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Abstract. Factoring large integers has long been a computationally difficult problem in classical 

computing, forming the foundation of widely used encryption methods like RSA. In 1994, Shor’s 

quantum algorithm introduced a revolutionary method for factoring integers exponentially faster 
than classical algorithms, laying the groundwork for quantum cryptography. Despite numerous 

attempts to enhance Shor’s algorithm over the last three decades, significant breakthroughs 

remained elusive until Regev’s discovery in 2023. Regev introduced a novel, multi-dimensional 

version of the quantum factoring algorithm, achieving a substantial improvement by reducing 

the required number of quantum gates to 𝑂(𝑛2lo g 𝑛), compared to Shor’s original𝑂(𝑛2lo g 𝑛) 

gate complexity. Although Regev’s approach offers a significant speedup, it comes with 

increased qubit requirements and relies on an unproven number theory assumption. This paper 

presents an overview of Regev’s factoring algorithm, including a review of Shor’s work for 

context, followed by an examination of key recent developments and follow-up research. These 

include efforts to reduce the qubit count, improve error resilience, generalize Regev’s algorithm 

to related problems, and validate the number theory assumption. This review serves as an 

accessible entry point for researchers interested in the rapidly evolving field of quantum 

computing and factoring algorithms. 
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1.  Introduction 

The factorization of large integers is a long-standing challenge in classical computing, and it underpins 

the security of widely utilized encryption methods, such as the RSA algorithm [1]. The classical 
difficulty of factoring large numbers ensures that RSA remains robust against conventional attacks. In 

1994, Shor introduced a groundbreaking quantum algorithm that could factor large integers 

exponentially faster than any known classical algorithm, sparking significant interest in quantum 

cryptography and quantum computing [2]. Shor's algorithm, by harnessing quantum mechanics, posed 
a potential threat to RSA encryption by demonstrating an efficient means of factoring via quantum 

computation. 

Since the inception of Shor's algorithm, researchers have made various attempts to enhance its 
efficiency, primarily aiming to reduce the number of quantum gates required. Despite this, substantial 

progress on Shor's original approach has proven elusive over the years. The problem of factoring large 

integers is thought to be hard classically. This difficulty establishes the basis of the RSA encryption 

algorithm [1]. In 1994, Shor published his famous quantum factoring algorithm, establishing an 
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exponential speedup over classical methods. Over the years, there had been multiple attempts to improve 

and optimise Shor’s algorithm, for example trying to reduce the total number of quantum gates required. 

When the number to be factorised is an n-bit number N, the original Shor’s algorithm uses 𝑂(𝑛2 log 𝑛) 
quantum gates. Despite previous efforts, no one had managed to cut this down by a polynomial factor. 

This provides the first substantial speedup in nearly 30 years. 

To design good quantum algorithms, a lot of factors need to be considered. As a newly established 
result, a lot of improvements could be made on Regev’s factoring algorithm [2]. For example, Regev’s 

circuit required 𝑂 (𝑛
3

2)qubits, an increase from the 𝑂(𝑛) required in Shor’s; an unproven number 

theory assumption was also crucial in the argument. Several follow-up results have already surfaced, 
which include reducing the number of qubits, improving error tolerance, generalisations to other related 

problems and proving the number theory assumption in Regev’s original paper. This review article aims 

to give an overview of Regev’s factoring algorithm and its follow-up developments. This will be done 
in a way that is more accessible to people who are just getting into the field of quantum computing, or 

to researchers who are not familiar with these ideas. The hope is to push quantum computing forward 

by drawing more attention and effort. 

In the following, Shor’s factoring algorithm will be reviewed. An overview of Regev’s factoring 
algorithm is then given. Afterwards, the results in the two main follow-up papers, Ragavan and 

Vaikuntanathan, and Ekerå and Gärtner, are summarised. Finally, a discussion on existing knowledge 

and potential future developments are given. 
This paper provides a comprehensive overview of Regev's recent contributions to quantum factoring, 

framed within the context of Shor's pioneering work. It presents an in-depth examination of Regev's 

methodology and its core innovations, such as the transition to higher-dimensional structures and the 
use of lattice-based techniques. Additionally, the paper highlights subsequent research developments, 

including improvements to qubit efficiency, error tolerance, and extensions of Regev's algorithm to 

related problems like discrete logarithms [5]. This review aims to offer accessible insights for new 

researchers and experts alike, fostering further exploration in the promising domain of quantum 
factoring algorithms. 

2.  Regev’s factoring algorithm 

2.1.  Review of shor’s factoring algorithm 
The order-finding algorithm then then consists of two parts - the quantum procedure and the classical 

post-processing. The exponential speedup over classical methods is provided by the quantum procedure. 

For the reduction to order-finding to work, there are two constraints [3]. Firstly, 𝑟 is asked to be 

even, or equivalently 𝑎 =  𝑏2 mod 𝑁 for some 𝑏; secondly, 𝑏𝑟 ∉  {−1, 1} mod 𝑁. The first condition 

implies (𝑏𝑟 − 1)(𝑏𝑟 + 1) = 0mod𝑁 , where the second condition then implies neither bracket is 

divisible by 𝑁. Thus, the greatest common divisors gcd(𝑁, 𝑏𝑟 − 1) and gcd(𝑁, 𝑏𝑟 + 1) give non-

trivial factors of 𝑁. For a uniformly chosen 𝑎, the two constraints are satisfied with good probability. 

By sampling different values of 𝑎, the reduction argument will work within a reasonable number of 
trials. 

 

Figure 1. Quantum Circuit for Shor's Algorithm with Quantum Fourier Transform (QFT) (Photo credit: 

Original). 
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The order-finding problem is a case of the structure of the quantum procedure is similar to other 

famous quantum algorithms, such as Deutsch-Jozsa and Simon [4]. They all fall into the category of 

Hidden Subgroup Problems. Figure 1 shows a sketch for the quantum circuit of Shor's algorithm. For 

Shor's algorithm, the black-box has the ability to compute 𝑎𝑧 mod 𝑁 for any 1 ≤  𝑧 ≤  𝑁, a process 

called modular exponentiation. The quantum procedure can be broken into three parts. First, the first 

register is prepared in the state |0⟩, then passed through a Hadamard gate to create the superposition 

state 2−𝑛/2 ∑ |𝑧⟩2𝑛−1
𝑧=1  . Next, with the second register set to |0⟩,  the two registers are passed through 

the black-box; this stores the result of 𝑎𝑧 mod 𝑁  into the second register, resulting in the state 

2−𝑛/2 ∑ |𝑧⟩2𝑛−1
𝑧=1 |azmodN⟩. Finally, QFT is applied to the first register, after which the first register is 

measured.  

The quantum procedure outputs (after dividing by 𝑁) an estimation to 𝑐/𝑟, where 𝑐 is a random 

number in 0,1, ⋯ , 𝑟 − 1 determined by the measurement process at the end. When the estimation is 

close enough to 𝑐/𝑟, the Continued Fraction Algorithm can be used to recover 𝑐/𝑟 from the estimation. 
Note that this is the classical-post processing - computations are done classically rather than quantumly 

[5]. At the end, the order 𝑟  can be retrieved from 𝑐/𝑟  provided 𝑐  is coprime to 𝑟 . The two 

requirements that the estimation is accurate enough, and that 𝑐 is coprime to 𝑟, can be shown to happen 
with good probability.  

Since building quantum devices is much harder than building classical computers, the priority is to 

try to reduce the amount of quantum resources needed. Of course, this is no use if the classical post-

processing part cannot be done efficiently; this is not an issue in the case of the Continued Fraction 

Algorithm. The black-box is where the 𝑂(𝑛2 log 𝑛) gates in Shor's algorithm comes from. Modular 

exponentiation is typically done via repeated squaring, outlined below: 

Set the register to 1. 

Write the exponent 𝑧 in binary, 𝑧1𝑧2 … 𝑧𝑛. 
For each 𝑗 from 1 to 𝑛, do: 

(i). Square the register; 

(ii). If 𝑧𝑗  =  1, multiply the register by 𝑎; do nothing if 𝑧𝑗  =  0. 

In general, all intermediate results need to be stored using 𝑛 bits; therefore, this process involves 

𝑂(𝑛) multiplications between 𝑛 -bit integers. Using fast multiplication, each multiplication costs 

𝑂(𝑛 log 𝑛) gates, giving 𝑂(𝑛2 log 𝑛) gates in total. 

2.2.  Overview of regev’s factoring algorithm 

To reduce the number of gates used in the black-box, Regev applied two key ideas: moving to higher 

dimensions and keeping the numbers stored small. 
Firstly, Shor's algorithm is simply generalised to having multiple variables. Instead of choosing one 

number 𝑎 =  𝑏2 mod 𝑁, Regev chose 𝑑 numbers 𝑎1, 𝑎2, … , 𝑎𝑑 with 𝑎𝑖  =  𝑏𝑖
2 mod 𝑁. The black-

box is generalised to compute ∏ 𝑎𝑖
𝑧𝑖   mod 𝑁𝑑

𝑖=1   for 𝑧 ∈ ℤ𝑑. This is done via repeated squaring again: 

Set the register to 1, 
For each exponent 𝑧𝑖 , Write 𝑧𝑖 in binary, 𝑧𝑖1 𝑧𝑖2 … 𝑧𝑖𝑛. 

For each 𝑗 from 1 to 𝑛, do: 

Square the register; 

Compute ∏ 𝑎
𝑖

𝑧𝑖𝑗   mod 𝑁𝑑
𝑖=1  ; 

Multiply the register by ∏ 𝑎
𝑖

𝑧𝑖𝑗   mod 𝑁𝑑
𝑖=1 . 

He then worked in multi-dimensional structures called lattices. Lattice is a mathematical concept that 

already had wide applications in classical computing like lattice cryptography. Regev defined the two 

lattices [6]: 

 ℒ = {(𝑧1, 𝑧2, … , 𝑧𝑑) ∈ ℤ𝑑 ∣ ∏ 𝑎𝑖
𝑧𝑖𝑑

𝑖=1
= 1 mod 𝑁} (1) 
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 ℒ0 = {(𝑧1, 𝑧2, … , 𝑧𝑑) ∈ ℤ𝑑 ∣ ∏ 𝑏𝑖
𝑧𝑖𝑑

𝑖=1
∈ {−1,1} mod 𝑁} (2) 

Figure 2 visualises one possibility for the two lattices in the case 𝑑 = 2. Throughout this section, it 

is very helpful to try the case 𝑑 = 1, which often directly corresponds to Shor's algorithm. Table 1 

compares various aspects of Regev's algorithm to Shor's algorithm. In this way, Regev reduced the 

factoring problem to a problem of finding elements in ℒ ∖  ℒ0. 

 

Figure 2. Modular Arithmetic Visualization (Photo credit: Original). 

Table 1. A table comparing various aspects of Shor's algorithm and Regev's algorithm. 

Stage Regev's Shor's 

Initialisation of States 

(proportional to) 
∑𝑧∈{−𝐷/2,…,𝐷/2−1}′  𝜌𝑠(𝑧)|𝑧⟩ ∑𝑧∈{0,…,𝑧𝑛−1}  |𝑧⟩ 

Computation of Black-Box 𝑓(𝑧) = ∏𝑖=1
𝑑  𝑎𝑖

𝑧𝑠mod𝑁 𝑓(𝑧) = 𝑎𝑧mod𝑁 

Lattice / Hidden Subgroup ℒ 𝑟𝑍 

Dual Lattice ℒ∗ 
1

𝑟
𝑍 

Output of Quantum Procedure approximation of some 𝑣 ∈ ℒ∗/𝑍𝑑 approximation of 𝑐/𝑟 for some c 

Repeat Quantum Procedure 
repeat 𝑑 + 4 times to get {𝑣𝑖} 

generating the dual lattice 
 

repeat constant number of 

times to 

get 𝑐 coprime to 𝑟 
 

Recover Lattice from the Dual 
Forming the lattice ℒ′ and 

applying the LLL Algorithm 
 

Continued Fraction Algorithm 

 

Figure 2 demonstrates this in two dimensions. In fact, a pigeon-hole argument shows that there exist 

a non-zero vector 𝑧 ∈ ℒ with |𝑧𝑖| ≤  2
𝑛

𝑑. Fewer squaring operations are required to get to this exponent, 

which reduces the number of squaring operations in the black-box [7]. For Regev’s argument, the 

exponents actually have to go up to 𝐷, a number greater than 2
𝑛

𝑑.  

However, the total number of multiplications remains 𝑂(𝑛). The products ∏ 𝑎
𝑖

𝑧𝑖𝑗   mod 𝑁𝑑
𝑖=1  

require in general 𝑑 multiplications, which is a factor not present in Shor's algorithm (the case 𝑑 = 1). 
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Fortunately, Regev's second ingredient does the trick. In Shor's algorithm, the number 𝑎 was chosen 

randomly. However, in Regev's algorithm, the numbers 𝑏𝑖 (and so 𝑎𝑖) were deliberately chosen to be 

fixed small numbers, more precisely 𝑂(log 𝑑)-bit integers. The idea is that while the total number of 
multiplications was not reduced, the number of gates can be reduced by distributing and reordering the 

multiplications, in a way that maximises the number of small-number multiplications. Using a binary 

tree method, the products ∏ 𝑎
𝑖

𝑧𝑖𝑗
  mod 𝑁𝑑

𝑖=1  can be computed by only 𝑂(𝑑log3𝑑)gates. As explained 

later, choosing 𝑑 = √𝑛 turns out to be optimal. In this way, Regev managed to construct a black-box 

using only 𝑂(𝑛3/2 log 𝑛) gates. 

However, asking 𝑏𝑖 to be small came at a cost. Although it was shown that there are vectors in ℒ 

of norm at most 2𝑂(𝑛/𝑑) , they are not necessarily helpful for factoring. Recall that the reduction 

argument works for only vectors in ℒ ∖ ℒ0 . Regev had to rely on a number theory assumption: that 

there exists a vector in ℒ ∖ ℒ0 of norm at most 𝑇 = 2𝑂(𝑛/𝑑). This is true if the numbers 𝑏𝑖 were 
sampled uniformly instead of asked to be small. 

 

Figure 3. Quantum Circuit for Shor’s Algorithm with State Preparation and Quantum Fourier Transform 

(QFT) (Photo credit: Original). 

Provided the assumption holds, Regev's algorithm works unconditionally, with fewer gates in the 
black-box compared to Shor's. The quantum procedure in Regev's algorithm is now described. The 

overall structure of the quantum procedure is very similar to Shor's, as shown in Figure 3. However, the 

specific implementations are more sophisticated due to the added dimensions. 
(INSERT equation for Gaussian). Discrete Gaussian distributions already had applications in 

classical lattice problems before Regev's paper, see for example [8, 9]. Importantly, Gaussian 

distributions are computationally nice, for example the Fourier transform of a Gaussian distribution is 
(up to a multiplicative constant) Gaussian. These properties heavily simplified the calculations in 

Regev’s proofs. 

After the improved black-box, a multi-dimensional version of QFT is applied to the first register. 

Formally, the dual lattice for a given lattice ℒ is defined as  

 ℒ∗ = {𝑤 ∈ ℝ𝑑 ∣ ∀𝑧 ∈ ℒ, ⟨𝑤, 𝑧⟩ ∈ ℤ} (3) 

Which is another lattice of the same dimension. Table 1 highlights how Shor's algorithm gives a 

demonstration of the dual lattice in the case 𝑑 = 1. The element from ℒ∗ is chosen uniformly from a 
list of possibilities, just as in the case of Shor's. 

The classical post-processing is then responsible for recovering an element in ℒ ∖ ℒ0  from the 

estimation to ℒ∗. This requires a more sophisticated argument than in the case of Shor's. Firstly, the 

entire quantum procedure is repeated 𝑑 + 4 times. To be able to gain enough information about ℒ∗, at 

least 𝑑 runs of the quantum procedure is needed as ℒ∗ is 𝑑-dimensional. Since the elements from ℒ∗ 

are chosen randomly, there are an additional 4 runs to make sure the entire lattice can be generated 

with probability at least 1/2. This gives a noisy sample of the dual lattice. Secondly, by cleverly 

constructing a new lattice ℒ′, Regev was able to recover certain vectors in the original lattice from the 

noisy sample of the dual lattice.  

This is thought to be hard, however the LLL algorithm provides a way to approximate the length of 

the shortest vector. When the lattice is 𝑑-dimensional, this length is approximated to within a factor of 
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2𝑑 . This agrees with the intuition that it is harder to recover information from higher-dimensional lattices. 

Thus, while having more dimensions seemingly improves the black-box by only contributing a factor 

of 2
𝑛

𝑑, the advantage starts to fade for large 𝑑 due to the factor of 2𝑑 . This effectively fixes the optimal 

choice 𝑑 =  √𝑛. 
By applying the LLL algorithm (runs in polynomial time) in place of the Continued Fraction 

Algorithm, the classical post-processing is able to recover a short vector from ℒ ∖ ℒ0, which can then 

be used to factor 𝑁.  
Like in Shor's algorithm, several steps in Regev's algorithm are not guaranteed to work. However, 

overall the algorithm fails with bounded probability, and it is easy to check whether the algorithm has 

succeeded.  

2.3.  Discussion 
This section contains several remarks. 

However, having only 𝑂 (𝑛
3

2 log 𝑛) gates in each run of the circuit is better for several reasons. 

Importantly, we expect quantum error correction to work better for smaller circuits, and that fewer errors 

would occur. On the other hand, the (√𝑛 + 4) repetitions can be run in parallel, saving overall runtime. 

Secondly, the total number of qubits used in Regev's algorithm was 𝑂 (𝑛
3

2) - for Shor's it was only 

𝑂(𝑛)  [10]. Fortunately, this has been reduced by Ragavan and Vaikuntanathan, making practical 
implementations of Regev's algorithm much more likely [11]. Ragavan and Vaikuntanathan also 

modified the classical post-processing part to make it more noise-robust [12].  

Altogether, it must be said that the analysis was asymptotic. Hidden constants like the constant 𝐶 in 

𝑅 = 2𝐶√𝑛 can make Regev's algorithm less effective for factoring small numbers. 

One potential investigation is to replace the Gaussian superposition with a uniform superposition, 
reverting to Shor's approach.  

In 2024, Pilatte managed to prove the number theory assumption for a modified version of Regev's 

algorithm. In the proof, he used a less restrictive bound on the numbers 𝑏𝑖. This was not ideal for 

practical applications, as the increased size in 𝑏𝑖 also increased the circuit size. For Regev's algorithm 

to be both unconditionally correct and practical, a proof for a stronger result is needed. 

Lastly, Regev's factoring algorithm was extended to other related problems like discrete logarithm, 

by Ekerå and Gärtner [13]. 

3.  Further developments 

3.1.  Reducing the number of qubits 

To analyze the number of qubits used in a quantum circuit, often one starts from the corresponding 
classical circuit. The key characteristics in quantum computing is that computations are reversible, 

something not required for classical circuits. To convert a classical circuit with 𝐺 gates and 𝑆 bits into 

a quantum one, irreversible gates are replaced with reversible ones, and ancilla qubits are added to keep 

information around. The details can be found in [14]. 
The problem with Regev’s circuit originates from the black-box yet again. The first register uses 

log 𝐷√𝑛 = 𝑂(𝑛) qubits and the second register uses 𝑛  qubits; each fast multiplication circuit uses 

𝑂(𝑛 log 𝑛) ancilla qubits. This apparently results in 𝑂(𝑛 log 𝑛) qubits. Unfortunately, while modular 

multiplication can be done in-place, modular squaring cannot. Here, in-place means that the outcome of 
the operation is stored in the input register, whereas out-of-place means storing the outcome in a new 

register. It is difficult to make modular squaring reversible and in-place. The square root of a number 

modulo 𝑁 is not necessarily unique, and to find even one of them is hard. Thus, for each squaring 

operation done in the black-box, the result needs to be stored in a separate register. Since there are 

𝑂(√𝑛) squaring operations and each result occupies 𝑂(𝑛) qubits, at least 𝑂 (𝑛
3

2) qubits are needed. 
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To avoid this, Ragavan and Vaikuntanathan exploited the fact that in-place, reversible modular 

multiplications are easier to implement than modular squaring [15]. The idea is to use Fibonacci numbers 

instead of the powers of 2, something that appeared in the work of Kaliski [16]. In the following, every 

state is reduced modulo 𝑁, so the notation is omitted. To start, two registers are initialised to |𝑎⟩|𝑎⟩. 
Afterwards, repeatedly multiply the two registers together and store the result in the appropriate register. 

An example run would be |𝑎⟩|𝑎⟩ ↦  |𝑎2⟩|𝑎⟩ ↦  |𝑎2⟩|𝑎3⟩ ↦  |𝑎5⟩|𝑎3⟩. This generates the Fibonacci 

sequence, which grows slightly slower than the powers of 2, but still gets to the desired power of 𝑎 

very efficiently. At the expense of an additional register, all squaring operations have been converted to 
multiplications. 

It can be proven by induction that every positive integer has such a decomposition, which can be 

easily found by a greedy algorithm: repeatedly finding the largest Fibonacci number smaller than the 
current number, then subtracting off this Fibonacci number from the current number. This 

decomposition can be written as 𝑧𝑖 =  ∑ 𝑧𝑖𝑗𝐹𝑗
𝐾
𝑗=1 , where 𝑧𝑖𝑗 ∈ −1,1, 𝐹𝑗  is the 𝑗th Fibonacci number, 

and 𝐾 is the largest such that 𝐹𝐾 ≤ 𝐷. By using Binet’s formula, it can be shown that 𝐾 = 𝑂(√𝑛). 

This decomposition is used to compute ∏ 𝑎𝑖
𝑧𝑖𝑑

𝑖=1  mod 𝑁:   

 ∏ 𝑎𝑖
𝑧𝑖𝑑

𝑖=1
=  ∏ ∏ 𝑎

𝑖

𝑧𝑖𝑗𝐹𝑗 =𝐾
𝑗=1

𝑑
𝑖=1

 ∏ (∏ 𝑎
𝑖

𝑧𝑖𝑗𝑑
𝑖=1

)
𝐹𝑗𝐾

𝑗=1
= ∏ 𝑐

𝑗

𝐹𝑗𝐾
𝑗=1

 (4) 

Defining the numbers 𝑐𝑗 . Note that each 𝑐𝑗  can be computed exactly as in Regev’s original 

algorithm, the only difference being the individual 𝑧𝑖𝑗 might not agree. This means the small numbers 

𝑎𝑖 can again be exploited to compute each 𝑐𝑗  efficiently. The whole product can then be computed 

using the idea of Fibonacci exponentiation.  

By analysing other multiplication algorithms, the number of qubits can be further reduced to 𝑂(𝑛), 
though at the expense of having more gates.  

3.2.  Results on noise tolerance 

For Regev’s original algorithm, all √𝑛 + 4 runs of the quantum procedure need to be successful for the 

classical post-processing. This is not ideal in practice as quantum systems are exposed to noise from the 

environment, making some or all samples corrupted. Ragavan and Vaikuntanathan also managed to 
improve on noise-tolerance by showing that under certain assumptions on the noise, a modified version 

of Regev’s classical post-processing can work even when a fraction of the sample is corrupted. This 

involves running an algorithm that filters out the corrupted samples. 

By definition, if 𝑣𝑖 is in the dual lattice, then ⟨𝑢, 𝑣𝑖⟩is an integer for any vector 𝑢 in the lattice. A 

key idea in Regev’s classical post-processing was that for any 𝑢 not in the lattice, then one can expect 

that there is some 𝑣𝑖 in the dual lattice such that ⟨𝑢, 𝑣𝑖⟩ is not close to any integer. This gives the 

ability to recognise which vectors 𝑢 are in the lattice and which are not. 

Assume for simplicity that now there is an error in the form of a uniformly chosen vector in [0,1]𝑑, 

which occurs with probability 𝑝. The key idea is that if all the samples 𝑣𝑖 from the dual lattice are not 

corrupted, then by a pigeon-hole argument, a small-number linear combination of these vectors gives a 

vector in ℤ𝑑. This implies that the linear combination of the noisy samples 𝑤𝑖 gives a vector close to 

ℤ𝑑. However, even one corrupted sample would mean that any linear combination of the samples is 

uniformly distributed in [0,1]𝑑 ,  and thus unlikely to be close to ℤ𝑑 . Ragavan and Vaikuntanathan 
generalised the case of uniformly distributed error by intuitively abstracting the property that the error 

distribution is ‘well-spread’ with respect to the lattice. This gave a way to detect corrupted samples 

under a mild assumption on the error distribution. 

Regev used the fact that √𝑛 + 4 samples of the dual lattice are enough to generate it with probability 

at least 1/2. The case of Ragavan and Vaikuntanathan is different, since they first obtained 𝛼√𝑛 

samples from the quantum procedure, for some 𝛼 > 1, then selected a subset of 𝛾𝑑 samples, which 

are assumed to be uncorrupted by running the error detection algorithm. Thus, a stronger version of the 
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fact was applied – that provided 𝛾 is close enough to 𝛼, any such subset of 𝛾𝑑 samples generate the 

dual lattice with probability at least 1/2. Finally, by assuming the error probability 𝑝 is small enough, 

there are likely enough uncorrupted samples to make up a subset of 𝛾𝑑, completing the argument. Once 
the subset of uncorrupted samples is obtained, Regev’s classical post-processing can be applied with 

little modifications – the central argument is still running LLL to obtain a short basis for the original 

lattice. 

Independently, Ekerå and Gärtner also discussed error-robustness of Regev’s algorithm. However, 
this relied on assumptions on the structure of the lattice and the error distribution, in particular the 

number theory assumption that the lattice ℒ has a short basis, which is stronger than Regev’s number 

theory assumption. As commented by Ragavan and Vaikuntanathan, this should be seen as a distinct 
contribution to noise-tolerance of Regev’s algorithm. 

3.3.  Extension to discrete logarithm 

Like order-finding, this problem can be state in general groups. For simplicity, only the version in ℤ𝑝
∗ =

1, ⋯ , 𝑝 − 1 is stated here: given 𝑔 ∈ ℤ𝑝
∗  and 𝑥 = 𝑔𝑒  for some unknown 𝑒, determine 𝑒 = log

g
𝑥. 

Note that 𝑟 - the order of 𝑔 - is assumed to be known, which can be found by first running the order-

finding quantum algorithm. 
Shor’s approach was to essentially apply the two copies of order-finding circuit to two separate 

registers, one responsible for exponentiating 𝑔 and the other responsible for exponentiating 𝑥. For two 

integers 𝑎 and 𝑏, the black-box computes 𝑔𝑎𝑥𝑏  mod 𝑁 and stores the result in a third register. At the 

end, QFT is applied to each of the first two registers, then the results are measured. This obtains two 

approximations, one to 𝑐/𝑟 and one to 𝑒𝑐/𝑟. The Continued Fraction Algorithm can then be applied 

to recover these two fractions, after which 𝑒 can be found. 

There were two approaches, one with pre-computation and one without. The one without pre-

computations (other than finding 𝑟) is presented here. 

To be able to exponentiate 𝑥 and 𝑔, which are not necessarily small, the small-number restriction 

in Regev’s algorithm must be relaxed a bit. Notice that not all number 𝑏𝑖 need to be small – there can 

be a constant number of them being large, without affecting the asymptotic size of the circuit. Thus, 
Ekerå and Gärtner proposed to look at the lattice  

 ℒ𝑥,𝑔 = {(𝑧1, 𝑧2, … , 𝑧𝑑) ∈ ℤ𝑑 ∣ x
zd−1 g

zd ∏ 𝑎𝑖
𝑧𝑖𝑑−2

𝑖=1
= 1 mod 𝑁} (5) 

Where 𝑎𝑖  are 𝑂(log 𝑑)-bit integers as before. The black-box then computes this new product 

modulo 𝑁, where the product of 𝑎𝑖 can be computed efficiently as in Regev’s algorithm, and xzd−1  

and gzd are computed using the typical repeated squaring. The number of qubits is also subject to the 

optimisation of Ragavan and Vaikuntanathan. 
Fortunately, a version of the assumption has been proven by Pilatte, again under the relaxation that 

𝑎𝑖  are slightly larger numbers. Under this assumption, the number 𝑒  can then be retrieved. The 

quantum procedure and classical post-processing work the same as in Regev’s algorithm. Using the LLL 

algorithm, a short basis for ℒ𝑥,𝑔  can be recovered. Finally, this basis can be used to find 

(0, … ,0, 1, −𝑒) ∈ ℒ𝑥,𝑔 and therefore 𝑒, which just follows from solving a linear system of equations. 

The change of bases formula for logarithm can be exploited to further optimise the algorithm. By 

using e = logg 𝑥  = logg′ 𝑥 / logg′ 𝑔 , the number 𝑔  can be replaced by a small number 𝑔′ , and 

logg′ 𝑔 can be pre-computed. Less resources are then needed to compute logg′ 𝑥 

4.  Conclusion 

This paper has provided a comprehensive overview of Regev's recent advancements in quantum 

factoring algorithms, building on Shor's foundational work. By introducing multi-dimensional structures 

and utilizing lattice-based techniques, Regev has significantly reduced the gate complexity for quantum 

factoring. This advancement represents a major step forward in quantum computing, offering potential 
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efficiency improvements over Shor’s algorithm despite the increased qubit requirements and reliance 

on an unproven number theory assumption. In addition, recent developments by Ragavan and 

Vaikuntanathan, Ekerå and Gärtner, and Pilatte have further refined Regev's approach, focusing on 
reducing qubit counts, enhancing noise tolerance, and extending the algorithm to other problems, like 

discrete logarithms. These contributions collectively push the boundaries of quantum computing, 

making the practical implementation of quantum factoring more feasible. Looking ahead, several 
intriguing research directions remain. Future work could explore alternative initialization strategies, 

such as replacing the Gaussian superposition with uniform superpositions, to streamline the algorithm 

further. Additionally, improving the proof of Regev's number theory assumption for smaller numbers or 

finding ways to strengthen Pilatte’s results on correctness could bolster the algorithm’s practical utility. 
Exploring other optimizations for error tolerance and robustness will also be crucial as quantum 

hardware continues to evolve. By addressing these challenges, researchers can continue to refine Regev's 

algorithm, paving the way for broader applications and advancements in quantum cryptography and 
computation.  
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