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Abstract: The imbalance between excavation and mining is significant as it restricts the efficient
development of coal resources. Slow tunneling speed is primarily due to the inability to concurrently
conduct excavation and permanent support operations, and temporary support is considered a
key solution to this problem. However, the mechanism by which temporary support affects the
surrounding rock in unsupported are as remains unclear, hindering the assurance of stability in
these areas and the determination of a reasonable unsupported span. To address this issue, this
work proposed a stress distribution model as temporary support, elucidating the distribution law of
support forces within the surrounding rock. By analyzing the stress differences between areas with
and without temporary support, the stress field distribution characteristics of temporary support
were determined. Subsequently, the evolution of stress and strain in the surrounding rock within
unsupported areas was analyzed concerning changes in temporary support length, support force,
and unsupported distance. The results indicated that, although temporary support does not directly
act on unsupported areas, it still generates a supportive stress field within them. The maximum
unsupported distance should not exceed 3 m, and there is a strong linear relationship between the
optimal temporary support force and the unsupported span. Furthermore, the length of temporary
support should not exceed 17 m from the tunnel face. The successful application of the shield
tunneling robot system verifies that temporary support can ensure the stability of the surrounding
rock in unsupported areas, confirming the validity of the temporary support stress distribution
model. This research can be used to design and optimize cutting parameters and temporary support
parameters, arrange equipment, and design and optimize tunnel excavation processes to achieve safe
and efficient tunneling.

Keywords: temporary support; rapid excavation of roadway; stress distribution model; support
stress field; unsupported area

1. Introduction

The driving face encounters challenges such as complex working conditions, numerous
processes, and low equipment intelligence, all of which prevent significant improvements
in driving speed [1–3]. Due to the narrow space near the tunnel face, the excavating
machine must retreat after excavation to provide permanent support [4,5]. Consequently,
each excavation cycle involves multiple steps, resulting in a daily excavation progress of
only about 10 m in some tunnels [6–10]. The application of temporary support allows
for permanent support operations to lag behind in a broader space, enabling parallel
operations of excavation and permanent support [11–13]. Therefore, the adoption of
safe and reliable temporary support is a critical means to improve excavation efficiency
and address the imbalance between excavation and mining. Current temporary support
technologies and equipment facilitate parallel operations of excavation and permanent support
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to some extent, but the enhancement in excavation efficiency remains limited [14–21]. In the
absence of a clear maximum unsupported distance, the maximum excavation distance
is typically conservatively set to 0.8 m or 1 m. This conservative approach does not
genuinely achieve independent operations of excavation and permanent support, thereby
significantly restricting the potential increase in excavation speed [22–25]. Thus, it is
crucial to investigate the mechanism of temporary support on the surrounding rock in
unsupported areas and to analyze the influence of temporary support parameters on the
stress and strain behavior of the surrounding rock in these areas. Understanding these
factors is essential for ensuring the stability of the surrounding rock and for achieving truly
parallel operations of excavation and permanent support.

Ensuring the stability of the surrounding rock under temporary support is a prerequi-
site for rapid tunneling. Scholars have analyzed the effects of stress variations [26], support
schemes [27], construction conditions [28], and other factors on rock stability. Temporary
support and the surrounding rock work in synergy, forming an interdependent and tightly
integrated system that effectively coordinates deformation [29–32]. Without altering the
characteristics of the surrounding rock, the support structure is crucial in maintaining rock
stability under various conditions. Scholars have studied the stress–strain behavior of
temporary support during excavation [33–35], as well as the response characteristics of
temporary support to static loads [36–38] and dynamic loads [39–41] on the surrounding
rock. The support structure actively alters the stress state of the surrounding rock to main-
tain stability, with the stress field being a core issue reflecting the stability and failure of
the rock and the interaction between the rock and the support [42,43]. Using simulation
software, scholars have analyzed the stress fields of rock bolts under different geological
conditions based on coal mine geology [44–48]. As an elongated rod, the support stress
field generated by a rock bolt within the surrounding rock far exceeds its own dimensions,
and the related parameters of the rock bolt affect the distribution characteristics of the
stress field [49–54]. Therefore, the stress field of temporary support will not be confined
to the supported location alone. The related parameters of support are crucial in deter-
mining equipment selection, cutting parameters, and control parameters. Scholars have
analyzed the relationships between tunnel parameters, rock characteristics, unsupported
span, support force, support location, and the stress–strain behavior of the surrounding
rock [55–60]. Among these factors, temporary support force and maximum unsupported
span are the most critical factors in ensuring rock stability and improving tunneling effi-
ciency. However, there has been limited research on the effects of temporary support on
the surrounding rock in unsupported areas, particularly regarding the main parameters of
temporary support, including temporary support length, temporary support force, and
maximum unsupported distance, and their impacts on the stress–strain behavior of the
surrounding rock in unsupported areas. This lack of clarity hinders the ability to ensure
the stability of the surrounding rock in unsupported areas and to determine a reasonable
unsupported span, which is a key limitation in enhancing tunneling efficiency.

In this work, a stress distribution model for temporary support was developed to
clarify the distribution characteristics of support forces within the surrounding rock. The
impact of temporary support force, support length, and unsupported distance on the
stress–strain behavior of the tunnel roof was further investigated through simulated tunnel
excavation and support experiments. The model assumes that the temporary support
applies a normal, uniform force on a semi-infinite plane. By performing two integrations,
the distribution law of the temporary support force within the tunnel was derived. The
difference in stress between unsupported areas with and without temporary support reveals
that temporary support creates a stress field in the unsupported area. Analysis of this stress
differential demonstrates that temporary support induces a beneficial stress field in these
areas. Based on the linear relationship between the optimal support force and unsupported
distance, the necessary optimal temporary support force for the unsupported area was
calculated from this distance. The evolution of roof stress–strain with varying unsupported
distances indicates that roof strain increases minimally when the unsupported distance



Appl. Sci. 2024, 14, 11420 3 of 15

is less than 3 m, as the attenuation of temporary support stress is minimal in this range.
Finally, the correlation between unsupported distance, temporary support length, and roof
stress–strain behavior was explored, identifying a distinct inflection point 18 m from the
tunnel face. Beyond this distance, roof stress increased significantly, while it remained
relatively stable up to this point.

2. Rapid Tunneling System Area Division

Based on the spatial relationship between the equipment and the surrounding rock, the
tunnel is divided into four areas: the unexcavated area, the unsupported area, the temporary
support area, and the permanent support area, as shown in Figure 1. Among these, the
unexcavated area refers to the area that has not yet been excavated. The unsupported area
is where the excavation has been completed but the temporary support is missing. The
temporary support area is the section where the support equipment has a direct effect. The
permanent support area refers to the location where bolting and other works have been
completed, resulting in a stable surrounding rock formation [61–65].
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Due to the presence of temporary support, excavation and permanent support can be
carried out in parallel, significantly improving tunneling efficiency [66–71]. A reasonable
unsupported roof distance can effectively reduce the frequency of equipment relocation,
further enhancing efficiency. When the stability of the surrounding rock is ensured, a larger
unsupported roof distance allows for longer excavation sections, reducing the frequency
of equipment movement. In addition, the unsupported roof distance also affects the
temporary support force and the length of the temporary support area.

3. Construction of Stress Distribution Model for Temporary Support

As shown in Figure 2, the surrounding rock in the roadway is considered to be an
infinite beam, which conforms to the assumption of stress distribution.

Therefore, the effect of the temporary supporting force on the surrounding rock can
be considered as a normal uniform force acting on a semi-infinite plane. It is evident that
exists a radial stress caused by force σ1 at any given point.

σ1 =
∫

Fz3
(

z2 + (x − ξ)2
)−2

dξ = 0.5Farctan(ξz−1 − xz−1) + 0.5Fz(ξ − x)(z2 + (ξ − x)2)
−1

(1)

The radial stress σ2 induced by the temporary support force F at any given point can
be determined by integrating σ1 over the interval x1-x2:
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σ2 = −2π−1
∫ x2

x1
Fz3

(
z2 + (x − ξ)2

)−2
dξ

= −Fπ−1
[

arctan(xz−1 − x1z−1)− arctan(xz−1 − x2z−1) + z(x − x1)
(

z2 + (x − x1)
2
)−1

− z(x − x2)
(

z2 + (x − x2)
2
)−1

] (2)

The temporary support force F in the headspace can be determined by integrating σ2
over the interval x2-x3:

σ = −Fπ−1
[
(x1 − x3)arctan(x1z−1 − x3z−1)− (x2 − x3)arctan(x2z−1 − x3z−1)− (x1 − x2)arctan(x1z−1 − x2z−1)

]
(3)

The distribution characteristics of the temporary support force can be derived from
mathematical model of Equation (3). The distribution of the temporary support force F in
the unsupported area can be classified into three distinct stages, as shown in Figure 3a. The
temporary support force hardly attenuates in area I. The temporary support force decays
more rapidly in area II. The temporary support force attenuates to a very small value in
area III and remains nearly constant thereafter. As observed from Figure 3b, the temporary
support force initially increases and then decreases as the distance from the roof increases
along the z-axis, peaking at a distance of 3 m. It is crucial to ensure that the unsupported
area remains within the area I at all times, aligning with the actual working conditions
on-site.
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4. Distribution Characteristics of Temporary Support Stress Field in Unsupported Area

Different forms of support induce distinct stress fields in the surrounding rock, as
a slender rod-like element, the rock bolt induces a stress field in the surrounding rock
that far exceeds its own dimensions [72–75]. To study the effect of temporary support on
the unsupported area, it is essential to initially analyze the stress field generated by the
temporary support in that area. However, the FLAC3D5.0 software cannot directly compute
the temporary support stress field diffusing into the unsupported area [76–79]. Therefore,
two sets of simulation experiments, A and B, were conducted to simulate the excavation
and support of the same roadway. Experiment A represents the case without temporary
support after excavation, and Experiment B represents the case with temporary support
after excavation. By analyzing the stress differences between these two sets of experiments,
the distribution characteristics of the temporary support stress in the unsupported area
can be determined. The relevant surrounding rock parameters of Xiao baodang Mining
Company are detailed in Table 1.

Table 1. Simulation parameter.

Simulation Area of
Section (m2)

L1
(m)

L2
(m)

L3
(m)

F
(MPa)

Density
Kg m−3

Shear
(MPa)

Bulk
(MPa)

Tension
(MPa)

Cohesion
(MPa)

Friction
(MPa)

A 6 × 5 5 0 10 0 1400 6000 4000 0.4 2 25

B 6 × 5 5 5 10 6 1400 6000 4000 0.4 2 25

As shown in Figures 4 and 5, the investigation of the stress field distribution char-
acteristics in the surrounding rock of the unsupported area indicated that although the
temporary support did not directly support the unsupported area, significant stress fields
would still be generated there. The occurrence of these stress fields in the unsupported area
can be attributed to the distribution of the temporary support force [80–83].

The variation law of the stress field of the temporary support in different height planes
was investigated, and it was observed that the stress initially increased and subsequently
decreased with increasing height. This difference may result from variations in the distribu-
tion of the temporary support force at different heights. This variation law is consistent with
the rule obtained from the mathematical model (Figure 3b), which also verifies the model’s
accuracy. In addition, there is a significant stress difference between the maximum stress at
3 m and the stress at other heights, which will result in a greater risk of roof separation at 3
m. Therefore, caution should be exercised when utilizing temporary support at the layered
roof position. Furthermore, the stress field of the bolt support first decreases and then
increases with an increase in height. Therefore, temporary support can complement bolt
support effectively and improve the stability of the surrounding rock before permanent
support [84,85].
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5. Analysis of Factors Influencing Stability of Surrounding Rock in Unsupported Areas

The key to safe and efficient excavation lies in ensuring the stability of the surrounding
rock in the unsupported area. Changes in the parameters of temporary support lead to vari-
ations in the stress–strain characteristics of the surrounding rock within the unsupported
area. The primary parameters of temporary support include the length of the supported
area, the length of the unsupported area, and the magnitude of the temporary support
force. The length of the supported area determines equipment requirements, the temporary
support force plays a pivotal role in controlling the surrounding rock, and the unsupported
distance dictates the maximum spacing between excavation rows [86–90].

Initially, the relationship between the temporary support force and roof strain in
the unsupported area was investigated. It was observed that roof strain decreased with
increasing temporary support force, indicating a corresponding increase in stress within
the unsupported region. This parallels the behavior of permanent support (anchor sup-
port), where higher support forces enhance stress within the surrounding rock [91–93].
The optimum support force was defined as the force at which the roof strain approached
zero. Through investigation, optimum support forces were determined for unsupported
distances ranging from 1 m to 5 m as 13 MPa, 17 MPa, 20 MPa, 23 MPa, and 26 MPa,
respectively (Figure 6). A strong linear relationship between unsupported distance and op-
timum temporary support force was identified (Figure 7). This relationship can accurately
predict the required temporary support force in the unsupported area, providing valuable
guidance for on-site support force settings.
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Second, an analysis of the roof strains at various unsupported distances in both the
temporary support area and the unsupported area (Figure 8) reveals a decrease in roof strain
within the temporary support area as the unsupported distance increases. This reduction
can be attributed to the stress distribution in the unexcavated area transferring into the
temporary support area. Furthermore, when the unsupported distance was less than 3 m,
the roof strain in the unsupported area was lower than that in the temporary support
area. There was no significant increase in roof strain in the unsupported area when the
unsupported distance was less than 3 m. In comparison to the maximum unsupported roof
distance of 2 m with permanent support, using temporary support allows for a maximum
unsupported roof distance of 3 m, approximately 33% higher. This increase effectively
enhances excavation efficiency [94–96].
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variation within the unsupported area relative to the length of the temporary support
(Figure 9). Specifically, prior to this inflection point, there is no significant change in roof
strain with an increasing length of the temporary support. However, after reaching this
turning point, the roof strain increases notably with further extension of the temporary
support. The turning points corresponding to unsupported distances of 1–5 m, illustrated
in Figure 9, occur at temporary supporting area lengths of 17 m, 16 m, 15 m, 14 m, and
13 m, respectively. The total length of the temporary support area at the turning point,
combined with the unsupported distance, is 18 m, suggesting that the combined length of
the temporary support and unsupported areas should not exceed this limit. Furthermore,
based on the conclusion in Figure 6, it can be inferred that the maximum allowable length
for the temporary support area should not exceed 15 m [97,98].
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6. Field Application of Shield Tunneling Robot System

As shown in Figure 10, the shield tunneling robot system consists of a cutting system,
temporary support system, permanent support system, ventilation and dust removal
system, electro-hydraulic control platform, and transportation system. The cutting system
is built into Temporary Support Robot I and connected to the drilling and bolting platform,
while Temporary Support Robot II is linked to the electro-hydraulic control platform and
transportation system. The entire system moves forward by the alternating push–pull
actions of Temporary Support Robots I and II. The cutting system can cut up to 2 m in a
single operation, establishing a maximum unsupported distance of 2 m (L1 = 2 m). The
total length of Temporary Support Robots I and II is 10 m (L2 = 10 m), which defines
the temporary support area as 10 m in length, ensuring that the combined length of the
unsupported and temporary support areas does not exceed 18 m (L1 + L2 < 18 m) [99,100].
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unsupported area; c—temporary support area; d—permanent support area; 1—excavating robot;
2—temporary support robot I; 3—temporary support robot II; 4—anchor drilling platform; 5—electro-
hydraulic control platform; 6—ventilation and transportation system).

Tunnels 112202 and 112204 at the Xiao baodang Mining Company in Yulin, China, are
two parallel tunnels with similar geological conditions. Tunnel 112202 was excavated using
a road header, with permanent support installed immediately after excavation, resulting
in slow tunneling speed. To prevent delays in subsequent operations, tunnel 112204 was
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excavated using the shield tunneling robot system. The first row of permanent support
is positioned 12 m from the working face, enabling excavation and permanent support
installation to operate in parallel with the assistance of the temporary support robots,
significantly improving tunneling speed and addressing the severe wall spalling at the site,
as shown in Figure 11.
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The tunnel roof displacement is monitored using an electronic layer separation instru-
ment, with a monitoring section interval of 100 m and measurements taken daily. As shown
in Figure 12, after the operators became proficient in using the tunneling robot system, the
daily advance reached up to 56 m, improving tunneling efficiency by nearly 40%. The roof
strain between the 112202 and 112204 tunneling faces is quite similar. During the first half
of the monitoring period, the roof strain at the 112204 tunneling face was even lower than
that at the 112202 tunneling face. This is because the temporary support provides an active
support force that exceeds that of rock bolts. Additionally, the roof displacement at the
112204 working face shows a more linear pattern, indicating that the temporary support
did not repeatedly support with the roof during movement. This finding partially verifies
that the temporary support indeed generates a support stress field in the surrounding
rock of unsupported areas, and it also confirms the feasibility of the proposed method of
long-distance temporary support following excavation.
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7. Conclusions

In summary, to ensure reliable support of the surrounding rock and the reasonable
setting of the unsupported distance during parallel operations of excavation and permanent
support, this work proposed a temporary support stress distribution model. The research
found that as height increases, the temporary support force initially increases and then de-
creases. Additionally, the results indicated that in the direction of excavation, the temporary
support force remains relatively stable within a distance of 3 m but drops sharply beyond
this threshold. The study on the evolution of roof strain in unsupported areas reveals a
strong linear relationship between the unsupported distance and the optimal temporary
support force. Under the action of temporary support, the maximum unsupported distance
is 3 m, which is approximately 33% higher than the maximum unsupported distance of 2 m
under permanent support. The inflection point in roof strain with changes in the length of
the temporary support area occurs at 18 m from the tunnel face; therefore, the length of the
temporary support area should not exceed 15 m. The on-site monitoring data largely indi-
cate that temporary support can indeed generate a support stress field in the unsupported
areas. The successful application of the shield tunneling robot system practically confirms
that the method of long-distance temporary support following excavation is feasible. More-
over, it enables the parallel operation of permanent support and excavation, resulting in an
almost 40% increase in tunneling efficiency. This work demonstrated that the stability of the
surrounding rock in unsupported areas is closely related to the temporary support force,
support length, and unsupported distance. This work provided a basis for the selection
and design of temporary support equipment, control of the temporary support force, and
reasonable setting of the unsupported distance. The rapid tunneling system is a complex
system composed of multiple elements such as humans, machines, and the environment.
Therefore, future research should focus on further exploring and optimizing these factors
to enhance the stability of the surrounding rock and increase tunneling efficiency.
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