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Abstract – With the rapid development of artificial intelligence, machine learning, and robotics, the 
application of robots in various fields has been increasingly widespread. However, traditional 
robotic systems face challenges in cross-environment operation and information synchronisation 
during multi-platform co-simulation, limiting their use in complex environments. This paper 
proposes a co-simulation framework based on the Functional Mock-up Interface (FMI) standard, 
fully leveraging the cross-platform versatility, operational simplicity, and bidirectional information 
transmission capabilities of Functional Mock-up Units (FMUs). By enabling bidirectional 
information synchronisation between different simulation modules and coordinating the time-
stepping and event-driven state-switching mechanisms, the framework achieves efficient model 
reuse. The framework integrates a time-event hybrid-driven simulation mode, addressing the 
challenge of co-simulation between robots and their environments across different platforms, 
thereby improving development efficiency and synchronisation stability. Furthermore, by 
incorporating a deep reinforcement learning model in dynamic environments, this framework 
enhances the robot’s capability to grasp dynamic objects. Experimental results demonstrate that 
the framework not only facilitates efficient multi-platform co-simulation but also successfully 
handles complex grasping tasks, showcasing excellent performance and stability. 
 
Keywords:  FMI Standards, Co-Simulation, Robot, hybrid Time-Event-Driven, Deep Reinforcement 
Learning. 

1. Introduction 
 

In recent years, with the swift advancements in 
artificial intelligence, machine learning, and robotics, 
the deployment of robots has become increasingly 
prevalent across numerous sectors [1]. From 
automated production lines in the manufacturing 
industry to assistive robots in healthcare and service 
sectors, intelligent robotics is taking on an ever more 
critical role. However, traditional robotic systems 
often remain confined to specific operational 
environments, lacking the flexibility to collaborate 
across different contexts, thereby limiting their 
range of application and adaptability [2,3]. 

Co-simulation is a methodological approach that 
enables the global simulation of coupled systems by 
integrating multiple simulators [4,20]. Each 
simulator, broadly defined as a "black box," is 
capable of displaying behaviour, consuming inputs, 
and generating outputs. Examples of simulators 
range from dynamic systems integrated with 
numerical solvers and software platforms to 
specialised real-time hardware, physical test 
benches, or even human operators [5].  

In a co-simulation framework, subsystems exchange 

information through fixed or adaptive time-stepping, 

governed by specific time coordination schemes. 

Depending on the coupling structure or the nature of 

the models, co-simulation can be classified into 

several categories [6]. 

The current classification of co-simulation 

approaches follows different methodologies. One 

method focuses on the structural compatibility of 

subsystem models, assessing operational simplicity 

and practical feasibility as the primary criteria. This 

classification can be based on hierarchy, solver 

types, and interface structures. The Functional Mock-

up Interface (FMI), renowned for its high versatility, 

has become a widely adopted co-simulation 

interface, applied extensively in software 

engineering and development projects [7,21]. An 

alternative classification is model-based, using 

discrete events and continuous time as the primary 

differentiation criteria [6,19]. 

Grasping tasks represent one of the core 
challenges in robotics [8].  
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For successful grasping, a robot must possess precise 
capabilities in object recognition, localisation, and 
manipulation [9]. Traditional rule-based methods, 
however, often struggle when faced with complex 
and dynamic environments. Consequently, the 
integration of deep learning techniques and 
computer vision to enhance robotic grasping 
capabilities in such environments has become a 
central focus in current research. 

In modern industrial contexts, different software 
platforms often excel at handling specific forms of 
data [1,3,10]. In the domain of robotic control, it is 
crucial to integrate these data streams within real-
world scenarios, enabling data synchronisation 
across disparate platforms to facilitate co-
simulation. Nevertheless, one of the key challenges 
lies in the limited reusability and portability of 
models across different simulation platforms, owing 
to the highly customised nature of these models, 
which complicates their transfer between different 
environments [11]. This issue significantly 
undermines the efficiency of applying models across 
various simulation software. Moreover, the lack of an 
efficient time-synchronisation mechanism between 
different simulation systems often results in 
redundancy and operational inefficiency [12,13,18].  

The instability of time synchronisation can lead 
to data processing delays, which in turn causes 
inconsistencies in simulation outcomes. Additionally, 
the integration of multiple complex systems and 
tools requires highly specialised technical expertise, 
increasing both development costs and system 
complexity. Furthermore, the inherent uncertainty in 
the motion states of target objects, influenced by 
environmental conditions and sensor accuracy, adds 
an additional layer of difficulty to robotic grasping 
operations, compromising both simulation accuracy 
and real-world performance [14]. 

This study addresses the challenge of effective 
multi-platform co-simulation by developing a 
framework based on the FMI standard. The 
proposed framework implements a time-event 
hybrid-driven co-simulation model that orchestrates 
timing and information exchange across diverse 
simulation modules, thereby enhancing 
interoperability and coordination efficiency. By 
integrating technologies such as FMI, TensorFlow, 
and OpenCV, the framework is designed to 
significantly improve multi-platform simulation 
efficiency, addressing key issues of synchronization 
stability and data consistency. This capability is 
expected to enhance the operational robustness of 
robotic systems in complex and uncertain 
environments, supporting precise and efficient 
execution of intelligent grasping tasks. Ultimately, 
this study aims to establish a versatile co-simulation 
framework that facilitates seamless co-simulation 
across various simulation platforms. 

2. A Framework for Hybrid Time-Event-
Driven Co-Simulation Systems Based 
on the FMI Standard 

2.1 Co-Simulation System Framework  
 
FMI is nowadays widely mentioned and applied 

as an open standard for importing and exporting 
simulation models. It primarily facilitates model 
exchange and co-simulation across different 
simulation platforms and tools. As a component-
based simulation standard, FMI essentially 
encapsulates the required simulation models into a 
standardized Functional Mock-up Unit (FMU) and 
defines an interface for importing and exporting 
FMUs across various simulation platforms and tools 
[15,16]. The FMU can be regarded as a “black box” 
that interacts with external systems only through the 
interface and contains information such as the 
mathematical description of the model, parameters, 
variables, inputs and outputs, events, and solvers. 
Thanks to the versatility and many advantages of 
FMI in different simulation platforms, this paper 
proposes a co-simulation framework based on the 
FMI standard, as shown in Figure 1. 

This framework utilizes a common server as the 
core relay for information transfer, where FMUs 
imported into different platforms synchronize and 
exchange information. The system comprises four 
main modules, with three of them, excluding the 
physical model, relying on client-side software or 
platforms. The dynamics simulation module 
provides the basic motion parameters for the virtual 
environment and continuous-time motion 
simulation based on the initial state. The motion 
simulation calculation module mainly receives the 
external motion data and renders the simulated 
movements of the robot. The robot's current state 
and the actual state of objects serve as event 
markers to control the system’s start and stop 
functions. External video data from the vision 
processing module identifies real-time parameters of 
the physical model, which assists in correcting the 
current simulation data, transmitting this data to the 
calculation module, and sending feedback to the 
dynamics simulation module. The logic for 
controlling the robot is trained using TensorFlow, 
executing different actions based on the various 
states of the model in the motion simulation module, 
ultimately achieving the desired goal and 
synchronizing with the real robot. 

 

2.2 Vision Processing Module  
 
The vision module is primarily used to identify 

information from the real-world model, extracting it 
in real-time and transmitting it to the server through 
the client for subsequent updates and corrections of 
the model information across different platforms 
and modules.  
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Specifically, environmental images are captured 
through a camera, and image recognition programs 
process the images and identify objects to extract 

positional information. This information can then be 
used as input for a deep reinforcement learning 
model, enabling decision-making and control. 

 

Figure 1: Framework of the Co-simulation system 
 

 

Figure 2: Exchange of information in the Co-simulation 
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2.3 Dynamics Simulation Module 
 
As the primary module providing the simulation 

in the co-simulation framework, the dynamics 
simulation module needs to synchronize the critical 
information of moving objects with the physical 
model, and FMUs embedded within the model 
facilitate bidirectional information transfer with the 
simulation calculation module. The exact 
information exchanged is determined by the 
properties of the object and the input-output 
definitions of the FMU, accommodating the needs of 
different scenarios and models. 

Although the dynamics simulation operates as a 
continuous-time system, synchronization with the 
physical system is constrained by unequal time steps 
and processing speed limitations, making it 
impossible to achieve perfect synchronization at 
every timestep. In such cases, interpolation or 
extrapolation methods are employed to exchange 
information at specific macro-steps, known as co-
simulation steps, denoted as H. As depicted in Figure 
2, the simulation units exchange information at their 
respective macro-steps. Since FMUs allow for the 
exchange of coupling variables at macro-steps before 
individual integration, the system adopts a 
commonly used parallel (Jacobi) coordination 
method [4,17]. 

In Figure 2, Simulation Unit A corresponds to the 
dynamics simulation module, while Unit B 
corresponds to the motion simulation calculation 
module. Unit A operates as a time-driven continuous 
simulation that follows the physical laws and is 
updated according to the time step  . In most of 

the physical scenarios, the continuous evolution of 
the simulation system is based on solving ordinary 
differential equations (ODEs), as shown in 
Equation1: 

 

                       (1) 

 

where  is the state of the Simulation Unit A and 

 is its input at timestep . The state of Unit A 

continuously updates at each micro-step, making the 
simulation “time-continuous”. 

Similarly, in its free state, Unit B behaves like Unit 
A, running as a continuous-time simulation and also 
based on ODEs, as shown in Equation 2: 

 

                       (2) 

 
At the initial simulation state, both Unit A and 

Unit B independently update their states at each 
micro-step. During these intervals, no information is 
exchanged between them except at macro-step 
points. At these points, the system operates purely 
under a time-driven simulation mechanism. 
However, when Unit B reaches a specific state (as 
shown in Equation 3), it triggers an event that 
changes its own state and alters the control state of 

Unit A. At this moment, an event-driven mechanism 
replaces the time-driven one, and the simulation 
transitions into a B-dominant mode, with the state 
updates occurring as described in Equation 4: 

 
                              (3) 

 

                        (4) 

 

where the function  denotes a state or external 

input condition, and the event is triggered when the 
condition of Equation 3 is satisfied. Unit A ceases to 
evolve according to its own dynamics and is now 
controlled by the event logic of Unit B, operating 
under an event-driven mechanism during this phase. 
Regardless of the system's mode, Unit B continues to 
update Unit A’s information at its macro-step points. 
At these moments, the system checks Unit B’s state, 
as shown in Equation 5, to determine whether to 
resume Unit A’s continuous-time dynamics 
simulation. 

 

      (5) 

 

Although there is still a micro-step change within 
A in the event-driven state, this information is not 
exchanged at some macro-step point until the state 
of A and B is judged at the macro-step point, and if A 
returns to its free-running state, the exchange of 
information between the two units can continue. 

 

2.4 Motion Simulation Calculation Module  
 
This module is responsible for data processing 

and executing tasks step by step. Through the use of 
motion simulation and rendering, it carries out 
functions such as collision detection, motion range 
analysis, and reachability analysis. The imported 
FMU receives motion model data sent from the 
server and combines this data with a pre-trained 
deep reinforcement learning (DRL) policy model. 
The DRL model controls the simulated robot, which, 
in turn, governs the movement of the physical robot. 
Additionally, the states of both the robot and the 
object models serve as key event triggers, initiating 
the system's operation at critical points. 

In this paper, the Deep Deterministic Policy 
Gradient (DDPG) algorithm within TensorFlow is 
used to develop a DRL model. This algorithm is 
particularly advantageous for solving optimization 
problems in continuous action spaces [23]. The DRL 
model is structured with a policy network for 
decision-making and a value network for evaluation 
purposes. Together, these networks allow the model 
to efficiently learn and handle complex robotic tasks 
such as grasping. The parameters and learned data 
of the DRL model are synchronized with the 
simulation platform through a built-in server-client 
architecture using TCP/IP communication. 
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During the system's operation, the DDPG algorithm 
makes real-time decisions based on the current state 
of the environment, which is continuously updated 
and transmitted to the control module. This data 
flow happens via the FMU within the motion 
simulation calculation module. The control module 
processes sensory inputs, including perception data 
and the robot's dynamic state, and passes this 
information on to the DRL module. The robot then 
performs specific actions based on the outputs from 
the policy network. Following this, the system 
adjusts the robot's future actions based on feedback 
from the updated state values. 

Regarding information transmission, the FMU in 
the calculation module receives a constant stream of 
state data from the motion model. Once the robot 
executes a movement, its updated state directly 
influences the object model in the simulation, which 
in turn provides feedback to the dynamics 
simulation module via the FMU. At this point in the 
system's operation, task completion becomes the key 
determinant of the overall system state. FMUs play a 
critical role in enabling bidirectional data 
transmission and synchronisation, ensuring 
seamless communication between modules. This 
results in the realisation of a time-event hybrid-
driven co-simulation within the framework, 
enhancing system robustness and flexibility. 

 

3. Experiments 
3.1 Hardware and Software Platform 
Construction 
 

Based on the co-simulation framework proposed 
in Chapter 2, several modules have been 
implemented using software and hardware 
platforms adapted to the experimental environment. 
The actual task involves enabling the robot to grasp 
a regularly moving object (specifically a swinging 
wooden rod) within its workspace. In this study, the 
scene's visual processing module is implemented 
using OpenCV and associated libraries, while the 
dynamic simulation is carried out using Adams, a 
simulation software that offers excellent 
compatibility with FMU imports. Adams is primarily 
used to simulate the movement of the swinging rod 
and obtain the relevant motion parameters. The 
motion simulation calculation module is executed on 
Siemens Process Simulate software (abbreviated as 
the PS platform). 

In the experiment, both the KUKA KR6 R700 
robot model and the moving object model are 
imported into the PS platform to analyse the robot's 
range of motion and reachability. The six-axis angle 
values and other status information from the robot 
are transmitted in real time to the deep 
reinforcement learning training module using the 
TCP/IP communication protocol. Figure 3 shows the 
PS platform interface and the imported robot model. 

This paper employs the TensorFlow machine 
learning platform and the DDPG algorithm as the 
deep reinforcement learning approach to train the 
robotic motion control strategy. The state space 
encompasses the robot's coordinates and the angles 
of each axis, as well as the coordinates and offset 
angles of the object model. The action space consists 
of the angular positions of the robot's motion axes. 
The robot's movements are based on the previous 
state space, followed by the execution of the next 
action. This process is repeated multiple times until 
the robot reaches the target endpoint. 

The robotic models used in this study are KUKA's 
KR6 R700 and KR10 R1100-2, both of which are six-
axis robots known for their high speed and precision 
[22]. KUKA robots utilize the open EthernetKRL 
control package to facilitate bidirectional data 
transmission between the actual robot and the PC. 
This is achieved by packaging the transmitted data 
into XML files, thereby enabling the real-time control 
of the robot's movements. 

 

 
Figure 3: PS platform interface and imported KUKA 

robot model 
 

3.2 Operational Process Framework 
 
For the working scenario discussed in this paper, 

by aligning the experimental software and 
operations with Figure 1, a complete operational 
workflow of the co-simulation system can be 
obtained, as illustrated in Figure 4. 

The preparation phase mainly involves setting up 
the project model and adjusting parameters. The 
environment includes the actual model and the 
runtime program files of the host, with the essential 
software and hardware libraries preloaded. The 
scene is equipped with a dedicated workstation and 
camera for real-time data acquisition of robot 
operations and motion models.  
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Different models focus on various types of data; the 
motion object model is defined with detailed 
physical properties and motion behaviours, whereas 
the robot model is configured with its physical 
parameters and control logic. 

The training phase utilises TensorFlow to process 
the robot's grasping strategies. The training 
environment is rendered within Siemens PS 
platform, and the DDPG algorithm is employed for 
calibration to ensure the effectiveness of both the 
model and the algorithm. A specific reward function 

 is set for the environment in this paper, as shown 

in Equation 6, where  represents the robot’s state,  

denotes the distance to the target, and  refers to the 

time step. 
 

                        (6) 

 
After initial training tests, the trained strategy 

models are generated and stored for future use. 
During this process, Adams software is used for 
dynamic simulation of the moving objects. OpenCV, 
through the laboratory’s camera system, captures 
real-time image data of the moving objects, as shown 
in Figure 5. This data is used as a dataset to train the 
robot's reinforcement learning model in TensorFlow. 

The FMU generation is primarily achieved 
through JSON files and program execution, 
automatically generating FMU files that meet the 
required specifications. This addresses issues of low 
reusability and portability in simulation models. 
Input and output parameters from different software 

must be set, and the corresponding modifiable JSON 
configuration files must be adjusted to configure 
nodes and links within the distributed system. These 
include project basic information, node information, 
and link information. The generated FMU files are 
then used for information transmission and 
synchronisation between Adams and the PS 
platform, facilitating the co-simulation of moving 
objects. 

The testing and validation phase focuses on the 
co-simulation between two industrial software 
platforms, PS and Adams. The trained grasping 
strategy model is preloaded, and robot motion tests 
are initiated. Once the client and server are 
activated, the system begins the co-simulation 
process. TensorFlow processes the real-time camera 
data received via TCP/IP, generates control 
commands, and feeds them back into the PS platform 
and Adams for simulation. 

 

 
Figure 5: OpenCV recognises recorded moving objects 

 
During the co-simulation, the server 

communicates with both the PS platform and 
TensorFlow via .NET Script, processing the trained 
models and transmitting control commands. The 
trained models in PS are invoked through the 
program, conducting real-time kinematic 
simulations. The simulations in Adams validate the 
accuracy and reliability of all modules and 
algorithms. 
 

 

 
Figure 4: Operation flow of the Co-simulation system 
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3.3 FMU Generation and Import 
 
As previously mentioned, an FMU can be 

regarded as a black box, with its storage structure 
akin to a zip file, meaning the method of file 
generation is relatively fixed. To avoid compiler 
library limitations, MinGW is employed for 
compilation. 

The most critical information in an FMU is the 
number of nodes and their corresponding input and 
output types. When generating multiple FMUs, the 
input and output must be matched to ensure the 
validity of the generated FMU. Specifically, a JSON 
configuration file is set up in this paper, with 
serverIP, nodeNum, and nodeLists being key search 
information. The nodeList contains nodeName (the 
folder name for the configuration file), UID, input, 
and output. For each port, the corresponding input 
and output must be mapped to ensure normal 
operation. The FMUs generated by MinGW’s Makefile 
include a DLL dynamic link library, a series of C files 
and header files containing models and 
configurations, and an XML file with important 
identifying information. 

The FMUs generated in this paper are primarily 
for use in the Adams software and the PS platform.  

 

While the basic structure of the FMUs is similar, 
the operations within different software platforms 
vary. The specific process is illustrated in Figure 6. In 
Adams, the FMU is treated as a special type of system 
variable that needs to be bound to the existing 
variables within Adams through the Control 
component. If multiple input/output pairs are 
required, no empty variables are allowed. On the PS 
platform, since the software lacks a built-in method 
for reading FMUs, the files must be manually 
extracted after decompression and copied into the 
software’s FMI folder. Similarly, the FMU is regarded 
as a special variable in the PS platform, with the 
variable type names predefined during FMU 
generation, corresponding to the generated XML file. 
Additionally, the FMU must be called through the 
SCL Editor on the PS platform, and all information is 
passed through this intermediary station before it 
can be converted into variables usable by the script. 

It is worth noting that to ensure the effectiveness 
and clarity of FMU information transmission, all 
original variables are closely bound to the model 
within the software, and once imported, the FMU 
becomes an integral part of the model. The 
synchronisation of the FMU enables the 
synchronisation of model states across different 
platforms. 

 

Figure 6: FMU generation and import process 
 

3.4 Co-Simulation Test  
 
As can be seen from Figures 1 and 4, the co-

simulation testing involves three main components: 
Adams, the PS platform, and OpenCV. In this 
scenario, the robot is tasked with attempting to 
grasp a continuously swinging stick. Both Adams and 
the PS platform share the same motion model, 
namely the swinging stick mentioned earlier, where 
Adams handles the physical simulation as the active 
agent, while the PS platform acts as the recipient of 
the motion state. Simultaneously, OpenCV processes 
real-world information about the swinging stick and 
helps correct the angle values transmitted to the PS 
platform. The PS platform also returns feedback 

information to Adams. Once the temporal and 
angular data are determined, the pre-trained robot 
grasping model proceeds to execute the grasping 
actions step by step. The multiple stages of the 
process and platform interface are shown in Figure 7. 

Specifically, the system includes a server that 
connects the three components. Unlike a typical 
TCP/IP server, this server can also transmit FMU 
data. The key to achieving this functionality is the 
accompanying JSON configuration file, which is 
broadly similar to the one described in Section 3.2 
but includes an additional key element: linkNum and 
linkLists. In this system environment, there are three 
different ports, so the number of links is 3—two for 
the FMUs in the software and one for the OpenCV 
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connection. With the aid of this configuration file, the 
server can facilitate information exchange with the 
FMUs. 

Once the server is activated, the robot control 
logic, OpenCV video feed, Adams motion simulation,  

 

and PS platform simulation are sequentially 
launched. When all components are connected, the 
platforms synchronise their current states, and the 
robot in the PS platform executes and outputs the 
robot's grasping motion path. 

 

 
Figure 7: Interface between multiple parts of the Co-simulation process and the platform's operation 

 
3.5 Reality Check and Results 

 
The robot’s motion path, obtained from the PS 

platform, is exported and encapsulated into an XML 
file, which is then transmitted to the actual robot’s 
program files for reception. By mapping the 
relationship between the world coordinate system 
or the six axes of the robot, the robot can follow the 
grasping path displayed on the PS platform. The 
pseudocode for the robot path execution program, 
based on six-axis information transmission, is shown 
in Table 1. 
 

Table 1. Pseudocode: KUKA Robot Motion  
Define six axes A1~A6 and initialize the array XP1 to 
represent the initial coordinate positions. 
Move the robot point-to-point to the initial position 
to reset. 

Initialize and execute the internal XML file to 
receive TCP signals. 

 
    LOOP: 
        IF the received data for XP1.A1 is empty: 
            Exit the loop. 
        END IF 
 
        Sequentially receive data for the coordinate axes 
A1~A6 from the XML file. 
 
        Update the XP1.A1~XP1.A6 data. 
        Perform point-to-point movement to the 
position indicated by XP1. 

END LOOP 
 

End of program. 

When the initial states of the real swinging stick and 
the stick model in Adams are similar, the motion of 
the stick obtained from the simulation software and 
the robot's grasping path align well with the real 
stick and robot, enabling the robot to perform the 
actual grasping task. The real-world robot’s grasping 
process, viewed from two perspectives, is shown in 
Figure 8. 

To evaluate the accuracy and effectiveness of the 
framework, Table 2 summarizes the results obtained 
from multiple grasping trials, covering various initial 
angles, mean grasping distance errors, average 
execution time, and success rate. For each initial 
angle, we conducted 20 trials. 

 
Table 2. Summary of Robot Grasping Results 

Initial 
Angles 

Grasping 
Distance 

Errors(mm) 

Execution 
Time (s) 

Grasping 
Success Rate 

(%) 

30° 3.2 14.8 95 

40° 3.8 15.6 95 

50° 5.0 15.4 90 

60° 5.8 16.6 80 

 
The experimental results highlight the 

framework's effectiveness in enhancing robotic 
grasping performance under varied initial 
conditions, demonstrating its adaptability and 
robustness. As shown in Table 2, the average 
grasping distance error remained low, with only 
slight increases observed at larger initial angles. 
Execution times remained efficient and consistent, 
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while success rates were high overall, achieving up 
to 95% at 30° and 40° initial angles. Although a 
minor decline in success rate was observed at a 60° 
angle, the hybrid time-event-driven mechanism 
successfully maintained synchronization and 
coordination across platforms, even in challenging 
scenarios. 

 

4. Conclusions 
 

This paper proposes an innovative time-event 
hybrid-driven co-simulation framework based on 
the FMI standard. By integrating platforms such as 
TensorFlow, OpenCV, and Adams, the framework 
addresses key limitations in robotic systems, 
including data synchronization, model portability, 
and time stability across platforms.  
 

The use of FMI enhances model portability and 

modularity, enabling seamless integration between 

diverse simulation tools and supporting scalable 

system design. The hybrid time-event mechanism 

combines the advantages of both time-driven and 

event-driven methods, effectively capturing dynamic 

robotic behaviors and improving real-time 

simulation performance in complex environments. 

Experimental results validate the framework’s 

ability to enhance path planning and grasping 

accuracy, demonstrating its potential in multi-

platform collaborative tasks. Future work will 

further optimize synchronization mechanisms and 

expand the framework’s application in increasingly 

complex scenarios. 

 

 
Figure 8: Real Robot Grasping Test (a. Virtual test, b. Side view, c. Front view) 
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