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Abstract: As renewable energy is increasingly integrated into our electricity supply, it becomes
more challenging to ensure reliability and security due to the intermittent nature of these resources.
With the electrification of buildings and technological advancements across various aspects of their
operations, the building sector is expected to play a key role in reducing emissions while supporting
the needs of the grid. Buildings and the loads they house can provide grid resources via demand
flexibility, shifting, and shedding electric load, as necessary. This key resource has received increased
attention from researchers, building operators, electric utilities, policymakers, and system operators
as a tool to improve power grid reliability and reduce system costs. Before increasing reliance on
demand flexibility, however, a better understanding of its availability is needed to inform planning
efforts. This paper includes a review of the literature on current methods and data used to model
the available flexibility of power delivered to customers. This review also summarizes how demand
flexibility is defined and quantified to help inform future studies in this field. The results of this
review illustrate the diversity found within this field of research and the innovation that researchers
are employing to solve this complex problem.

Keywords: commercial demand; demand flexibility; demand response; demand side management;
distribution grid; energy flexibility; industrial demand; residential demand; power grid operation

1. Introduction
1.1. Background

With increased action toward climate change mitigation, the power grid is shifting
away from polluting, traditional power generation technologies and toward renewable
energy resources. Renewable technologies are intermittent and stochastic, relying on the
availability of the resources on which they depend [1]. Unfortunately, these resources do
not always align with demand. This mismatch can lead to operational challenges for the
grid and perpetuates society’s dependence on fossil fuels as a safety measure during times
when renewable generation is unavailable.

The electrification of buildings and technological advances across various aspects of
energy systems have positioned the building sector to play a significant role in reducing
emissions while supporting the power grid. While energy storage has been proposed as a
solution to supply and demand misalignment, these systems are still relatively expensive
and have environmental impacts throughout their life cycle [2]. Alternatively, buildings can
provide grid resources through demand flexibility or demand response (DR) by shifting or
shedding electric load in response to grid conditions and/or the availability of renewable
energy, often requiring minimal retrofits, with little inconvenience to customers. Demand
flexibility can provide benefits to the electric grid, including voltage support, peak demand
reduction, and reliability support. This flexibility can reduce costs for the overall power
system and individual customers [3]. In the context of this work, the term “demand
flexibility” will be used to refer to customers of all sectors responding to grid conditions
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in the form of demand-side management of energy use. Throughout this paper, the term
“demand” is used to denote energy demand via consumers connected to the power grid.
Definitions of the various terms used across the studies analyzed are discussed further in
Section 3.1.

Historically, studies have focused on the operational viability of this resource for
various applications or end-uses. More recently, stakeholders such as building managers,
electric utilities, policymakers, and system operators have become more interested in quan-
tifying the availability of demand flexibility for various planning activities [4]. Through an
increased understanding of the availability of demand flexibility across the grid, operators
can improve DR dispatch, streamline planning practices, and reduce the operational costs
of the grid. This interest has led to an emerging field of research focused on quantifying the
flexibility potential of buildings. As illustrated by this review, these studies have employed
a variety of techniques across different sectors, with little standardization and consistency.
These techniques will be summarized here.

1.2. Goals and Methods of This Review

The goal of this paper is to present and summarize common trends among previously
published research studies on the topic of energy demand flexibility. To achieve this, a
database query was conducted on the Web of Science platform using terms described
further in the Methods Section. The results were included in the review if the title, abstract,
and contents represented the topics of this review. Methods, definitions of key terms,
and data inputs are reviewed thoroughly in addition to the granularity of studies, appli-
ances included in analyses, metrics employed to quantify flexibility, sectors studied, use
cases considered, and research gaps. These topics were chosen to inform future quantifi-
cation studies, contributing to increased standardization and informing the direction of
future work.

The rest of this paper is organized as follows: first, the approach followed to conduct
this literature review is discussed in Section 2. The results of the review are presented in
Section 3, focusing on the review of the definitions, metrics, methods, data inputs, and the
types of end uses analyzed across studies. Section 4 discusses the applications and gaps in
this field of research. Finally, concluding remarks appear in Section 5 of the paper.

2. Methods

This section summarizes the approach adopted to collect and review sources as part
of this review of the literature. In summary, a list of key terms was developed and searched
on the Web of Science. Once the results were recovered from the database, the titles and
abstracts were reviewed according to the inclusion criteria. If a result met the inclusion
criteria, it was included in the review.

The first step in this review was to define a list of key terms found in Table 1. This list
was cross-referenced with reviews regarding similar topics and expanded based on the
specific goals of this work [4,5]. The terms were separated into four sets, each defining
various aspects of the search scope. The first set defined which sectors were to be reviewed.
In this review, all sectors were considered within scope, i.e., residential, commercial, and
industrial. Set two defines the level of aggregation of the buildings under consideration.
This review includes studies at all levels, including individual buildings, districts, com-
munities, the entire grid, and microgrids. Set three specifies various terms that could be
used to refer to flexibility. Finally, set four includes terms that could be used to refer to
estimation studies. Each set is combined through the “AND” operator.

Filters were used to limit the search to the title, abstract, and author keywords. The
search was applied to years after 1990 and excluded meetings, dissertations, editorial
materials, and clinical trials. The database search was performed on 2 April 2024, on the
Web of Science platform; 1402 results were retrieved, which were refined to 64 studies
after a review of the titles and abstracts of each search result. A paper was included in the
review when it was clear (through the title and abstract) that the goal of the paper was to
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quantify the demand-side flexibility of electricity resources within buildings. After flagging
applicable papers based on these criteria, they were read and reviewed to track the chosen
categories of information. In addition to those collected through this process, other known
and relevant sources were included. Trends are presented in the Results Section, while
takeaways are presented in the Discussion and Conclusion Sections.

Table 1. Table describing each set of key terms included in the database search. An asterisk (*) allows

/7

for variability at the end of the term. For example “energy flexib*” allows the search to include

“energy flexible” and “energy flexibility”.

Key Terms Purpose
Set 1: “residential” OR “home” OR “house*” OR “indust*” OR “commercial” Define sector scope
Set 2: “building” OR “district” OR “community” OR “grid” OR “microgrids” Define aggregation level

Set 3: “energy flexib*” OR “demand flexib*” OR “load flexib*” OR “operat* flexib*”

OR “demand response” OR “DR” OR “load shift*” OR “load shed*” OR “load shav*”

OR “load reduc*” OR “demand-side management” OR “demand side management”  Specify demand-side flexibility
OR “DSM” OR “load modulat*” OR “load curtailment” OR “demand curtailment”

OR “direct load control” OR “peak shav*”

Set 4: “measure*” OR “quanti*” OR “potential” OR “estimate*” OR “calculate*”

OR “evaluat*” OR “defin*”

Specify quantification studies

3. Results

This section summarizes the trends observed across the studies included in this
literature review. Topics discussed are based on issues and questions that might be of
interest to relevant stakeholders such as researchers, electric utilities, policymakers, and grid
operators. Trends among the following topics will be discussed further in the subsections
below: definitions of demand flexibility, metrics used to quantify flexibility, methods
employed among studies, granularity of analyses, appliances analyzed, data inputs, and
sectors analyzed in each study.

3.1. Definitions of Key Terms

Throughout the literature, various terms have been cited and defined when referencing
topics related to demand-side management (DSM). This section will analyze the terms
defined by the authors in this field.

DSM was defined by [1,6-11] as encompassing any changes to customer electricity
usage in response to the needs of the power grid. Across all studies reviewed, 12 different
terms were used to refer to DSM or a subset of DSM, such as DR or demand flexibility.
When reviewing the literature, many of the studies either defined DR [6,12-27] or a term
related to demand flexibility [1,3,22,28-40] when referring to how customers can manage
demand. These terms, DR and flexibility, seem to be used interchangeably throughout
the literature, with DR frequently used to refer to programs implemented by utilities to
manage and incentivize customer demand variations. Conversely, terms, including the
word “flexibility” are used to broadly define any modification to power on the supply- or
demand-side.

Although there was no variation in terms referring to DR, terms defined by authors
when referring to flexibility range significantly and include: “flexibility” [1,22,28,30-32],
“demand flexibility” [33], “load flexibility” [3], “building energy flexibility” [29,34-36],
“energy flexibility” [35,37,38], “EV flexibility services” [39], and “planning flexibility” [40].
Each of these terms can be used to describe a particular process or type of flexibility. For
example, demand flexibility would be different from supply flexibility. Notably, energy
flexibility could encompass either supply- or demand-side flexibility.

While some authors employ their own definitions of these terms, many cite stan-
dardized definitions. For example, the International Energy Agency (IEA) Energy in
Buildings and Communities Programme (EBC) Annex 67 definition for “building energy
flexibility” [41] was commonly cited [29,34-36]. Both DR and flexibility are cited as being
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broad categorizations of activities in which customers can match their demand with grid
resources to support activities such as grid planning or decreasing emissions.

Based on this review, Figure 1 displays the relationship between DSM and DR includ-
ing examples of the different types of DR defined and studied in various papers. Specifically,
Ref. [22] defines two types of DR, incentive-based and price-based. Incentive-based DR
refers to programs that offer an incentive, oftentimes monetary, to decrease customer de-
mand during times of grid stress. On the other hand, price-based DR refers to electricity
prices that influence customer demand on a continual basis. This definition is similar to the
Federal Energy Regulatory Commission (FERC) definition of DR [42] cited by [16,19], which
generally defines two DR categories. Examples of incentive-based programs may include
direct load control (DLC) and interruptible programs that allow a utility to control customer
demand or limit access to electricity during periods of high grid stress (e.g., heat waves).
Examples of price-based DR include time-of-use (TOU) pricing, critical peak pricing (CPP),
or real-time pricing (RTP), which are utility tariffs that encourage customers to voluntarily
decrease demand during high energy prices that are typically associated with peak hours.
The key difference between the two types of DR programs is that incentive-based programs
involve infrequent service interruptions, while price-based programs enable voluntary,
ongoing load shaping to support the grid.

Demand-Side Management

Demand Response

Incentive-

b I Price-based

Energy Efficiency
Out of scope

Figure 1. Schematic of DSM with DR and energy efficiency as two sub-categories. While energy
efficiency is out of scope in this work, DR includes two sub-categories of incentive-based and price-
based programs. DLC and interruptible programs are both types of incentive-based DR. TOU and
CPP are both types of price-based DR.

Other notable terms defined throughout the literature include flexible loads [43],
flexumer [44], building clusters [35], demand-side services [43], and drivers of price respon-
siveness [45]. These are not broadly used terms and have been used in specific applications.
It should be noted that many papers did not define any terms and instead, cited the benefits
of and applications for DR or other forms of DSM without presenting any definitions.

3.2. Metrics Used to Quantify Flexibility Potential

A common source of diversity among the studies reviewed was how authors quantified
flexibility potential estimations. In this context, flexibility potential refers to the estimated
demand reduction or temporal shift achievable by a single or group of customers over a
defined time period. More than 20 metrics were used to quantify flexibility potential. There
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is no clear standardization of metrics authors used as most studies defined their own terms
with little overlap among studies.

Although most authors used units of power [3,7,10,11,16,18,21,23,25,31-35,38—40,43,46-58],
other authors used units of energy [9,11,12,15,19,28,29,31,33,35,40,45,53,59-61], emissions [8,9,59],
economic measurements [8,9,11,26,53,62], or ramping capacity [31,33,40,56]. Examples of other
less commonly used units are temperature [30] and area [24] with [22,27] developing specialized
indices. For example, [27] quantified DR potential as a measure between 0 and 1 with 1 referring
to high potential.

With such a diverse set of terms and units used to measure flexibility potential, it is
difficult to objectively compare studies and understand how flexibility potential varies
across sectors and end-uses. It is also difficult to quantify the total availability of this
resource over a region when authors employ different quantification metrics that cannot be
easily converted into a common quantity.

3.3. Methods Deployed Across Studies

This section includes a summary of the methods employed by authors across the
studies reviewed. As illustrated in this section, there is a wide variety of methods employed
throughout the literature with little standardization or consistency. This could be due to
the diversity of end-uses analyzed and/or the relative novelty of this field of study.

Of the studies reviewed, authors either quantified flexibility potential for individual
buildings, aggregated buildings, or aggregated loads. Methods frequently employed by the
authors included clustering [25-27,53,63],
optimization [6-9,11,15,17,23,28,35,44,47,55,59,64], regression [16,19,24,25,27,46,52,53,58],
and simulation [7,11,15,17,22,24,28,31,33,34,37,38,40,50,51,54,58,59,62,65,66], with many re-
searchers employing multiple techniques and methods in one study. Clustering methods
generally tend to group buildings into subsets that have similar characteristics in terms of
electricity consumption, load shape, or demand flexibility. Regression models often try to
estimate the amount of flexibility based on various building or user characteristics. These
can then be employed as models in system-wide analyses or might be used for prediction
purposes. Optimization-based approaches, on the other hand, typically incorporate user
and/or load characteristics into a building-level or system-level optimization model, to
reduce demand, reduce costs, or meet a certain operational target. However, many authors
developed novel models to illustrate the flexibility of loads and building types.

3.3.1. Clustering

Clustering techniques were used to group buildings together based on various at-
tributes affecting their flexibility potential. Most studies employing clustering techniques
did so based on consumption patterns [26,27,53,63], while [25] used clustering to determine
day-types. By grouping buildings into clusters, their potential flexibility levels can be
estimated as an aggregate value. These clusters could also be targeted by DR providers
and utilities to achieve desirable load reductions or shifts.

3.3.2. Regression

Regression models were used to predict various changes in the system under study.
Specifically, [16,30] designed regression models to estimate the temperature response of
buildings during a DR event. For example, [30] estimated the temperature drop when
heating was turned off. Moreover, [19,46,53,58] designed regression models to estimate
the amount of expected load reduction during a DR event. Moreover, [25,27,52] used
regression to identify indicators of flexibility potential, which can be applied in the flexibility
quantification process or used to inform other techniques within the methodology.

3.3.3. Optimization

Many studies employed optimization models to minimize costs [6,8,11,13,35,44,47,59,62,64].
These included electricity demand costs, generation costs for the system, and the total system
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costs in general. Other optimization models optimized (minimized) values such as power
demand [7,23,35,36]. An interesting technique employed by researchers involved minimizing
variations in demand from the system mean value to flatten the load curve [13,28,36]. The
authors of [55] included various measures in their cost considerations. They maximized overall
profits, which were functions of feed-ins from the grid, energy costs, and electricity usage. Fi-
nally, the authors of [44] optimized costs but also minimized carbon emissions [28], maximized
social welfare, and [6] maximized production of the facility under study.

In terms of the constraints employed for optimization models, researchers have in-
cluded constraints that represented system limits [7,8,11,13,35,36,59,62,64] and technol-
ogy limits [6-8,13,28,35,36,44,47,56,64]. System constraints include the supply-demand
balance [11,59,64], building temperature requirements [35], power flow equations and
grid infrastructure limits [8,64], minimum lighting requirements [36], industrial process
flows [7,56,67], and ramping constraints [8,47].

3.3.4. Simulation

Studies that included simulations utilized software, such as EnergyPlus [24,33,34,38,51,58],
Comstock [68], Modelica [17,31] and Dymola [37], among others. Simulations were often paired
with other methods to compare demand under normal conditions with demand and system
behaviors during a DR event.

3.3.5. Novel Methods

As mentioned previously, a significant number of papers included novel modeling
techniques that could not be grouped into any standardized techniques mentioned earlier.
Specifically, [10,18,28,49] developed flexibility models for individual loads, [1,39,40,47]
developed statistical models for individual loads, and [3,61,68] developed statistical models
for building demand. These authors developed their own equations that modeled the
behaviors of buildings and applicable energy demands to evaluate changes in demand or
load shape in response to DR events.

There is notable diversity among the methods presented in the current literature.
Quantifying load flexibility is a complex task and requires various considerations that
cannot always be modeled via existing methods, hence requiring creativity to develop
methods that can do so accurately.

3.4. Sectors of Focus

The sectors included in this review include residential, commercial, and industrial.
The residential sector was the focus of 28 studies [1,3,10,11,13,16,22,23,25,27,28,30,32,34,
35,38,39,45,47,48,50,52,54,55,57,59,63,65], the commercial sector was the focus of 13 stud-
ies [14,17,19,20,24,33,36,37,44,46,51,53,62], and 9 studies focused specifically on industrial
applications [6-9,26,56,61,66,67]. Although some studies focused on a single sector, others
analyzed two or all three. For instance, [15,29,40,58,60,64,69] focused on the flexibility po-
tential of residential and commercial buildings or end-uses that are present in each building
type. For example, the authors of [40] studied the flexibility potential of electric vehicles
(EVs) that could charge and discharge at home or at the workplace. The authors of [31,46]
included analyses of the commercial and industrial sectors. The focus of [31] was thermal
energy storage (TES), which can be present in both building types. Finally, [12,18,21,43,49]
quantified the potential flexibility of all three sectors. Figure 2 illustrates the number of
studies focusing on each sector, including the overlap between studies of each sector.
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Industrial
]

Figure 2. Venn diagram of sectors analyzed across studies reviewed, including residential, commer-
cial, industrial, and studies that focused on more than one sector.

3.5. Data Inputs

Researchers considered various data sources to inform estimations of demand flexibility.
The most common data sources include weather and climate data, technology characteristics,
demand data, and building data, with demand data being the most prominent.

3.5.1. Demand Data

Demand data was used to inform methods employed by the authors 44 times among
the studies reviewed in this paper [1,8,10-16,18,19,22-31,34,35,37,39,40,44-47,49,51-55,58,
59,61,63,65,66,68,69]. Notably, [10,23,54,63] used demand data at the individual appliance-
or plug-level. However, this level of granularity may not always be accessible due to the
need for more granular metering and data collection behind the meter. Privacy concerns
are a major obstacle when considering this type of measurement.

Data illustrating energy use was used in a variety of applications. Naturally, the data
can be employed to develop load profiles and discern what end-uses are present. This
allows researchers to understand where opportunities may exist for demand shifting or
shedding. Data can also be used to understand occupant energy-use characteristics to
inform flexibility potential estimations.

Demand data was frequently used in parallel with other data sources to inform model
development and case studies. For example, in [35], demand measurements were paired
with electricity prices, building stock data, weather data, and technology characteristics to
project residential flexibility potential under various future scenarios and assess retrofit
efforts in Italy.

3.5.2. Weather and Climate Data

In addition to other data sources, 25 studies incorporated weather or climate data into their
calculations. Specific data inputs included outdoor air temperature [14,15,18,19,25,28,46,52],
climate classifications [24], and weather trends [10,13,22,31,33,35,38,40,51,55,58,59,62,66] relevant
to the area under study. These inputs were used to predict building loads specifically in relation
to outdoor temperatures. This is not surprising because higher air conditioning (A /C) demand is
expected during warmer months and heating demand is higher in winter months, contributing
to increased flexibility potential at these times of the year.
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3.5.3. Building Characteristics and Models

Researchers frequently included data regarding building characteristics such as heat
capacity or square footage [3,14,15,17,24,28,31-33,36-38,51,60,62]. Building operating char-
acteristics can be used to illustrate building responses to flexibility activities. For example,
understanding the characteristics of building thermal capacity directly affects flexibility
estimations related to heating, ventilation, and air conditioning (HVAC) operations.

Other commonly used types of data relate to building occupants. Naturally, the
presence and number of occupants in a building determine how they may directly or
indirectly interact with energy systems. Direct interaction could be conducted through
appliance and lighting usage, whereas indirect interaction can be viewed in terms of body
heat emissions that can increase the heat load within a confined space. Occupancy data
was included in [32,36,59,69]. This can be collected using data from occupancy sensors,
which may raise privacy concerns. Alternatively, occupancy can be estimated based on
non-intrusive load monitoring and load disaggregation, where detecting the usage pattern
of certain appliances can indicate the number and/or types of occupants present, e.g.,
different age groups. Other studies used regional population statistics [10,32,54], which
may indicate certain trends or behavioral patterns in energy consumption.

A few studies informed their calculations through novel datasets similar to building
characteristics, including benchmarking data [68], building locations [38], and regional
building stock statistics [12,35,59,60]. Each dataset provided broad statistics regarding the
building stock of a region under study.

3.5.4. Appliance and Technology Data

Data illustrating the characteristics of the technologies analyzed in each study were
another major category of datasets seen throughout this review [3,6,7,10,12,14,15,21,
28,31,32,34-37,39,44,54,59,60,64,65,69]. This includes characteristics of household appli-
ances, EVs, commercial loads, and industrial units. Characteristics include general load
profiles for certain technologies, storage capacities, or cycle characteristics for various
residential appliances.

EVs are an increasingly important source of energy demand across various sectors,
this requires special consideration in these models. Studies included datasets specific to
EVs, aside from general characteristics of how they operate. Specifically, some included
mobility data [40,50,55,56,64], EV charging data [39,50,55], and EV adoption data [21,56].
These datasets provided information on how many EVs are present per region and how
they are used; factors that can affect the overall demand on the grid.

3.5.5. Grid Data

The last major category of data used in this field was grid-related data. These datasets
include emissions, operations, and generation. The authors of [8,11,16,17,29,40,44,55,59,68]
considered emissions or other generation characteristics in their analyses, which included
the emission intensity of the grid, the availability of a renewable resource, and general
characteristics of generation, such as the ramp rate. Moreover, [8,13,16,59,64,68] included
grid infrastructure data or models that illustrated the overall topology and operational
constraints of the system. These inputs were commonly used to illustrate the effects of
demand flexibility on system performance, for instance, node voltages, line flows, and the
operating conditions and health of assets.

Related to this category, some studies included temporal electricity prices, including
tariffs and locational marginal prices (LMPs) [6,9,15,17,22,35,39,44,62,65] to inform savings
calculations and optimal scheduling of end-uses.

Although the analysis above summarizes common data inputs, many studies included
less common data types. Some examples are indoor air temperature [37] or occupant
comfort measurements [29], socioeconomic or demographic data [12,45,54], and indus-
trial production data [18,21,67]. Although directly related to flexibility estimations, these
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datasets are not as readily available publicly or require direct measurements during testing,
which makes them harder to incorporate into analysis.

3.6. End-Uses Analyzed

The studies reviewed include a variety of end-uses and energy systems. Most consider
multiple load types per building [3,9,10,13,16,17,22,23,29,34,37,38,44,45,53,54,56-62,64,69]
while others narrow down their focus on a particular end-use [1,11,14,15,20,25,27,30-33,35,
36,39,47,50,51].

There were clear trends regarding which end-uses were primarily focused on for each
sector. For example, lighting [36,62] and space conditioning [5,14,15,17,20,29,31,33,35,37,
44,51,53,59,60,62] were major foci for commercially focused research studies. Studies that
either focused on residential research or included it in addition to the analysis of other
sectors considered appliances that were commonly found in households. Figure 3 illustrates
the major appliances of focus in residential studies. For instance, [3,10,13,23,54,69] included
clothing washers and driers. Moreover, [3,10,13,23,45,54,64,69] included dishwashers in
their analyses. Space and water conditioning was a major focus as well [1,3,4,10,11,13,15,
16,22,23,25,27,30-32,34,38,45,52,57,59,60,62,63]. EVs and electric vehicle supply equipment
(EVSE) [10,13,34,36,47,50,63,64] were a common focus for both commercial and residential
studies; they are an emerging end-use with potentially high demand commonly found in
either type of building. While residential and commercial sectors have broadly defined
end-uses that are commonly found in buildings of each sector, industrial studies required
more specialized approaches to characterize the processes present [6-9,26,46,61,67].

Space Electrical
Conditioning Storage

27% 20%

Figure 3. Visualization of the share of appliances included in studies quantifying residential flexibility
potential. Adapted from [5].

Mlustrated clearly by authors in this field, space and water conditioning were a major con-
tribution to residential and commercial demand making them common inclusions in studies
for these sectors. Specifically, [3,17,20,29,30,33,34,37,38,51,58—60] included HVAC systems in
their work. Moreover, [10,14,16,23,25,27,48,52,53,62,63] included A /Cs, in particular. The au-
thors of [3,11,22,45,58,59] included water heaters. [10,15,22,23] incorporated space heating into
their estimations. More generally, [10,13,29,32,34,35,44,57,60] included heat pumps, [44,61]
included thermostatically controlled loads (TCLs), and [29,31,34,37,44,57] included TES. TES
could refer to either physical storage or thermal storage of a building. As noted by all authors
of these studies, heating and cooling indoor air, as well as heating water, require significant
amounts of energy, making them obvious inclusions in these studies.

Even though studies were not comprehensive of all end-uses that could be found in
each building type, many authors focused on commonly found appliances and energy
systems based on ownership trends for the regions under study as illustrated by Table 2.
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Table 2. Summary of methods, granularity, end-uses, metrics, data inputs, and sectors considered

in the literature. An “X” in the “Case Study” column signifies that the study included a case study

to validate the developed methods. Letters R, C, and I in the “Sector” column indicate residential,

commercial, and industrial sectors, respectively.

Author Methods Case Study  Granularity  End-Uses Metric(s) Data Inputs Sector
Gasca et al. [1] lsgsttji:tical models for X Aggregate TCL F;K?r flexibility Demand, temperature ~ R
PV, HVAC, battery, Powe_r estimations,
A - building
Munankarmi et al. [3] MPC, flexibility X Single water heater, Forward flexibility characteristics R
o model of building dishwasher, clothes operation (kW) technolo ’
drier 8y
characteristics
Annual electricity
cost reduction (%),
specific revenue per Production
. Optimization . . ton Cu (EUR/tCu), characteristics,
Roben et al. [6] . Single Copper production shifted electricity PN ; I
(production and cost) d 4(%. MWh time-varying
emand (%, -V electricity prices
and GWh), electricity
costs per ton Cu
(EUR/tCu)
Technology
. MPD, optimization . Power consumption characteristics,
Sunand Li[7] (capacity), simulation X Single reduction (kW) production I
characteristics
. Grid emissions,
Roévekamp et al. [8] Optimization X Aggregate Sﬁgnt%n(l)lzc)value (euro demart}d, grid I
operations
Reduction in
oH o Technology
S Lo . Stone crusher, raw electrlc'lty .COStS (%), characteristics,
ummerbell et al. [9] Optimization (cost) X Single mill, kiln, cement mill relzdlic.tlptn 1(1(;1/ \,CO temporal electricity I
4 4 electrici o), 3 . R -
emission); (t/year) prices, grid emissions
EV, AC, dishwasher,
clothes washer, Population, appliance
o clothes drier, electric . . ownership, demand,
O'Reilly et al. [10] Flexibility models for X Aggregate heater, heat pump, Reduction potential technolo P R
: individual loads heat circulation (MW) characteﬁg]ﬁcs
pump, refrigerator, weather ’
freezer
Peak reduction (MW),
Optimization (cost), capacity saving .
Hungerford et al. [11] simulation X Aggregate Water heaters (AUD), renewable Demand, generation R
curtailment (GWh)
Spiming reserve DOt
Aryandoust and Load profile models (GWh), primary, acceptance survey,
i . . X Aggregate secondary, and building stock R,C1
illiestam [12] per sector, simulation tertiary reserve : 1h lg stock,
echnology
(GWh) characteristics
Grid operations,
oAt Dishwasher, clothes weather, generation
Klaassen et al. [13] (Cc)ap ;g?:tz;talﬁg cost) X Aggregate washer and drier, Costs flexibility characteristics, R
heat pump, CHP, EV demand, energy
market
Building
_ Thermal model of ) ) characteristics,
Lietal. [14] building, field test Single AC DR potential (%) iiciz(c)tlsgzﬁcs C
temperature, o{emand
Building
characteristics,
temperature, solar
irradiation,
S . . technolo;
Romanchenko et Optimization, . Shifted space heating 8y
al. [15] simulation X Aggregate Space heating demand (GWh) characteristics, R,C
demand, district
heating
characteristics,
temporal electricity
prices, fuel prices
: Demand, weather,
Dyson et al. [16] Regr‘es'sm‘n, X Single PV, AC DR potential (MW) grid operations, solar R
classification Fesource
Demand savings (kW,
2
Zgé:;le)l,c;e(sg }leg\e/)’ Temporal electricity
peak demand savings p;lces,tbl{llé;llng
S . 2 characteristics,
Gehbauer et al. [17] Z[;Sl,;i;c;mlzatlon, X Single ]]:_)K}}\aémc window, (kW, W/ %), energy occupant comfort, C

cost savings ($/m?),
electricity savings
(MWh, kWh/m?),
emissions savings
(tCOy)

weather, dynamic
facade, technology
characteristics
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s . Industrial production,
. Flexibility models for Load reduction or P -
Gils [18] o Aggregate : demand, outdoorair R, C, I
individual loads increase (GW) . temperature
Granderson etal. [19] ~ Regression Aggregate Egé?ﬁg(gzc)iuctlon Def-na'nd, temperature  C
Classification, load Gross yearly revenue Building stock,
Hirkonen et al. [20] profile models for Acoresate HVAC (euro), gross ancillary t';ChHOIOSy . C
’ commercial building £81¢8 market revenue characteristics,
historical DR market
types (euro) prices
Demand, appliance
ownership, building
Load reduction or characteristics,
Heitkoetter et al. [21] Optimization X Aggregate increase potential industrial location R,C 1
(MW) and production, EV
adoption, technology
characteristics
. o . Temporal electricity
Eomaa and thll’an‘ahOn, X Single Spage and water Cost effective prices, demand, R
amdy [22] simulation heating flexibility index
weather
AC, dishwasher,
. clothes washer,
fopttm}lzlé;lt.lgg' clothes drier, fridge,
actoria en : ot -
Lucas et al. [23] Markov model, Aggregate ll:lrfii?cl;l‘,%; l;ghft;zegz,er Flexibility power (W) ~ Demand R
machine-learning pool
pump/dehumidifier
Simulation, o ; Building
) HOIL, . . HVAC, lighting, plu: D d .
Luo etal. [24] regression, bayesian Single loads ghting, piug in(tegrllas?ty }r‘}\c/r/e;qsg) Chal’aCterlSt'ICS, C
framework demand, climate
Clustering,
Qi et al. [25] correlation analysis, X Aggregate AC DR potential (kW) Demand, temperature ~ R
regression
Rodriquez-Garcia et Economic Demand, temporal
Clustering X Single T electricity prices I
al. [26] profitability ($) (historic)
Toosty et al. [27] Clustering, regression X Aggregate Heat pump AC DR potential Demand R
Demand, building
Optimization (social characteristics,
2 welfare), flexibility X inel Potential flexibility apphancg ) R
Ostovar et al. [28] models for individual Single (kWh) characteristics,
loads, simulation temperature, solar
irradiance
Fuzzy analytic Demand, Grid
Awan et al. [29] hierarchy and X Sinele PV, TES, HVAC, heat ﬁg)ggﬁated ey emissions, temporal -
wan etak multi-criteria decision & pump exibility potentia electricity prices, ’
lvsi (AEFP) (%)
analysis occupant comfort
; . . Temperature drop Indoor temperature,
Crawley et al. [30] Regression Aggregate Electric heating (Celsius) demand R
Demand, weather,
- Ramp-up capacity building
Flexibility models for . -
. oy (MW /min), power characteristics,
Stinner et al. [31] b}uldlmg types, X Aggregate TES capacity (MW), occupancy, (O
simulation energy (MWh) technology
characteristics
Occupancy model, Eneray flexibili B}l;lilding o
Wang et al. [32] thermal model of Aggregate Heat pump N gt}f e ty c aralctte;r1st1cs, R
building potential (W) population,
occupancy
Ramping rate
(kW /min), power Building
Statistical models for capacity (kW), energy  characteristics,
Hurtado et al. [33] building demand, X Aggregate HVAC capacity (kWh), technology C
simulation comfort capacity characteristics,
(min), comfort weather
recovery (min)
. . . PV, EV, TES, HVAC, . Demand, technology
Bampoulas et al. [34] Simulation X Single battery, heat pump DR potential (kW) characteristics R
Electrical Demand, temporal
Thermal model of power-shiftable electricity prices,
Mugnini et al. [35] building, X Aggregate Heat pump (MW,), average daily  building stock, R
optimization shiftable energies weather, technology
(GWh,) characteristics
Weather, technology
characteristics,
Yu et al. [36] Optimization X Single Lighting building C
characteristics,
occupancy
Indoor temperature,
s building
Flexibility models for - . .
o . HVAC, Thermal mass,  Electricity flexibility characteristics,
Chen et al. [37] 1r_1d1v1d1_1al loads, X Single lighting (W, kW, or J) demand, occupancy, C
simulation
technology

characteristics
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Genetic algorithm Expected flexibility Weather, building
Majdalani et al. [38] imulati 8 4 X Single PV, HVAC savings index (% of characteristics, R
simufation dwelling load) building location
. o Demand, temporal
Statistical models for Energy flexibility L
Sorenson et al. [39] EV demand X aggregate EV potential (kW) elect_r1c1ty prices, local R
traffic, EV charging
Mobility, demand,
. Flexibility indices: appliance usage,
Statistical models for
Yu et al. [40] EV demand, X Aggregate PV, EV, wind turbine ENergy, power, ind technology . R, C
simulation ramp capacity (% characteristics,
reduction) generation
characteristics
O’Shaugh-nessy et Li . X A d flexibili RCI
al. [43] iterature review ggregate Load flexibility (GW) ,C,
Energy-weighted:
. average price and Temporal electricity
PV, EV, TES, wind carbon emission prices (historic), grid
turbine, battery, CHP,  factor, time-weighted: ~ emissions, generation
" o . cooling machine, H2 average price, characteristics (PV),
Fleschutz et al. [44] Optimization X Single storage, electrolyzer, average carbon demand, historic C
DAC, power-to-heat,  emission factor, and natural gas prices,
heat pump cost-emissions ratio, technology
energy-based characteristics
cost-emission ratio
Neural network Demand
, . i Water heater, Peak demand s .
Guo et al. [45] integ_rated machine X Aggregate dishwasher reduction (kWh) demographic, R
earning socioeconomic
. Load profile models . Average demand D d. outd :
Mathieu [46] for buildings, X Single shed (kW) tesér;rrla t,uorg oorair ¢
regression
Statistical models for
EV demand,
Zhao et al. [47] disaggregation X Aggregate EV Flexibility (kW) Demand R
algorithm,
optimization (cost)
T4 Thermal model of X A t A i R
Chen et al. [48] building ggregate C DR potential (MW)
Dranka and Flexibility models for .
Ferreira [49] individual loads Aggregate DR potential (GW) Demand R,C1I
Peak shaving
Statistical models for potential (MW), Mobility, technology
Ding et al. [50] EV demand, X Aggregate EV valley filling potential ~ characteristics, EV R
simulation (MW), V2G discharge  charging
DR potential (MW)
. . : Building
Sehar et al. [51] Slmt;lattlon,gclc upant X Single HVAC T&k load savings characteristics, C
comtort mode (kW) weather, demand
Regression, neural
Song et al. [52] network, thermal X Aggregate AC DR potential (kW) Demand, temperature R
model of building
AC, Cold water o
chillers, hot water . o Building L
generators, heat Demand reduction (%  characteristics,
Triolo et al. [53] Clustering, regression X Aggregate - of current demand), demand, daily system  C
recovery chillers, hot .
cost savings ($) load served by central
and cold water facili
storage energy facility (CEF)
Technology
. ,, Agent-based model, Dishwashers, clothes Mean hourly load characteristics,
Vellei etal. [54] simulation X Aggregate washers reduction (GW) population, appliance R
usage, socioeconomic
Weather, generation
(PV), technology
s . characteristics,
von Bonin et al. [55] Optimization X Aggregate PV, EV Sl?‘;\l;tmg potential mobility data, EV R
(kW) charging, demand,
electricity price
forecast
. SERA model, EV
Backward powertrain FCEV, centralized Peﬁk Slfl.?l‘./ lng((6GV\\/]\/ ) adoption and usage,
Wang et al. [56] del powert X Aggregate electrolytic hydrogen Zameynr:iéngﬁ n ) EV characteristics, I
model, optimization production 1&\1/[ v\p])/ tigatio; mobility, EPA driving
( min) characteristics
. . . Heat pump, CHP, Installed capacity
Wolisz et al. [57] Literature review X Aggregate TES, battery (GW) R
. . DR potential (%),
Yin et al. [58] R_egreSS} on, X Aggregate HVAG, refrigerator, peak load reduction Demand, weather R,C
simulation water heater (kW)
Weather, building
stock, demand,
technology
Optimization, Production cost characteristics, fuel
Cruickshank et simulation, flexibility Hot water heater, > costs, generation
al. [59] models of individual X Aggregate battery, HVAC, PV E:%il\s/[s‘i/g?g’ (?b? characteristics, R
loads time-of-use of
appliances,

occupancy, grid
emissions, network
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Author Methods Case Study  Granularity  End-Uses Metric(s) Data Inputs Sector
Technology
haracteristics
Kohlhepp and Thermal model of HVAC, heat pumps, . chara 4
Hagenmeyer [60] buildings X Aggregate cold storage Storage capacity (1) building - R,C
characteristics,
building stock
Flexibility models for . Shifted energy
Strobel et al. [61] building types Single TCLs amount (kWh) Demand, SOC I
. . Cost savings ($), peak  Building
Simulation, demand reduction characteristics
Cai and Braun [62] optimization (indoor Single AC, lighting (W/ f12), percentage weather, tempé)ral C
air temperature) PR . !
people satisfied (%) electricity prices
Afzalan and EV, clothes washer Demand reduction
: Clustering X Aggregate and drier, dishwasher, P Demand R
Jazizadeh [63] and AC projection (MWh)
. P Load shift potential Mobility data, grid
Babrowski [64] Optimization Aggregate PV, EV, EVSE (C?\?V)S 1t potentia op%r; tli(}),nsa a, grl R,C
. . . Technology
Simulation, flexibility : o).
~ 4 Peak shaving characteristics,
Schram et al. [65] ‘?)g'i el;IiE;/ model of X Aggregate Battery, PV potential (%) demand, temporal R
electricity prices
Maximum power
shedding point,
Simulation, neural n}l\a)gg}um power Weather. i 1
Zhu et al. [66] network, Bayesian X Single AC shedding, mean d}iat berl ln'fel‘crila g 1
framework power shedding, isturbances, deman
maximum power
rebound, maximum
DR rebound
. . Demand, factory
Mohagheghi and Optimization X Single Manufac‘turmg DR potential (kW) layout, crew I
Raji [67] workstations s
availability
Grid emissions,
Andrews and Simulation, flexibility Emissions reduction demand, grid
Jain [68] model of building Aggregate (%) operations, c
benchmarking data
Electricity export and
Maxi import, demand,
Peacock and Export and import Acorecate Wind, dishwasher, a d?j);lé:;l’ll:le occupant behavior, R C
Owens [69] flexibility models 881¢8 clothes washer opportunity (%) technology 4
characteristics,

participation rates

MPC: Model predictive control (MPC); MPD: Markov Decision Process (MDP).

4. Discussion
4.1. Applications of Flexibility Quantification

Flexibility quantification can be used to inform the integration of renewable energy
resources, enhance power grid stability and security, support DR program development,
and guide policy development.

4.1.1. Integration of Renewable Energy Resources

Renewable energy technologies are reliant on energy resources, such as wind and
solar irradiance, which are intermittent and somewhat stochastic [1]. Although there
has recently been significant progress in developing more accurate predictive models
for these resources, forecast uncertainties can still introduce challenges for power grid
operation and security [70]. This is especially problematic at high penetration levels of
renewable resources. Traditionally, one solution has been to over-design wind and solar
power plants to allow for some level of operational flexibility when the available energy
is less than expected or desired. In fact, early efforts in replacing fossil fuel-based power
plants with renewable counterparts relied on increasing the new plant’s rated capacity
compared to the decommissioned one in order to compensate for any drop in available
generation. With the drop in price of utility-scale batteries in conjunction with more efficient
chemistries, the focus has shifted toward combining renewable resources with energy
storage [71]. While both approaches are effective in turning renewable generation into a
dispatchable resource, they incur additional costs and can lead to negative environmental
impacts. Demand flexibility is a relatively inexpensive, environmentally friendly, and
readily available resource that can be combined with renewable generation to reduce its
operational uncertainties [72].
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Quantifying the availability of demand-side flexibility can assist electric utilities in
multiple ways. First, the knowledge of the locations and levels of flexibility available
across the grid can inform grid planners regarding the most appropriate locations and/or
penetration levels for renewable generation as well as what energy storage resources
are needed and where. Furthermore, information on when demand flexibility might be
available can be used in power grid energy dispatch, especially in allocating reserves.
The general idea that demand flexibility can play a major role in facilitating renewable
energy integration and system planning was cited across studies [1,8-11,16-18,20-22,26,27,
31,32,34,38,40,43,49,50,55,56,58,61,64]. Accurate flexibility models can help turn demand
into a semi-dispatchable resource that can alleviate some of the operational uncertainties
of renewable resources. This can in turn help improve the seamless integration of these
resources with the grid, hence, facilitating decarbonization efforts at all levels [43,68]. In
terms of smart buildings, understanding flexibility potential and cost savings when pairing
electrification with flexibility can provide valuable insights to guide the electrification of
buildings [30].

4.1.2. Power Grid Stability and Security

The stable and secure operation of the electric power grid relies on the availability
of adequate and efficient ancillary services. These are typically provided in the form of
frequency and voltage control at different timescales. They may consist of frequency regu-
lation, load following, capacity reserves, and voltage support. While generation sources
have traditionally been considered providers of ancillary services, demand flexibility can
be viewed as virtual power generation, offering similar support. Different DR programs
can offer demand reduction at various timescales ranging from a few seconds (for instance,
in DLC-type programs and emergency DR) to a few minutes (for instance, in interruptible
DR). Not only can this reduce overall operational costs, but it may also lower the stress on
generation resources that would otherwise have to go through ramp-up and ramp-down
cycles. In fact, demand flexibility has been proposed by researchers for capacity reserves,
frequency support, ease of ramping for generation resources, load shaping, peak demand
reduction, and improved utilization of generation capacities [1,10,11,18,32,34,40,43,64].
Some have also proposed integrating DR and demand flexibility with generation planning.

However, the criticality of ancillary services in ensuring power grid stability and
security necessitates an accurate assessment of the amount of energy or demand curtailment
available, the timing, the duration, and the associated probabilities. This requires a precise
model for quantifying demand flexibility potential subject to all associated uncertainties.
Higher accuracy levels can result in improved performance efficiency and lower operational
costs across the grid.

4.1.3. DR Program Development and Implementation

One of the key challenges associated with integrating DR with distribution grid
operation is estimating the level of flexibility accurately [72]. Although one of the key
goals of quantifying demand flexibility is to reduce system and customer costs [8-11,
34,38,43-45,51,54,58], inaccurate estimations can lead to increased costs at various levels.
Overestimating potential demand reduction could result in a mismatch between load and
generation, leading to higher operational costs as the utility would be forced to revert to
more expensive generation resources to meet demand. On the other hand, underestimating
potential demand reduction may result in curtailing more demand than necessary, which
results in financial losses for the electric utility and inconvenience for end users.

Most current DR programs implemented for residential customers are of the DLC
type, where, during times of need, the electric utility remotely and directly turns off certain
loads—often A/C units—typically with little to no coordination with the customer. The
benefit of DLC is that the amount of demand reduction can be predicted with high accuracy,
making it a reliable and dispatchable resource. However, many building appliances are not
compatible with DLC due to technical limitations, privacy concerns, or user convenience
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issues [5]. This introduces a missed opportunity for both the utility and the customers.
As modern buildings continue to be equipped with advanced home energy management
systems (HEMS), opportunities are emerging for utilities to implement more advanced DR
programs in which customers (or their HEMS units) decide to comply with a DR event
or conversely, to opt out. While this creates possibilities to include a more diverse set of
appliances and, hence, more potential for flexibility, it introduces unique challenges related
to predicting what households will comply with the DR event and by how much.

Demand flexibility models can inform the development and implementation of DR
programs in various ways. As noted in the papers reviewed, by providing more ac-
curate forecasts, DR events can be rolled out in a more targeted and localized fash-
ion, with higher reliability. These forecasts can be used to determine optimal incentive
structures that maximize customer participation while minimizing the financial burden
on the utility [25,48]. Lastly, these models can be used by electric utilities in customer
targeting [1,24,25,27,31,34,45,50,51,63]. Flexibility analysis can indicate which users are
generally more flexible than others, what appliances are more reliable for achieving the
targeted demand reduction, and what times are best to dispatch DR in which parts of
the grid. This information can assist DR program managers in targeting customers more
efficiently and in a more localized fashion.

4.1.4. Policy Development

Finally, flexibility quantification can be used for policy development [8,10,22,38,39,68].
By informing policymakers of the opportunities available through demand-side flexibility
and benefits gained by the grid, more effective policies can be proposed to support or
require the integration of flexibility into all demand sectors. Similar to the development
of building performance standards (BPSs) and other decarbonization initiatives, scientific
research can be used to inform the development of policies that can require and incentivize
certain actions by building owners and operators [68]. Flexibility provides alternative path-
ways to DSM than efficiency measures that may not be suitable for all applications. Similar
to informing statutory decisions, stakeholders such as grid operators could implement
flexibility quantification techniques to inform the integration of flexibility into energy mar-
kets [10,22,23,25,37,49,50,58]. By illustrating the value of this resource and understanding
its availability, system operators can work with policymakers to develop technical and
policy practices to support this integration. However, this requires a deep understanding
of the spatiotemporal variability and availability of the resource. If developed properly,
demand flexibility can be a major component for day-ahead and balancing markets as
well as ancillary service markets where various services such as frequency regulation, load
following, and voltage control are offered. Policy and system support for this resource can
help ensure ease of implementation at all levels, from individual building operations to the
entire energy market.

4.2. Research Gaps and Future Directions

Some of the major gaps and opportunities seen across this review include possibilities
for more advanced data-driven methods, a lack of research into industrial flexibility po-
tential, issues with the availability and accessibility of data, and minimal consideration of
human behavior or equity in demand flexibility models.

4.2.1. Advanced Analytical Methods

A large portion of the studies reviewed in this paper employ conventional data analyt-
ics techniques such as regression and clustering for either modeling or predicting demand
flexibility. These techniques are very effective in lower-dimensional settings with less
complex dynamics. We saw a few examples of neural networks used in studies within
this field [45,52,66]. However, as the diversity and breadth of the available data increases,
more advanced data-driven models might be needed. For instance, non-intrusive load
monitoring used for indirect occupancy detection in a building may require the adoption of
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deep learning techniques to detect and distinguish nuanced usage patterns and signatures
of various appliances in the household. This is especially true if those patterns are investi-
gated across multiple buildings and users. Another complexity arises if the dimensions
of a demand flexibility model increase by considering not just building characteristics
and outdoor environmental factors but also indoor variables such as temperature, airflow,
occupancy, body heat, and/or user convenience models. This can turn the problem into
a complex multilayered model in which conventional techniques and algorithms may
fail to fully identify and represent the complexity of demand flexibility. Deep learning
models such as autoencoders or recurrent neural networks may prove to be more efficient
in those situations. However, when adopting more advanced machine learning models,
their superior modeling capabilities must be balanced against their interpretability (or
lack thereof).

4.2.2. Industrial Flexibility Potential

Compared to the residential and commercial sectors, demand flexibility potential for
the industrial sector has been relatively unexplored and few researchers have focused on
quantifying the flexibility potential of industrial activities [18,21,26,31,43,49,67]. In fact, of
the studies reviewed, only nine papers quantified industrial flexibility potential on its own.

Often, researchers presented methods designed to evaluate the flexibility potential
of a particular industrial activity or employed simplifying assumptions to use regional
statistics of industrial production [18]. This is in part due to the significant differences like
industrial demand compared to that of residential and/or commercial sectors. Demand
reduction in an industrial facility may impact the plant’s production levels, pre- and post-
process inventory buildup, and the work schedule of the crew, to name a few. These
factors complicate the analysis and limit the generalizability of different solutions since
each industrial process is different, not just in characteristics but also in terms of operation,
objectives, and requirements. There have only been a few examples focused on the detailed
flexibility potential of the industrial sector. For example, [26] provided a tool for industrial
process operators to evaluate the costs and benefits of participating in DR; the tool analyzes
the facility to determine how an industrial customer should proceed before a DR event.
In [67], the authors developed an optimization model to maximize demand reduction
potential subject to various operational constraints such as inventory constraints, cost
constraints, crew constraints, and workstation interdependencies.

The oversimplified analysis of industrial activities leads to inaccurate estimations
of the sector’s flexibility potential. It also ignores the inherent variability in energy use
and operation characteristics of this sector, which could otherwise be used to improve the
reliability and security of the power grid. There is both a need and an opportunity for
developing generalized demand flexibility models for various industrial facilities or sectors
where common themes and patterns are identified, characterized, and modeled without
overlooking unique features and operation aspects.

4.2.3. Data Availability

There are common types of data used by authors in this field. Many studies focus on a
single or a limited number of end-uses for analysis, which narrows the data required to
inform their methodology. For example, studies that analyzed A/C flexibility potential
often used historical demand data, temperature data, building characteristics, and tech-
nology characteristics. Although these might be suitable for A /C-specific studies, they do
not provide a complete picture of the building response to a DR event and the effects on
occupants; increased diversity of data is required to account for all contributors to flexibility
variations. An accurate demand flexibility model needs input data that are comprehensive
and granular.

As illustrated in Section 3.5, common datasets seen across studies include demand,
weather/climate, building characteristics, appliance characteristics, and grid data. These
all focus on the technical characteristics and factors driving flexibility, and as such, may
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not account for all variables contributing to flexibility potential estimations. For example,
the authors of [45] identified various drivers of price responsiveness that are not reflected
in the data evaluated in Section 3.5. Among other factors, they identified income status,
the number of occupants, and perceived behavioral control as being contributors to price
responsiveness. However, these factors were not seen frequently—if at all—in flexibility
studies. References [12,54] included a subset of those drivers but were not comprehensive.
Determining which attributes contribute to flexibility potential may require direct engage-
ment with customers and stakeholders to gain a deeper understanding of the drivers of
flexibility and identify the data needed to enhance confidence in estimations.

Another limitation involves the accessibility of data. While building characteristics,
technology characteristics, and historical demand may generally be accessible, other useful
(and at times necessary) data, such as indoor temperature data and occupancy data, are
often unavailable due to privacy concerns, lack of granular measurements, or both. This
can negatively impact the accuracy of the developed model by ignoring variables that
have a direct impact on demand and its flexibility potential. The issue can be partially
addressed by either estimating the unavailable data or including surrogate data. For
instance, indoor temperatures can be estimated using physics-based models and occupancy
can be estimated based on non-intrusive load monitoring methods. However, this approach
can cause cumulative errors in the model. A more severe challenge occurs when modeling
user behavioral patterns with respect to DR and demand flexibility. User behavior data
cannot be easily measured or estimated. In fact, large-scale, longitudinal surveys might be
the only viable option to collect meaningful data to develop models. But even those models
may not be easily generalizable. An opportunity exists for multidisciplinary sociotechnical
analyses spanning engineering, economics, and social sciences to develop models that
reflect how users interact with energy systems and DR programs.

Even when the required data are available, they may not have the necessary granularity
levels. For instance, an accurate demand flexibility model of a building would need usage
data from individual appliances. Such data are difficult to obtain for an individual building,
but almost infeasible to collect for a cluster of buildings or a region. Advanced deep
learning techniques, as described above, might be used to detect consumption patterns
and signatures of various appliances from aggregate meter data. Another example is
related to occupancy detection. While general occupancy can be determined easily from
meter data, determining the number and age of individuals in the building, without direct
measurement, is far more complicated. At the same time, the demand profile and response
to DR events might be directly impacted by which occupants are inside the building.
Statistical models can be developed using historical data to assign temporal probabilities
to the number and types of occupants in the building at any given point in time. The
associated probabilities will then need to be incorporated into the models to provide
estimations under uncertainties.

4.2.4. Human Behavior in Flexibility Quantification Studies

A key missing feature in previous work is the inclusion of complex human behavior
and how it affects flexibility potential estimations. Although automated load flexibility
is the goal, occupant preferences play a major role in the availability of this resource. Al-
though acknowledged throughout the literature as a driving factor in quantifying demand
flexibility potential, previous studies do not account for residents’ variable interactions
with the energy systems around them. The authors tend to account for variability among
customers by simplifying user preferences to a range of indoor temperatures [3,17,29,33] or
by simply attributing household variability to differences in load profiles. These methods
do not account for the immense diversity of needs among electricity customers and oversim-
plify their actions based on minimal datasets. Although there are a few authors who have
incorporated data such as demographic [45], census [32], or survey data [12,32,40,54-56],
this may not be comprehensive of attributes that affect individual flexibility potential.
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There is a need for the development of human behavior models that reflect the general
ways in which individuals interact with energy systems without becoming too narrowly
focused on random patterns. This is of course a challenging task, mainly due to the lack of
granular and comprehensive user data. Advanced machine learning models can be used
to extract consumption patterns from raw data and convert them into meaningful and
generalizable information to be used in flexibility models. Not only can this be used to
improve the forecast accuracy of demand flexibility, but it can also be used to develop more
customized DR programs.

4.2.5. Equity

DR is a power grid application that is most closely related to and impacts customers.
Yet, how its implementation affects individuals and households is not yet properly explored
in the literature.

Demand flexibility touches on two tenets of energy justice, namely distributional jus-
tice and recognition justice. Distributional justice refers to the fair distribution of harms and
benefits across a community [73]. This is an important consideration, particularly for DR,
because the benefits of DR actions are realized by everyone connected to the grid. However,
the burden is only seen by those who choose to participate which could lead to ongoing
inequity. Measures to ensure that demand from a specific group or ‘class’ of customers is
not overly utilized during DR events and is a welcome first step to ensure distributional
justice. This can, for instance, be achieved by limiting the number of times—either consecu-
tively or in total—that each customer or household can be targeted for demand reduction.
Furthermore, metrics to reflect DR benefits can be developed. For instance, improvement in
reliability or resilience can be compared across various customer groups to ensure benefits
are well distributed across all customers of the power grid. Recognition justice, on the other
hand, acknowledges and focuses on the differences in capabilities and limitations of indi-
vidual customers when it comes to adapting and responding to the undesired side-effects
of DR participation [73]. Perhaps the most commonly acknowledged factor is related to
the impact of excess indoor temperatures. For example, the effects of increased indoor air
temperature due to A/C DR on various age groups. Research shows that those over the age
of 65 or under the age of 5 are on average less tolerant of temperature extremes and as such,
should be deprioritized for DR participation during extreme weather events [74]. Perhaps
less understood is how appliance DR and load shifting can affect customer convenience,
depending on user demographics and the types of appliances.

Such equity considerations are a major gap in research across studies seen in the
literature. Equity and energy justice, from distributional and recognition angles, need to be
properly integrated with and incorporated into demand flexibility models. Equity-focused
methods can then be used to target customers with high DR potential and/or to implement
targeted and localized DR events.

5. Conclusions

This literature review presents trends among previously published research pertaining
to demand flexibility modeling and quantification. Within the context of this paper, the
term 'demand’ refers to energy demand associated with consumers connected to the electric
power grid. Trends analyzed across studies included definitions of key terms, metrics,
and units used to quantify demand flexibility potential, methods deployed by authors in
this field, data inputs used to inform studies, and end-uses included in analyses. Little
standardization was observed across studies with authors frequently developing their
own methods and metrics to quantify and describe demand flexibility. Applications of
flexibility quantification were also discussed to illustrate the opportunities for studies in
this field. Research gaps were identified to inform the direction of future studies and
research. The material presented in this paper is highly beneficial for researchers who
are interested in advancing this field of study. It can also inform actions by policymakers,
electric utilities, and grid operators who plan to utilize demand flexibility as a resource to
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improve power grid operational efficiency, lower operational costs, and integrate renewable
energy resources with the power grid.
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