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ABSTRACT 1 

Biomedical literature contains an extensive wealth of information on gene and protein function across 2 

various biological processes and diseases. However, navigating this vast and often restricted-access data 3 

can be challenging, making it difficult to extract specific insights efficiently. In this study, we introduce a 4 

high-throughput pipeline that leverages OpenAI’s Generative Pre-Trained Transformer Model (GPT) to 5 

automate the extraction and analysis of gene function information. We applied this approach to 84,427 6 

publications on Saccharomyces cerevisiae and 6,452 publications on Schizosaccharomyces pombe, 7 

identifying 3,432,749 relationships for budding yeast and 421,198 relationships for S. pombe. This resulted 8 

in a comprehensive, searchable online Knowledge Graph database, available at yeast.connectome.tools 9 

and spombe.connectome.tools, which offers users extensive access to various interactions and pathways. 10 

Our analysis underscores the power of integrating artificial intelligence with bioinformatics, as demonstrated 11 

through key insights into important nodes like Hsp104 and Atg8 proteins. This work not only facilitates 12 

efficient data extraction in yeast research but also presents a scalable model for similar studies in other 13 

biological systems. 14 

 15 

KEYWORDS 16 

Yeast, Knowledge Graph, Bioinformatics, Saccharomyces, Schizosaccharomyces, GPT 17 

 18 

HIGHLIGHTS 19 

● Generated Yeast Knowledge Graphs from full-text research articles. 20 

● Analyzed over 90,000 publications for Saccharomyces and Schizosaccharomyces species. 21 

● Extracted millions of relationships using GPT-based natural language processing. 22 

● Yeast Knowledge Graphs accessible through interactive web platforms and APIs. 23 

● Advanced tool enabling insights into gene networks and functional interactions.  24 
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INTRODUCTION 25 

Research on yeast, particularly Saccharomyces cerevisiae and its fission counterpart, 26 

Schizosaccharomyces pombe, has expanded significantly in recent years. A search on PubMed reveals 27 

the scope of this growth: the number of publications on S. cerevisiae rose from 53,846 articles in the 2000s 28 

to 152,433 articles by 2023, while publications on S. pombe increased from 4,807 in the 2000s to 14,684 29 

in 2023. This surge reflects the critical role of these model organisms in advancing our understanding of 30 

fundamental biological processes, from cell cycle regulation to stress responses and gene expression. 31 

However, the rapid pace of scientific publication makes it increasingly challenging for researchers to stay 32 

abreast of new discoveries, especially concerning gene and protein functions, interactions, and regulatory 33 

mechanisms. 34 

 35 

Traditionally, researchers have relied on manually curated databases to organize and access 36 

experimentally validated “gold standard” data. Key resources, such as the Saccharomyces Genome 37 

Database (SGD) [1], BioGRID [2], and PomBase [3], have been instrumental in cataloging genetic and 38 

protein interactions, pathways, and functional annotations for S. cerevisiae and S. pombe. BioGRID, for 39 

instance, is a comprehensive repository for interaction datasets, facilitating the exploration of protein and 40 

genetic interactions across multiple organisms [2], like many databases, BioGRID and similar resources 41 

face inherent limitations, including delays in data curation due to the labor-intensive nature of manual 42 

annotation  [4]. This poses a significant challenge, as researchers risk overlooking important insights within 43 

the constantly expanding corpus of yeast literature. 44 

 45 

Manual curation, while thorough, is not scalable enough to keep pace with the influx of new information. 46 

The reliance on such methods results in a lag that limits researchers' ability to understand the complex 47 

interactions underlying yeast biology in real time. This delay is particularly problematic in studying rapidly 48 

evolving areas, such as epigenetics, metabolic regulation, and cellular responses to environmental 49 

stressors. To bridge this gap, there is a pressing need for automated, high-throughput systems that can 50 

accelerate the integration of newly published data into accessible, structured repositories. 51 

 52 

https://www.zotero.org/google-docs/?B1tP9X
https://www.zotero.org/google-docs/?5uSKVB
https://www.zotero.org/google-docs/?wOVKUz
https://www.zotero.org/google-docs/?1mM84E
https://www.zotero.org/google-docs/?vP6MZV
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In response to this challenge, our study introduces an innovative approach that leverages the natural 53 

language processing capabilities of Generative Pre-trained Transformer (GPT) models. At the core of our 54 

method is a sophisticated text-mining pipeline powered by the GPT-3.5 turbo model from OpenAI. This 55 

pipeline systematically extracts and analyzes gene function information from a vast body of literature, 56 

covering abstracts and full-text articles on both S. cerevisiae and S. pombe. Through this high-throughput 57 

system, we have identified millions of relationships among genes, proteins, cellular compartments, 58 

environmental stresses, and other yeast-related entities, providing a comprehensive mapping of 59 

interactions within these model organisms. 60 

 61 

Our Knowledge Graph databases—YeastKnowledgeGraph and FissionYeastKnowledgeGraph—are 62 

accessible online at yeast.connectome.tools and spombe.connectome.tools. These platforms offer an 63 

interactive interface that allows researchers to explore diverse interactions and pathways, while also 64 

providing an Application Programming Interface (API) for programmatic access. This resource not only 65 

democratizes access to yeast interaction data but also represents a scalable model for leveraging AI in 66 

bioinformatics, enabling faster and more efficient integration of scientific knowledge. 67 

 68 

RESULTS 69 

Semantic analysis and construction of Yeast Knowledge Graphs 70 

Using the OpenAI GPT-3.5 model, we constructed Knowledge Graphs for two widely studied yeast model 71 

organisms: S. cerevisiae and S. pombe. Our approach involved processing 84,427 publications for S. 72 

cerevisiae, including 40,440 full-text articles and 43,987 abstracts, resulting in the creation of the 73 

YeastKnowledgeGraph—a comprehensive resource detailing 3,432,749 relationships among diverse yeast 74 

biological entities. For S. pombe, we processed 6,452 publications, comprising 1,089 full-text articles and 75 

5,363 abstracts, which led to the development of the FissionYeastKnowledgeGraph with 421,198 76 

documented relationships. Together, these publications spanned 1,867 and 457 journals for S. cerevisiae 77 

and S. pombe, respectively, covering a broad range of research areas relevant to yeast biology 78 

(Supplementary Table S1). To visually represent the scope of our data sources, we compiled the top 40 79 

most frequently cited journals in each field, illustrating the quantitative distribution of articles (Figures 1A, B 80 

http://yeast.connectome.tools/
http://yeast.connectome.tools/
http://spombe.connectome.tools/
http://spombe.connectome.tools/
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and Supplementary Table S1). These platforms serve as flexible tools for exploring biological entities, 81 

offering search capabilities based on keywords, author names, and PubMed IDs, as well as an 'entities' 82 

catalog listing all recognized entities within each database. 83 

 84 

Our analysis identified the 20 most frequently occurring entities, relationships, genes, and gene-to-gene 85 

interactions in both databases (Figures 2 and Supplementary Tables S2-S5). Within the 86 

YeastKnowledgeGraph, 'Saccharomyces cerevisiae' and CELLS emerged as prominent entities, whereas 87 

'SWI6' and 'ATF1' were particularly notable in the FissionYeastKnowledgeGraph (Figure 2C-D). A common 88 

feature across both Knowledge Graphs was the predominance of 'interacts with' edges connecting entities 89 

(Figures 2A-B) and genes (Figures 2G-H). Key genes such as 'RAD51', RAD52, and HSP104 were 90 

extensively characterized in the YeastKnowledgeGraph due to their critical roles in yeast biology (Figure 91 

2E). Similarly, 'SWI6', 'ATF1', and 'STY1' were highlighted as significant within the 92 

FissionYeastKnowledgeGraph (Figure 2F). This comparative analysis underscores the complexity and 93 

specificity of gene-to-gene interactions within these model organisms, providing a rich foundation for future 94 

research. 95 

 96 

Interactive features and user engagement  97 

The KnowledgeNetwork visualization offers users a dynamic, interactive experience with the Knowledge 98 

Graph, allowing them to engage directly with the network. By selecting nodes, users can activate tooltips 99 

that provide options for further exploration, such as examining neighboring nodes or accessing dedicated 100 

pages for specific features. The network is highly customizable—users can remove individual nodes or 101 

clusters, filter by specific relationship types (e.g., "binds to," "links with," "encodes for"), and adjust the 102 

layout for more focused analyses. To maintain clarity and readability, the network visualization is limited to 103 

500 nodes. 104 

 105 

For those requiring a more comprehensive dataset, a tab-delimited file of the entire network is available for 106 

download, enabling detailed offline analysis. Accompanying the KnowledgeNetwork visualization, a textual 107 

summary is provided, organized at the individual node level. This summary details each entity name, 108 
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relationship type, and the corresponding PubMed IDs from which the data were extracted. This 109 

documentation aids users in validating relationships and addressing any potential inaccuracies inherent in 110 

GPT-based outputs. Additionally, users can view the network in a tabular format at the end of the results 111 

page for a straightforward, list-based perspective. 112 

 113 

To extend the utility of the network for advanced research applications, web provide an API that enables 114 

programmatic access to the database. This API returns a JSON object containing relevant network and 115 

functional information, making it particularly valuable for researchers seeking to integrate the Knowledge 116 

Graph into computational workflows.  117 

 118 

Comparison of YeastKnowledgeGraph and BioGRID interactions 119 

Our comparative analysis of BioGRID's [4] protein-protein interaction (PPI) network with the 120 

YeastKnowledgeGraph dataset revealed that, out of 237,415 potential "interacts with" edges in the 121 

YeastKnowledgeGraph, 3,848 edges directly align with interactions cataloged in BioGRID (Figure 3A). 122 

YeastKnowledgeGraph also identified an additional 233,567 unique interaction edges not present in 123 

BioGRID, underscoring its enhanced detection capacity for diverse biological interactions. Furthermore, we 124 

observed 1,607 overlapping edges with different interaction types, such as "phosphorylates", "inhibits", and 125 

genetic interactions demonstrating the Knowledge Graph's ability to categorize a variety of interaction types 126 

beyond traditional PPI data. 127 

 128 

When focusing exclusively on PPI networks, YeastKnowledgeGraph showed an overlap of 3,784 PPI edges 129 

with BioGRID and identified 65,376 novel PPI edges not found in BioGRID (Figure 3B). These findings 130 

highlight YeastKnowledgeGraph’s capacity to comprehensively capture a broad spectrum of biological 131 

interactions, adding depth and diversity to the existing datasets in BioGRID. 132 

 133 

Comparison of FissionYeastKnowledgeGraph and BioGRID interactions 134 

Expanding our analysis to the S. pombe Knowledge Graph, we found that 215 "interacts with" edges out of 135 

a total of 30,671 edges aligned with those in BioGRID (Figure 3C). The S. pombe Knowledge Graph further 136 

https://www.zotero.org/google-docs/?yCghLv
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revealed 30,456 additional unique interaction edges, along with 138 novel PPI edges that were not 137 

cataloged in BioGRID (Figure 3D). 138 

 139 

To assess the accuracy of the new edges identified within both the Yeast and S. pombe Knowledge Graphs, 140 

we conducted a manual review of a random sample of 100 edges. This evaluation demonstrated an 89% 141 

accuracy rate for edges within the YeastKnowledgeGraph and a 72% accuracy rate for edges in the S. 142 

pombe Knowledge Graph (Figure 3E-F and Supplementary Table S6). These findings confirm the 143 

Knowledge Graph’s reliability and underscore its potential as a valuable supplementary resource for the 144 

BioGRID database. 145 

 146 

Applications of YeastKnowledgeGraphs in Gene Regulatory Network Analysis 147 

The YeastKnowledgeGraph serves as an invaluable tool for the yeast research community, providing a 148 

centralized repository of extensive data extracted from research abstracts and full-text articles. This 149 

resource enables researchers to explore gene regulatory networks, protein complexes, metabolic 150 

pathways, and stress responses. Here, we demonstrate the utility of the YeastKnowledgeGraph in 151 

dissecting the functional networks of specific proteins within S. cerevisiae. 152 

 153 

Example 1 – YeastKnowledgeGraph Analysis of "HSP104" 154 

Hsp104, a crucial protein disaggregase in S. cerevisiae, plays a significant role in thermotolerance by 155 

working with Hsp40 (Ydj1) and Hsp70 (Ssa1) to disassemble, resolubilize, and refold aggregated proteins 156 

under stress conditions [5]. The YeastKnowledgeGraph reveals the extensive network surrounding Hsp104. 157 

Querying "HSP104" generates a network map derived from 783 papers. Narrowing the focus to "interacts 158 

with" interactions through the "Layout Options" feature refines the network to 136 papers, with notable 159 

connections to Hsp40 (Ydj1) and Hsp70 (Ssa1), identified by terms such as "HSP70/40 PAIR," "HSP 160 

SYSTEM," "YDJ1," and "SSA1." 161 

 162 

Interestingly, the Knowledge Graph also highlights Hsp104's interactions with a variety of protein aggregate 163 

substrates, including "SUP35," "LUCIFERASE AGGREGATES," "ABETA42 MONOMERS," and "PRION 164 

https://www.zotero.org/google-docs/?8jq4Cb
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FIBRILS" (Figure 3G). This illustrates Hsp104's broader involvement in protein homeostasis and stress 165 

response. While many of these interactions are well-documented, the YeastKnowledgeGraph provides a 166 

swift overview of the diverse conditions in which Sup35, among others, interacts with Hsp104. For example, 167 

specific interactions like “HSP104 interacts with HEXAMERIC/TETRAMERIC SUP355-26” [6] and 168 

“SOLUBLE SUP35” [7] are readily accessible through direct links to the publications, underscoring the utility 169 

of the Knowledge Graph in quickly retrieving detailed interaction information. 170 

 171 

Example 2 – YeastKnowledgeGraph Analysis of "ATG8" 172 

Atg8 (LC3), a ubiquitin-like protein essential for the formation of cytoplasm-to-vacuole transport vesicles 173 

and autophagosomes, plays a central role in the autophagy pathway [8–10]. The YeastKnowledgeGraph 174 

provides a comprehensive overview of Atg8’s interactions from a collection of 682 publications. Within this 175 

dataset, 41 papers describe Atg8 “binds to” interactions, shedding light on its dynamic role in the cellular 176 

environment (Figure 3H). Notably, Atg8 works in concert with Atf4 to facilitate the delivery of vesicles and 177 

autophagosomes to the vacuole via the microtubule cytoskeleton. The Knowledge Graph also underscores 178 

the roles of Atg3 and Atg7, both essential post-Atg4 for conjugating Atg8 with phosphatidylethanolamine 179 

(PE). 180 

 181 

In contrast to conventional protein-protein interaction databases, the YeastKnowledgeGraph provides a 182 

more nuanced view of Atg8’s interactions, with direct links to the relevant literature. For instance, it details 183 

that Atg8 "binds to" the "C-TERMINAL FLEXIBLE TAIL OF ATG7" [11] and the "HR OF ATG3" [12]. 184 

Additionally, the Knowledge Graph reveals that Atg8 also "binds to" the "GROWING MEMBRANE" [13], 185 

contributing to a deeper understanding of its multifaceted role in cellular processes. 186 

 187 

Furthermore, the Atg8 network captures its involvement in diverse biological processes beyond autophagy. 188 

For instance, it summarizes findings from 8 significant publications documenting Atg8’s role in 189 

"MACRONUCLEOPHAGY" [14], "HEMIFUSION OF LIPOSOMES" [8], "MEMBRANE TETHERING" [8], 190 

and "AGGREPHAGY" [15]. These insights demonstrate the Knowledge Graph's ability to provide 191 

comprehensive and readily accessible information about key proteins in yeast biology. 192 

https://www.zotero.org/google-docs/?1fjObG
https://www.zotero.org/google-docs/?XV4Sdp
https://www.zotero.org/google-docs/?6NmI1L
https://www.zotero.org/google-docs/?T1F9A7
https://www.zotero.org/google-docs/?ek0dk1
https://www.zotero.org/google-docs/?tDsePH
https://www.zotero.org/google-docs/?Yng5AN
https://www.zotero.org/google-docs/?3wN9PI
https://www.zotero.org/google-docs/?Wji8Ws
https://www.zotero.org/google-docs/?22MG4w
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 193 

DISCUSSION 194 

In this study, we introduce a novel application of advanced natural language processing, leveraging the 195 

OpenAI GPT-3.5 model to extract functional gene information from a vast collection of scientific literature. 196 

By processing over 90,879 abstracts and full-text articles, we developed the YeastKnowledgeGraph and 197 

Fission YeastKnowledgeGraph. These resources were built affordably (under USD1,000) and quickly 198 

(within two weeks), highlighting the efficiency of this approach in creating large-scale interaction databases. 199 

The resulting Knowledge Graphs encompass over 3.8 million relationships involving genes, proteins, 200 

cellular compartments, stress responses, and other yeast-related entities, making them valuable, 201 

interactive resources for the research community. 202 

 203 

A key feature of the Yeast Knowledge Graph, the KnowledgeNetwork, provides an intuitive visual interface 204 

that allows researchers to filter specific relationships, focus on particular nodes, and personalize their 205 

exploration. This interactivity fosters a more targeted approach to data analysis, enabling researchers to 206 

streamline their investigation of complex biological networks. Our Knowledge Graphs demonstrate superior 207 

coverage and utility compared to established public repositories such as BioGRID[4], revealing numerous 208 

novel interactions and more granular interaction types (e.g., "phosphorylates," "inhibits"). This added 209 

granularity underscores our Knowledge Graphs' ability to capture a more comprehensive range of biological 210 

relationships, effectively complementing existing biological databases and filling critical knowledge gaps. 211 

 212 

Despite the promising capabilities of our approach, some limitations remain. Access to literature, especially 213 

articles behind paywalls, restricts the scope of our data extraction and may lead to delays in incorporating 214 

the latest research findings. Furthermore, while automated techniques like GPT-3.5 offer scalability, they 215 

come with inherent trade-offs in precision when compared to manual curation. This is a known challenge 216 

in high-throughput text-mining pipelines. We are committed to refining our methodology and exploring 217 

enhanced access to publications to improve the accuracy and timeliness of our data. 218 

 219 

https://www.zotero.org/google-docs/?fbjqgG
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In summary, our creation of the YeastKnowledgeGraph and FissionYeastKnowledgeGraph demonstrates 220 

the potential of generative AI models in advancing biological research. These Knowledge Graphs, 221 

accessible through an interactive, web-based platform, provide a valuable resource for understanding gene 222 

interactions and biological pathways in yeast. Our work lays the foundation for further advancements in the 223 

study of complex biological systems, with potential applications extending to other model organisms and 224 

beyond. 225 

 226 

LIMITATION OF THE STUDY 227 

This study acknowledges several limitations that impact the scope and accuracy of our Knowledge Graphs. 228 

First, our reliance on publicly available literature and articles accessible through institutional subscriptions 229 

may result in a delay in incorporating the latest research findings, particularly those behind paywalls. This 230 

dependence limits the immediacy with which emerging data can be integrated into our resource, potentially 231 

affecting its relevance in rapidly evolving research areas. 232 

 233 

Additionally, using a pre-trained model like GPT-3.5 in processing specialized scientific literature introduces 234 

certain challenges. Although GPT-3.5 offers significant capabilities in language processing, it occasionally 235 

struggles with producing methodologically structured and coherent results when applied to complex 236 

scientific texts. This can impact the clarity and precision of the resulting knowledge network. Another 237 

limitation stems from the model’s occasional misidentification of entities and relationships, which can affect 238 

the reliability of the analysis, particularly in dense, intricate sections of text. 239 

 240 

To address these challenges, we are considering fine-tuning the language model with a targeted corpus of 241 

scientific research articles. Fine-tuning could improve the model's comprehension of domain-specific 242 

terminology and its handling of complex biological relationships, resulting in a more accurate and coherent 243 

knowledge representation. 244 

 245 

We are also evaluating the adoption of the more advanced GPT-4 model, which has demonstrated 246 

improved accuracy and proficiency in handling complex tasks due to an additional six months of training 247 
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with human and automated feedback. For example, GPT-4 has shown enhanced accuracy rates in various 248 

predictive tasks, which could benefit our project. However, the use of GPT-4 comes at a significantly higher 249 

cost—approximately 20 times that of GPT-3.5. Therefore, our choice between these models will require a 250 

careful cost-benefit analysis, balancing budgetary constraints with our need for higher accuracy. 251 

 252 

In future iterations, we aim to refine our methods further, optimize access to cutting-edge publications, and 253 

explore advanced model configurations to enhance both the quality and utility of the Knowledge Graphs. 254 

By addressing these limitations, we strive to ensure that our resource remains a robust, accurate, and timely 255 

tool for the yeast research community. 256 

 257 

 258 

METHODS 259 

 260 

Retrieval and pre-processing of literature 261 

To build our comprehensive dataset, we obtained an extensive list of yeast genes and their aliases from 262 

the YeastMine database and UniProt. Using these lists, we created specialized search queries to locate 263 

relevant research articles in PubMed. For Saccharomyces cerevisiae, our search query took the form 264 

"(Saccharomyces cerevisiae[Title/Abstract] AND {gene}[tw])", with a similarly structured query for 265 

Schizosaccharomyces pombe. These searches were automated using the Bio.Entrez package (v1.81), 266 

enabling efficient retrieval of articles containing information about gene functions in these organisms. 267 

Where available, we also retrieved full-text articles through the Elsevier API, supplementing our collection 268 

with abstracts for a more complete dataset. 269 

  270 

Processing of texts using GPT-3.5 Turbo 271 

We utilized Python scripts to extract gene-specific information from the collected articles, employing 272 

OpenAI’s GPT-3.5-turbo model for text processing. The model’s API was configured with a temperature 273 

setting of zero to prioritize accuracy by minimizing randomness, thereby reducing the risk of misinformation. 274 

The model was tasked with identifying relevant entities, such as genes and proteins, and elucidating their 275 
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relationships within the text. We designed a tailored prompt (Supplementary Table S7) to structure the 276 

output, ensuring that each line highlighted a pair of entities and their specific relationship, thereby optimizing 277 

the data for more detailed analysis. 278 

 279 

Multi-phased Filtering and Database Construction 280 

Following the initial generation of relationship edges by the GPT-3.5-turbo model [16], a multi-phased 281 

filtering process was applied to validate and enhance the dataset. Using the spaCy [17] NLP library, we 282 

validated the generated edges to exclude any hallucinated edges—relationships that were inaccurately 283 

inferred and did not appear in the original text. Any edges with incorrect punctuation were marked as "bad 284 

edges" and re-submitted to the GPT model for correction. After this refinement process, edges were 285 

classified as either "good" for accurate entries or retained as "bad" if they continued to exhibit issues. 286 

 287 

The finalized edges were subsequently used to build a network-edge database. We implemented the front-288 

end application using the Python-Flask framework (v2.2.3), with Networkx (v3.1) handling graph analyses, 289 

and MongoDB (in conjunction with PyMongo) facilitating robust database management. To enhance the 290 

visualization experience, we incorporated Cytoscape.js (v3.23). This integrated approach ensured a reliable 291 

and well-organized dataset that could support interactive queries and efficient data visualization. 292 

 293 

API for yeast Knowledge Graphs 294 

Both the Yeast and Fission Yeast Knowledge Graphs feature a robust Application Programming Interface 295 

(API) that allows remote search queries and data retrieval through HTTP GET requests. The API, built 296 

with the same technologies mentioned above, returns a JSON object containing relevant nodes, edges, 297 

and summarized texts in response to user queries. Users can access the API by appending /api/<search 298 

type>/<search query> to the base URL, where <search type> specifies the search category, and 299 

<search_query> represents the actual search term. This interface streamlines access to the Knowledge 300 

Graph data, facilitating deeper user engagement and enabling programmatic access to support a wide 301 

range of research applications. 302 

 303 

https://www.zotero.org/google-docs/?2WpnDl
https://www.zotero.org/google-docs/?hy2o2B


12 

Data and Code Availability 304 

The custom code to generate the biomaps is available at GitHub 305 

(https://github.com/mutwil/plant_connectome). 306 

 307 

Competing interests 308 

The authors declare no competing financial interests. 309 

 310 

Funding 311 

This work was supported by funds from the Singapore Ministry of Education Academic Research Fund 312 

Tier 1 (RG96/22 to G.T.) and Tier 3 (MOET32022-0002 to M.M.) as well as the Research Scholarship to 313 

K.R.A [predoctoral fellowship from Singapore Ministry of Education Academic Research Fund Tier 3 314 

(MOE-MOET32020-0001)]. 315 

 316 

Author contributions 317 

Conceptualization: M.M. and G.T.; Methodology: M.M. and G.T.; Formal analysis: M.K.R., K.R.A., and 318 

A.N.K.; Investigation: M.R.K., K.R.A., and A.N.K.; Writing - original draft: M.R.K., G.T. and M.M.; Writing - 319 

review & editing: M.R.K., K.R.A., M.M., and G.T.; Supervision: M.M. and G.T.; Project administration: M.M. 320 

and G.T.; Funding acquisition: M.M. and G.T. 321 

 322 

Acknowledgements 323 

We thank members of Mutwil and Thibault labs for critical reading of the manuscript. 324 

 325 

ADDITIONAL FILES 326 

Supplementary Table S1, Related to Figure 1A and 1B. List of journals curated for the 327 

YeastKnowledgeGraph and FissionYeastKnowledgeGraph. Excel Spreadsheet. 328 

Supplementary Table S2, Related to Figures 2A-B. List of the top 5,000 most frequent edges for the 329 

YeastKnowledgeGraph and FissionYeastKnowledgeGraph. Excel Spreadsheet. 330 



13 

Supplementary Table S3, Related to Figures 2C-D. List of the top 5,000 most frequent entities for the 331 

YeastKnowledgeGraph and FissionYeastKnowledgeGraph. Excel Spreadsheet. 332 

Supplementary Table S4, Related to Figures 2E-F. List of the top 5,000 most frequent genes as entities 333 

for the YeastKnowledgeGraph and FissionYeastKnowledgeGraph. Excel Spreadsheet. 334 

Supplementary Table S5, Related to Figures 2G-H. List of the top 5,000 most frequent edges between 335 

genes for the YeastKnowledgeGraph and FissionYeastKnowledgeGraph. Excel Spreadsheet. 336 

Supplementary Table S6, Related to Figures 3E-F. Manual Accuracy Assessment of Edges in Yeast and 337 

Fission Yeast Knowledge Graphs. 338 

Supplementary Table S7. An example of an abstract, prompts and outputs from GPT. 339 

 340 

REFERENCES 341 

[1] E.D. Wong, S.R. Miyasato, S. Aleksander, K. Karra, R.S. Nash, M.S. Skrzypek, S. Weng, 342 
S.R. Engel, J.M. Cherry, Saccharomyces genome database update: server architecture, 343 
pan-genome nomenclature, and external resources, Genetics 224 (2023) iyac191. 344 
https://doi.org/10.1093/genetics/iyac191. 345 

[2] C. Stark, B.-J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, M. Tyers, BioGRID: a 346 
general repository for interaction datasets, Nucleic Acids Res 34 (2006) D535-539. 347 
https://doi.org/10.1093/nar/gkj109. 348 

[3] K.M. Rutherford, M. Lera-Ramírez, V. Wood, PomBase: a Global Core Biodata Resource-349 
growth, collaboration, and sustainability, Genetics 227 (2024) iyae007. 350 
https://doi.org/10.1093/genetics/iyae007. 351 

[4] R. Oughtred, C. Stark, B.-J. Breitkreutz, J. Rust, L. Boucher, C. Chang, N. Kolas, L. 352 
O’Donnell, G. Leung, R. McAdam, F. Zhang, S. Dolma, A. Willems, J. Coulombe-Huntington, 353 
A. Chatr-Aryamontri, K. Dolinski, M. Tyers, The BioGRID interaction database: 2019 update, 354 
Nucleic Acids Res 47 (2019) D529–D541. https://doi.org/10.1093/nar/gky1079. 355 

[5] J.R. Glover, S. Lindquist, Hsp104, Hsp70, and Hsp40: a novel chaperone system that 356 
rescues previously aggregated proteins, Cell 94 (1998) 73–82. 357 
https://doi.org/10.1016/s0092-8674(00)81223-4. 358 

[6] S. Narayanan, B. Bösl, S. Walter, B. Reif, Importance of low-oligomeric-weight species for 359 
prion propagation in the yeast prion system Sup35/Hsp104, Proc Natl Acad Sci U S A 100 360 
(2003) 9286–9291. https://doi.org/10.1073/pnas.1233535100. 361 

[7] Y. Inoue, H. Taguchi, A. Kishimoto, M. Yoshida, Hsp104 binds to yeast Sup35 prion fiber 362 
but needs other factor(s) to sever it, J Biol Chem 279 (2004) 52319–52323. 363 
https://doi.org/10.1074/jbc.M408159200. 364 

[8] H. Nakatogawa, Y. Ichimura, Y. Ohsumi, Atg8, a ubiquitin-like protein required for 365 
autophagosome formation, mediates membrane tethering and hemifusion, Cell 130 (2007) 366 
165–178. https://doi.org/10.1016/j.cell.2007.05.021. 367 

https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU


14 

[9] T. Kirisako, Y. Ichimura, H. Okada, Y. Kabeya, N. Mizushima, T. Yoshimori, M. Ohsumi, T. 368 
Takao, T. Noda, Y. Ohsumi, The reversible modification regulates the membrane-binding 369 
state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway, 370 
J Cell Biol 151 (2000) 263–276. https://doi.org/10.1083/jcb.151.2.263. 371 

[10] Y. Ichimura, T. Kirisako, T. Takao, Y. Satomi, Y. Shimonishi, N. Ishihara, N. Mizushima, I. 372 
Tanida, E. Kominami, M. Ohsumi, T. Noda, Y. Ohsumi, A ubiquitin-like system mediates 373 
protein lipidation, Nature 408 (2000) 488–492. https://doi.org/10.1038/35044114. 374 

[11] M. Yamaguchi, K. Satoo, H. Suzuki, Y. Fujioka, Y. Ohsumi, F. Inagaki, N.N. Noda, Atg7 375 
Activates an Autophagy-Essential Ubiquitin-like Protein Atg8 through Multi-Step 376 
Recognition, J Mol Biol 430 (2018) 249–257. https://doi.org/10.1016/j.jmb.2017.12.002. 377 

[12] Y. Yamada, N.N. Suzuki, T. Hanada, Y. Ichimura, H. Kumeta, Y. Fujioka, Y. Ohsumi, F. 378 
Inagaki, The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) 379 
enzyme that mediates Atg8 lipidation, J Biol Chem 282 (2007) 8036–8043. 380 
https://doi.org/10.1074/jbc.M611473200. 381 

[13] U. Nair, D.J. Klionsky, Molecular mechanisms and regulation of specific and nonspecific 382 
autophagy pathways in yeast, J Biol Chem 280 (2005) 41785–41788. 383 
https://doi.org/10.1074/jbc.R500016200. 384 

[14] F.B. Otto, M. Thumm, Mechanistic dissection of macro- and micronucleophagy, Autophagy 385 
17 (2021) 626–639. https://doi.org/10.1080/15548627.2020.1725402. 386 

[15] S.B.M. Miller, A. Mogk, B. Bukau, Spatially organized aggregation of misfolded proteins as 387 
cellular stress defense strategy, J Mol Biol 427 (2015) 1564–1574. 388 
https://doi.org/10.1016/j.jmb.2015.02.006. 389 

[16] OpenAI Platform, (n.d.). https://platform.openai.com (accessed November 14, 2024). 390 
[17] spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural 391 

networks and incremental parsing, Sentometrics Research (2017). https://sentometrics-392 
research.com/publication/72/ (accessed November 14, 2024). 393 

  394 

https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU
https://www.zotero.org/google-docs/?GsHMvU


15 

FIGURES 395 

 396 

 397 

Figure 1. Distribution of Articles by Journal for S. cerevisiae and S. pombe. A-B. Quantitative 398 
distribution of articles from the top 40 journals publishing research on S. cerevisiae (A) and S. pombe (B). 399 



16 

 400 

Figure 2. Network analysis highlights in S. cerevisiae and S. pombe Knowledge Graphs. A-B. 401 
Frequency distribution of the top 20 most frequent entities in the S. cerevisiae (A) and S. pombe (B) 402 
Knowledge Graphs. C-D. Frequency distribution of the top 20 frequently mentioned genes in the S. 403 
cerevisiae (C) and S. pombe (D) Knowledge Graphs. E-F. Frequency distribution of the top 20 most 404 
common interaction edges in the S. cerevisiae (E) and S. pombe (F) Knowledge Graphs. G-H. Frequency 405 
distribution of the top 20 most common interaction edges specifically between genes in the S. cerevisiae 406 
(G) and S. pombe (H) Knowledge Graphs.  407 
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 408 

Figure 3. Comparative BioGRID Analysis and Key Gene Visualizations. A-B. Venn diagram illustrating 409 
the commonalities “interacting with” (A) and “PPI” (B) between edges in the S. cerevisiae Knowledge Graph 410 
and BioGRID’s interacting proteins dataset. C-D. Venn diagram illustrating the commonalities “interacting 411 
with” (C) and “PPI” (D) between edges in the S. pombe Knowledge Graph and BioGRID’s interacting 412 
proteins dataset. E-F. Bar chart indicating the accuracy assessment of randomly selected edges from the 413 
S. cerevisiae (E) and S. pombe (F) Knowledge Graphs. G. Knowledge network for the S. cerevisiae gene 414 
HSP104, with the "interacts with" relationship filter applied in Layout Options. This network highlights the 415 
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various interactions HSP104 has with other entities, providing insights into its role in cellular stress 416 
response. H. Knowledge network for the S. cerevisiae gene ATG8, with the "binds to" relationship filter 417 
applied in Layout Options. This network demonstrates the interactions of ATG8, especially in the context 418 
of autophagy-related binding interactions. 419 


