenerative processes 

[54, 64]. Our findings demonstrate that gamma-GLM is the most successful in preserving these biologically 

meaningful associations across sites and remains robust even when age is confounded with site effects (Section 3.4 

and Section 3.5). 

Our comprehensive evaluation offers practical guidance for researchers looking to harmonize structural network 

data. Overall, gamma-GLM is our best recommendation, as it outperforms other models in removing site effects in 

edgewise mean connectivity strength, global and nodal graph measures, and in preserving age-related biological 

variability, even when confounded with site effects. We also examine variance and covariance site effects (Section 

3.2). Our findings indicate that in cases where substantial variance-related site effects persist, log-ComBat or log-

CovBat may be more effective at correcting these biases. Although we did not observe significant covariance site 



effects in whole-brain analyses, these effects may emerge in subnetwork analyses or when structural networks are 

modulated by diffusion metrics like fractional anisotropy (FA) or mean diffusivity (MD), where log-CovBat could 

be more appropriate. 

We further demonstrate the practical utility of harmonizing structural networks in two critical applications. One 

commonly reported issue in collaborative research is that predictive models developed with one dataset often fail to 

predict unseen data from the new sites [65, 66]. This occurs because these datasets may exhibit substantial 

differences in scanners, acquisition protocols, and other site-related effects compared to the training cohort. We 

create machine learning models to predict brain age using structural networks from one site and evaluate the 

transferability of these predictors on other sites. Our findings indicate that harmonizing structural networks across 

sites, particularly using gamma-GLM, enhances the transferability of machine learning models, making them more 

robust to unseen data at new sites (Section 3.6). This approach can further be adapted for a federated learning setup 

in healthcare [67, 68]. In this context, researchers can first harmonize and standardize decentralized data sources to a 

central site to ensure comparability, thereby improving the transferability of models when deployed from and to the 

central site. 

Another key application of harmonization is to integrate structural network data from multiple sources, thereby 

increasing the statistical power of clinical studies. This is especially beneficial for patient studies, where data from a 

single site is often limited. By pooling patient data from various sources, researchers can access larger and more 

representative samples, which are essential for detecting subtle differences in structural network patterns associated 

with different conditions. Therefore, the effectiveness of harmonization should be evaluated not only for control 

groups but also for patient populations. We illustrate the effectiveness of harmonization methods using the ASD 

cohort as an example. Our results show that without proper harmonization, the associations between graph 

topological measures and autistic traits may be obscured by site-related effects. Structural network data after 

harmonization successfully uncovers the biological features related to disorders in structural networks and enhances 

statistical power compared to single-site studies (Section 3.7). 

While we have demonstrated the effectiveness of our harmonization framework, there are several limitations that 

warrant attention in future research. For instance, we test only a few distributions from the exponential family and 

focus on modeling mean, variance, and covariance site effects. It would be valuable to explore additional 

distributions and statistical metrics, particularly when structural networks are created using more complex methods 

or modulated by diffusion metrics such as FA and MD. In such cases, more flexible distributional regression 

models, like the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) [69], might be suitable. 

Another area for future work lies in expanding demographic variables included during harmonization. Incorporating 

factors like ethnicity and socioeconomic status could enhance the applicability of findings across diverse 

populations to promote health equity [70, 71]. Our harmonization and evaluation framework can also be adapted to 

better address the specific goals of structural network studies in these contexts. 
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