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 27 

Abstract 28 

Background: Whole genome sequencing shows promise to improve the clinical management of 29 

tuberculosis, but bioinforma7c tools tailored for clinical repor7ng and suitable for accredita7on to ISO 30 

standards are currently lacking. 31 

Methods: We developed tbtAMR, a comprehensive pipeline for analysis of Mycobacterium 32 

tuberculosis genomic data, including inference of phenotypic suscep7bility and lineage calling from 33 

both solid and broth (MGIT) cultures. We used local and publicly-availably real-world data (phenotype 34 

and genotype) and synthe7c genomic data to determine the appropriate quality control metrics and 35 

extensively validate the pipeline for clinical use. We combined and curated the large global databases 36 

of resistance muta7ons, fine-tuned for clinical purposes, by minimising false-posi7ves whilst 37 

maintaining accuracy. 38 

Findings: tbtAMR accurately predicted lineages and phenotypic suscep7bility for first- and second-line 39 

drugs, including from broth (MGIT) cultures. We designed and implemented a repor7ng template 40 

suitable for clinical and public health users and accredited the pipeline to ISO standards. 41 

Interpreta6on: The tbtAMR pipeline is accurate and fit-for-purpose for clinical and public health uses. 42 

Report templates, valida7on methods and datasets are provided here to offer a pathway for 43 

laboratories to adopt and seek their own accredita7on for this cri7cal test, to improve the 44 

management of tuberculosis globally. 45 

Funding: No specific funding was received for this study. 46 
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Introduc.on 48 

Mycobacterium tuberculosis (Mtb) is the causa7ve agent of tuberculosis (TB), a disease that is globally 49 

widespread predominantly affec7ng people in low- and middle-income communi7es and is the leading 50 

cause of death from a single infec7ous agent.1  51 

Treatment of TB infec7ons is lengthy and expensive, requiring combina7on therapy with more than 52 

one an7mycobacterial drug prescribed for a minimum of six months for uncomplicated disease. The 53 

slow growth of Mtb in vitro means that clinicians trea7ng pa7ents with TB must choose treatment 54 

regimens before phenotypic drug suscep7bility test (DST) results are available, which can take at least 55 

two months2 in some se`ngs. Treatment is usually commenced with four an7mycobacterial drugs 56 

(‘first-line agents’): rifampicin, isoniazid, pyrazinamide and ethambutol, followed by ra7onalisa7on to 57 

two agents (rifampicin and isoniazid, if suscep7ble), or an alterna7ve regimen including second-line 58 

agents if resistant. Whole genome sequencing (WGS) has the advantage of providing comprehensive 59 

results from a Mtb sample in a single test, poten7ally significantly reducing turnaround 7me to DST for 60 

both first-line and other an7mycobacterial drugs, especially when undertaken from Mycobacteria 61 

Growth Indicator Tube (MGIT) culture. In addi7on, WGS can provide increased reliability of resistance 62 

detec7on for some drugs, due to known challenges with phenotypic reproducibility, such as 63 

ethambutol and pyrazinamide3. WGS data is also being used to provide support for outbreak 64 

inves7ga7on and contact tracing. Therefore, the use of rou7ne WGS for Mtb has the poten7al to 65 

improve pa7ent management in a clinical se`ng and public health outcomes, and new Australian 66 

na7onal guidelines recommend rou7ne use and repor7ng of findings for these reasons4. 67 

There are many high-quality bioinforma7cs tools available for iden7fica7on of genomic determinants 68 

of AMR in Mtb, including Mykrobe,5 TB-Profiler6 and ariba7. Addi7onally, databases of genomic 69 

determinants implicated in AMR in Mtb have become more comprehensive in recent years, including 70 

the WHO Mtb Muta7on Catalogue5,8. However, they are not designed for repor7ng within a clinical 71 

and public health laboratory (CPHL), oeen being over-inclusive. This over-inclusivity is useful in 72 

research se`ngs but is not suited to a CPHL environment, as high false-posi7ve rates jeopardise clinical 73 

care by ruling out effec7ve first-line therapies. Despite the urgent need for rou7ne iden7fica7on of 74 

Mtb AMR from genomic data to inform therapy and the wealth of available bioinforma7c resources, 75 

few public health laboratories globally have such processes in place to report AMR from WGS data for 76 

Mtb. Many factors need to be considered when implemen7ng such an AMR detec7on program, 77 

par7cularly where pa7ent management may be impacted, including performance of tools in predic7ng 78 

drug-resistance, the impact of laboratory methodologies and exis7ng processes, repor7ng structure, 79 
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data management in a CPHL, and test accredita7on by na7onal accredita7on body to Interna7onal 80 

Organiza7on for Standardiza7on (ISO) standards (ISO15189:2022).9  81 

Here we demonstrate the valida7on of a real-7me rou7ne analysis pipeline for inference of phenotypic 82 

resistance in Mtb, based on detec7on of genomic varia7on. We have subsequently gained 83 

accredita7on to ISO standard 15189:2022 for this pipeline, tbtAMR, for clinical and public-health 84 

repor7ng of genomic AMR detec7on in Mtb. The pipeline and valida7on approach are made available 85 

here for other laboratories globally to aid in the transi7on to WGS for genomic AMR repor7ng. 86 

  87 
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Methods 88 

Implementa6on 89 

tbtAMR soLware development 90 

Numerous soeware op7ons exist for interroga7on of Mtb for the detec7on of AMR determinants, 91 

including Mykrobe5 and TBProfiler6, each with pros and cons. The soeware tool developed in our 92 

se`ng, tbtAMR (hgps://github.com/MDU-PHL/tbtamr), is a python package. It takes as input paired-93 

end Illumina fastq files and implements TBProfiler using a custom database of muta7ons and generates 94 

an inferred an7biogram for clinical repor7ng (Figure 1). 95 

MutaDonal catalogue 96 

The muta7onal catalogue implemented within tbtAMR includes muta7ons from TB-Profiler10 (v 4.0), 97 

Mykrobe11 and the WHO catalogue8. The tbtAMR database consists of muta7ons and the an7bio7cs 98 

to which they confer resistance, as well as degree of inferred resistance (resistant or low-level resistant) 99 

and the confidence that the muta7on is indica7ve of the degree of resistance for this predic7on. 100 

Confidence scores are provided as High (odds ra7o [OR] > 10), Moderate (1 < OR < 10) and 101 

Unconfirmed (0 < OR < 1), where OR is the OR data supplied by the WHO catalogue (Supplementary 102 

Table 1). Further details of database development and cura7on can be found in Supplementary 103 

methods.  104 

Valida6on dataset 105 

We included three data types in our valida7on dataset (Supplementary Figure 1). Firstly, we included 106 

sequences generated at MDU PHL and with phenotypic data generated at the Mycobacteria Reference 107 

Laboratory (MRL) (Supplementary Methods). Secondly, publicly available sequences were included, 108 

selected to be representa7ve of all major global lineages and with phenotypic data available for first-109 

line agents (with a subset also having data available for second-line agents). Lastly, we also used 110 

simulated genomic data to supplement the exis7ng datasets. Paired-end sequence data was generated 111 

using TreeToReads soeware12–15, directly from the H37rV strain (RefSeq accession NC_000962.3) or 112 

following introduc7on of 2–4 variants per 10,000 bases at known posi7ons with an error-profile 113 

representa7ve of the NextSeq500 instruments at MDU PHL. These simulated reads were mixed 114 

(Supplementary Figure 2) to simulate different allelic frequencies (0.01 to 0.99) across a range of 115 

average genome depth (10x to 200x).  116 

Measuring the accuracy of Mtb genomic sequence recovery 117 

https://github.com/MDU-PHL/tbtamr
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For simulated genomes, we tested the recovery (iden7fica7on) of introduced variants at a minimum 118 

depth of 10X and 20X, meaning that to make a base call there was least 10 or 20 reads across each 119 

posi7on. For each posi7on in the reference genome, a true posi7ve (TP) result was observed if a variant 120 

was recovered where one had been introduced, a true nega7ve (TN) result was observed where the 121 

same base as the reference was recovered where no variant had been introduced. A false posi7ve (FP) 122 

result was observed where a variant was recovered when no variant had been introduced, and a false 123 

nega7ve (FN) result was observed where a reference base was recovered but a variant was had been 124 

introduced (Supplementary Figure 2).  125 

We also used publicly available sequences to determine the concordance of variant detec7on in 126 

sequences by tbtAMR with the approach described by Ezewudo et al. These sequences were used to 127 

support the limit of detec7on (average genome depth) of the tbtAMR pipeline. To simulate different 128 

quan77es of DNA recovery, reads were randomly down-sampled to 0.8, 0.6, 0.4 and 0.2 of the original 129 

popula7on, in triplicate (using seqkit sample). The variants were considered concordant if those 130 

iden7fied from the down-sampled sequence were also iden7fied in the original sample.  131 

Assessing suitability of MGIT sequences for inference of AMR 132 

To assess the u7lity of DNA generated from MGIT sequences for the interpreta7on of rela7onships and 133 

the inference of AMR, we evaluated matched sequences generated from solid cultures (gold standard) 134 

and MGITs for 66 primary samples (total of 161 sequences evaluated, as some samples had >1 135 

sequence per culture type), where all sequences had passed the sequencing quality checks 136 

(Supplementary Figure 1). To establish whether sequences generated from MGIT culture provide a 137 

comparable degree of u7lity for iden7fying and interpre7ng rela7onships, we assessed the consistency 138 

of variant detec7on and the pairwise distance between the matched sequences from MGIT culture 139 

and solid culture.  140 

Analysis of inferred phenotypic DST and phylogene6c lineage from genomic data 141 

tbtAMR leverages the most recent defini7ons of phylogene7c lineage, including lineages 1–9 as well 142 

as animal adapted species/sub-species6. Phylogene7c lineage was assessed by the concordance of 143 

phylogene7c lineage determined by tbtAMR and compared with available public data16. The inference 144 

of phenotypic DST from genomic sequence data was assessed by determining whether the presence 145 

of a genomic resistance determinant, SNP (single nucleo7de polymorphism) and/or 146 

inser7on/dele7ons correlated with the phenotypic DST results, with sensi7vity, specificity, nega7ve 147 

predic7ve value (NPV), posi7ve predic7ve value (PPV) and accuracy recorded (Supplementary Table 2). 148 

A true posi7ve (TP) was recorded when a muta7on was present and the phenotype was resistant; a 149 
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true nega7ve (TN) was recorded when no muta7on was detected and the phenotype was suscep7ble; 150 

a false posi7ve (FP) was recorded when a muta7on was present, but the phenotype was suscep7ble, 151 

and a false nega7ve (FN) was recorded when no muta7on was detected and the phenotype was 152 

resistant. 153 

Results 154 

Valida6on of tbtAMR tool 155 

Accuracy of sequence recovery by tbtAMR  156 

Firstly, to assess the impact of minimum depth for base calling, we compared FP SNPs and the 157 

percentage of SNPs recovered across a range of average genome depth, maintaining the allelic 158 

frequency at 100%. We observed a higher number of FP SNPs, mean 6.6 (95% confidence interval (CI) 159 

3.9-9.3) when using the standard criteria of 10X, which may result in over iden7fica7on of resistance 160 

mechanisms. Increasing the minimum depth for base calling to 20X improved the number of FP SNPs 161 

to mean of 1.1 (CI 0.7-1.5), with ligle impact on the percentage of introduced SNPs recovered 162 

(Supplementary Figure 2). We further examined the impact of varying average genome depth and 163 

allelic frequency on the ability of tbtAMR to accurately iden7fy muta7ons in the simulated sequences. 164 

Where average genome depth < 40 and allelic frequency < 10% sensi7vity was only 2.1% (CI 1.48%-165 

2.66%) and False Discovery Rate (FDR) was 41.1% (CI 31.1%-51.2%). However, maintaining 20 reads 166 

minimum depth for base-calling, an average genome depth of ≥40X and allele frequencies ≥10% gave 167 

the best balance (Figure 2A and Supplementary Figure 4), with an overall variant iden7fica7on 168 

sensi7vity of 96.3% (CI 95.5%-97.1%) and low FDR of 0.21% (CI 0.11%-0.31%). Hence, the minimum 169 

acceptable read depth for running tbtAMR was set to ≥40X and minimum allele frequency of 10%. 170 

tbtAMR  performance was compared to results published for the UVP pipeline, iden7fying 285/296 of 171 

the variants in the published dataset17 (96.3% concordance). We determined that 3/11 discordances 172 

were likely due to low frequency muta7ons iden7fied by the tbtAMR pipeline, and the remainder likely 173 

due to differences in SNP detec7on between tbtAMR and the UVP pipeline17. Down-sampling this 174 

public sequence data demonstrated that at a median depth of ≥40X, ≥99% concordance between 175 

SNPs detected in the original sequence by tbtAMR and the down sampled reads was observed,  176 

indica7ng tbtAMR was able to reproducibly detect genomic AMR determinants in Mtb sequences 177 

(Figure 2B). 178 

Sequencing from liquid culture (MGIT) compared to solid culture 179 
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Firstly, we compared AMR determinants iden7fied by tbtAMR of matched sequences from solid and 180 

MGIT cultures. Using average genome depth of ≥40X and a minimum allele frequency of 10% as 181 

established above, 93.9% (62/66) matched groups of sequences from MGIT and solid cultures 182 

exhibited detec7on of the same genomic determinants of AMR. In two of the four discordant samples, 183 

muta7ons were observed in rrl, a 23S rRNA gene (implicated in linezolid resistance). The remaining 184 

two discordances were observed in groups where no single lineage could be detected in one sequence 185 

from each group. It is possible that cases such as this reflect genuine in-host diversity (e.g. mixed 186 

infec7ons) and should not be excluded from analysis, however, it is also possible that observa7ons 187 

such as these are the result of laboratory error or contamina7on. In these cases, inferred AMR results 188 

will be reported on an Interim basis, while awai7ng inves7ga7on and resequencing (for detailed 189 

discussion see below).  190 

We rou7nely undertake iden7fica7on of genomic rela7onships, for use in epidemiological 191 

inves7ga7ons, using a validated and accredited pipeline (hgps://github.com/MDU-PHL/bohra). 192 

Therefore, it is important to establish the impact of using sequences from MGITs on this process. Thus, 193 

we also examined the SNP distances between matched groups (pairs/trios of sequences from MGITs 194 

and solid cultures) to determine the consistency of sequences between solid culture and MGITs from 195 

the same primary samples. The median distance between sequences from the same primary sample 196 

was 1 SNP (IQR +/- 3). Pairwise distances between matched sets fell within the 5 SNP threshold for 197 

59/66 matched groups (89.4%); a further five matched groups fell within 12 SNPs (7.6%) and would 198 

therefore be iden7fied as genomically-related in our rou7ne analyses (Figure 3). Two remaining groups 199 

contained a single sequence each for which mul7ple phylogene7c lineages were observed, consistent 200 

with mixed infec7on or laboratory contamina7on. For the purposes of interpreta7on of genomic 201 

rela7onships, sequences where no single lineage can be iden7fied will be failed and resequencing 202 

undertaken.  203 

Accuracy of phylogeneDc lineage calling by tbtAMR 204 

tbtAMR accurately iden7fied lineages compared to lineages reported from public datasets16,  (99.2% 205 

concordance). Of these discordant results (Supplementary Table 3), seven were cases where tbtAMR 206 

iden7fied two different phylogene7c lineages in the sequence. In each case, the reported lineage was 207 

one of the lineages detected by tbtAMR, therefore these likely reflect mixed sequences, where tbtAMR 208 

was able to iden7fy the minor allele. 209 

Inference of phenotypic AMR from genomic data and discrepancy characterisa6on 210 



 9 

Many studies have explored the inference of phenotypic AMR from genomic data using various 211 

tools5,6,8,17,18. We do not aim to recapitulate these high-quality studies here, but to assess the suitability 212 

of tbtAMR in our se`ng for inference and repor7ng of AMR in Mtb for clinical and public health.  213 

We began with a dataset of 3374 sequences from both publicly available datasets16–18 and sequences 214 

generated in-house (Supplementary Figure 1). Implemen7ng the quality control thresholds and limits 215 

of detec7on outlined above, we excluded 371 sequences, leaving 3006 sequences of sufficient quality 216 

to include in the valida7on of tbtAMR for inference of phenotypic AMR (Figure 4A). This dataset 217 

contained > 500 sequences for each of the common interna7onal lineages (Figure 4B).  218 

The performance of tbtAMR in inferring phenotypic resistance to first-line drugs was excellent, with 219 

accuracy > 95% across all first-line drugs (Table 2 and Figure 5A). For the purposes of valida7on for use 220 

in a CPHL, inves7ga7on and resolu7on of such discrepancies needs to be undertaken. Discrepancies 221 

observed in predic7on of pyrazinamide, isoniazid and ethambutol have been observed in other studies 222 

[REF] and are consistent with our observa7ons.  223 

Phenotypic tests based on both liquid and solid culture methods for moxifloxacin resistant have been 224 

shown to have low levels of consistency and also inconsistent genomic mechanisms19.Therefore for 225 

valida7on of moxifloxacin, we only included samples with phenotypic data available generated in our 226 

laboratories, to ensure that the comparisons made were consistent with methodology that was used 227 

for repor7ng resistance in our se`ng. The tbtAMR pipeline was able to predict moxifloxacin resistance 228 

phenotype from the detected genotype with very high accuracy (>98%), sensi7vity (100%) and 229 

specificity (>98%) (Table 2 and Figure 5B). The posi7ve predic7ve value (85.7%) was limited by the low 230 

propor7on of resistance (genotypic and phenotypic) in the dataset (only 12 true posi7ves and two 231 

poten7al false posi7ves). 232 

tbtAMR predicted resistance to second-line and other drugs with performance comparable to other 233 

studies5,20. The high number of false-nega7ve results for predic7on of phenotypic resistance (Table 2) 234 

are likely to be due to incomplete understanding of the mechanisms of resistance to these drugs, 235 

meaning that even when muta7ons are correctly iden7fied, the func7onal impact is unknown and 236 

therefore predic7on of resistance is not possible.  237 

Report design 238 

Repor7ng of AMR from WGS data for Mtb can poten7ally directly impact pa7ent management, 239 

par7cularly when undertaken from MGIT culture with reduced turnaround 7mes. Three key 240 

parameters are reported for each drug to assist in clinical decision making: (i) presence or absence of 241 
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muta7ons including small indels and SNPs, (ii) confidence that this muta7on is associated with drug 242 

resistance, and (iii) the level of drug resistance conferred by this muta7on.  243 

We have leveraged the confidence levels from the WHO muta7on catalogue and supplemented it with 244 

an inferred phenotype interpreta7on of ‘suscep7ble’, ‘low-level resistant’ and ‘resistant’ to allow for 245 

clinically informa7ve repor7ng (Supplementary Table 1). These interpreta7on levels are based on 246 

available laboratory evidence, supported by the literature for a par7cular phenotype.  247 

As AMR genotypes and inferred an7biograms for Mtb were new to most clinicians, addi7onal 248 

interpre7ve comments were constructed for inclusion in reports – for example, explaining the 249 

difference between confidence level and level of resistance in the inferred phenotype (Supplementary 250 

Methods and Supplementary Files 1). Clinical and laboratory colleagues were consulted about the drae 251 

report design to ensure the forma`ng and explana7ons were clear and unambiguous.  252 

Implementa6on process 253 

Once valida7on and report design were complete, Mtb genomic AMR inference using the tbtAMR tool 254 

was implemented into exis7ng genomic workflows, including standard opera7ng procedure 255 

documenta7on (SOP), staff training, incorpora7on into the laboratory informa7on management 256 

system, and tes7ng of repor7ng and feedback loops (e.g. repor7ng of samples that failed QC). 257 

External clients and stakeholders (diagnos7c laboratories, clinicians, Department of Health/TB 258 

program) were no7fied of the new test through exis7ng channels, and the contact details for the 259 

medical microbiologists were included on the reports to facilitate further discussions if required. 260 

To address any discrepancies in phenotype and genotypic results, a mul7disciplinary expert panel for 261 

Mtb AMR was formed, mee7ng monthly to discuss individual cases and provide expert 262 

recommenda7ons to clinicians where discrepancies were iden7fied. This provides the opportunity for 263 

ongoing dialogue between the wet-lab microbiologists, clinicians, epidemiologists, medical 264 

microbiologists and bioinforma7cians to monitor for AMR determinants of interest, discuss individual 265 

cases and discrepancies, and undertake prospec7ve valida7on of novel or uncharacterised AMR 266 

determinants.  267 

In prepara7on for ISO-equivalent accredita7on, revalida7on and reverifica7on processes were also 268 

defined for tbtAMR (Supplementary Methods). Subsequently, the Mtb genomic AMR inference 269 

workflow has now been accredited to ISO 15189:2022 standards.  270 
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Discussion 271 

We have demonstrated here the development of a custom pipeline with a fit-for-purpose muta7onal 272 

catalogue, to maximise the balance between PPV and NPV for predic7on of AMR in Mtb. Performance 273 

of inferred AMR using our process is consistent with or exceeds previously published results on similar 274 

datasets5,16. This pipeline has been robustly validated and implemented to ISO standards, with 275 

reverifica7on strategies for ongoing improvement, and repor7ng processes put in place. 276 

While there are many excellent tools available for detec7on of resistance mechanisms in Mtb, the 277 

outputs and/or databases and levels of interpreta7on were not strictly suited to repor7ng in a high-278 

throughput CPHL. Repor7ng and data storage methods are amongst some of the considera7ons which 279 

prevent ‘out-of-box’ use of exis7ng bioinforma7cs soeware. We assessed the two most popular 280 

exis7ng soeware tools, TB-profiler and Mykrobe and elected to leverage aspects of TB-profiler to 281 

iden7fy genomic varia7on, adding a custom collec7on of muta7ons. We then implemented repor7ng 282 

logic with interpre7ve comments specific for use in a clinical se`ng, based on our valida7on and 283 

supported by literature and laboratory evidence.  284 

Clinical and public health laboratories operate rigorous quality systems to ensure that results are 285 

robust, accurate and fit-for-purpose. Comprehensive valida7on of new tests or pipelines is an essen7al 286 

component of this quality framework, op7mising the performance metrics of the process prior to 287 

implementa7on. However, this can also be a dynamic process, as soeware and database updates occur 288 

regularly in the bioinforma7cs field. As such, it is important to establish a regular process for pipeline 289 

reverifica7on before any updates or modifica7on to the code base of tbtAMR or its dependencies are 290 

approved (Supplementary Figure 5). To maintain the integrity of tbtAMR, we u7lise conda, a soeware 291 

management framework, implemen7ng tbtAMR in a centralised conda environment, which is only 292 

updated upon successful tes7ng of the proposed updates.  293 

AMR determinants are oeen reported as a binary ‘present/absent’ variable, inferring a ‘resistant’ or 294 

‘suscep7ble’ phenotype respec7vely, but this does not always accurately reflect the complexity of 295 

genotype-phenotype correla7ons. It is important to ensure that muta7ons used to infer resistance 296 

have solid evidence suppor7ng a role as genomic determinants of resistance. The databases underlying 297 

both TB-profiler and Mykrobe have been extensively curated and incorporate many, although not all, 298 

of the variants described in the WHO catalogue. In addi7on to variants highly likely to confer 299 

resistance, our database also contains many muta7ons that are being inves7gated for their role in 300 

resistance. However, we have classified these muta7ons as ‘Not reportable’ since there is currently 301 

insufficient evidence for their causa7ve role in resistance (Supplementary Methods). This allows us to 302 

provide meaningful reports to clinicians (based on high confidence muta7ons), whilst s7ll being able 303 
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to prospec7vely monitor and validate addi7onal muta7ons. This is par7cularly relevant for second- 304 

and third-line drugs, such as para-aminosalicylic acid and cycloserine, as well as the newer cri7cal 305 

an7mycobacterial drugs bedaquiline, delaminid and linezolid, where a lack of data, locally and globally 306 

limits our ability to adequately validate inference of resistance to these drugs.   Even for drugs which 307 

are well studied, discrepancies can s7ll occur, and further research and itera7ve valida7on will only 308 

improve the performance of tbtAMR and other tools used by Mtb genomics community, ul7mately 309 

leading to improved pa7ent outcomes. 310 

tbtAMR represents a robust and accurate pipeline that uses high-quality open-source tools, a database 311 

tailored to achieve the best balance between PPV and NPV for pa7ent management, and simplified 312 

outputs for clinical and public health microbiology. We have accredited this pipeline to ISO-standards 313 

in our laboratory, and have provided the valida7on methods and dataset for use by other laboratories 314 

endeavouring to make a similar transi7on. However, our results also highlight areas where further 315 

research can enhance our knowledge of AMR determinants in Mtb, and the nuanced interac7ons 316 

between determinants and phenotypes with new second-line Mtb drugs is a key priority. Further 317 

enhancements of diagnos7c processes, such as sequencing direct from samples, will allow us to 318 

maximise the benefit of genomic technologies for pa7ent management. Our ongoing engagement with 319 

stakeholders, including researchers, clinicians and public health officials ensures that the processes 320 

established can be improved and refined where needed to con7nue to improve pa7ent management 321 

and inform 7mely public health responses.  322 
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 326 

Table 1 – Performance of tbtAMR pipeline to predict phenotypic suscep6bility for first- and second-line an6mycobacterial drugs 327 

Drug Accuracy (%, 95%CI) Sensi7vity (%, 95%CI) Specificity (%, 95%CI) PPV (%, 95%CI) NPV (%, 95%CI) 

Rifampicin (n= 2957) 99.29 (98.92, 99.54) 97.34 (95.17, 98.55) 99.57 (99.24, 99.76) 97.08 (94.85, 98.36) 99.61 (99.29, 99.79) 

Isoniazid (n= 2926) 98.09 (97.52, 98.52) 97.86 (96.21, 98.8) 98.13 (97.51, 98.6) 91.79 (89.19, 93.81) 99.54 (99.17, 99.74) 

Pyrazinamide (n= 2962) 96.35 (95.62, 96.97) 80.97 (76.23, 84.95) 98.15 (97.57, 98.6) 83.67 (79.06, 87.42) 97.78 (97.15, 98.28) 

Ethambutol (n= 2965) 96.12 (95.36, 96.76) 95.08 (91.76, 97.1) 96.22 (95.44, 96.88) 71.1 (66.17, 75.59) 99.5 (99.15, 99.71) 

Moxifloxacin (n= 170) 98.82 (95.81, 99.68) 100.0 (75.75, 100.0) 98.73 (95.5, 99.65) 85.71 (60.06, 95.99) 100.0 (97.6, 100.0) 

Amikacin (n= 279) 96.77 (93.98, 98.29) 95.56 (89.12, 98.26) 97.35 (93.96, 98.86) 94.51 (87.78, 97.63) 97.87 (94.66, 99.17) 

Kanamycin (n= 279) 96.77 (93.98, 98.29) 95.7 (89.46, 98.31) 97.31 (93.86, 98.85) 94.68 (88.15, 97.71) 97.84 (94.57, 99.16) 

Streptomycin (n= 98) 89.8 (82.23, 94.36) 95.52 (87.64, 98.47) 77.42 (60.19, 88.6) 90.14 (81.02, 95.14) 88.89 (71.94, 96.15) 

Cycloserine (n= 98) 81.63 (72.83, 88.05) 45.45 (29.84, 62.01) 100.0 (94.42, 100.0) 100.0 (79.61, 100.0) 78.31 (68.3, 85.82) 

Capreomycin (n= 278) 97.12 (94.43, 98.53) 94.44 (87.65, 97.6) 98.4 (95.41, 99.46) 96.59 (90.45, 98.83) 97.37 (93.99, 98.87) 

Ethionamide (n= 180) 89.44 (84.1, 93.14) 84.78 (71.78, 92.43) 91.04 (85.0, 94.8) 76.47 (63.24, 86.0) 94.57 (89.22, 97.35) 

Para-aminosalicylic acid (n= 98) 95.92 (89.97, 98.4) 20.0 (3.62, 62.45) 100.0 (96.03, 100.0) 100.0 (20.65, 100.0) 95.88 (89.87, 98.38) 

328 
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 329 
 330 

 331 

Figure 1 – Outline of data flow for the tbtAMR tool 332 

tbtAMR takes paired-end fastq files that have passed sequencing quality control as input. TB-profiler 333 

is used to iden7fy variants and known resistance-conferring muta7ons reported, based on the tbtAMR 334 

custom database. Using logic generated during data explora7on, inferred phenotypes are recorded, 335 

and line lists are generated which can be bulk uploaded into the laboratory informa7on management 336 

system (LIMS) for automated per-pa7ent reports. In addi7on, the paired-end fastq files are also 337 

incorporated into the ISO accredited surveillance soeware u7lised in our se`ng. ISO, Interna7onal 338 

Standards Organiza7on; DB, database. 339 

 340 
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Figure 2 – Performance of tbtAMR for iden6fica6on SNPs in M. tuberculosis genomes 341 

A) Simulated paired-end fastq (read) files were used to assess the performance of tbtAMR in recovering introduced variants. Using a minimum read criteria of 342 

20X for individual base calling, tbtAMR had SNP calling sensi7vity (lee panel) of ≥95% and false discovery rate (FDR) (right panel) of ≤1.0% when simulated 343 

average genome depth was ≥40X and allelic frequency ≥10%. B). Recovery of resistance-conferring muta7ons at varying simulated average genome coverage 344 

levels was compared to the resistance-conferring muta7ons iden7fied in the original sequence (red indicates discordance with original sequence, blue 345 

indicates concordance with original sequence).346 

A B 
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 347 

Figure 3 – Distance between sequences from matched MGIT and solid culture. 348 

Pairwise SNP distance was calculated between sequences obtained Mycobacterial Growth Indicator 349 
Tubes (MGITs) and solid culture of the same clinical sample and the distribu7on ploged. Blue 350 
indicates sequences which would correctly be called highly genomically related, orange indicates 351 
sequences which would be considered possibly related and red indicates matched pairs where the 352 
pairwise distance would indicate no recent genomic rela7onship (evidence of mixed sequences; see 353 
Results).  354 

 355 
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Figure 4 – Lineages and phenotypic an6microbial resistance profiles represented in valida6on dataset 356 

3016 Mtb complex sequences were used to validate the inference of AMR. A) Phylogene7c lineage was determined using tbtAMR pipeline, and grouped by 357 
lineage. Non-Mtb sensu stricto lineages were grouped together. B) The valida7on dataset represented by the phenotypic resistance for each drug. 358 

 359 

A 

B 
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Figure 5 – Performance of tbtAMR inference of phenotypic DST 360 

Inferred phenotypes predicted by the tbtAMR pipeline was compared to phenotypic suscep7bility data 361 

for and results of the comparison classified into TP, TN, FP and FN for A) first-line drugs and B) other 362 

drugs.  363 

 364 

A 

B 
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 365 

 366 

Figure 6 – Repor6ng of predicted drug resistance profile 367 

Drug resistant profile is based on the WHO guidelines21. Note that Pre-extensive (Pre-XDR) and Extensive Drug Resistance (XDR) cannot yet be differen7ated 368 
from genomic data (dis7nguished by bedaquiline and linezolid resistance) and are hence reported as a single group. 369 
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 383 

Supplementary Data 384 

Methods 385 

Bacterial culture 386 

Clinical samples collected for suspected TB are processed at diagnos7c laboratories throughout the 387 

state of Victoria, Australia (popula7on 6.71 million in 2022), where rou7ne culture is performed using 388 

both broth (mycobacterial growth indicator tubes (MGIT)) and solid culture media. In Victoria, primary 389 

samples are cultured both in-house and within external laboratories. Samples with acid-fast bacilli 390 

detected are referred to the Mycobacterial Reference Laboratory (MRL) at the Victorian Infec7ous 391 

Diseases Reference Laboratory (VIDRL) for iden7fica7on and phenotypic suscep7bility tes7ng. Broth 392 

cultures (MGIT) are sub-cultured onto solid media to provide sufficient material for downstream 393 

processes. 394 

DNA extracDon from MGITs and solid cultures  395 

DNA was extracted from solid cultures and broth cultures (MGIT) as previously described22 with minor 396 

modifica7ons. In brief, 3 x 1µl loops of culture were resuspended in 700µL TE and heat killed at 95℃ 397 

for 15minutes. For MGITs, 1ml aliquots were heat killed followed by centrifuga7on and resuspension 398 

of the pellet into 700 µL TE. Cells were lysed through mechanical disrup7on and DNA precipitated with 399 

ethanol and sodium acetate followed by elu7on into EB buffer (QIAGEN).  400 

Whole genome sequencing (WGS) 401 

Extracted DNA from solid or broth (MGIT) cultures was transferred to the Microbiological Diagnos7c 402 

Unit Public Health Laboratory (MDU PHL) for WGS, star7ng with NexteraXT (Illumina) library 403 

prepara7on according to manufacturer’s instruc7ons, then paired-end short-read sequencing on 404 

Illumina NextSeq500/550 playorms.  405 

Phenotypic DST 406 

Phenotypic drug suscep7bility tes7ng was set up for first line drugs in the BACTEC MGIT 960 system 407 

according to WHO guidelines23. If resistance at the cri7cal concentra7ons (rifampicin 0.5µg/mL, 408 

isoniazid 0.1µg/mL, ethambutol 5.0µg/mL and pyrazinamide 100µg/mL) was detected, test was 409 

repeated and simultaneously second line drugs were set up (amikacin 1.0µg/mL, capreomycin 410 

2.5µg/mL, ethionamide 5.0µg/mL, kanamycin 2.5µg/mL, ofloxacin 2.0µg/mL, moxifloxacin 411 

0.25/1.0µg/mL and isoniazid 0.4µg/mL). 412 
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 413 

ReverificaDon strategy 414 

It is important to maintain the integrity of any process where the outcome is to be used in informing 415 

public health repor7ng and pa7ent management. Many bioinforma7cs tools and databases are 416 

updated frequently and whilst it may be desirous to always have the most up to data versions, it is also 417 

important to ensure that no degrada7on of quality results occurs as a result. Therefore, it is important 418 

to have a robust reverifica7on strategy in place to assess the impact of any changes or updates. Any 419 

updates to the underlying tools of tbtAMR, including TB-Profiler and its dependencies or new 420 

muta7ons, the poten7al impact will first be assessed, using the most appropriate dataset 421 

(Supplementary Figure 5). 422 

1. If updates include changes to the methodology used to detect underlying detec7on of 423 

variants, the performance of tbtAMR to iden7fy accurate sequence will be assessed using the 424 

simulated dataset described above. 425 

2. If updates involve changes to the database, the performance of tbtAMR to predict AMR will 426 

be assessed using sequences from samples submiged to the Victorian MRL. 427 

3. If any modifica7ons impact the way TB-profiler is implemented within the tbtAMR pipeline, or 428 

the repor7ng logic of tbtAMR the sequences from sample submiged to Victorian MRL and 429 

public datasets where phenotypic and sequence data are available will be used to confirm that 430 

the results are consistent with the original valida7on results. 431 

Any degrada7on of any performance metric compared to the original valida7on will be assessed to 432 

determine the impact on clinical repor7ng. Some discordances may result in improvements to 433 

predic7on of AMR (increases in sensi7vity and/or specificity etc). Whilst others may result in changes 434 

to interpreta7on, such as level of resistance or confidence in the predic7on. In rare cases, updates 435 

could lead to a reduc7on in the confidence in results, such as failure to detect variants and/or incorrect 436 

genomic DST result, in which case the updates will be rejected, and the exis7ng versions retained. 437 

Cascade reporDng from LIMS 438 

Phylogene7c lineage and predicted drug resistance profiles are reported, consistent with the WHO 439 

classifica7ons21. Pre-extensive drug resistance (pre-XDR) and XDR are reported together, as resistance 440 

to bedaquiline and linezolid cannot yet be easily inferred from genomic data.  Rules for repor7ng can 441 

be defined by the user; in our lab, an7mycobacterial drugs are reported in a cascade fashion. Second- 442 
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and third-line agents (where validated) are reported if MDR-TB, RR-TB or Pre-XDR/XDR-TB profiles are 443 

iden7fied. 444 

  445 
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 446 

Figures and tables 447 

 448 

  449 

Supplementary Figure 1 – Valida6on dataset 

Data generated in-house at MDU, downloaded from public datasets and also simulated 
data were used to validate variant detec7on, appropriateness of sequences derived from 
MGIT and genomic DST. Red indicates the number of sequences excluded from inclusion 
due to the failure to meet quality requirements. 
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 451 
  452 

Supplementary Figure 2 – Genera6on and analysis of simulated reads 

Simulated reads were generated to mimic the poten7al mixed alleles observed in Mtb 
sequencing. Variants were introduced (or not) into the H37rv reference at known posi7ons 
and then mixed together at different propor7ons across a range of coverages. The 
simulated sequences were then analysed using the tbtamr pipeline and the recovery of the 
introduced variant was assessed. A TP result was observed where a introduced variant was 
recovered, a FP result was observed where a variant was reported that was not known to 
be present, and a FN result was observed where an introduced variant was not recovered 



 - 28 - 

 453 
  454 

Supplementary Figure 3 – Impact of minimum read depth on performance of tbtAMR to recover SNPs 
from Mtb sequences 

To assess the impact of minimum read depth for base calling, the percentage of A. FP and B. Introduced 
SNPs recovered by tbtAMR were calculated across a range of average genome depths from 10X to 200X 
at an allelic frequency of 100%. 
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 456 
  457 

Supplementary Figure 4 – Impact of genome depth and allelic frequency on performance of tbtAMR 
to recover SNPs from Mtb sequences 

The FDR % (upper panel) and Sensi7vity % (lower panel) of SNP recovery was assessed by varying the 
allelic frequency from 5 to 100 % and the average genome depth from 20 – 200X, whilst maintaining a 
minimum read depth of 20X for base calling. 
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 459 
 460 

 461 
Supplementary Figure 5 – Reverifica6on process 462 

Poten7al impact of proposed changes are shown in the outer circle and can include changes to the 463 
database, variant detec7on, modifica7ons to repor7ng logic. Different datasets, shown in the middle 464 
circle, are required to address the different impact. If the result of the verifica7on is deemed a 465 
success, then the update may proceed, however if the verifica7on fails, then the update will not 466 
proceed and cause of failure established. 467 
  468 
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 469 
Supplementary Table 1 – Genera6on of confidences and resistance levels for tbtAMR database 470 

Odds ra6o Evidence for low-level 
resistance 

Reported parameters 
Confidence Resistance level 

OR≥10 NA High Resistant 
1≤ OR <10 Yes High Low-level resistant 
1≤ OR <10 No Moderate Resistant 
OR<1 NA Unconfirmed Resistant 

 471 
 472 
  473 
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Supplementary Table 2 – Defini6ons of quality metrics used 474 

Metric Defini6on 

FDR  𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

	 

PPV % 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

	𝑥	100 

NPV %  𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

	𝑥	100 

Sensi7vity % 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

	𝑥	100 

Specificity % 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

	𝑥	100 

Accuracy % 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 	𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

	𝑥	100 

 475 

  476 
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Supplementary Table 3 – Discordant Phylogen6c lineage 477 

Phylogene7c lineages reported by tbtAMR were compared to those published, with only 1 of the 8 478 
discordant results not being due the detec7on of mixed lineages by tbtAMR. 479 

Accession tbtAMR lineage Published lineage16 
ERR2513557 lineage1;lineage4 lineage1 
ERR067636 lineage2;lineage4 lineage4 
SRR6339653 lineage4 lineage1 
ERR2510523 lineage3;lineage4 lineage3 
ERR067732 lineage2;lineage4 lineage4 
ERR2515255 lineage2;lineage4 lineage2 
ERR2512421 lineage3;lineage4 lineage3 

   480 
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