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Abstract: Fraud detection within transaction data is crucial for maintaining financial security, es-
pecially in the era of big data. This paper introduces a novel fraud detection method that utilizes
quantum computing to implement community detection in transaction networks. We model transac-
tion data as an undirected graph, where nodes represent accounts and edges indicate transactions
between them. A modularity function is defined to measure the community structure of the graph. By
optimizing this function through the Quadratic Unconstrained Binary Optimization (QUBO) model,
we identify the optimal community structure, which is then used to assess the fraud risk within
each community. Using a Coherent Ising Machine (CIM) to solve the QUBO model, we successfully
divide 308 nodes into four communities. We find that the CIM computes faster than the classical
Louvain and simulated annealing (SA) algorithms. Moreover, the CIM achieves better community
structure than Louvain and SA as quantified by the modularity function. The structure also unam-
biguously identifies a high-risk community, which contains almost 70% of all the fraudulent accounts,
demonstrating the practical utility of the method for banks’ anti-fraud business.

Keywords: coherent ising machine (CIM); quantum computing; community detection; quadratic
unconstrained binary optimization (QUBO); Louvain; simulated annealing; anti-fraud

1. Introduction
1.1. Quantum Computing for Anti-Fraud Applications

In modern society, fraud has become a serious threat to the financial security of individ-
uals and businesses, resulting in billions of dollars of financial losses worldwide every year.
This not only causes economic losses to the victims but also has an immeasurable impact on
the social credit system. Among all sectors, the financial industry, due to its concentration of
funds, has become a major target for fraudulent activities. Effective anti-fraud measures call
for not only efficient algorithms for uncovering the hidden organizations among the crime
units but also rapid implementation of the algorithms enabled by sufficient computational
resources. The application of quantum computing in community detection algorithms is
ideal for fulfilling this requirement.

Quantum computing (QC) is a rapidly growing research field that promises a novel
paradigm to solve challenging computational problems. It was first introduced in the
early 1980s by physicist Paul Benioff [1,2] and independently by Feynman [3]. Quantum
computers utilize quantum bits (qubits) as the fundamental units of information stor-
age [4], which can exist in superposition states of both |1⟩ and |0⟩, enabling them to hold
exponentially more information compared to traditional computers. It has been argued
that quantum computers could offer advantages in addressing specific problems such
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as NP-hard combinatorial optimization, often described as the superiority of quantum
computing. There are many different paradigms and hardware implementations that can
be used to build quantum computers. The two leading paradigms are gate-based QC [5]
and adiabatic quantum computation (AQC) [6]. However, gate-based QC requires stringent
environment control and sophisticated error correction, while AQC faces the main obstacle
of improving the connection density between qubits, which will affect the efficiency of
problem solving [7].

Recently, there have been some applications of quantum computing in fraud detection,
mainly focusing on quantum algorithms. For example, Schuman et al. explored the use of
Quantum Boltzmann Machines for unsupervised anomaly detection in fraud scenarios [8].
Bikku et al. [9] proposed a novel Quantum Neural Network (QNN) model that originated
from the principles of the social learning theory to detect fraudulent reviews. Innan et al.
presented a novel approach employing Quantum Graph Neural Networks (QGNNs) for fi-
nancial fraud detection [10]. A comprehensive study examining the application of quantum
algorithms to combat financial crimes was provided by Weinberg et al. [11]. Despite these
latest advances in algorithms, no one has addressed the hardware challenges in applying
quantum computing to fraud detection.

A Coherent Ising Machine (CIM) is a quantum computer developed according to
optical parametric oscillation and spontaneous symmetry breaking principle [12–18] which
can work at room temperature and solve large-scale problems, such as compression sensor
problems [19] and polyhedron problems [20]. CIM searches for the ground state energy of
an Ising model by using the phases of laser pulses to represent the spin directions of spins
in the Ising model. The resulting phase configuration corresponds to the optimal solution
of the problem equivalent to the Ising model. CIM has been used to solve optimization
problems in various industrial sectors [21–23] and academic disciplines [24]. Current CIM
research focuses on optimizing measurement feedback, pump rate and quantum state
squeezing to improve the time-to-solution and success rate of solutions.

This study focuses on fraud detection in commercial banks and aims to construct a
graph network structure. It seeks to employ community detection techniques implemented
by CIM to effectively identify groups of accounts exhibiting fraudulent behavior so as
to provide robust support for subsequent business decisions regarding the fraud risk of
accounts within these communities.

1.2. Community Detection Algorithms

While AI-based supervised fraud detection methods abound, there are also many
unsupervised techniques for detecting fraud. One such approach is clustering, which helps
identify similarities among data samples and can reveal potential fraud features. In this
context, we will focus on another unsupervised approach—community detection—which
uncovers hidden community structures within a network for fraud detection.

Community detection is a fundamental task in network analysis aimed at uncov-
ering the underlying structure of networks by identifying groups of nodes, known as
communities, that are more densely connected internally than with the rest of the network.
Over the years, numerous algorithms have been developed to tackle this problem, each
with its strengths and limitations, reflecting the diverse nature of networks and the varying
objectives of community detection.

One of the most widely used algorithms is the Louvain algorithm, which operates
by optimizing modularity—a measure that quantifies the density of connections within
communities relative to connections between communities. The Louvain method is par-
ticularly valued for its efficiency and scalability, making it suitable for large networks.
However, although efficient, it has some notable drawbacks. For example, it is sensitive to
initial conditions, such as the starting partition of the network, which leads to variability in
the detected communities. Moreover, it is heuristic-based, meaning it may yield different
results on different runs, even with the same input data, because the algorithm’s outcome
can depend on the order in which nodes are processed.
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The QUBO (Quadratic Unconstrained Binary Optimization) model for maximizing
modularity can be considered another approach to community detection. In this context,
the QUBO model is used to formulate the problem of modularity maximization as an
optimization problem, where each binary variable indicates whether a node belongs to
a particular community. The objective function is then formulated in such a way that its
maximization corresponds to maximizing modularity. The QUBO model is flexible and can
be adapted to different forms of modularity and constraints, allowing for customization
based on specific requirements. Various optimization techniques can be employed to solve
the QUBO model, such as simulated annealing (SA). In particular, the QUBO formulation
is particularly well suited for quantum computing approaches, which can explore large
solution spaces efficiently. In this paper, we solve the QUBO model by finding the ground
state of its corresponding Ising model using Coherent Ising Machine (CIM).

1.3. The QUBO Model for Community Detection

Modularity is a measure to evaluate the quality of community division within a
network. Modularity can be interpreted as the degree to which the connections within
a community are more organized than those between communities. If the connections
within a community are significantly more numerous than those between communities,
the modularity value will be relatively high (ref. Figure 1 below). Therefore, the problem
of community detection can be transformed into a problem of maximizing modularity in
a network.

Figure 1. A graph illustrating the concept of modularity, showing a community structure in which the
connections within a community are significantly more numerous than those between communities,
i.e., with high modularity.

1.4. The Numerical Simulation

To define the modularity function, first consider the adjacency matrix Avw where the
element Avw = 1 indicates a connection between node v and node w; otherwise, Avw = 0.
Let the sum of all elements in Avw be m, which represents the total number of edges
(i.e., m = ∑ Avw/2). The basic idea behind modularity-based community detection is to
maximize the number of edges within a community while minimizing the number of edges
between communities. One assumes the network is divided into several communities
and Cv represents the community to which node v belongs. δ(Cv, Cw) = 1 if Cv = Cw
(i.e., node v and node w are in the same community) and δ(Cv, Cw) = 0 otherwise. Then,
the modularity function M is defined as follows:

M =
1

2m ∑
v,w

(
Avw − kvkw

2m

)
δ(Cv, Cw) (1)
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Here, the first term, Avw, represents the actual number of edges between nodes v and w.
The term kv is defined as the degree of the node, which is the number of edges connected
to v:

kv = ∑
w

Avw (2)

Therefore, kvkw/2m is the expected number of edges between nodes v and w in a randomly
connected network. The difference Avw − kvkw

2m reflects the deviation of the actual network
from a random network. Thus, the modularity function M quantifies the extent to which
the actual network structure is more modular (i.e., has more edges within communities)
compared to a random network. In summary, modularity M can be used to determine the
degree of community organization in a network.

To formulate the problem of maximizing modularity as a Quadratic Unconstrained
Binary Optimization (QUBO) model, a binary decision variable xvc is defined, where
xvc = 1 indicates that node v is assigned to community c; otherwise, it is 0. The modularity
function M can then be expressed as

M =
1

2m ∑
v,w,c

(
Avw − kvkw

2m

)
xvcxwc (3)

Our goal is to maximize the modularity M. Since each node can only belong to one
community, there is a constraint for any node. That is,

∑
c

xvc = 1 (4)

Combining the above objective and constraint linearly, we arrive at the following QUBO
formulation:

min
x

− 1
2m ∑

c
∑
v

∑
w

(
Avw − kvkw

2m

)
xvcxwc + P ∑

v

(
∑

c
xvc − 1

)2

(5)

where P represents the penalty for violating the constraint, which is set to be sufficiently
large to ensure the fulfillment of the constraint yet not too large to adversely affect the
optimization of the objective. Note that the number of binary variables or qubits required
equals the number of nodes multiplied by the number of communities.

Note that if there are only two communities, the above QUBO model can be simplified
to the following form without constraint terms:

min
x

− 1
2m ∑

v
∑
w

(
Avw − kvkw

2m

)
(xvxw + (1 − xv)(1 − xw)) (6)

In this case, the number of binary variables or qubits needed is equal to the number of
nodes instead of being twice the number of nodes.

1.5. The Equivalence Between the QUBO and Ising Models

A QUBO problem looks for a binary vector x = (x1, x2, . . . , xn)T , where xi ∈ {0, 1},
to minimize the following objective function:

f (x) = xTQx (7)

where Q is a symmetric matrix of size n × n and xT is the transpose of x.
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An Ising model is a physical model used to describe magnetic materials. It defines
the energy of a set of spin variables s = (s1, s2, . . . , sn), where si ∈ {−1,+1}. The energy
function of their Ising model is expressed as follows:

E(s) = −∑
i<j

Jijsisj − ∑
i

hisi (8)

where Jij represents the interaction between spins si and sj and hi is the external magnetic
field acting on spin si. Although the QUBO model and the Ising model differ in form, they
are mathematically equivalent. The following transformation can convert a QUBO problem
into an Ising model and vice versa:

xi =
1 − si

2
si = 2xi − 1 (9)

where xi ∈ {0, 1} is a binary variable in the QUBO model and si ∈ {−1,+1} is the
corresponding spin variable in the Ising model.

With this transformation, the energy function of the Ising model can be reformulated
as the objective function of a QUBO problem. The mathematical equivalence dictates that
when the energy of an Ising model reaches its minimum value, the objective function
of the corresponding QUBO problem reaches its minimum and vice versa. This allows
for solving QUBO problems through finding the ground state of the corresponding Ising
models, which is particularly suited to using a Coherent Ising Machine (CIM). In our study,
the transformation svc = 2xvc − 1 is applied to Equation (5) above to arrive at the Ising
model to be solved by CIM.

2. Materials and Methods
2.1. Graph Formation

The dataset used in this study comes from a Chinese commercial bank’s fraud detection
scenario. The data collection process begins by randomly selecting cases of fraud from
all detected fraudulent accounts. From these cases, all nodes with transactions (one-step
connected) are extracted to form the first-degree association sample set. Next, for each
sample in the first-degree association sample set, all nodes that have transactions (one-step
connected) with these samples are identified, forming the second-degree association sample
set. Finally, for each sample in the second-degree association sample set, all nodes that
have transactions (one-step connected) with these samples are identified, forming the third-
degree association sample set. The final sampled dataset contains a total of 3934 samples,
among which 186 are labeled as fraudulent, accounting for approximately 5% of the total
number of samples.

2.2. Data Preprocessing

Based on practical business experience, fraudulent transactions typically constitute a
very small proportion of overall transaction volume. To obscure their fraudulent activities,
fraudsters often generate a significant amount of transactional noise. This added noise
further reduces the effectiveness of traditional detection methods, especially those relying
on rule-based approaches. As a result, there is a compelling need to denoise transaction
graph data. Denoising the transaction graph can significantly enhance the community de-
tection capability of the model. Denoising also helps reduce the computational complexity
by narrowing down the dataset to more pertinent interactions, making the model more
efficient and effective in real time.

In this paper, we first employ rule-based methods to identify potential high-risk
accounts. Next, we perform denoising on the graph data provided in the graph formation
step by removing low-risk popular nodes and isolated nodes. With the above denoising
procedure, we arrive at 308 accounts, 19 of which are fraudulent. Thus, the probability of
fraud is 6.17% for the population. Although this denoising step may inevitably miss some
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fraudulent accounts, in practice the types of fraudulent entities vary widely—individual
fraudsters, organized fraud networks and even occasional fraud cases. Hence, there is not
an omnipotent approach for fraud detection and a combination of methods is required.
Our community detection approach focuses on uncovering organized fraud networks,
leaving individual or occasional fraud instances to be screened out by other rule-based or
AI-based methods.

2.3. The CIM Setup

The CIM we used was provided by Beijing QBoson Quantum Technology Co. Ltd.
(Beijing, China). This CIM consists of an optical part and an electrical part. The optical part
of the CIM is composed of a pulsed laser, erbium-doped fiber amplifier (EDFA) fiber rings
and periodically poled lithium niobate (PPLN) crystals, while the electrical part of the machine
is composed of optical balanced homodyne detectors (BHDs), analog-to-digital/digital-to-
analog (AD/DA) converters and field-programmable gate arrays (FPGAs).

During the operation, the 1560 nm pulsed laser emits a sequence of optical pulses,
which are amplified by the EDFA, and then the frequency of the amplified laser pulses
is doubled by a PPLN crystal to generate 780 nm laser pulses, which are used as the
pump source to synchronously pump the phase-sensitive amplifier, producing degenerate
optical parametric oscillation (DOPO). The output from the fiber ring cavity is measured
through the BHDs, and the FPGA computes the feedback signal required to implement the
optical coupling between laser pulses according to the interaction intensity between spins
in the Ising Hamiltonian. This feedback signal is used as the control signal of the intensity
modulator (IM) and the phase modulator (PM) during the next round trip [7,15].

The Louvain algorithm was run 100 times. Due to the non-deterministic nature of the
algorithm, the community structure corresponding to the median value of the modularity
function was used to represent the result of the algorithm. The simulated annealing
(SA) algorithm was run 100 times as well, with an initial temperature of 10,000 degrees
and a temperature decay rate of 0.99. In total, 1000 iterations were performed at each
temperature. Again, the community structure corresponding to the median value of the
modularity function was used to represent the result of the algorithm. We used a laptop
equipped with a 12th Gen Intel Core i7-1255U CPU and 16 GB DDR4 memory to perform
the classical simulation.

3. Result

As is mentioned above, the CIM utilizes FPGA to calculate the feedback signal, which
requires digitization of the analog amplitude of laser pulses. Therefore, the QUBO matrix
encoded by the FPGA has a precision limit. Here, we tried both the 8-bit and 14-bit
QUBO matrix encoding precisions. We found that both managed to find the optimal
community structure and their performance surpassed both the Louvain and SA algorithms
(ref. Table 1 below).

Table 1. Community detection performance comparison among the classical Louvain and SA algorithms
and the CIM, where the success rate is defined as the proportion of the optimal modularity results.

Louvain SA (14-bit) SA (8-bit) CIM (14-bit) CIM (8-bit)

modularity (median) 0.7062 0.5898 0.5253 0.6828 0.7088

modularity (max) 0.7089 0.7038 0.6967 0.7089 0.7089

time-to-solution in milliseconds (median) 35.474 2,414,001.600 269,003.000 1.860 0.263

time-to-solution in milliseconds (min) 24.517 104,872.000 259,830.332 0.367 0.093

success rate 1.0% 0.0% 0.0% 15.0% 32.0%

fraud probability of the high-risk community 14.4% 14.0% 14.3% 14.4% 14.4%

recall rate of fraud accounts 68.4% 63.2% 68.4% 68.4% 68.4%

As is shown in the comparison table, the CIM implementation of community detection
has a better median value of modularity than the Louvain and SA algorithms. Although the
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median value of the 14-bit precision CIM is slightly lower than Louvain, the 8-bit precision
CIM is far better, which can be attributed to being less prone to noise and precision error
in the feedback signal. In addition, the time-to-solution of the CIM is at least one order
of magnitude faster than that of the Louvain algorithm, and that of SA is much slower
than both the CIM and Louvain. In terms of the success rate, the 8-bit precision CIM
produced the highest modularity about 1/3 of the times, followed by 15% of the 14-bit
precision CIM. In contrast, Louvain managed to reach the best modularity only once among
the 100 trials, and neither the 8-bit SA nor the 14-bit SA was able to produce the best
modularity. Hence, the CIM not only detected the community structure faster but also
delivered better-quality results.

In terms of the community structure, the optimal structures (i.e., that with the highest
modularity) achieved by the three are almost the same, and those of Louvain and the CIM
are identical (ref. Tables 2–4 below). The community structure provides significant value to
the commercial bank in identifying fraudulent accounts. The high-risk community stands
out with a fraud probability of 14.4%, more than double that of the overall population
(6.17%), and significantly higher than that of other communities. Furthermore, this high-
risk community contains nearly 70% of all fraudulent accounts. This high recall rate will
greatly improve the effectiveness of the bank’s fraud detection business.

Table 2. The optimal community structure produced by the CIM.

ID Node Count Fraudulent
Accounts

Fraud
Probability Recall Rate

0 61 1 0.016393 0.052632
1 80 5 0.062500 0.263158
2 77 0 0.000000 0.000000
3 90 13 0.144444 0.684211

Total 308 19 0.061688 1.000000

Table 3. The optimal community structure produced by the Louvain algorithm.

ID Node Count Fraudulent
Accounts

Fraud
Probability Recall Rate

0 61 1 0.016393 0.052632
1 90 13 0.144444 0.684211
2 80 5 0.062500 0.263158
3 77 0 0.000000 0.000000

Total 308 19 0.061688 1.000000

Table 4. The optimal community structure produced by the SA algorithm.

ID Node Count Fraudulent
Accounts

Fraud
Probability Recall Rate

0 76 4 0.052632 0.210526
1 78 1 0.012821 0.052632
2 91 13 0.142857 0.684211
3 63 1 0.015873 0.052632

Total 308 19 0.061688 1.000000

4. Discussion

As is discussed in the QUBO model for community detection above, the number of
binary variables or qubits required to implement community detection is equal to the
number of nodes multiplied by the number of communities. Consequently, the number
of qubits needed increases rapidly with the number of communities even if the number
of nodes is fixed. This imposes limitations on the complexity of the community structure
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that can be analyzed using this method. If most fraudulent accounts operate individually,
the corresponding transaction network may not be well suited for QUBO-based community
detection implemented via quantum computing. Fortunately, in practice, many rule-based
methods are available to pre-filter these individual fraudulent accounts, leaving behind
organized crime units that are more suitable for community-based analysis.

On the other hand, real transaction networks in commercial banks are far more com-
plex than the one analyzed in this study, often involving tens of millions of accounts. This
level of complexity exceeds the capacity of algorithms like Louvain for real-time processing.
Fortunately, most accounts in a transaction network are normal with stable interactions.
As a result, community detection can be applied selectively, focusing only on the relevant
parts of the network. This selective approach is another key advantage of the QUBO
formulation over the Louvain method. With this technique and the rapid scaling of qubits
in the CIM, we anticipate that quantum computing for community detection could be
practically implemented in commercial banks’ anti-fraud business in the near future.

5. Conclusions

While there are many proposals of quantum algorithms for fraud detection, the hard-
ware challenge of this application of quantum computing has not been addressed. In this
paper, we utilized the Coherent Ising Machine (CIM) to perform community detection by
framing the problem as a Quadratic Unconstrained Binary Optimization (QUBO) model
to maximize the modularity of the resulting community structure. We compared our
results with the classical Louvain method and simulated annealing (SA) algorithms. Our
findings show that the CIM + QUBO approach not only completed the detection faster
(∼1 ms) than both Louvain (∼10 ms) and SA (∼105 ms) but also had a higher likelihood of
producing the optimal solution (>10% vs. 1% for Louvain and 0% for SA). Additionally,
the resulting community structure holds substantial business value, particularly in the clear
identification of high-risk communities and its coverage of fraudulent accounts (≈70%).
It highlights the great potential of quantum computing in solving complex real-world
problems, especially in the financial sector. This study also expands the application of the
Ising machine, extending its use beyond federated learning [25], incremental learning [26]
and quantum annealing [27]. These AI-based methods, once implemented by the CIM,
could lead to more applications of quantum computing for fraud detection in the future.
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