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ABSTRACT

In severely impaired stroke patients, implementing EMG-driven robot-assisted therapy requires the
presence of sufficient residual EMG and a patient-specific detector for accurate and low-latency EMG
detection. However, identifying such a detector is challenging, especially when the level of residual
EMG in a given patient is unknown . This paper proposes an unsupervised approach to distinguish
between EMG data when the patient is relaxed versus attempting a movement – the maximally
separating detector. We investigated six different detector types and separation measures using
EMG data from a previous randomized controlled trial. The results indicate that the approximate
generalized likelihood ratio detector, along with the modified Hodges and modified Lidierth detectors,
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achieved the best separation. Using a subset of clinician annotated data to evaluate the detection
performance, the modified Hodges detector employing the probability difference-sum ratio measure
had the best detection performance in terms of detection accuracy and latency. Using the data from 30
participants, we propose a probability difference-sum ratio threshold of 0.7 for the modified Hodges
detector to identify patients with sufficient residual EMG to trigger robotic assistance. From the
results, we propose the use of modified Hodges detector along with a probability difference-sum ratio
measure to learn the maximally separating detector for a given patient, which will screen the patient
for sufficient residual EMG and provide a detector to trigger robotic assistance if sufficient EMG
is present. The validation of this approach using a large dataset and investigating the quality of the
human-machine interaction implemented with such a detector is warranted.

Keywords EMG detectors · Robot-assisted therapy · Movement intent detection · Unsupervised learning ·
Neurorehabilitation

1 Introduction

Stroke affects about 12.2 million people around the globe every year, and hand impairments are commonly seen after a
stroke (1). Robot assisted therapy facilitates high-intensity movement training, which enhances sensory-motor recovery
after a stroke (2). A robot typically provides active-assistance by offering the appropriate assistance to maximize the
patient’s active participation in completing movements. Active participation is essential for recovery as no improvement
in clinical scales were observed with passive therapy that does not involve voluntary participation from the patient (3).
To ensure patient’s maximum active participation, the active-assisted training mode uses patient’s residual movements
to identify their movement intention to titrate robotic assistance. Too much assistance can lead to slacking (4), too little
can affect motivation (5), while poorly timed assistance can affect the sense of agency (5).

About 30% of stroke patients are severely impaired (6), with no residual movements; detecting movement intention in
this patient population is a challenge . Electroencephalogram (EEG)-based brain computer interface (BCI) is commonly
employed to detect movement intent in this population for assisted therapy (7). However, our recent work has shown
that electromyography (EMG) from target muscles is a viable alternative for EEG-BCI, as EMG has better signal
to noise ratio (SNR), is task specific and easy to set-up for routine use (8). In this context ensuring a naturalistic
human-machine interaction to detect the intention to move is vital for maximizing the patient’s active participation,
while maintaining their motivation and the sense of agency. For EMG-based robot assisted therapy this means that,
the robot should provide assistance only when there is movement intention (i.e., minimal false positives and false
negatives), and quickly with minimal detection latency. This requires an accurate and low-latency EMG detector for the
closed-loop control of robotic assistance. Several EMG onset time detectors have been proposed (9; 10; 11; 12; 13),
with no standardized method or a systematic way to determine the best detector for EMG-triggered robot assisted
therapy. In our previous study (14), we systematically investigated the performance of various EMG detectors in the
literature using simulated low SNR EMG signals. We identified the simple threshold-based modified Hodges detector,
the statistical decision-based approximate generalized likelihood ratio (AGLR) detector, and the fuzzy entropy detector
as the best performing detectors in terms of detection accuracy and latency. This identification was possible because
the ground truth about the presence/absence of the simulated EMG data was fully known. Although this “supervised”
approach provided an understanding of the performance of existing detectors on low SNR EMG signals, it is unsuitable
for identifying patient-specific optimal EMG detectors using real signal recordings from target muscles of severely
impaired patients. As, with real muscle recordings, there is no ground truth about the presence/absence of EMG activity,
there is a need for an unsupervised approach to identify the optimal detector when working with real data from severely
affected stroke patients who exhibit no visible movement.

Therefore this paper presents an unsupervised technique to (a) screen severely impaired patients for the presence of
sufficient residual EMG that can be used for EMG-triggered robot assisted therapy, and (b) identify the best detector
parameters for accurate and fast pick-up of movement intention from this residual EMG signal of patients that have
sufficient residual EMG. The presented method is tested with the EMG data collected from a previously published
randomized controlled trial evaluating the efficacy of robot-assisted therapy contingent on movement intention detected
through event-related desynchronization of EEG (7).

2 Methods

The EMG data were collected from thirty-two chronic stroke participants with a cFMA (combined arm and hand
modified FMA) score of 12.15±8.8, who could not actively extend their wrist and fingers. Two patients were excluded
from the original study due to equipment malfunction during training (7). Surface EMG was recorded during all
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robot-assisted upper limb therapy sessions from four upper-limb muscles: extensor carpi ulnaris, extensor digitorum,
biceps, and triceps. Details about patient demographics and the intervention can be found in (7). EMG data from the
extensor carpi ulnaris and extensor digitorum muscles of the paretic side were used as individual trials for the purpose
of this study.

During the intervention, in each trial, the rest phase was 3 seconds long, where the subjects were given the instruction
about the movement to be made, followed by a “READY” and a “GO” cue, separated by 2 seconds and 1 second,
respectively. Following the “GO” cue, the subjects were asked to perform the desired movement for 5 or 6 seconds,
resulting in a total duration of 11-12 seconds for each trial. In the current analysis, the rest period (RP) for a trial is
defined as the first 4 seconds of a trial, and the move period (MP) is defined as the remaining 7-8 seconds of the trial
Fig.2.1 (a)).

The EMG signals were sampled at 500 Hz. Let xt [n] represent the recorded muscle activity for a given trial t, where n
is the sampling instant. The total number of samples in each trial xt[n] is Nt ∈ {5500, 6000}, where the rest phase is
defined between the interval 0 ≤ n < Nr, with Nr = 2000. Fig.2.1 (a) explains the structure of each trial of EMG data.

2.1 How to identify the best EMG detector without a ground truth signal?

An EMG detector maps the raw EMG data xt [n] from the trial t to a binary output yt [n], which is 1 when muscle
activity is present and 0 otherwise.

yt[n] = D(xt[k]
n
k=0; τ,q) ∈ {0, 1} (1)

where, D (·) is the detector function, τ ∈ R is the threshold parameter to convert the detector’s test function into a
binary output (Fig. 2.1), and q ∈ RmD is the set of mD hyper-parameters of the detector. The parameter q depends on
the nature of the detector and changes from one detector type to other. For instance, q = {α, fc} for modified Hodges
detector where α is the weight for the threshold and fc is the cut-off frequency of the low pass filter. For the AGLR
detector q = {α,W}; where α is the weight for the threshold, and W is the window size in ms for computing the test
function.

In the current analysis, the threshold τ is estimated for a trial using the data from the rest period ignoring the first 1
second of the data {xt [n]}Nr−1

n=500, as follows:

τ = mean (g [n]) + α · std (g [n]) , 500 ≤ n < Nr (2)

where, g[n] is the test function computed by the detector using the input signal x[n]. This threshold τ is then used to
detect the presence of EMG in the data from the move period of the trial {x [n]}Nt−1

n=Nr
. The detector output yt [n] for

trial t is given by the following:

yt [n] =

{
0, 0 ≤ n < Nr

D (xt [n] ; τ, q) , Nr ≤ n < Nt
(3)

Six different detector types were investigated in the current study, D1 to D6, listed in Table 1 along with their test
functions and parameters. The six detectors include, the Fuzzy Entropy (D1), Root mean square (RMS) detector (D2),
Modified Lidierth (D3), Modified Hodges (D4), AGLR-G (D5) and AGLR-L (D6).

The performance of the given detector with hyper-parameters q can be evaluated if we had access to the ground truth
about the presence/absence of EMG in the move period of the given trial. This can be done by computing the detection
accuracy and latency, as was done in our previous work (14). How to evaluate the detector’s performance when the
ground truth is unavailable? One approach is to compare the output of the detector on data from two conditions: (a)
when the patient is relaxed, where we can safely assume the data to be devoid of any EMG activity; we refer to this as
the null hypothesisH0, and (b) when the patient attempts to move, where there might be residual EMG activity if the
patient has spared cortical connections to the target muscle; we refer to this as the alternative hypothesisH1. We use
the proportion of 1s in the detector’s output as a measure of its ability to detect EMG or the probability of detecting
EMG in a given data. Then, we would expect the following from a good detector:

pH1 = pH0 =⇒ Residual EMG absent underH1.

pH1 > pH0 =⇒ Residual EMG present underH1.
(4)

where, pH1 and pH0 are the detection probabilities under H1 and H0; note that the equality and inequality signs
used here are in the statistical sense. If a given participant does not have residual EMG in his/her target muscles,
then pH1 = pH0 will be true for any detector. On the other hand, if residual EMG is present, then pH1 > pH0 for
appropriately designed detectors. The best detector would be the one providing the maximal separation between data
underH1 andH0 for some appropriate measure of separation. We define such a detector as the maximally separating
detector for given separation measure.
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2.2 Data preparation underH0 andH1

We require data generated independently under theH0 and alternateH1 to employ the method described above. Note
that the rest period data cannot be used because it is already used by the detector to estimate the threshold τ for the test
function for each trial. To address this issue, we generated artificial data x̃t[n] for each trial such that: (a) in the rest
period (0 ≤ n < Nr), x̃t [n] = xt [n]; and (b) in the move period (Nr ≤ n < Nt), x̃t [n] has the same first (mean) and
second order (autocovariance) moments as that of the rest period data. The procedure for generating x̃[n] is explained
in Algorithm 1; where, N

(
0, σ̂2

)
represents a normal distribution with zero mean and variance σ̂2.

Algorithm 1 To generate x̃ [n].

Input: Raw EMG data {x [k]}Nt−1
k=0 from a trial.

Output: Generated EMG data {x̃ [k]}Nt

k=0 for this trial.

for 0 ≤ k < Nr do
x̃ [k]← x [k]

end for

Fit a 5th auto-regressive model to rest period data.

{âi}5i=1 , σ̂
2 ← arfit

(
{x[k]}Nr

k=0 , 5
)

where âis are the estimates of the autogressive model coefficients, and σ̂2 is the estimate of variance of the model
error.

for Nr ≤ k < Nt do
ek ← N

(
0, σ̂2

)
. (sample from a normal distribution)

x̃ [k]←
∑5

i=1 âix̃ [k − i] + ek.
end for

In the EMG dataset used in the current study, some trials with large repeated spikes were identified. Due to the presence
of these spikes the AR model overestimates the variance of the error while generating the move period data of the trials
under H0. This would lead to a case where pH0 > pH1 , causing incorrect parameter optimization. Therefore these
trials were removed by computing the total variation distance (TVD) between the rest period and move period of the
trials underH0. The trials with a very high TVD values, which indicates dissimilarity between the two periods were
removed along with the corresponding trial underH1.

Following the removal of these trials for all 30 subjects, the dataset had for each trial t of a given subject, (a) the actual
recorded signals xs,t [n] when the patient attempted movements, i.e., data generated under H1, and (b) the artificial
data x̃s,t [n] generated using the autoregressive model, which is data fromH0. Both data are passed through a given
detector D to obtain its output y0t [n] = D (x̃t [n] ; τ, q) and y1t [n] = D (xt [n] ; τ, q), which are then used to compute
the detection probability underH0 andH1 for each movement trial.

pHi
t =

1

Nt −Nr

Nt−1∑
n=Nr

yit [n] , i ∈ {0, 1} (5)

where, pHi
t is the EMG detection probability for the trial t underHi.

Let Ts be the number of movement trials performed by a given subject s, with 1 ≤ s ≤ 30. Thus, for subject s, we have
a set of Ts estimates of pH0

t and pH1
t with 1 ≤ t ≤ Ts,

p0
s =


pH0
1

pH0
2
...

pH0

Ts

 p1
s =


pH1
1

pH1
2
...

pH1

Ts

 (6)

The detection probabilities from across all trials, p0
s and p1

s, can be used to determine: (a) if the subject s has residual
EMG, and (b) if there is residual EMG, what is the best detector to separate the recorded data under the rest and move
periods. This requires the choice of a separation measure to compare the probabilities of detection underH0 andH1.
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2.3 Separation measures to compareH0 andH1

There are multiple ways to define a measure of separation between the given estimates of detection probability under
H0 andH1. Since, the choice of the separation measure can impact the outcomes, we explored six different separation
measures: three variations of the total variation distance (TVD), difference in probabilities (DP), likelihood ratio (LR),
and the probability difference-sum ratio (PDSR).

The Total Variation Distance (TVD) is a measure of the difference between two probability density function f1 (x)
and f2 (x) defined as

TVD =
1

2

∫ ∞

−∞

∣∣∣f1 (x)− f2 (x)
∣∣∣dx (7)

We can compute the TVD from p0
s and p1

s by first computing their corresponding histograms, from which we can
compute the TVD using Eq. 7. Since the histogram estimates and the TVD were sensitive to the number of histogram
bins, we computed the TVD for three different number of bins - 10, 20, and 100, which are referred to as S1, S2 and S3

measures, respectively.

While the TVD provides a single number to quantify the separation between the detection probabilities underH0 and
H1, the following three measure work with the detection probabilities from individual trials to quantify separation. The
overall separation for each of the following measures are computed as the median of the separation measures across the
different trials.

Difference in probabilities (DP) measures the amount by which the detection probability underH1 is higher than that
ofH0. It is defined as

DPt = max
{
0, pH1

t − pH0
t

}
(8)

where, DPt is separation for the trial t. The overall separation measure for DP is defined as S4 = median
(
{DPt}Ts

t=1

)
.

Likelihood ratio (LR) is the ratio of the probabilities under theH0 andH1, defined as

LRt =


p
H1
t

p
H0
t

pH0
t , ̸= 0

LRmax, pH0
t = 0, pH1

t ̸= 0

NaN, pH0
t = pH1

t = 0

(9)

where LRt is the separation measure for trial t and all trials with LRt = inf was replaced with LRmax which is defined
as max

(
{LRt}Ts

t=1 |LRtis finite
)

, computed after obtaining LRt for all trials. The overall separation measure for LR is

defined as S5 = median
(
{LRt}Ts

t=1

)
.

Probability Difference-Sum Ratio (PDSR) is the combination of DP and LR, defined as

PDSRt =

{
max

{
0,

p
H1
t −p

H0
t

p
H1
t +p

H0
t

}
pH1
t + pH0

t ̸= 0

NaN, pH0
t = pH1

t = 0
(10)

where PDSRt is the separation measure for trial t. The overall separation measure for PDSR is defined as S6 =

median
(
{PDSRt}Ts

t=1

)
. In this paper, we used the terms DP, LR, and PDSR synonymously with the overall separation

measure S4, S5 and S6, respectively.

2.4 Maximally Separating Detectors: Patient specific optimisation of detectors

Given the uncertainty in the presence of residual EMG and its SNR in severely impaired stroke subjects, patient-specific
detectors are warranted. To this end, we investigated six different detector types (D1 to D6) for each subject. The
optimal parameters for each of these six detector types were identified as the ones that maximize the separation between
the data underH0 andH1; the six different separation measures (S1 to S6) were employed for this purpose. For a given
subject s, detector type Di, and separation measure Sj , we determine the best parameter q∗

ij as the one that maximizes
the value of the separation measure Sj ,

q∗
ij = argmax

q
Sj (Di,q) (11)

where, the value of Sj (•) depends on the detector type Di and its parameters q. The detector with the optimal
parameters q∗

ij is the maximally separating detector of detector type Di using the separation measure Sj .

5
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Table 1: Description of the EMG detectors
Labels Detectors Test functions Parameters

D1 Fuzzy Entropy Chebashyv distance
Fuzzy function

Window size (W)
Weight (α)

D2 RMS Root Mean Squared

Window size (W)
Weight (α)
Window shift (p)
Temporal threshold (m)

D3 Modified Lidierth Rectified
Low pass filtered

Cut-off frequency (fc)
Weight(α)
Double threshold params

D4 Modified Hodges Rectified
Low pass filtered

Cut-off frequency (fc)
Weight(α)

D5 AGLR-G Likelihood ratio test
(Gaussian Dist)

Window size (W)
Weight(α)

D6 AGLR-L Likelihood ratio test
(Laplacian Dist)

Window size (W)
Weight(α)

A brute-force grid search algorithm was employed to identify the different maximally separating detectors for the six
detector types and six separation measures. For a given subject s, detector Di, and separation measure Sj , the detector
parameter values q were fixed and the detector’s output was computed. This was followed by the computation of the
separation value Sj (Di,q). This procedure was repeated for all possible values of the detector parameters, and the
best parameter combination was chosen as q∗

ij . Repeating this procedure across the different separation measure and
detectors resulted in a 6× 6 grid of optimal detector parameters (or maximally separating detectors) for each subject.

2.5 How good is a maximally separating detector?

A maximally separating detector is only as good as its ability to accurately and quickly pick-up true muscle activity. It
is a priori unclear which of the 6× 6 maximally separating detector for a given subject will have maximum detection
accuracy and minimum latency. It might not be possible to theoretically compute the detection accuracy and latency
for a given detector type and a separation measure. Therefore, this needs to be determined empirically using real data.
To this end, we computed the detection accuracy and latency using the data from the individual patients. For this
purpose, we randomly selected five trials per session for each patient with a maximum of 50 trials per patient (the
number of sessions per patient varying between 10 and 15). This exclusive set of 1500 trials – referred to as the ground
truth dataset (GTD) – was not part of the unsupervised learning dataset. An expert neurologist (ATP with 11 years of
experience with clinical EMG) marked the onset and offset of EMG in each trial of the GTD through visual inspection
using a custom-built Matlab-based graphical user interface.

The ground truth labelled by the clinician was used for computing the “cost” of detection

C = max
{
rFP , rFN , f̄ (∆ton) , f̄ (∆toff )

}
(12)

The false positive (rFP ) is defined as the number of ’1’s in the move period where there is no muscle activity which is
computed as

[0, 1] ∋ rFP

∑Nt−1
Nr

y [n] . (1− yGT [n])∑Nt−1
Nr

(1− yGT [n])
(13)

where y[n] is the binary output of the detector for a trial in GTD and yGT [n] the ground truth of the same trial labelled
by the clinician. The false negative (rFN ) is defined as the number of ’0’s when the muscle is active, computed as the
following.

[0, 1] ∋ rFN

∑Nt−1
Nr

(1− y [n]) .yGT [n]∑Nt−1
Nr

yGT [n]
(14)

6
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Figure 2.1: Optimizing the parameters of the detector using the unsupervised approaches. The figure presents
the output of the modified Hodges detector of trial from one patient. (a) Trial structure of EMG as described in the
previous and the current study is presented (above) ; Output of the modified Hodges detector (rectified EMG (blue),
Binary output (black), low pass filtered signal (red), Threshold (green)) along with detection probability computed for
bothH0 andH1 trials (below) . (b) Left : Histogram of detection probability underH0 andH1 (TVD 10 & TVD 20 :
Weight = 2, f c = 1.5 Hz; TVD 100 : Weight = 3 and fc = 200 Hz); Right : The heatmap of the TVD for the different bin
numbers is presented, yellow box corresponds to the parameter with maximum TVD value for the modified Hodges
detector. (c) The distribution of PDSR separation measure computed over different parameter combination (left). The
distribution of DP separation measure computed over different parameter combination (center). The distribution of LR
separation measure computed over different parameter combination (right; x axis in log scale for better visualization).
Red curve corresponds to the distribution with the maximum median chosen as the maximally separating detector.

7



PRIME AI paper

The move period of any trial will consist of time segments where there are and there aren’t muscle activity. The
segments with muscle activity will be referred to as active segments (where yGT [n] = 1), while the others will be
referred to as inactive segments (where yGT [n] = 0). Let there be K active segments in trial and there will be K or
K − 1 inactive segments, depending on whether or not the given trial ends in an inactive segment or not, respectively.
Note that here, we ignore the data before the first active segment in the move period.

Let nk
on and nk

off be start and stop times, respectively, of the kth active segment, such that the following ordering is
satisfied for all 0 ≤ k < K,

Nr ≤ nk
on, n

k
off ≤ Nt, nk

on < nk
off , nk

off < nk+1
on

If the EMG detector’s output is 1 at least once during the kth active segment, i.e., Ŷk =
∑nk

off−1

n=nk
on

y[n] > 0 then onset
detection latency is defined as

∆tkon = Ts

(
min

nk
onn<nk

off

{
n− nk

on|y[n] = 1
})

(15)

If Ŷk = 0, then ∆tkon = 250ms. Similarly the offset latency of the kth active segment is computed as follows only if
the EMG detector’s output is 0 at least once during the inactive segment following the kth active segment,

∆tkoff = Ts ×

(
min

nk
offn<nk+1

on

{
n− nk

off |y[n] = 0
})

(16)

If the detector’s output never becomes 0 during the inactive segment, then ∆tkoff = 250ms.

The cost due to individual offset and onset latencies is quantified by separate functions fk
(
∆tkon

)
and fk

(
∆tkoff

)
that

maps all latencies above 250ms to 1. Further the average onset and offset latency for each trial is computed as follows:

f̄ (∆ton) =
1

K

K∑
k=1

fk
(
∆tkon

)
(17)

f̄ (∆toff ) =
1

K

K∑
k=1

fk
(
∆tkoff

)
(18)

Note that for simplicity we have assumed the number of inactive segments to be K in Eq. 18. The detection cost
was computed for all maximally separating detectors for all subjects, to identify the best detector type and separation
measure that results in the maximally separating detector with the least detection cost.

2.6 Statistics Analysis

The performance of the detector types (Fig.3.1) was compared through individual linear mixed effect models for
each separation measure to identify the detector with the maximum separation. Post-hoc Tukey’s Honest Significant
Difference (HSD) test was performed to evaluate the pairwise differences among the detector types for each separation
measure; the statistical significance was set at p < 0.0033 (0.05/15).

The effect of the detector type and separation measure on the detection cost was investigated using another linear
mixed effects model with the two fixed effect (detector type and separation measure) and one random effect (subjects).
Pairwise comparisons were carried out to determine the best detector type across separation measures, and the best
separation measure across detector types. Post-hoc Tukey’s HSD pairwise comparison of the detection cost was
performed individually for the separation measures and for the detector types where the statistical significance was set
at p < 0.0033 for both the comparisons. Significance of random effect was determined by comparing the mixed-effects
model with an ordinary least squares (OLS) model (without considering the random effects), using a Likelihood Ratio
Test. Furthermore, another pairwise multiple comparison was performed to identify the best detector-separation measure
pair that incurs the least cost (Fig.3.2); statistical significance was set at p < 0.000079(0.05/630).

All the analysis presented in this paper were carried out in MATLAB R2023, except for the statistical analysis. The
linear mixed-effects modeling was performed using the ‘statsmodels’ package in python [RRID:SCR008394].

8
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Figure 3.1: Box plots comparing the maximally separating detectors optimized using the six separation measures is
presented. Each box represents data from all the patients. D1:Fuzzy Entropy; D2:RMS; D3:Modified Lidierth; D4:
Modified Hodges; D5: AGLR-G; D6: AGLR-L

3 Results

A representative plot of the EMG data from a trial of a patient analysed using the modified Hodges detector is shown in
Fig. 2.1 (a). The plot of the rectified EMG data (blue trace) and the lowpass filtered version (red trace) of this signal
underH0 andH1 are depicted in the bottom plot of Fig. 2.1 (a). The green trace is the threshold τ estimated for the
trial using the baseline data. The black trace is the output of the modified Hodges detector for the data. The plot of
the histograms of the probability of detection pH0 and pH1 for this subject for the modified Hodges detector across
multiple trials are shown in Fig. 2.1 (b) for the three different bin numbers (10, 20 and 100). The heatmap of the TVD
computed for the different bin numbers using the histograms are shown next to these histograms as a function of the
two parameters of the modified Hodges detector – cut off frequency and weight. The kernel density estimates of the
other three separation measures, PDSR, DP, and LR, are shown in Fig.2.1 (c). The individual blue traces are the kernel
density estimates across the different trials for a given detector parameter combination. The red trace is the one for the
optimal detector parameters for the corresponding separation measure.

3.1 How well do the detectors distinguish between the rest and the move phase?

The patient-specific maximally separating detector was determined using Eq. 11 for the 6 separation measures and
the 6 detector types; this results in a patient-specific 6 × 6 grid of maximally separating detectors. These detectors
were compared to identify the one that gives the best separation between the rest and move phase data for the different
separation measures. Fig.3.1 presents a box plot of the separation measure values for the 6 different maximally
separating detectors for each separation measure. An individual linear mixed effects model for each separation measure
revealed significant main effects of the detector type (p < 0.001). Pairwise comparison indicated that the statistical
decision-based detectors (AGLR-G and AGLR-L), followed by the threshold-based detector (Modified Hodges and
Modified Lidierth), achieved the highest separation across all the separation measures, except for the LR separation
measure (Fig. 3.1); AGLR-L and the modified Lidierth detector have higher separation with LR separation measure.

3.2 What is the detection cost of the different maximally separating detectors?

The effect of the detector types and the separation measure on the detection cost of the different maximally separating
detectors was evaluated using a linear mixed effects model. There was significant main fixed effect of the detector types
(coeff = 0.037; p < 0.001) and the separation measure (coeff = 0.005; p < 0.01) on the detection cost. There was
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Table 2: Post-hoc analysis following a linear mixed effects model: Tuskey HD multiple comparison of the different
separation measures. Mean difference = Group2 - Group1; therefore a negative mean difference implies the group2 has
a mean lower than group1.∗ indicates p < 0.05

Group 1 Group 2 Mean difference
TVD 10 TVD 20 -0.0155

TVD 10 TVD 100 -0.0017

TVD 10 DP 0.0197∗

TVD 10 LR -0.0118

TVD 10 PDSR -0.0738∗

TVD20 TVD 100 0.0138

TVD20 DP 0.0352∗

TVD20 LR 0.0037

TVD20 PDSR -0.0583∗

TVD100 DP 0.0213∗

TVD100 LR -0.0101

TVD100 PDSR -0.0721∗

DP LR -0.0315

DP PDSR -0.0935∗

LR PDSR -0.062∗

significant random effect (p = 0; χ2 = 1269.75). Post-hoc multiple comparison of the different separation measures
reveal that the separation measure PDSR incurs the least cost across all detectors types, and the modified Hodges
detector incurs the least cost across the different separation measure. Table 2 shows the mean difference in cost between
the different pairs of separation measures; a negative mean differences implies that group2 has a lower detection cost
than group1. In Table 2, PDSR has the most negative mean difference, that is statistically different from the other
detectors, indicating that it incurs the least detection cost (highlighted bold text in Table 2). Similarly in Table 3, the
modified Hodges detector incurs the least cost. Note that the detection cost of modified Lidierth is not statistically
different from modified Hodges.

Fig.3.2 shows the detection cost of the 36 detector-separation measure pairs depicted in the decreasing order of their
corresponding mean detection cost. In general, the modified Hodges detector has the least cost across the different
separation measures, with the modified Hodges detection and PDSR separation measure pair (MH-PDSR) incurring
the lowest mean detection cost. Cost of the modified Lidierth-PDSR pair is also statistically not different from the
MH-PDSR pair. The modified Hodges detector perform consistently well in combination with all the separation measure
except for the DP separation measure.

3.3 PDSR separation measure – a screening tool for the presence of residual EMG

The value of a separation measure computed on EMG data using an optimal detector is an indicator of the presence of
residual EMG, which could be used to screen patients for the presence/absence of residual EMG for robot-assisted
therapy. To this end, we depict the kernel density plot of the PDSR separation measure obtained using the maximally
separating detector of the modified Hodges detector type for the 30 stroke participants in the current study (Fig.3.3 (b)).
In Fig.3.3 (a) we present the scatter plot between the PDSR and the mean probability of detection underH1; these two
variables are positively correlated with the Spearman correlation coefficient of 0.721. Based on these two plots, we
propose a threshold of 0.7 for the PDSR of a maximally separating modified Hodges detector for screening patients for
the presence/absence of residual EMG. Below this threshold, the probability of detection underH1 is close to 0, and it
rises sharply beyond this threshold. This indicates that patients with PDSR above 0.7 are likely to consistently produce
robot-assisted movements using their residual EMG.

10
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Table 3: Post-hoc analysis following a linear mixed effects model: Tuskey HD multiple comparison of the different
detector types.∗ indicates p < 0.05

Group 1 Group 2 Mean difference
AGLR-G Fuzzy Entropy 0.1374∗

AGLR-G RMS 0.3003∗

AGLR-G AGLR-L 0.3956∗

AGLR-G Modified Lidierth -0.0949∗

AGLR-G Modified Hodges -0.0961∗

Fuzzy Entropy RMS 0.163∗

Fuzzy Entropy AGLR-L 0.2582∗

Fuzzy Entropy Modified Lidierth -0.2323∗

Fuzzy Entropy Modified Hodges -0.2334∗

RMS AGLR-L 0.0952∗

RMS Modified Lidierth -0.3953∗

RMS Modified Hodges -0.3964∗

AGLR-L Modified Lidierth -0.4905∗

AGLR-L Modified Hodges -0.4916∗

Modified Lidierth Modified Hodges -0.0011

Figure 3.2: The error plot of cost of detection of the different detectors-separation measure pairs is presented. The
maximally separating modified Hodges detector trained using the separation measure PDSR is the combination that
incurs the least cost (Highlighted in red). Grey plots are statistically insignificant from MH-PDSR pair
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Figure 3.3: (a) Scatter plot of the optimum separation measure PDSR and the mean detection probability p̃H1 . The
correlation coefficient is 0.7208 indicating a positive correlation between the two factors. (b) The kernel density plot of
the PDSR separation measure with huge dip around 0.7

4 Discussion

Two questions need to be addressed to implement EMG-driven robot-assisted therapy for a severely impaired patient:
(a) Q1: does the patient have sufficient residual EMG to drive robotic assistance during training? and (b) Q2: what is
the optimal detector (high accuracy and low latency) to enable naturalistic human-machine interaction, if the patient has
sufficient residual EMG? The work presented in this paper offers a practical approach to answering these questions
using only data recorded from a patient under two conditions, while the patient: (a) is relaxed (i.e., no muscle activity
H0), and (b) attempt movements of interest (potential muscle activity H1). The proposed unsupervised approach is
based on the idea of maximally separating data underH0 andH1, without requiring any additional expert/clinician-
derived annotation or information. Among the six different detectors and separation measures investigated, the AGLR
detector exhibited the highest separation for most separate measures, followed by the modified Hodges detector and
modified Lidierth detector. However, when evaluated using clinician-marked ground truth, the modified Hodges detector
optimized using the PDSR measure had the lowest detection cost; The modified Lidierth-PDSR pair also incurs a
cost that is statistically insignificant compared to the modified Hodges-PDSR pair. The modified Hodges detector had
consistently lower detection cost than the other detectors. Interestingly, we found that the PDSR measure can also be
used to screen severely impaired patients for the presence/absence of sufficient residual EMG to undergo EMG-driven
robot-assisted therapy. Based on these results, a practical approach to answering questions Q1 and Q2 is to find the
modified Hodges detector that maximally separates a patient’s data under H0 and H1 using the PDSR separation
measure. If the PDSR value is greater than 0.7, then the patient has residual EMG (Q1) and the identified maximally
separating modified Hodges detector is the optimal detector EMG detector of interest (Q2). If the PDSR value is less
than 0.7 then the patient is unsuitable for EMG-drive robot-assisted therapy.

To our knowledge, this is the first study investigating an unsupervised approach to identify a patient-specific EMG
detector when the presence/absence residual EMG and its exact times of occurrence are unknown. Most prior work have
employed a supervised learning approach where the EMG epochs and their onset times are known (15; 16; 17; 12; 18);
either because the data was simulated (13) or expert-marked annotation was available for the real EMG data (18). Such
supervised approaches were useful to understand the detection properties of EMG detectors, but are impractical for
routine use; as it is not possible to have expert annotation for each potential patient to be screened. Interestingly, we
observed some interesting similarities and differences between the outcomes of the unsupervised approaches in this
study and the supervised approaches employed previously (14). Staude et. al. observed that the AGLR detector to
be well suited for EMG onset detection using simulated EMG data (13). The AGLR detectors were also found to
be suitable for detecting EMG accurately with low latency in our previous work using simulated EMG (14). These
previous observations appear to be in agreement with the current study where the AGLR detectors were found to
have the best separation between the data under H0 and H1 across the study population and for most separation
measures. Surprisingly, when evaluated on a data with ground-truth, the AGLR detectors do not offer the best detection
performance. The AGLR detectors were optimized for detecting EMG onset events using a model for the EMG data
that has a step increase in its amplitude at an onset time. The real data employed in this study does not conform to
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this model, which could explains its suboptimal performance. The real EMG signal from patients occurs in bouts of
unknown onset times and duration, the signal amplitude during these bouts are not fixed, and the signal bouts have
smooth onsets and offsets. Apart from the AGLR detectors, our previous work also identified the Fuzzy entropy detector
and the modified Hodges detector to have consistently good performance (14). The Fuzzy entropy detector had the
worst separation performance among the six detectors. The reason for this is unclear. The modified Hodges detector
had consistently good performance with both supervised and unsupervised approaches which may be due to its simple
structure that requires minimal assumptions about the signal model. Interestingly the modified Hodges detector appears
to be least sensitive to separation measure employed for optimization.

The PDSR measure was found to have the lowest detection cost among the six separation measures. The TVD measures
were sensitive to the number of bins used for the histogram, which was the reason, three different bin numbers were
tried in the current study. The PDSR measure is a compromise between the DP and LR measures, which rewards large
positive differences between the pH1 and pH0 , while penalizing large values for pH0 . The DP does not penalize for
large absolute values for pH0 . The LR penalizes large values for pH0 , but does not reward positive differences between
pH1 and pH0 . The balanced nature of the PDSR measure could be the reason for it superior performance compared to
the other measures.

The threshold of 0.7 was estimated for the PDSR measure for the maximally separating modified Hodges detector using
the dataset employed in the current study. The kernel density of the PDSR separation measure shows a dip around
0.7, and the probability of detection pH1 appears to rise sharply above 0.7. This threshold of 0.7 corresponds to the
following relationship between pH1 and pH0 ,

PDSR ≥ 0.7 ⇐⇒ pH1 ≥ 5.667 · pH0

Assuming that the maximally separating modified Hodges detector is a good EMG presence estimator, patients
producing EMG while attempting movements at a detection rate (pH1) 5.667 times the false positive rate (pH0) are
deemed to have residual EMG that can be consistently detected. We identified 24 patients with separation values greater
0.7 as seen in Fig.3.3. In our previous work employing an RMS detector, 22 patients were categorized as having
sufficient residual EMG. Note that the RMS detector does not perform as well as the modified Hodges detector, and it
was not optimized in our previous study (8). The use of an optimized detector that maximally separates data underH0

andH1 could be the reason behind the slight differences between the studies.

To evaluate the generalizability of the proposed unsupervised approach, its practical implementation, and it’s clinical
utility, the following limitations need to be addressed :

1. We used an AR model in the current study to generate the data underH0 for each subject and each trial. Ideally,
this should be done with actual data recorded from the human subject while they are fully relaxed. However,
appropriate AR models can reasonably approximate the spectral characteristic of EMG (19; 20). Real-world
screening procedures must collect equal amount of data under both the relaxed (H0) and movement-attempt
(H1) conditions to answer questions Q1 and Q2.

2. The study results are based on a small sample size of 30 chronic, severely impaired stroke subjects. The
promising results of the current study warrant the investigation of the proposed unsupervised approach on a
larger sample of severely impaired stroke subjects with no residual movements. Our current work is focused
on carrying out a large screening study in the severely impaired stroke population, where equal amount of data
is collected both underH0 andH1.

3. We were only focused on detecting EMG from a single channel of recoded data (EMG recorded from the two
extensor muscles were considered as individual trials in the dataset). However, with the increasing availability
of EMG arrays, multichannel EMG data can be easily employed for the EMG detection problem. Logical
combinations (ANDing or ORing) of individually optimized detectors for each EMG channel might not be the
best use of this rich multichannel data. Future work must investigate the best method to extend the idea of
maximally separating detectors using multichannel data.

4. The current work does not shed any light on the expected quality of the human-machine interaction using
the maximally separating detector. Experiments with human subjects on their sense of agency is required to
evaluate the effectiveness of these subject-specific maximally separating detectors in implementing a natural
human-machine interaction.

5 Conclusion

This paper presented an unsupervised approach to identify an optimal detector for EMG-driven robot assisted therapy
using muscle activity recorded from patients while attempting movements. The proposed approach identifies a detector
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that maximally separates the data under relaxed and movement-attempt conditions - the maximally separating detector.
The measure of separation in the data under these two conditions can be used as a screening tool for determining if a
given patient has sufficient residual EMG to drive robot assisted therapy. The results identified the modified Hodges
detector using the PDSR measure as the detector-separation measure combination that provides the best performance
in terms of detection accuracy and latency. A separating value of 0.7 for the maximally separating modified Hodges
detector using the PDSR measure was chosen as the threshold for screening if a subject has sufficient residual EMG.
We believe that the proposed unsupervised approach holds value for quick screening of patients for the presence of
residual EMG, and to identify the optimal detector to pick-up this signal. Future studies are needed to validate the
findings of this study on a large sample of severe patients who cannot voluntarily move the hand, and to evaluate the
quality of the human-machine interaction implemented using a maximally separating detector. We also note that this
unsupervised approach can be easily applied to optimize detectors for other signal modalities including EEG.
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