

An Overview of Regev’s Quantum Factoring Algorithm and

Its Recent Developments

Rick Lan Chen

St Edmund Hall, University of Oxford, Oxford, United Kingdom

rick.chen@seh.ox.ac.uk

Abstract. Factoring large integers has long been a computationally difficult problem in classical

computing, forming the foundation of widely used encryption methods like RSA. In 1994, Shor’s

quantum algorithm introduced a revolutionary method for factoring integers exponentially faster
than classical algorithms, laying the groundwork for quantum cryptography. Despite numerous

attempts to enhance Shor’s algorithm over the last three decades, significant breakthroughs

remained elusive until Regev’s discovery in 2023. Regev introduced a novel, multi-dimensional

version of the quantum factoring algorithm, achieving a substantial improvement by reducing

the required number of quantum gates to 𝑂(𝑛2lo g 𝑛), compared to Shor’s original𝑂(𝑛2lo g 𝑛)

gate complexity. Although Regev’s approach offers a significant speedup, it comes with

increased qubit requirements and relies on an unproven number theory assumption. This paper

presents an overview of Regev’s factoring algorithm, including a review of Shor’s work for

context, followed by an examination of key recent developments and follow-up research. These

include efforts to reduce the qubit count, improve error resilience, generalize Regev’s algorithm

to related problems, and validate the number theory assumption. This review serves as an

accessible entry point for researchers interested in the rapidly evolving field of quantum

computing and factoring algorithms.

Keywords: Quantum computing, quantum algorithm, quantum factoring, shor’s algorithm.

1. Introduction

The factorization of large integers is a long-standing challenge in classical computing, and it underpins

the security of widely utilized encryption methods, such as the RSA algorithm [1]. The classical
difficulty of factoring large numbers ensures that RSA remains robust against conventional attacks. In

1994, Shor introduced a groundbreaking quantum algorithm that could factor large integers

exponentially faster than any known classical algorithm, sparking significant interest in quantum

cryptography and quantum computing [2]. Shor's algorithm, by harnessing quantum mechanics, posed
a potential threat to RSA encryption by demonstrating an efficient means of factoring via quantum

computation.

Since the inception of Shor's algorithm, researchers have made various attempts to enhance its
efficiency, primarily aiming to reduce the number of quantum gates required. Despite this, substantial

progress on Shor's original approach has proven elusive over the years. The problem of factoring large

integers is thought to be hard classically. This difficulty establishes the basis of the RSA encryption

algorithm [1]. In 1994, Shor published his famous quantum factoring algorithm, establishing an

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/110/2024MELB0122

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

161

exponential speedup over classical methods. Over the years, there had been multiple attempts to improve

and optimise Shor’s algorithm, for example trying to reduce the total number of quantum gates required.

When the number to be factorised is an n-bit number N, the original Shor’s algorithm uses 𝑂(𝑛2 log 𝑛)
quantum gates. Despite previous efforts, no one had managed to cut this down by a polynomial factor.

This provides the first substantial speedup in nearly 30 years.

To design good quantum algorithms, a lot of factors need to be considered. As a newly established
result, a lot of improvements could be made on Regev’s factoring algorithm [2]. For example, Regev’s

circuit required 𝑂 (𝑛
3

2)qubits, an increase from the 𝑂(𝑛) required in Shor’s; an unproven number

theory assumption was also crucial in the argument. Several follow-up results have already surfaced,
which include reducing the number of qubits, improving error tolerance, generalisations to other related

problems and proving the number theory assumption in Regev’s original paper. This review article aims

to give an overview of Regev’s factoring algorithm and its follow-up developments. This will be done
in a way that is more accessible to people who are just getting into the field of quantum computing, or

to researchers who are not familiar with these ideas. The hope is to push quantum computing forward

by drawing more attention and effort.

In the following, Shor’s factoring algorithm will be reviewed. An overview of Regev’s factoring
algorithm is then given. Afterwards, the results in the two main follow-up papers, Ragavan and

Vaikuntanathan, and Ekerå and Gärtner, are summarised. Finally, a discussion on existing knowledge

and potential future developments are given.
This paper provides a comprehensive overview of Regev's recent contributions to quantum factoring,

framed within the context of Shor's pioneering work. It presents an in-depth examination of Regev's

methodology and its core innovations, such as the transition to higher-dimensional structures and the
use of lattice-based techniques. Additionally, the paper highlights subsequent research developments,

including improvements to qubit efficiency, error tolerance, and extensions of Regev's algorithm to

related problems like discrete logarithms [5]. This review aims to offer accessible insights for new

researchers and experts alike, fostering further exploration in the promising domain of quantum
factoring algorithms.

2. Regev’s factoring algorithm

2.1. Review of shor’s factoring algorithm
The order-finding algorithm then then consists of two parts - the quantum procedure and the classical

post-processing. The exponential speedup over classical methods is provided by the quantum procedure.

For the reduction to order-finding to work, there are two constraints [3]. Firstly, 𝑟 is asked to be

even, or equivalently 𝑎 = 𝑏2 mod 𝑁 for some 𝑏; secondly, 𝑏𝑟 ∉ {−1, 1} mod 𝑁. The first condition

implies (𝑏𝑟 − 1)(𝑏𝑟 + 1) = 0mod𝑁 , where the second condition then implies neither bracket is

divisible by 𝑁. Thus, the greatest common divisors gcd(𝑁, 𝑏𝑟 − 1) and gcd(𝑁, 𝑏𝑟 + 1) give non-

trivial factors of 𝑁. For a uniformly chosen 𝑎, the two constraints are satisfied with good probability.

By sampling different values of 𝑎, the reduction argument will work within a reasonable number of
trials.

Figure 1. Quantum Circuit for Shor's Algorithm with Quantum Fourier Transform (QFT) (Photo credit:

Original).

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/110/2024MELB0122

162

The order-finding problem is a case of the structure of the quantum procedure is similar to other

famous quantum algorithms, such as Deutsch-Jozsa and Simon [4]. They all fall into the category of

Hidden Subgroup Problems. Figure 1 shows a sketch for the quantum circuit of Shor's algorithm. For

Shor's algorithm, the black-box has the ability to compute 𝑎𝑧 mod 𝑁 for any 1 ≤ 𝑧 ≤ 𝑁, a process

called modular exponentiation. The quantum procedure can be broken into three parts. First, the first

register is prepared in the state |0⟩, then passed through a Hadamard gate to create the superposition

state 2−𝑛/2 ∑ |𝑧⟩2𝑛−1
𝑧=1 . Next, with the second register set to |0⟩, the two registers are passed through

the black-box; this stores the result of 𝑎𝑧 mod 𝑁 into the second register, resulting in the state

2−𝑛/2 ∑ |𝑧⟩2𝑛−1
𝑧=1 |azmodN⟩. Finally, QFT is applied to the first register, after which the first register is

measured.

The quantum procedure outputs (after dividing by 𝑁) an estimation to 𝑐/𝑟, where 𝑐 is a random

number in 0,1, ⋯ , 𝑟 − 1 determined by the measurement process at the end. When the estimation is

close enough to 𝑐/𝑟, the Continued Fraction Algorithm can be used to recover 𝑐/𝑟 from the estimation.
Note that this is the classical-post processing - computations are done classically rather than quantumly

[5]. At the end, the order 𝑟 can be retrieved from 𝑐/𝑟 provided 𝑐 is coprime to 𝑟 . The two

requirements that the estimation is accurate enough, and that 𝑐 is coprime to 𝑟, can be shown to happen
with good probability.

Since building quantum devices is much harder than building classical computers, the priority is to

try to reduce the amount of quantum resources needed. Of course, this is no use if the classical post-

processing part cannot be done efficiently; this is not an issue in the case of the Continued Fraction

Algorithm. The black-box is where the 𝑂(𝑛2 log 𝑛) gates in Shor's algorithm comes from. Modular

exponentiation is typically done via repeated squaring, outlined below:

Set the register to 1.

Write the exponent 𝑧 in binary, 𝑧1𝑧2 … 𝑧𝑛.
For each 𝑗 from 1 to 𝑛, do:

(i). Square the register;

(ii). If 𝑧𝑗 = 1, multiply the register by 𝑎; do nothing if 𝑧𝑗 = 0.

In general, all intermediate results need to be stored using 𝑛 bits; therefore, this process involves

𝑂(𝑛) multiplications between 𝑛 -bit integers. Using fast multiplication, each multiplication costs

𝑂(𝑛 log 𝑛) gates, giving 𝑂(𝑛2 log 𝑛) gates in total.

2.2. Overview of regev’s factoring algorithm

To reduce the number of gates used in the black-box, Regev applied two key ideas: moving to higher

dimensions and keeping the numbers stored small.
Firstly, Shor's algorithm is simply generalised to having multiple variables. Instead of choosing one

number 𝑎 = 𝑏2 mod 𝑁, Regev chose 𝑑 numbers 𝑎1, 𝑎2, … , 𝑎𝑑 with 𝑎𝑖 = 𝑏𝑖
2 mod 𝑁. The black-

box is generalised to compute ∏ 𝑎𝑖
𝑧𝑖 mod 𝑁𝑑

𝑖=1 for 𝑧 ∈ ℤ𝑑. This is done via repeated squaring again:

Set the register to 1,
For each exponent 𝑧𝑖 , Write 𝑧𝑖 in binary, 𝑧𝑖1 𝑧𝑖2 … 𝑧𝑖𝑛.

For each 𝑗 from 1 to 𝑛, do:

Square the register;

Compute ∏ 𝑎
𝑖

𝑧𝑖𝑗 mod 𝑁𝑑
𝑖=1 ;

Multiply the register by ∏ 𝑎
𝑖

𝑧𝑖𝑗 mod 𝑁𝑑
𝑖=1 .

He then worked in multi-dimensional structures called lattices. Lattice is a mathematical concept that

already had wide applications in classical computing like lattice cryptography. Regev defined the two

lattices [6]:

 ℒ = {(𝑧1, 𝑧2, … , 𝑧𝑑) ∈ ℤ𝑑 ∣ ∏ 𝑎𝑖
𝑧𝑖𝑑

𝑖=1
= 1 mod 𝑁} (1)

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/110/2024MELB0122

163

 ℒ0 = {(𝑧1, 𝑧2, … , 𝑧𝑑) ∈ ℤ𝑑 ∣ ∏ 𝑏𝑖
𝑧𝑖𝑑

𝑖=1
∈ {−1,1} mod 𝑁} (2)

Figure 2 visualises one possibility for the two lattices in the case 𝑑 = 2. Throughout this section, it

is very helpful to try the case 𝑑 = 1, which often directly corresponds to Shor's algorithm. Table 1

compares various aspects of Regev's algorithm to Shor's algorithm. In this way, Regev reduced the

factoring problem to a problem of finding elements in ℒ ∖ ℒ0.

Figure 2. Modular Arithmetic Visualization (Photo credit: Original).

Table 1. A table comparing various aspects of Shor's algorithm and Regev's algorithm.

Stage Regev's Shor's

Initialisation of States

(proportional to)
∑𝑧∈{−𝐷/2,…,𝐷/2−1}′  𝜌𝑠(𝑧)|𝑧⟩ ∑𝑧∈{0,…,𝑧𝑛−1}  |𝑧⟩

Computation of Black-Box 𝑓(𝑧) = ∏𝑖=1
𝑑  𝑎𝑖

𝑧𝑠mod𝑁 𝑓(𝑧) = 𝑎𝑧mod𝑁

Lattice / Hidden Subgroup ℒ 𝑟𝑍

Dual Lattice ℒ∗
1

𝑟
𝑍

Output of Quantum Procedure approximation of some 𝑣 ∈ ℒ∗/𝑍𝑑 approximation of 𝑐/𝑟 for some c

Repeat Quantum Procedure
repeat 𝑑 + 4 times to get {𝑣𝑖}

generating the dual lattice

repeat constant number of

times to

get 𝑐 coprime to 𝑟

Recover Lattice from the Dual
Forming the lattice ℒ′ and

applying the LLL Algorithm

Continued Fraction Algorithm

Figure 2 demonstrates this in two dimensions. In fact, a pigeon-hole argument shows that there exist

a non-zero vector 𝑧 ∈ ℒ with |𝑧𝑖| ≤ 2
𝑛

𝑑. Fewer squaring operations are required to get to this exponent,

which reduces the number of squaring operations in the black-box [7]. For Regev’s argument, the

exponents actually have to go up to 𝐷, a number greater than 2
𝑛

𝑑.

However, the total number of multiplications remains 𝑂(𝑛). The products ∏ 𝑎
𝑖

𝑧𝑖𝑗 mod 𝑁𝑑
𝑖=1

require in general 𝑑 multiplications, which is a factor not present in Shor's algorithm (the case 𝑑 = 1).

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/110/2024MELB0122

164

Fortunately, Regev's second ingredient does the trick. In Shor's algorithm, the number 𝑎 was chosen

randomly. However, in Regev's algorithm, the numbers 𝑏𝑖 (and so 𝑎𝑖) were deliberately chosen to be

fixed small numbers, more precisely 𝑂(log 𝑑)-bit integers. The idea is that while the total number of
multiplications was not reduced, the number of gates can be reduced by distributing and reordering the

multiplications, in a way that maximises the number of small-number multiplications. Using a binary

tree method, the products ∏ 𝑎
𝑖

𝑧𝑖𝑗
 mod 𝑁𝑑

𝑖=1 can be computed by only 𝑂(𝑑log3𝑑)gates. As explained

later, choosing 𝑑 = √𝑛 turns out to be optimal. In this way, Regev managed to construct a black-box

using only 𝑂(𝑛3/2 log 𝑛) gates.

However, asking 𝑏𝑖 to be small came at a cost. Although it was shown that there are vectors in ℒ

of norm at most 2𝑂(𝑛/𝑑) , they are not necessarily helpful for factoring. Recall that the reduction

argument works for only vectors in ℒ ∖ ℒ0 . Regev had to rely on a number theory assumption: that

there exists a vector in ℒ ∖ ℒ0 of norm at most 𝑇 = 2𝑂(𝑛/𝑑). This is true if the numbers 𝑏𝑖 were
sampled uniformly instead of asked to be small.

Figure 3. Quantum Circuit for Shor’s Algorithm with State Preparation and Quantum Fourier Transform

(QFT) (Photo credit: Original).

Provided the assumption holds, Regev's algorithm works unconditionally, with fewer gates in the
black-box compared to Shor's. The quantum procedure in Regev's algorithm is now described. The

overall structure of the quantum procedure is very similar to Shor's, as shown in Figure 3. However, the

specific implementations are more sophisticated due to the added dimensions.
(INSERT equation for Gaussian). Discrete Gaussian distributions already had applications in

classical lattice problems before Regev's paper, see for example [8, 9]. Importantly, Gaussian

distributions are computationally nice, for example the Fourier transform of a Gaussian distribution is
(up to a multiplicative constant) Gaussian. These properties heavily simplified the calculations in

Regev’s proofs.

After the improved black-box, a multi-dimensional version of QFT is applied to the first register.

Formally, the dual lattice for a given lattice ℒ is defined as

 ℒ∗ = {𝑤 ∈ ℝ𝑑 ∣ ∀𝑧 ∈ ℒ, ⟨𝑤, 𝑧⟩ ∈ ℤ} (3)

Which is another lattice of the same dimension. Table 1 highlights how Shor's algorithm gives a

demonstration of the dual lattice in the case 𝑑 = 1. The element from ℒ∗ is chosen uniformly from a
list of possibilities, just as in the case of Shor's.

The classical post-processing is then responsible for recovering an element in ℒ ∖ ℒ0 from the

estimation to ℒ∗. This requires a more sophisticated argument than in the case of Shor's. Firstly, the

entire quantum procedure is repeated 𝑑 + 4 times. To be able to gain enough information about ℒ∗, at

least 𝑑 runs of the quantum procedure is needed as ℒ∗ is 𝑑-dimensional. Since the elements from ℒ∗

are chosen randomly, there are an additional 4 runs to make sure the entire lattice can be generated

with probability at least 1/2. This gives a noisy sample of the dual lattice. Secondly, by cleverly

constructing a new lattice ℒ′, Regev was able to recover certain vectors in the original lattice from the

noisy sample of the dual lattice.

This is thought to be hard, however the LLL algorithm provides a way to approximate the length of

the shortest vector. When the lattice is 𝑑-dimensional, this length is approximated to within a factor of

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/110/2024MELB0122

165

2𝑑 . This agrees with the intuition that it is harder to recover information from higher-dimensional lattices.

Thus, while having more dimensions seemingly improves the black-box by only contributing a factor

of 2
𝑛

𝑑, the advantage starts to fade for large 𝑑 due to the factor of 2𝑑 . This effectively fixes the optimal

choice 𝑑 = √𝑛.
By applying the LLL algorithm (runs in polynomial time) in place of the Continued Fraction

Algorithm, the classical post-processing is able to recover a short vector from ℒ ∖ ℒ0, which can then

be used to factor 𝑁.
Like in Shor's algorithm, several steps in Regev's algorithm are not guaranteed to work. However,

overall the algorithm fails with bounded probability, and it is easy to check whether the algorithm has

succeeded.

2.3. Discussion
This section contains several remarks.

However, having only 𝑂 (𝑛
3

2 log 𝑛) gates in each run of the circuit is better for several reasons.

Importantly, we expect quantum error correction to work better for smaller circuits, and that fewer errors

would occur. On the other hand, the (√𝑛 + 4) repetitions can be run in parallel, saving overall runtime.

Secondly, the total number of qubits used in Regev's algorithm was 𝑂 (𝑛
3

2) - for Shor's it was only

𝑂(𝑛) [10]. Fortunately, this has been reduced by Ragavan and Vaikuntanathan, making practical
implementations of Regev's algorithm much more likely [11]. Ragavan and Vaikuntanathan also

modified the classical post-processing part to make it more noise-robust [12].

Altogether, it must be said that the analysis was asymptotic. Hidden constants like the constant 𝐶 in

𝑅 = 2𝐶√𝑛 can make Regev's algorithm less effective for factoring small numbers.

One potential investigation is to replace the Gaussian superposition with a uniform superposition,
reverting to Shor's approach.

In 2024, Pilatte managed to prove the number theory assumption for a modified version of Regev's

algorithm. In the proof, he used a less restrictive bound on the numbers 𝑏𝑖. This was not ideal for

practical applications, as the increased size in 𝑏𝑖 also increased the circuit size. For Regev's algorithm

to be both unconditionally correct and practical, a proof for a stronger result is needed.

Lastly, Regev's factoring algorithm was extended to other related problems like discrete logarithm,

by Ekerå and Gärtner [13].

3. Further developments

3.1. Reducing the number of qubits

To analyze the number of qubits used in a quantum circuit, often one starts from the corresponding
classical circuit. The key characteristics in quantum computing is that computations are reversible,

something not required for classical circuits. To convert a classical circuit with 𝐺 gates and 𝑆 bits into

a quantum one, irreversible gates are replaced with reversible ones, and ancilla qubits are added to keep

information around. The details can be found in [14].
The problem with Regev’s circuit originates from the black-box yet again. The first register uses

log 𝐷√𝑛 = 𝑂(𝑛) qubits and the second register uses 𝑛 qubits; each fast multiplication circuit uses

𝑂(𝑛 log 𝑛) ancilla qubits. This apparently results in 𝑂(𝑛 log 𝑛) qubits. Unfortunately, while modular

multiplication can be done in-place, modular squaring cannot. Here, in-place means that the outcome of
the operation is stored in the input register, whereas out-of-place means storing the outcome in a new

register. It is difficult to make modular squaring reversible and in-place. The square root of a number

modulo 𝑁 is not necessarily unique, and to find even one of them is hard. Thus, for each squaring

operation done in the black-box, the result needs to be stored in a separate register. Since there are

𝑂(√𝑛) squaring operations and each result occupies 𝑂(𝑛) qubits, at least 𝑂 (𝑛
3

2) qubits are needed.

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/110/2024MELB0122

166

To avoid this, Ragavan and Vaikuntanathan exploited the fact that in-place, reversible modular

multiplications are easier to implement than modular squaring [15]. The idea is to use Fibonacci numbers

instead of the powers of 2, something that appeared in the work of Kaliski [16]. In the following, every

state is reduced modulo 𝑁, so the notation is omitted. To start, two registers are initialised to |𝑎⟩|𝑎⟩.
Afterwards, repeatedly multiply the two registers together and store the result in the appropriate register.

An example run would be |𝑎⟩|𝑎⟩ ↦ |𝑎2⟩|𝑎⟩ ↦ |𝑎2⟩|𝑎3⟩ ↦ |𝑎5⟩|𝑎3⟩. This generates the Fibonacci

sequence, which grows slightly slower than the powers of 2, but still gets to the desired power of 𝑎

very efficiently. At the expense of an additional register, all squaring operations have been converted to
multiplications.

It can be proven by induction that every positive integer has such a decomposition, which can be

easily found by a greedy algorithm: repeatedly finding the largest Fibonacci number smaller than the
current number, then subtracting off this Fibonacci number from the current number. This

decomposition can be written as 𝑧𝑖 = ∑ 𝑧𝑖𝑗𝐹𝑗
𝐾
𝑗=1 , where 𝑧𝑖𝑗 ∈ −1,1, 𝐹𝑗 is the 𝑗th Fibonacci number,

and 𝐾 is the largest such that 𝐹𝐾 ≤ 𝐷. By using Binet’s formula, it can be shown that 𝐾 = 𝑂(√𝑛).

This decomposition is used to compute ∏ 𝑎𝑖
𝑧𝑖𝑑

𝑖=1 mod 𝑁:

 ∏ 𝑎𝑖
𝑧𝑖𝑑

𝑖=1
= ∏ ∏ 𝑎

𝑖

𝑧𝑖𝑗𝐹𝑗 =𝐾
𝑗=1

𝑑
𝑖=1

 ∏ (∏ 𝑎
𝑖

𝑧𝑖𝑗𝑑
𝑖=1

)
𝐹𝑗𝐾

𝑗=1
= ∏ 𝑐

𝑗

𝐹𝑗𝐾
𝑗=1

 (4)

Defining the numbers 𝑐𝑗 . Note that each 𝑐𝑗 can be computed exactly as in Regev’s original

algorithm, the only difference being the individual 𝑧𝑖𝑗 might not agree. This means the small numbers

𝑎𝑖 can again be exploited to compute each 𝑐𝑗 efficiently. The whole product can then be computed

using the idea of Fibonacci exponentiation.

By analysing other multiplication algorithms, the number of qubits can be further reduced to 𝑂(𝑛),
though at the expense of having more gates.

3.2. Results on noise tolerance

For Regev’s original algorithm, all √𝑛 + 4 runs of the quantum procedure need to be successful for the

classical post-processing. This is not ideal in practice as quantum systems are exposed to noise from the

environment, making some or all samples corrupted. Ragavan and Vaikuntanathan also managed to
improve on noise-tolerance by showing that under certain assumptions on the noise, a modified version

of Regev’s classical post-processing can work even when a fraction of the sample is corrupted. This

involves running an algorithm that filters out the corrupted samples.

By definition, if 𝑣𝑖 is in the dual lattice, then ⟨𝑢, 𝑣𝑖⟩is an integer for any vector 𝑢 in the lattice. A

key idea in Regev’s classical post-processing was that for any 𝑢 not in the lattice, then one can expect

that there is some 𝑣𝑖 in the dual lattice such that ⟨𝑢, 𝑣𝑖⟩ is not close to any integer. This gives the

ability to recognise which vectors 𝑢 are in the lattice and which are not.

Assume for simplicity that now there is an error in the form of a uniformly chosen vector in [0,1]𝑑,

which occurs with probability 𝑝. The key idea is that if all the samples 𝑣𝑖 from the dual lattice are not

corrupted, then by a pigeon-hole argument, a small-number linear combination of these vectors gives a

vector in ℤ𝑑. This implies that the linear combination of the noisy samples 𝑤𝑖 gives a vector close to

ℤ𝑑. However, even one corrupted sample would mean that any linear combination of the samples is

uniformly distributed in [0,1]𝑑 , and thus unlikely to be close to ℤ𝑑 . Ragavan and Vaikuntanathan
generalised the case of uniformly distributed error by intuitively abstracting the property that the error

distribution is ‘well-spread’ with respect to the lattice. This gave a way to detect corrupted samples

under a mild assumption on the error distribution.

Regev used the fact that √𝑛 + 4 samples of the dual lattice are enough to generate it with probability

at least 1/2. The case of Ragavan and Vaikuntanathan is different, since they first obtained 𝛼√𝑛

samples from the quantum procedure, for some 𝛼 > 1, then selected a subset of 𝛾𝑑 samples, which

are assumed to be uncorrupted by running the error detection algorithm. Thus, a stronger version of the

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/110/2024MELB0122

167

fact was applied – that provided 𝛾 is close enough to 𝛼, any such subset of 𝛾𝑑 samples generate the

dual lattice with probability at least 1/2. Finally, by assuming the error probability 𝑝 is small enough,

there are likely enough uncorrupted samples to make up a subset of 𝛾𝑑, completing the argument. Once
the subset of uncorrupted samples is obtained, Regev’s classical post-processing can be applied with

little modifications – the central argument is still running LLL to obtain a short basis for the original

lattice.

Independently, Ekerå and Gärtner also discussed error-robustness of Regev’s algorithm. However,
this relied on assumptions on the structure of the lattice and the error distribution, in particular the

number theory assumption that the lattice ℒ has a short basis, which is stronger than Regev’s number

theory assumption. As commented by Ragavan and Vaikuntanathan, this should be seen as a distinct
contribution to noise-tolerance of Regev’s algorithm.

3.3. Extension to discrete logarithm

Like order-finding, this problem can be state in general groups. For simplicity, only the version in ℤ𝑝
∗ =

1, ⋯ , 𝑝 − 1 is stated here: given 𝑔 ∈ ℤ𝑝
∗ and 𝑥 = 𝑔𝑒 for some unknown 𝑒, determine 𝑒 = log

g
𝑥.

Note that 𝑟 - the order of 𝑔 - is assumed to be known, which can be found by first running the order-

finding quantum algorithm.
Shor’s approach was to essentially apply the two copies of order-finding circuit to two separate

registers, one responsible for exponentiating 𝑔 and the other responsible for exponentiating 𝑥. For two

integers 𝑎 and 𝑏, the black-box computes 𝑔𝑎𝑥𝑏 mod 𝑁 and stores the result in a third register. At the

end, QFT is applied to each of the first two registers, then the results are measured. This obtains two

approximations, one to 𝑐/𝑟 and one to 𝑒𝑐/𝑟. The Continued Fraction Algorithm can then be applied

to recover these two fractions, after which 𝑒 can be found.

There were two approaches, one with pre-computation and one without. The one without pre-

computations (other than finding 𝑟) is presented here.

To be able to exponentiate 𝑥 and 𝑔, which are not necessarily small, the small-number restriction

in Regev’s algorithm must be relaxed a bit. Notice that not all number 𝑏𝑖 need to be small – there can

be a constant number of them being large, without affecting the asymptotic size of the circuit. Thus,
Ekerå and Gärtner proposed to look at the lattice

 ℒ𝑥,𝑔 = {(𝑧1, 𝑧2, … , 𝑧𝑑) ∈ ℤ𝑑 ∣ x
zd−1 g

zd ∏ 𝑎𝑖
𝑧𝑖𝑑−2

𝑖=1
= 1 mod 𝑁} (5)

Where 𝑎𝑖 are 𝑂(log 𝑑)-bit integers as before. The black-box then computes this new product

modulo 𝑁, where the product of 𝑎𝑖 can be computed efficiently as in Regev’s algorithm, and xzd−1

and gzd are computed using the typical repeated squaring. The number of qubits is also subject to the

optimisation of Ragavan and Vaikuntanathan.
Fortunately, a version of the assumption has been proven by Pilatte, again under the relaxation that

𝑎𝑖 are slightly larger numbers. Under this assumption, the number 𝑒 can then be retrieved. The

quantum procedure and classical post-processing work the same as in Regev’s algorithm. Using the LLL

algorithm, a short basis for ℒ𝑥,𝑔 can be recovered. Finally, this basis can be used to find

(0, … ,0, 1, −𝑒) ∈ ℒ𝑥,𝑔 and therefore 𝑒, which just follows from solving a linear system of equations.

The change of bases formula for logarithm can be exploited to further optimise the algorithm. By

using e = logg 𝑥 = logg′ 𝑥 / logg′ 𝑔 , the number 𝑔 can be replaced by a small number 𝑔′ , and

logg′ 𝑔 can be pre-computed. Less resources are then needed to compute logg′ 𝑥

4. Conclusion

This paper has provided a comprehensive overview of Regev's recent advancements in quantum

factoring algorithms, building on Shor's foundational work. By introducing multi-dimensional structures

and utilizing lattice-based techniques, Regev has significantly reduced the gate complexity for quantum

factoring. This advancement represents a major step forward in quantum computing, offering potential

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/110/2024MELB0122

168

efficiency improvements over Shor’s algorithm despite the increased qubit requirements and reliance

on an unproven number theory assumption. In addition, recent developments by Ragavan and

Vaikuntanathan, Ekerå and Gärtner, and Pilatte have further refined Regev's approach, focusing on
reducing qubit counts, enhancing noise tolerance, and extending the algorithm to other problems, like

discrete logarithms. These contributions collectively push the boundaries of quantum computing,

making the practical implementation of quantum factoring more feasible. Looking ahead, several
intriguing research directions remain. Future work could explore alternative initialization strategies,

such as replacing the Gaussian superposition with uniform superpositions, to streamline the algorithm

further. Additionally, improving the proof of Regev's number theory assumption for smaller numbers or

finding ways to strengthen Pilatte’s results on correctness could bolster the algorithm’s practical utility.
Exploring other optimizations for error tolerance and robustness will also be crucial as quantum

hardware continues to evolve. By addressing these challenges, researchers can continue to refine Regev's

algorithm, paving the way for broader applications and advancements in quantum cryptography and
computation.

References

[1] Aharonov D, Regev O 2005 Lattice Problems in NP coNP [online] Available: https://cims.nyu.
edu/~regev/papers/cvpconp.pdf

[2] Ekerå M, Gärtner J 2024 Extending Regev’s Factoring Algorithm to Compute Discrete

Logarithms Post-Quantum Cryptography Springer Nature Switzerland pp 211–242 ISBN

9783031627460 DOI 10.1007/978-3-031-62746-0_10 [online] Available: http://dx.doi.org/10.
1007/978-3-031-62746-0_10

[3] Kiebert M 2024 Oded Regev’s Quantum Factoring Algorithm [online] Available: https://

vdwetering.name/pdfs/thesis-midas.pdf
[4] Nielsen MA, Chuang IL 2000 Quantum Computation and Quantum Information Cambridge

University Press

[5] Pilatte C 2024 Unconditional correctness of recent quantum algorithms for factoring and

computing discrete logarithms [online] Available: https://arxiv.org/pdf/2404.16450v1
[6] Ragavan S, Vaikuntanathan V 2024 Space-Efficient and Noise-Robust Quantum Factoring

arXiv:2310.00899 [quant-ph] [online] Available: https://arxiv.org/abs/2310.00899

[7] Regev O 2023 An Efficient Quantum Factoring Algorithm arXiv:2308.06572 [quant-ph] [online]
Available: https://arxiv.org/abs/2308.06572

[8] Regev O 2004 Lecture 2: LLL Algorithm [online] Available: https://cims.nyu.edu/~regev/

teaching/lattices_fall_2004/ln/lll.pdf
[9] Kaye P, Laflamme R, Mosca M 2007 An Introduction to Quantum Computing Oxford University

Press

[10] Harvey D, van der Hoeven J 2021 Integer multiplication in time O(n log n) Annals of Mathematics

2(193) 563–617
[11] Shor PW 1994 Algorithms for quantum computation: Discrete logarithms and factoring 35th

Annual Symposium on Foundations of Computer Science Santa Fe, New Mexico, USA IEEE

Computer Society pp 124–134
[12] Pomerance C 2001 The expected number of random elements to generate a finite abelian group

Periodica Mathematica Hungarica 43(1-2) 191–198

[13] Zeckendorf E 1972 Representations of natural numbers by a sum of Fibonacci numbers and Lucas
numbers Bulletin of the Royal Society of Sciences of Liege 179–182

[14] Kaliski BS Jr 2017 Targeted Fibonacci exponentiation arXiv preprint arXiv:1711.02491

[15] Acciaro V 1996 The probability of generating some common families of finite groups Utilitas

Mathematica 243–254
[16] Regev O 2024 Presentation at Simons Institute: An Efficient Quantum Factoring Algorithm —

Quantum Colloquium [online] Available: https://www.youtube.com/watch?v=Uzn93GjAfRg)

Proceedings of CONF-MLA 2024 Workshop: Securing the Future: Empowering Cyber Defense with Machine Learning and Deep Learning
DOI: 10.54254/2755-2721/110/2024MELB0122

169

