
Research on a Hybrid Time-Event-Driven Co-Simulation Framework Based on the FMI Standard

International Journal of Mechatronics and Applied Mechanics, 2024, Issue 18 222

RESEARCH ON A HYBRID TIME-EVENT-DRIVEN CO-SIMULATION
FRAMEWORK BASED ON THE FMI STANDARD

Jielin Tang1, Nan Xie1,2*, Beier Lu2, Jing Li3, Weifeng Xu3, Wenhao Tang2

1Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 201210, China
2Sino-German Institute of Applied Technology, Tongji University, Shanghai, 201804, China
3Simulation and Digital Twin group, Siemens Technology China, Shanghai, 200082, China

Email: xienan115@tongji.edu.cn, 2311786@tongji.edu.cn

Abstract – With the rapid development of artificial intelligence, machine learning, and robotics, the
application of robots in various fields has been increasingly widespread. However, traditional
robotic systems face challenges in cross-environment operation and information synchronisation
during multi-platform co-simulation, limiting their use in complex environments. This paper
proposes a co-simulation framework based on the Functional Mock-up Interface (FMI) standard,
fully leveraging the cross-platform versatility, operational simplicity, and bidirectional information
transmission capabilities of Functional Mock-up Units (FMUs). By enabling bidirectional
information synchronisation between different simulation modules and coordinating the time-
stepping and event-driven state-switching mechanisms, the framework achieves efficient model
reuse. The framework integrates a time-event hybrid-driven simulation mode, addressing the
challenge of co-simulation between robots and their environments across different platforms,
thereby improving development efficiency and synchronisation stability. Furthermore, by
incorporating a deep reinforcement learning model in dynamic environments, this framework
enhances the robot’s capability to grasp dynamic objects. Experimental results demonstrate that
the framework not only facilitates efficient multi-platform co-simulation but also successfully
handles complex grasping tasks, showcasing excellent performance and stability.

Keywords: FMI Standards, Co-Simulation, Robot, hybrid Time-Event-Driven, Deep Reinforcement
Learning.

1. Introduction

In recent years, with the swift advancements in
artificial intelligence, machine learning, and robotics,
the deployment of robots has become increasingly
prevalent across numerous sectors [1]. From
automated production lines in the manufacturing
industry to assistive robots in healthcare and service
sectors, intelligent robotics is taking on an ever more
critical role. However, traditional robotic systems
often remain confined to specific operational
environments, lacking the flexibility to collaborate
across different contexts, thereby limiting their
range of application and adaptability [2,3].

Co-simulation is a methodological approach that
enables the global simulation of coupled systems by
integrating multiple simulators [4,20]. Each
simulator, broadly defined as a "black box," is
capable of displaying behaviour, consuming inputs,
and generating outputs. Examples of simulators
range from dynamic systems integrated with
numerical solvers and software platforms to
specialised real-time hardware, physical test
benches, or even human operators [5].

In a co-simulation framework, subsystems exchange

information through fixed or adaptive time-stepping,

governed by specific time coordination schemes.

Depending on the coupling structure or the nature of

the models, co-simulation can be classified into

several categories [6].

The current classification of co-simulation

approaches follows different methodologies. One

method focuses on the structural compatibility of

subsystem models, assessing operational simplicity

and practical feasibility as the primary criteria. This

classification can be based on hierarchy, solver

types, and interface structures. The Functional Mock-

up Interface (FMI), renowned for its high versatility,

has become a widely adopted co-simulation

interface, applied extensively in software

engineering and development projects [7,21]. An

alternative classification is model-based, using

discrete events and continuous time as the primary

differentiation criteria [6,19].

Grasping tasks represent one of the core
challenges in robotics [8].

mailto:xienan115@tongji.edu.cn
mailto:2311786@tongji.edu.cn

Research on a Hybrid Time-Event-Driven Co-Simulation Framework Based on the FMI Standard

International Journal of Mechatronics and Applied Mechanics, 2024, Issue 18 223

For successful grasping, a robot must possess precise
capabilities in object recognition, localisation, and
manipulation [9]. Traditional rule-based methods,
however, often struggle when faced with complex
and dynamic environments. Consequently, the
integration of deep learning techniques and
computer vision to enhance robotic grasping
capabilities in such environments has become a
central focus in current research.

In modern industrial contexts, different software
platforms often excel at handling specific forms of
data [1,3,10]. In the domain of robotic control, it is
crucial to integrate these data streams within real-
world scenarios, enabling data synchronisation
across disparate platforms to facilitate co-
simulation. Nevertheless, one of the key challenges
lies in the limited reusability and portability of
models across different simulation platforms, owing
to the highly customised nature of these models,
which complicates their transfer between different
environments [11]. This issue significantly
undermines the efficiency of applying models across
various simulation software. Moreover, the lack of an
efficient time-synchronisation mechanism between
different simulation systems often results in
redundancy and operational inefficiency [12,13,18].

The instability of time synchronisation can lead
to data processing delays, which in turn causes
inconsistencies in simulation outcomes. Additionally,
the integration of multiple complex systems and
tools requires highly specialised technical expertise,
increasing both development costs and system
complexity. Furthermore, the inherent uncertainty in
the motion states of target objects, influenced by
environmental conditions and sensor accuracy, adds
an additional layer of difficulty to robotic grasping
operations, compromising both simulation accuracy
and real-world performance [14].

This study addresses the challenge of effective
multi-platform co-simulation by developing a
framework based on the FMI standard. The
proposed framework implements a time-event
hybrid-driven co-simulation model that orchestrates
timing and information exchange across diverse
simulation modules, thereby enhancing
interoperability and coordination efficiency. By
integrating technologies such as FMI, TensorFlow,
and OpenCV, the framework is designed to
significantly improve multi-platform simulation
efficiency, addressing key issues of synchronization
stability and data consistency. This capability is
expected to enhance the operational robustness of
robotic systems in complex and uncertain
environments, supporting precise and efficient
execution of intelligent grasping tasks. Ultimately,
this study aims to establish a versatile co-simulation
framework that facilitates seamless co-simulation
across various simulation platforms.

2. A Framework for Hybrid Time-Event-
Driven Co-Simulation Systems Based
on the FMI Standard

2.1 Co-Simulation System Framework

FMI is nowadays widely mentioned and applied

as an open standard for importing and exporting
simulation models. It primarily facilitates model
exchange and co-simulation across different
simulation platforms and tools. As a component-
based simulation standard, FMI essentially
encapsulates the required simulation models into a
standardized Functional Mock-up Unit (FMU) and
defines an interface for importing and exporting
FMUs across various simulation platforms and tools
[15,16]. The FMU can be regarded as a “black box”
that interacts with external systems only through the
interface and contains information such as the
mathematical description of the model, parameters,
variables, inputs and outputs, events, and solvers.
Thanks to the versatility and many advantages of
FMI in different simulation platforms, this paper
proposes a co-simulation framework based on the
FMI standard, as shown in Figure 1.

This framework utilizes a common server as the
core relay for information transfer, where FMUs
imported into different platforms synchronize and
exchange information. The system comprises four
main modules, with three of them, excluding the
physical model, relying on client-side software or
platforms. The dynamics simulation module
provides the basic motion parameters for the virtual
environment and continuous-time motion
simulation based on the initial state. The motion
simulation calculation module mainly receives the
external motion data and renders the simulated
movements of the robot. The robot's current state
and the actual state of objects serve as event
markers to control the system’s start and stop
functions. External video data from the vision
processing module identifies real-time parameters of
the physical model, which assists in correcting the
current simulation data, transmitting this data to the
calculation module, and sending feedback to the
dynamics simulation module. The logic for
controlling the robot is trained using TensorFlow,
executing different actions based on the various
states of the model in the motion simulation module,
ultimately achieving the desired goal and
synchronizing with the real robot.

2.2 Vision Processing Module

The vision module is primarily used to identify

information from the real-world model, extracting it
in real-time and transmitting it to the server through
the client for subsequent updates and corrections of
the model information across different platforms
and modules.

Research on a Hybrid Time-Event-Driven Co-Simulation Framework Based on the FMI Standard

International Journal of Mechatronics and Applied Mechanics, 2024, Issue 18 224

Specifically, environmental images are captured
through a camera, and image recognition programs
process the images and identify objects to extract

positional information. This information can then be
used as input for a deep reinforcement learning
model, enabling decision-making and control.

Figure 1: Framework of the Co-simulation system

Figure 2: Exchange of information in the Co-simulation

Research on a Hybrid Time-Event-Driven Co-Simulation Framework Based on the FMI Standard

International Journal of Mechatronics and Applied Mechanics, 2024, Issue 18 225

2.3 Dynamics Simulation Module

As the primary module providing the simulation

in the co-simulation framework, the dynamics
simulation module needs to synchronize the critical
information of moving objects with the physical
model, and FMUs embedded within the model
facilitate bidirectional information transfer with the
simulation calculation module. The exact
information exchanged is determined by the
properties of the object and the input-output
definitions of the FMU, accommodating the needs of
different scenarios and models.

Although the dynamics simulation operates as a
continuous-time system, synchronization with the
physical system is constrained by unequal time steps
and processing speed limitations, making it
impossible to achieve perfect synchronization at
every timestep. In such cases, interpolation or
extrapolation methods are employed to exchange
information at specific macro-steps, known as co-
simulation steps, denoted as H. As depicted in Figure
2, the simulation units exchange information at their
respective macro-steps. Since FMUs allow for the
exchange of coupling variables at macro-steps before
individual integration, the system adopts a
commonly used parallel (Jacobi) coordination
method [4,17].

In Figure 2, Simulation Unit A corresponds to the
dynamics simulation module, while Unit B
corresponds to the motion simulation calculation
module. Unit A operates as a time-driven continuous
simulation that follows the physical laws and is
updated according to the time step . In most of

the physical scenarios, the continuous evolution of
the simulation system is based on solving ordinary
differential equations (ODEs), as shown in
Equation1:

 (1)

where is the state of the Simulation Unit A and

 is its input at timestep . The state of Unit A

continuously updates at each micro-step, making the
simulation “time-continuous”.

Similarly, in its free state, Unit B behaves like Unit
A, running as a continuous-time simulation and also
based on ODEs, as shown in Equation 2:

 (2)

At the initial simulation state, both Unit A and

Unit B independently update their states at each
micro-step. During these intervals, no information is
exchanged between them except at macro-step
points. At these points, the system operates purely
under a time-driven simulation mechanism.
However, when Unit B reaches a specific state (as
shown in Equation 3), it triggers an event that
changes its own state and alters the control state of

Unit A. At this moment, an event-driven mechanism
replaces the time-driven one, and the simulation
transitions into a B-dominant mode, with the state
updates occurring as described in Equation 4:

 (3)

 (4)

where the function denotes a state or external

input condition, and the event is triggered when the
condition of Equation 3 is satisfied. Unit A ceases to
evolve according to its own dynamics and is now
controlled by the event logic of Unit B, operating
under an event-driven mechanism during this phase.
Regardless of the system's mode, Unit B continues to
update Unit A’s information at its macro-step points.
At these moments, the system checks Unit B’s state,
as shown in Equation 5, to determine whether to
resume Unit A’s continuous-time dynamics
simulation.

 (5)

Although there is still a micro-step change within
A in the event-driven state, this information is not
exchanged at some macro-step point until the state
of A and B is judged at the macro-step point, and if A
returns to its free-running state, the exchange of
information between the two units can continue.

2.4 Motion Simulation Calculation Module

This module is responsible for data processing

and executing tasks step by step. Through the use of
motion simulation and rendering, it carries out
functions such as collision detection, motion range
analysis, and reachability analysis. The imported
FMU receives motion model data sent from the
server and combines this data with a pre-trained
deep reinforcement learning (DRL) policy model.
The DRL model controls the simulated robot, which,
in turn, governs the movement of the physical robot.
Additionally, the states of both the robot and the
object models serve as key event triggers, initiating
the system's operation at critical points.

In this paper, the Deep Deterministic Policy
Gradient (DDPG) algorithm within TensorFlow is
used to develop a DRL model. This algorithm is
particularly advantageous for solving optimization
problems in continuous action spaces [23]. The DRL
model is structured with a policy network for
decision-making and a value network for evaluation
purposes. Together, these networks allow the model
to efficiently learn and handle complex robotic tasks
such as grasping. The parameters and learned data
of the DRL model are synchronized with the
simulation platform through a built-in server-client
architecture using TCP/IP communication.

Research on a Hybrid Time-Event-Driven Co-Simulation Framework Based on the FMI Standard

International Journal of Mechatronics and Applied Mechanics, 2024, Issue 18 226

During the system's operation, the DDPG algorithm
makes real-time decisions based on the current state
of the environment, which is continuously updated
and transmitted to the control module. This data
flow happens via the FMU within the motion
simulation calculation module. The control module
processes sensory inputs, including perception data
and the robot's dynamic state, and passes this
information on to the DRL module. The robot then
performs specific actions based on the outputs from
the policy network. Following this, the system
adjusts the robot's future actions based on feedback
from the updated state values.

Regarding information transmission, the FMU in
the calculation module receives a constant stream of
state data from the motion model. Once the robot
executes a movement, its updated state directly
influences the object model in the simulation, which
in turn provides feedback to the dynamics
simulation module via the FMU. At this point in the
system's operation, task completion becomes the key
determinant of the overall system state. FMUs play a
critical role in enabling bidirectional data
transmission and synchronisation, ensuring
seamless communication between modules. This
results in the realisation of a time-event hybrid-
driven co-simulation within the framework,
enhancing system robustness and flexibility.

3. Experiments
3.1 Hardware and Software Platform
Construction

Based on the co-simulation framework proposed
in Chapter 2, several modules have been
implemented using software and hardware
platforms adapted to the experimental environment.
The actual task involves enabling the robot to grasp
a regularly moving object (specifically a swinging
wooden rod) within its workspace. In this study, the
scene's visual processing module is implemented
using OpenCV and associated libraries, while the
dynamic simulation is carried out using Adams, a
simulation software that offers excellent
compatibility with FMU imports. Adams is primarily
used to simulate the movement of the swinging rod
and obtain the relevant motion parameters. The
motion simulation calculation module is executed on
Siemens Process Simulate software (abbreviated as
the PS platform).

In the experiment, both the KUKA KR6 R700
robot model and the moving object model are
imported into the PS platform to analyse the robot's
range of motion and reachability. The six-axis angle
values and other status information from the robot
are transmitted in real time to the deep
reinforcement learning training module using the
TCP/IP communication protocol. Figure 3 shows the
PS platform interface and the imported robot model.

This paper employs the TensorFlow machine
learning platform and the DDPG algorithm as the
deep reinforcement learning approach to train the
robotic motion control strategy. The state space
encompasses the robot's coordinates and the angles
of each axis, as well as the coordinates and offset
angles of the object model. The action space consists
of the angular positions of the robot's motion axes.
The robot's movements are based on the previous
state space, followed by the execution of the next
action. This process is repeated multiple times until
the robot reaches the target endpoint.

The robotic models used in this study are KUKA's
KR6 R700 and KR10 R1100-2, both of which are six-
axis robots known for their high speed and precision
[22]. KUKA robots utilize the open EthernetKRL
control package to facilitate bidirectional data
transmission between the actual robot and the PC.
This is achieved by packaging the transmitted data
into XML files, thereby enabling the real-time control
of the robot's movements.

Figure 3: PS platform interface and imported KUKA

robot model

3.2 Operational Process Framework

For the working scenario discussed in this paper,

by aligning the experimental software and
operations with Figure 1, a complete operational
workflow of the co-simulation system can be
obtained, as illustrated in Figure 4.

The preparation phase mainly involves setting up
the project model and adjusting parameters. The
environment includes the actual model and the
runtime program files of the host, with the essential
software and hardware libraries preloaded. The
scene is equipped with a dedicated workstation and
camera for real-time data acquisition of robot
operations and motion models.

Research on a Hybrid Time-Event-Driven Co-Simulation Framework Based on the FMI Standard

International Journal of Mechatronics and Applied Mechanics, 2024, Issue 18 227

Different models focus on various types of data; the
motion object model is defined with detailed
physical properties and motion behaviours, whereas
the robot model is configured with its physical
parameters and control logic.

The training phase utilises TensorFlow to process
the robot's grasping strategies. The training
environment is rendered within Siemens PS
platform, and the DDPG algorithm is employed for
calibration to ensure the effectiveness of both the
model and the algorithm. A specific reward function

 is set for the environment in this paper, as shown

in Equation 6, where represents the robot’s state,

denotes the distance to the target, and refers to the

time step.

 (6)

After initial training tests, the trained strategy

models are generated and stored for future use.
During this process, Adams software is used for
dynamic simulation of the moving objects. OpenCV,
through the laboratory’s camera system, captures
real-time image data of the moving objects, as shown
in Figure 5. This data is used as a dataset to train the
robot's reinforcement learning model in TensorFlow.

The FMU generation is primarily achieved
through JSON files and program execution,
automatically generating FMU files that meet the
required specifications. This addresses issues of low
reusability and portability in simulation models.
Input and output parameters from different software

must be set, and the corresponding modifiable JSON
configuration files must be adjusted to configure
nodes and links within the distributed system. These
include project basic information, node information,
and link information. The generated FMU files are
then used for information transmission and
synchronisation between Adams and the PS
platform, facilitating the co-simulation of moving
objects.

The testing and validation phase focuses on the
co-simulation between two industrial software
platforms, PS and Adams. The trained grasping
strategy model is preloaded, and robot motion tests
are initiated. Once the client and server are
activated, the system begins the co-simulation
process. TensorFlow processes the real-time camera
data received via TCP/IP, generates control
commands, and feeds them back into the PS platform
and Adams for simulation.

Figure 5: OpenCV recognises recorded moving objects

During the co-simulation, the server

communicates with both the PS platform and
TensorFlow via .NET Script, processing the trained
models and transmitting control commands. The
trained models in PS are invoked through the
program, conducting real-time kinematic
simulations. The simulations in Adams validate the
accuracy and reliability of all modules and
algorithms.

Figure 4: Operation flow of the Co-simulation system

Research on a Hybrid Time-Event-Driven Co-Simulation Framework Based on the FMI Standard

International Journal of Mechatronics and Applied Mechanics, 2024, Issue 18 228

3.3 FMU Generation and Import

As previously mentioned, an FMU can be

regarded as a black box, with its storage structure
akin to a zip file, meaning the method of file
generation is relatively fixed. To avoid compiler
library limitations, MinGW is employed for
compilation.

The most critical information in an FMU is the
number of nodes and their corresponding input and
output types. When generating multiple FMUs, the
input and output must be matched to ensure the
validity of the generated FMU. Specifically, a JSON
configuration file is set up in this paper, with
serverIP, nodeNum, and nodeLists being key search
information. The nodeList contains nodeName (the
folder name for the configuration file), UID, input,
and output. For each port, the corresponding input
and output must be mapped to ensure normal
operation. The FMUs generated by MinGW’s Makefile
include a DLL dynamic link library, a series of C files
and header files containing models and
configurations, and an XML file with important
identifying information.

The FMUs generated in this paper are primarily
for use in the Adams software and the PS platform.

While the basic structure of the FMUs is similar,
the operations within different software platforms
vary. The specific process is illustrated in Figure 6. In
Adams, the FMU is treated as a special type of system
variable that needs to be bound to the existing
variables within Adams through the Control
component. If multiple input/output pairs are
required, no empty variables are allowed. On the PS
platform, since the software lacks a built-in method
for reading FMUs, the files must be manually
extracted after decompression and copied into the
software’s FMI folder. Similarly, the FMU is regarded
as a special variable in the PS platform, with the
variable type names predefined during FMU
generation, corresponding to the generated XML file.
Additionally, the FMU must be called through the
SCL Editor on the PS platform, and all information is
passed through this intermediary station before it
can be converted into variables usable by the script.

It is worth noting that to ensure the effectiveness
and clarity of FMU information transmission, all
original variables are closely bound to the model
within the software, and once imported, the FMU
becomes an integral part of the model. The
synchronisation of the FMU enables the
synchronisation of model states across different
platforms.

Figure 6: FMU generation and import process

3.4 Co-Simulation Test

As can be seen from Figures 1 and 4, the co-

simulation testing involves three main components:
Adams, the PS platform, and OpenCV. In this
scenario, the robot is tasked with attempting to
grasp a continuously swinging stick. Both Adams and
the PS platform share the same motion model,
namely the swinging stick mentioned earlier, where
Adams handles the physical simulation as the active
agent, while the PS platform acts as the recipient of
the motion state. Simultaneously, OpenCV processes
real-world information about the swinging stick and
helps correct the angle values transmitted to the PS
platform. The PS platform also returns feedback

information to Adams. Once the temporal and
angular data are determined, the pre-trained robot
grasping model proceeds to execute the grasping
actions step by step. The multiple stages of the
process and platform interface are shown in Figure 7.

Specifically, the system includes a server that
connects the three components. Unlike a typical
TCP/IP server, this server can also transmit FMU
data. The key to achieving this functionality is the
accompanying JSON configuration file, which is
broadly similar to the one described in Section 3.2
but includes an additional key element: linkNum and
linkLists. In this system environment, there are three
different ports, so the number of links is 3—two for
the FMUs in the software and one for the OpenCV

Research on a Hybrid Time-Event-Driven Co-Simulation Framework Based on the FMI Standard

International Journal of Mechatronics and Applied Mechanics, 2024, Issue 18 229

connection. With the aid of this configuration file, the
server can facilitate information exchange with the
FMUs.

Once the server is activated, the robot control
logic, OpenCV video feed, Adams motion simulation,

and PS platform simulation are sequentially
launched. When all components are connected, the
platforms synchronise their current states, and the
robot in the PS platform executes and outputs the
robot's grasping motion path.

Figure 7: Interface between multiple parts of the Co-simulation process and the platform's operation

3.5 Reality Check and Results

The robot’s motion path, obtained from the PS

platform, is exported and encapsulated into an XML
file, which is then transmitted to the actual robot’s
program files for reception. By mapping the
relationship between the world coordinate system
or the six axes of the robot, the robot can follow the
grasping path displayed on the PS platform. The
pseudocode for the robot path execution program,
based on six-axis information transmission, is shown
in Table 1.

Table 1. Pseudocode: KUKA Robot Motion
Define six axes A1~A6 and initialize the array XP1 to
represent the initial coordinate positions.
Move the robot point-to-point to the initial position
to reset.

Initialize and execute the internal XML file to
receive TCP signals.

 LOOP:
 IF the received data for XP1.A1 is empty:
 Exit the loop.
 END IF

 Sequentially receive data for the coordinate axes
A1~A6 from the XML file.

 Update the XP1.A1~XP1.A6 data.
 Perform point-to-point movement to the
position indicated by XP1.

END LOOP

End of program.

When the initial states of the real swinging stick and
the stick model in Adams are similar, the motion of
the stick obtained from the simulation software and
the robot's grasping path align well with the real
stick and robot, enabling the robot to perform the
actual grasping task. The real-world robot’s grasping
process, viewed from two perspectives, is shown in
Figure 8.

To evaluate the accuracy and effectiveness of the
framework, Table 2 summarizes the results obtained
from multiple grasping trials, covering various initial
angles, mean grasping distance errors, average
execution time, and success rate. For each initial
angle, we conducted 20 trials.

Table 2. Summary of Robot Grasping Results

Initial
Angles

Grasping
Distance

Errors(mm)

Execution
Time (s)

Grasping
Success Rate

(%)

30° 3.2 14.8 95

40° 3.8 15.6 95

50° 5.0 15.4 90

60° 5.8 16.6 80

The experimental results highlight the

framework's effectiveness in enhancing robotic
grasping performance under varied initial
conditions, demonstrating its adaptability and
robustness. As shown in Table 2, the average
grasping distance error remained low, with only
slight increases observed at larger initial angles.
Execution times remained efficient and consistent,

Research on a Hybrid Time-Event-Driven Co-Simulation Framework Based on the FMI Standard

International Journal of Mechatronics and Applied Mechanics, 2024, Issue 18 230

while success rates were high overall, achieving up
to 95% at 30° and 40° initial angles. Although a
minor decline in success rate was observed at a 60°
angle, the hybrid time-event-driven mechanism
successfully maintained synchronization and
coordination across platforms, even in challenging
scenarios.

4. Conclusions

This paper proposes an innovative time-event
hybrid-driven co-simulation framework based on
the FMI standard. By integrating platforms such as
TensorFlow, OpenCV, and Adams, the framework
addresses key limitations in robotic systems,
including data synchronization, model portability,
and time stability across platforms.

The use of FMI enhances model portability and

modularity, enabling seamless integration between

diverse simulation tools and supporting scalable

system design. The hybrid time-event mechanism

combines the advantages of both time-driven and

event-driven methods, effectively capturing dynamic

robotic behaviors and improving real-time

simulation performance in complex environments.

Experimental results validate the framework’s

ability to enhance path planning and grasping

accuracy, demonstrating its potential in multi-

platform collaborative tasks. Future work will

further optimize synchronization mechanisms and

expand the framework’s application in increasingly

complex scenarios.

Figure 8: Real Robot Grasping Test (a. Virtual test, b. Side view, c. Front view)

References

[1] LI W, DENG Z, GE J, et al. Research progress of

robot joint space trajectory planning[J].
Mechanical design and manufacturing
engineering, 2022, 51(10): 15-23.

[2] Desai A, Saha I, Yang J, et al. DRONA: a framework
for safe distributed mobile
robotics[C]//Proceedings of the 8th International
Conference on Cyber-Physical Systems. 2017:
239-248.

[3] Wang L, Liu M, Meng M Q H. Real-time
multisensor data retrieval for cloud robotic
systems[J]. IEEE Transactions on Automation
Science and Engineering, 2015, 12(2): 507-518.

[4] Gomes C, Thule C, Larsen P G, et al. Co-simulation
of continuous systems: a tutorial [J]. arXiv
preprint arXiv:1809.08463, 2018.

[5] Gomes C, Thule C, Broman D, et al. Co-simulation:
a survey[J]. ACM Computing Surveys (CSUR),
2018, 51(3): 1-33.

[6] Gomes C, Thule C, Broman D, et al. Co-simulation:
state of the art[J]. arXiv preprint
arXiv:1702.00686, 2017.

[7] Camus B, Galtier V, Caujolle M. Hybrid Co-
simulation of FMUs using DEV&DESS in
MECSYCO[C]//2016 Symposium on Theory of
Modeling and Simulation (TMS-DEVS). IEEE,
2016: 1-8.

[8] Mahler J, Liang J, Niyaz S, et al. Dex-net 2.0: Deep
learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics[J]. arXiv
preprint arXiv:1703.09312, 2017.

[9] LU J, PING X. An optimal time-impact trajectory
optimization algorithm for manipulator [J].
Mechanical Science and Technology, 2019,
38(10): 1548-1554.

(a)

(b)

(c)

Research on a Hybrid Time-Event-Driven Co-Simulation Framework Based on the FMI Standard

International Journal of Mechatronics and Applied Mechanics, 2024, Issue 18 231

[10] Koopman P, Wagner M. Challenges in
autonomous vehicle testing and validation[J]. SAE
International Journal of Transportation Safety,
2016, 4(1): 15-24.

[11] Aslam K, Chen Y, Butt M, et al. Cross-platform
real-time collaborative modeling: An architecture
and a prototype implementation via emf. cloud[J].
IEEE Access, 2023, 11: 49241-49260.

[12] Paulavičius R, Grigaitis S, Filatovas E. A
systematic review and empirical analysis of
blockchain simulators[J]. IEEE access, 2021, 9:
38010-38028.

[13] Fan C, Ghaemi S, Khazaei H, et al. Performance
evaluation of blockchain systems: A systematic
survey[J]. IEEE Access, 2020, 8: 126927-126950.

[14] Marlier N, Brüls O, Louppe G. Simulation-based
Bayesian inference for robotic grasping[J]. arXiv
preprint arXiv:2303.05873, 2023.

[15] FMI Project Group. FMI Tools [EB/OL].
https://fmi-standard.org (2023-12-01).

[16] Blochwitz T, Otter M, Arnold M, et al. The
functional mockup interface for tool independent
exchange of simulation models[C]//Proceedings
of the 8th international modelica conference.
2011: 105-114.

[17] Eguillon Y, Lacabanne B, Tromeur-Dervout D.
IFOSMONDI co-simulation algorithm with
Jacobian-free methods in PETSc[J]. Engineering
with computers, 2022, 38(5): 4423-4449.

[18] Liu W, Zhao Z, Shi B, et al. Hybrid Time and
Event Co-simulation Framework for Power
Electronics Systems[C]//2023 IEEE 14th
International Symposium on Power Electronics
for Distributed Generation Systems (PEDG). IEEE,
2023: 1055-1058.

[19] Al-Hammouri A T. A comprehensive co-
simulation platform for cyber-physical
systems[J]. Computer Communications, 2012,
36(1): 8-19.

[20] Benedikt M, Holzinger F R. Automated
configuration for non-iterative co-
simulation[C]//2016 17th International
Conference on Thermal, Mechanical and Multi-
Physics Simulation and Experiments in
Microelectronics and Microsystems (EuroSimE).
IEEE, 2016: 1-7.

[21] Völker L. Untersuchung des
Kommunikationsintervalls bei der gekoppelten
Simulation [M]. KIT Scientific Publishing, 2014.

[22] KUKA Roboter GmbH, KR QUANTEC
ultra[EB/OL].(2022-09-23)[2023-05-13].https://
www.kuka.com/-/media/kuka-
downloads/imported/8350ff3ca11642998dbdc8
1dcc2ed44 c/0000210361_zh.pdf

[23] Lillicrap T P. Continuous control with deep
reinforcement learning[J]. arXiv preprint
arXiv:1509.02971, 2015.

