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Abstract: Optimizing land use and management are pivotal for mitigating land use-related carbon
emissions. Current studies are less focused on the influence of development policies and spatial plan-
ning on carbon emissions from land use. This research employs the future land use simulation (FLUS)
model to project land-use alterations under the business-as-usual (BAU) and low-carbon ecological
security (LCES) scenarios. It assesses and predicts spatiotemporal characteristics of land-use carbon
emissions in the Beijing-Tianjin-Hebei (BTH) region across urban agglomerations, cities, counties, and
grids from 2000 to 2030. The influence of low-carbon policy is assessed by comparing the land-use
carbon emissions between scenarios. The findings demonstrate that: (1) Urban agglomeration-wise,
Beijing’s land-use carbon emissions and intensities peaked and declined, while Tianjin and Hebei’s
continued to rise. (2) City-wise, central urban areas generally have higher carbon emissions inten-
sities than non-central areas. (3) County-wise, in 2030, high carbon-intensity counties cluster near
development axes. Still, the BAU scenario has a larger carbon emission intensity and a greater range
of higher intensities. (4) Grid-wise, in 2030, the BAU scenario shows a clear substitution of heavy
carbon emission zones for medium ones, and the LCES scenario shows a clear substitution of carbon
sequestration zones for light carbon emission zones. Our methodology and findings can optimize
spatial planning and carbon reduction policies in the BTH urban agglomeration and similar contexts.

Keywords: land-use carbon emission; carbon neutrality; future land use simulation (FLUS) model;
linear programming model; muti-scales

1. Introduction

Global climate change, primarily manifested through global warming, poses one of
the most formidable problems to human society during the twenty-first century [1]. The
ramifications of global warming encompass a multitude of adverse effects on natural sys-
tems, such as the thawing of snow and ice caps, the escalation of sea levels, and alterations
in precipitation patterns [2]. These phenomena directly or indirectly jeopardize both nat-
ural and human systems, impacting water resources, marine and coastal environments,
terrestrial ecosystems, agriculture, and human health, among others [3,4]. For example,
climate change has resulted in increased evapotranspiration in the Mediterranean region,
resulting in a marked decline in freshwater availability [5]. From 1979 to 2012, the Arctic
sea ice area experienced an annual decline, averaging between 3.5% and 4.1% per year [6].
Additionally, China’s boreal forests are dwindling, and the productivity of Inner Mongolian
grasslands is in decline [3]. Carbon emissions originating from fossil fuel consumption
and land-use alterations are widely acknowledged as significant contributors to global
warming [7]. According to relevant researchers’ research estimations, between 1850 and
1990, direct carbon emissions caused by land use and associated alterations constituted
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more than one-third of overall emissions of human activities [8]. The IPCC special study
Climate Change and Land examines the connections underlying climate change and land
use, arguing that sustainable land management policies facilitate the Sustainable Develop-
ment Goals (SDGs). According to studies, land-use optimization and land management are
essential strategies for mitigating carbon emissions [9–13].

Many countries have devised various strategies aimed at curbing carbon emissions;
among them are land-use optimization and land management. The Kyoto Protocol and the
Paris Agreement successively identified the importance of afforestation and reforestation
activities in climate governance, recognized forest carbon sinks as an important measure
for reducing carbon emissions, and encouraged parties to take positive action and provide
incentives to reduce deforestation and forest degradation [14]. China has devised and
executed many policies and projects to advance low-carbon and ecological development.
Some of these policies and projects are aimed at ecological protection, such as the Natural
Forest Resources Protection Project and the Returning Cultivated Land to Forests. The execution
of these initiatives has expanded the expanse of ecological land and markedly enhanced the
ecosystem’s carbon sink [15,16]. Other policies and projects aimed at protecting farmland
include the farmland occupancy compensation balance policy and the permanent basic farmland
protection policy. The implementation of the above-mentioned policies has mitigated the
rapid decrease in farmland area. The synchronization between farmland resource protection
and economic development has been partially accomplished [17]. The implementation
of these policies and projects has regulated land-use change and increased ecosystem
carbon sinks, but it still faces the problem of sustainability of implementation. Therefore, to
support the realization of sustainable development further, the policy mechanism should
be strengthened to connect carbon emission curbing through land-use optimization and
management with other policies.

The prevailing research content about land-use carbon emissions primarily looks
into the spatiotemporal characteristics [18], driving mechanisms [19], low-carbon opti-
mization strategies [20], simulation predictions [21], and so on. The study scale involves
countries [22], key regions [23], provinces [24], cities [25], etc. The primary techniques for
quantifying carbon sources and sinks in terrestrial ecosystems involve top-down atmo-
spheric inversion models [26], bottom-up ground surveys [27], process-based ecosystem
models [28], bookkeeping models [29], etc. Based on the bookkeeping model, the IPCC
Guidelines for National Greenhouse Gas Inventories proposed the carbon emission coeffi-
cient [30] and provided detailed accounting formulas and a database of emission factors,
which offers a simple and practical approach for calculating carbon emissions from land use
that is currently widely utilized globally [31]. So this research utilizes the carbon emission
coefficient for assessing the carbon emissions linked to various land-use categories.

Three types of land use simulation models now in use are non-spatial models [32],
spatial models [33], and comprehensive models [34]. The primary use of non-spatial models
is the quantitative features and rate of predicted changes in land use using previous data
or samples of training with adjusted parameters [20], which include Markov chain mod-
els [35], system dynamics models [36], linear programming models [37], gray models [38],
etc. Spatial models express the attributes of spatial patterns of land-use alterations [39],
which include the cellular automata model (CA) [40], the agent-based model [41], etc.
Comprehensive models synthesize non-spatial and spatial models, which usually start
by predicting the overall rate and quantity characteristics of land use at the macro scale,
thereafter allocating these macro-scale alterations incrementally in total land-use demand
to micro-spatial units [42]. Such models mainly include the CLUE-S model [43], the FLUS
model [44], etc. The FLUS model couples a spatial model (modified CA model) and a
non-spatial model (Markov chain model), which enables the land-use requirements and
drivers in each simulated time series to feedback to each other [21]. So the FLUS model is
employed for modeling prospective land-use alterations in this study.

Previous research has thoroughly examined variations in carbon emissions from land
use, along with the factors that govern them. Jiang et al. (2017) investigated the alterations
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in carbon sequestration within the Changsha-Zhuzhou-Xiangtan region across diverse
scenarios, including natural growth, agricultural protection, and ecological conservation,
spanning the period from 2014 to 2030 [45]. Liu et al. (2019) further examined the im-
plications of urbanization on land-use carbon emissions, using the Beijing-Tianjin-Hebei,
Yangtze River Delta, and Pearl River Delta as illustrative cases [46]. Meng et al. (2023)
identified economic scale and population size as the primary drivers of land-use carbon
emissions in the Yellow River Basin [47]. However, previous studies have insufficiently
highlighted and explored the ramifications of development policies and spatial planning
on land-use changes [48]. This lack of perspective will likely lead to certain inaccuracies
and limitations in land use simulation. Therefore, this study integrates low-carbon and
eco-civilization policies and spatial planning into land use simulation and designs two de-
velopment scenarios, business-as-usual (BAU) and low-carbon ecological security (LCES).
It aims to reveal the potential impacts of policy and planning on land-use carbon emissions
and offer insights for attaining carbon neutrality. In addition, most of the existing research
scales are national, regional, and provincial, which makes it difficult to operationalize poli-
cies to smaller administrative units and spatial grids. Therefore, this study evaluates the
alterations in carbon emissions caused by land use under alternative development scenarios
at multiple scales of urban agglomeration, city, county, and grid. Policy recommendations
applicable to multi-level administrative units and grids are also proposed.

The research examines the historical land-use changes and multi-scale land-use carbon
emission alterations in the BTH region between 2000 and 2020. We also simulated land-
use alterations between 2020 and 2030 under the BAU and LCES scenarios. The multi-
scale carbon emission alterations from land use of urban agglomeration, city, county,
and 3 km × 3 km grid under the influence of different policies are discussed. The study
assesses the effects of the low-carbon policies by comparing the outcomes of land-use
carbon emissions across two scenarios. Based on this, policy recommendations applicable
to different levels of administrative units and grids are offered.

2. Materials and Methods
2.1. Study Area

The BTH region, located in northern China, spans roughly 218,000 square kilometers
(Figure 1). This region displays a temperate climate with semi-humid to semi-arid char-
acteristics, governed by a continental monsoon system. Winter conditions in this area are
typically characterized by cold temperatures accompanied by minimal snowfall, whereas
summers are distinguished by intense heat waves and substantial rainfall. The region
comprises the municipalities of Beijing and Tianjin, along with 11 prefecture-level cities in
Hebei Province, totaling 199 districts and counties. The BTH urban agglomeration, ranking
among China’s three world-class urban agglomerations, functions as the country’s center of
politics, culture, international exchanges, and science and technology innovation [49]. The
BTH region will launch a carbon-neutrality demonstration zone and assume a leadership
role in investigating pathways for carbon neutrality in accordance with national carbon-
neutrality targets and implementation strategies [50]. In terms of physical geography, the
region has a complex topography and distinctive climatic characteristics [51], and in terms
of socioeconomic aspects, there are large spatial differences in population density and
economic development in the region [52]. Consequently, there is a certain typicality to the
research object selection—the BTH region—and the research findings have some guiding
relevance for encouraging China’s advancement in low-carbon development.

2.2. Research Framework

In this research, two scenarios, BAU and LCES, are first set up, and a Markov chain
and linear programming model are used for land-use demand prediction. The second
step involves simulating the space patterns of land-use alteration across various scenarios
using the FLUS model. The third phase involves estimating and analyzing carbon emis-
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sions of land use under muti-scales, including urban agglomerations, cities, counties, and
3 × 3 kmgrids, using the carbon emission coefficient method (Figure 2).
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2.3. Methodology

In this work, the space patterns of land-use alteration across multiple scenarios are
simulated using the FLUS_V2.4 software model. Land-use carbon emissions are calculated
using the carbon emission coefficient approach. Under the BAU scenario, the Markov chain
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model is utilized to model the prospective land-use requirements. In the LCES scenario, a
linear programming model is employed to establish restrictions and construct an objective
function for determining land-use requirements following a low-carbon objective.

2.3.1. Design of Different Scenarios

Two scenarios were proposed: the BAU scenario and the LCES scenario, based on
relevant research [37,49,53] and current development situations and future development
planning of the BTH region. The BAU scenarios were modeled with a Markov chain model
using the 2010 to 2020 land-use transition matrix orthogonalized to obtain the transfer
probability for land use through 2020 to 2030. The land-use requirement in the LCES
scenario should take into account both the attainment of carbon-reduction objectives and
adherence to national and local land-use policies and spatial planning regulations. A linear
planning model is used to set the objective function, and the constraint requirements are
set regarding the latest regional spatial planning and land-use policies of the BTH region to
create the land-use demand in the LCES scenario from 2020 to 2030.

2.3.2. Markov Chain Model

The Markov chain model assumes that the probability of the system occupying a
specific condition at the given moment can be calculated using an existing condition
from a previous phase [54]. It is commonly utilized in predicting land-use alteration [55].
This study employed the Markov chain transition matrix to evaluate the interconversion
connections among the different land-use category grids for the years 2010 to 2020. The
land-use demand of the 2030 BAU scenario is obtained using the land-use distribution and
transition matrix P orthogonalized from the years 2010 to 2020. This matrix is calculated
using Equation (1), n represents the number of land-use grids, and Pij denotes the likelihood
of conversion from category i to j (0 ≤ Pij ≤ 1).

Pij =

[
P11 · · · P1n

... · · ·
...Pn1 · · · Pnn

]
(1)

2.3.3. Linear Programming Model

The foundation of the linear programming model is the establishment of objective
functions and constraints upon which the optimal values of the decision variables are
determined [56,57]. Equations (2) and (3) display the aim function for minimum land-use
carbon emissions and restrictions for each category of land use.

min f (x) =
6

∑
i=1

αixi (2)

s.t. =


6
∑

i=1
xi = S

Si1 ≤ xi ≤ Si2

(3)

In this equation, αi denotes s as a carbon emission coefficient corresponding to every
land-use category, and S represents the area of the BTH region. Si1 and Si2 represent
the lowest and highest points of the area for every land-use category. The area for every
land-use category, denoted by xi, is measured in hectare (hm2).

Setting the maximum and minimum intervals for an area of the six land-use categories
based on the Beijing City Master Plan (2016–2035), Spatial Planning of National Land
in Hebei Province (2021–2035), Spatial Planning of National Land in Tianjin (2021–2035),
and historical trends. Considering the requirement of quantity of cultivated land, it is
installed that the cultivated land area in the LCES scenario in 2030 is greater than 97% of
the 2020 level and greater than the cultivated area in the BAU scenario (S11 = 9,675,969,
S12 = 9,875,473). To increase carbon sequestration and meet the requirements of the ecologi-
cal red line, the area of forest land under the LCES scenario in 2030 is set to be larger than
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that in 2020 and exceed that under the BAU scenario (S21 = 4,599,870, S22 = 5,237,476). To
mitigate carbon emissions and meet the requirements of the expansion multiplier of the
urban development boundary, we need to limit the unlimited expansion in urban land.
Therefore, the urban land area is set to be less than 1.1 times that in 2020 and inferior to the
urban land area in the BAU scenario (S51 = 2,766,272, S52 = 2,913,388). Setting the amount
of grassland, water area, and unused land derived from historical trends and associated
studies [53] (S31 = 3,437,549, S32 = 3,914,041, S41 = 646,705, S42 = 736,347, S61 = 149,356,
S62 = 164,292).

2.3.4. FLUS Model

The FLUS model is a modified CA model [21]. The likelihood for every land-use cate-
gory occurring inside a grid unit is first calculated using an artificial neural network (ANN)
algorithm informed by historical land use and driving elements. Then the adaptive inertia
competition mechanism is also informed by historical land use, combining conversion costs,
neighborhood impacts, and suitability probabilities to achieve a reasonable space allocation
for the overall amount of each land category [34,58]. The equation works as follows:

TPt
i,k = Pi,k × Ωt

i,k × Inertiat
k × conc→k (4)

TPt
i,k represents the likelihood of converting a grid unit through the initial category

c to the prospective objective category k at iterative time t. Pi,k, which is determined by
an ANN model, is the land-use category’s probability of occurring on grid unit i. Ωt

i,k
represents the neighborhood impact of category k on grid unit i at iterative time t, while
conc→k represents the transformation matrix of the initial category c to the prospective
objective category k.

This study utilized land-use alterations in the BTH region from 2000 to 2010 to predict
land-use alterations in 2020, combined with drivers and constraints. To validate the
simulation results for 2020, we employed actual land-use data from 2020 to compute the
Kappa and FoM coefficients. The Kappa coefficient for the simulated outcome was found to
be 0.8518, and the FoM coefficient was 0.0509, both of which fulfill the accuracy criteria. The
validation results demonstrate that this methodology is capable of accurately estimating
future land-use changes.

Additionally, in the LCES scenario, aside from the differing land-use requirements
compared to the BAU scenario, neighborhood weights would need to be adjusted to adjust
the expansion capacity for each land-use category. The neighborhood impact factor reflects
the relationship among different land categories and land grids within the surrounding area.
It takes a value between 0 and 1, with proximity to 1 indicating a higher expansion potential
for the category. Considering the previous expansion index of each category between 2010
and 2020, referring to related studies [59,60] and after several tests and adjustments, the
neighborhood weights are finally determined (Table 1).

Table 1. Neighborhood weights of land-use categories.

Land-Use Categories Cultivated Land Forest Land Grassland Water Area Urban Land Unused Land

BAU 0.5 0.7 0.3 0.4 0.9 0.01
LCES 0.3 1 0.7 0.5 0.7 0.01

2.3.5. Carbon Emission Coefficient

The carbon emission coefficient for non-construction land can be acquired through
the IPCC and prior studies in analogous study regions [23,27,61–64]. The carbon emission
coefficient for urban land is derived by dividing total carbon emissions from fossil fuel
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usage in the BTH region by total urban land area. The formulae are presented in Equation
(5). Table 2 presents the carbon emission coefficients for land-use categories.

Ce =
6

∑
i=1

Si × αi = Scon
i × αcon

i +
5

∑
i=1

Snon
i × αnon

i (5)

Table 2. Carbon emission coefficient for land-use categories (t·hm−2·a−1).

Land-Use Category Carbon Emission Coefficient References

Cultivated land 0.422 [23,61]
Forest land −0.581 [27]
Grassland −0.021 [27]
Water area −0.253 [62]

Urban land 90.558
According to the total energy

consumption and urban land area
of BTH from 2000 to 2020

Unused land −0.050 [63,64]

Ce denotes the aggregate carbon emissions (ton). Si (hm2) denotes the area of land
in category i. The carbon emission coefficient (t/hm2) for the ith land-use category is
represented by αi. The construction land is represented by Scon

i . The coefficient for con-
struction land is denoted as αcon

i . The extent of non-construction land is denoted by Snon
i .

The coefficient for non-construction land is denoted as αnon
i .

2.4. Data Sources

The main sources of data for this research are land-use data, data on land-use drivers
and constraints, and energy data. Natural elements (DEM, slope, aspect, temperature, and
precipitation), transportation location elements (distance from the city center, railroads,
and highways), and social and economic elements (population and GDP) are the spatial
elements that influence shifts in land use in our research. Constraints include data about
the boundaries of national nature reserves. The land use and DEM data are sourced
from the Geospatial Data Cloud (http://www.gscloud.cn). GDP and population spatial
interpolation data, temperature and precipitation spatial interpolation data, and national
nature reserve boundary data are obtained from the Resource and Environmental Science
and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/). Road data
is obtained from Open Street Map (https://www.openstreetmap.org/). The resolution of
all raster data is uniformly 100 × 100 m2, and all raster extent remains consistent.

3. Results
3.1. Historical Land Use and Land-Use Carbon Emission Alterations
3.1.1. Land-Use Changes Between 2000 and 2020

Table 3 shows the land-use transition matrix for the years 2000 to 2020. Table 4 shows
the alterations that happened in each land-use category during that time. In terms of
total change, cultivated land and urban land have experienced greater change, making
up 10.42% and 8.09% of the entire area, respectively. This is followed by grassland, forest
land, and water areas, which account for 4.30%, 3.29%, and 2.36%, respectively. The total
change in unused land is relatively small at 0.99%. In addition, the composition of change
is different for each land-use category. Among them, the main changes in forest land,
grassland, water area, and unused land are exchange changes, i.e., the main form of change
is the shift of spatial location, and the amount of exchange change reaches over 80% of
the overall alteration in each of them. Cultivated land showed a net decrease and some
exchange change, where the net change was 42% of the total change. Urban land showed a
net increase and some exchange change, with the net change accounting for 57.2% of the
total change. In terms of inter-category change, the migration of cultivated land into urban

http://www.gscloud.cn
https://www.resdc.cn/
https://www.openstreetmap.org/
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land is the predominant trend in land-use alteration between 2000 and 2020, particularly
near built areas of Beijing, Tianjin, and other cities (Figures 3 and 4).

Table 3. Land-use transformation matrix in BTH between 2000 and 2020 (%).

2020

Cultivated
Land

Forest
Land Grassland Water

Area
Urban
Land

Unused
Land Total Losses

2000

Cultivated land 43.42 0.64 0.81 0.60 5.30 0.05 50.82 7.40
Forest land 0.42 19.36 0.70 0.03 0.28 0.01 20.80 1.44
Grassland 0.70 1.09 13.99 0.11 0.46 0.08 16.44 2.44
Water area 0.44 0.05 0.13 1.74 0.25 0.24 2.85 1.12
Urban land 1.17 0.04 0.07 0.44 6.39 0.02 8.12 1.73

Unused land 0.29 0.02 0.14 0.06 0.07 0.37 0.96 0.59
Total 46.44 21.20 15.85 2.98 12.75 0.77 100.00
Gains 3.02 1.85 1.85 1.24 6.36 0.40

Table 4. Land-use change information in BTH between 2000 and 2020 (%).

Gains Losses Total Change Swap Change Net Change

Cultivated land 3.02 7.40 10.42 6.04 4.38
Forest land 1.85 1.44 3.29 2.88 0.40
Grassland 1.85 2.44 4.30 3.70 0.59
Water area 1.24 1.12 2.36 2.23 0.13
Urban land 6.36 1.73 8.09 3.46 4.63

Unused land 0.40 0.59 0.99 0.80 0.19
Total 14.72 14.72 14.72 4.40 10.32
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Beijing, the capital of China, is rich in forest land resources, with more than 45% of
the overall area of forested land, predominantly located in the mountainous regions in the
northwestern part of the city. From 2000 to 2020, Beijing’s urban land area expanded and
subsequently fell, with an overall increasing tendency. In 2000, 2010, and 2020, Beijing’s
urban land area was 13.68%, 23.41%, and 21.71%, respectively. Tianjin is rich in cultivated
land and water areas, cultivated land constitutes roughly 51% of the entire area, and water
area comprises around 13%, predominantly situated in the eastern coastal regions, major
reservoirs, and river systems. In Tianjin, the area under cultivation decreased while the
area under urbanization increased between 2000 and 2020, with the proportion rising from
15.58% to 26.46%. The primary land-use categories in Hebei Province are cultivated land,
forest land, and grassland. Cultivated land, mostly in the southeast of the province, makes
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up more than 48% of the province’s entire area. Forest land accounts for more than 20% of
the land and grassland for more than 17%, and they are mostly found in the mountainous
regions of the northwest. In Hebei Province, the area under cultivation diminished while
the area under urbanization expanded between 2000 and 2020, with the percentage of
urban land rising from 7.18% to 11.13%.

Land 2024, 13, x FOR PEER REVIEW 10 of 25 
 

 

Figure 4. Sankey diagram of conversion between land-use types between 2000 and 2020. 

Beijing, the capital of China, is rich in forest land resources, with more than 45% of 
the overall area of forested land, predominantly located in the mountainous regions in the 
northwestern part of the city. From 2000 to 2020, Beijing’s urban land area expanded and 
subsequently fell, with an overall increasing tendency. In 2000, 2010, and 2020, Beijing’s 
urban land area was 13.68%, 23.41%, and 21.71%, respectively. Tianjin is rich in cultivated 
land and water areas, cultivated land constitutes roughly 51% of the entire area, and water 
area comprises around 13%, predominantly situated in the eastern coastal regions, major 
reservoirs, and river systems. In Tianjin, the area under cultivation decreased while the 
area under urbanization increased between 2000 and 2020, with the proportion rising from 
15.58% to 26.46%. The primary land-use categories in Hebei Province are cultivated land, 
forest land, and grassland. Cultivated land, mostly in the southeast of the province, makes 
up more than 48% of the province’s entire area. Forest land accounts for more than 20% 
of the land and grassland for more than 17%, and they are mostly found in the mountain-
ous regions of the northwest. In Hebei Province, the area under cultivation diminished 
while the area under urbanization expanded between 2000 and 2020, with the percentage 
of urban land rising from 7.18% to 11.13%. 

3.1.2. Land-Use Carbon Emission Changes Between 2000 and 2020 
(1) Historical land-use carbon emission changes at the urban agglomeration level 
At the urban agglomeration scale, historical land-use carbon emissions have in-

creased dramatically, from 15,971.28 × 104 tons in 2000 to 24,925.72 × 104 tons in 2020. How-
ever, compared to 2000 to 2010, there has been a notable deceleration in the increased rate 
of carbon emissions of land utilization between 2010 and 2020. Between 2000 and 2020, 
Beijing’s land-use carbon emissions and intensity increased initially before declining, 
whereas Tianjin and Hebei Province both continued to climb (Figure 5). 

Figure 4. Sankey diagram of conversion between land-use types between 2000 and 2020.

3.1.2. Land-Use Carbon Emission Changes Between 2000 and 2020

(1) Historical land-use carbon emission changes at the urban agglomeration level
At the urban agglomeration scale, historical land-use carbon emissions have increased

dramatically, from 15,971.28 × 104 tons in 2000 to 24,925.72 × 104 tons in 2020. However,
compared to 2000 to 2010, there has been a notable deceleration in the increased rate of
carbon emissions of land utilization between 2010 and 2020. Between 2000 and 2020, Bei-
jing’s land-use carbon emissions and intensity increased initially before declining, whereas
Tianjin and Hebei Province both continued to climb (Figure 5).

Land 2024, 13, x FOR PEER REVIEW 11 of 25 
 

 
Figure 5. Land-use carbon emissions (104t) and carbon emission intensity (t/hm2) at urban agglom-
eration scale. 

(2) Historical land-use carbon emission changes at city, county, and grid levels 
At the city scale, between 2000 and 2020, carbon emissions from land utilization in 

most cities increased, and only one city, Cangzhou, showed a small reduction in land-use 
carbon emissions (Figure 6). Cities exhibiting larger carbon emission intensity (t/hm2) 
were centered in the central urban areas of most cities in 2000, in the central cluster in 
2010, and in the central cluster and the southern cluster in 2020 (Figure 7). We also inves-
tigated the connection between carbon intensity and whether a region is a central urban 
area or not to elucidate the characteristics of carbon intensity across different areas. As 
shown in Figure 7, except for Xingtai, the carbon emission intensity in the central urban 
area exceeds that of the non-central urban area in all other cities. Therefore, measures for 
zonal land-use optimization should be designed to reduce carbon emissions. 

Figure 5. Land-use carbon emissions (104t) and carbon emission intensity (t/hm2) at urban agglom-
eration scale.

(2) Historical land-use carbon emission changes at city, county, and grid levels
At the city scale, between 2000 and 2020, carbon emissions from land utilization in

most cities increased, and only one city, Cangzhou, showed a small reduction in land-use
carbon emissions (Figure 6). Cities exhibiting larger carbon emission intensity (t/hm2)
were centered in the central urban areas of most cities in 2000, in the central cluster in 2010,
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and in the central cluster and the southern cluster in 2020 (Figure 7). We also investigated
the connection between carbon intensity and whether a region is a central urban area or
not to elucidate the characteristics of carbon intensity across different areas. As shown in
Figure 7, except for Xingtai, the carbon emission intensity in the central urban area exceeds
that of the non-central urban area in all other cities. Therefore, measures for zonal land-use
optimization should be designed to reduce carbon emissions.
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Figure 7. Carbon emission intensity of central and non-central urban areas of different cities from
2000 to 2020.

At the county scale, counties with greater carbon intensity (t/hm2) in 2000 were dis-
persed near the central urban areas within the south-central cities. In 2010, they were con-
centrated around the “Beijing-Tianjin”, “Beijing-Longfang-Baoding-Shijiazhuang-Handan”,
and “Zhangjiakou-Beijing-Tangshan-Qinhuangdao” development axes. In 2020, both the
carbon emission intensity and the range of higher intensities increased near the develop-
ment axis (Figure 8). From 2000 to 2020, most counties show an upward trend in land-use
carbon emission intensity. Counties with decreasing or unchanged land-use carbon emis-
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sion intensity are concentrated in Cangzhou City between 2000 and 2010, while from 2010
to 2020, such counties are primarily found in Beijing and the coastal regions of Tianjin and
Tangshan City.
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At the 3 × 3 km grid scale, carbon emissions from land utilization could be categorized
into four kinds: carbon sequestration (≤0 tons), light carbon emissions (0–5,000 tons),
medium carbon emissions (5,000–20,000 tons), and heavy carbon emissions (≥20,000 tons)
(Figure 9). Between 2000 and 2020, in total, the area of carbon sequestration areas decreases
significantly, the area of heavy carbon emission areas increases significantly, and the regions
of light and medium carbon emissions remain basically stable. In terms of transformation
trend, there is a stepped transformation trend, i.e., the light carbon emission area replaces
the carbon sequestration area, the medium carbon emission area replaces the light carbon
emission area, and the heavy carbon emission area replaces the medium carbon emission
area. Regarding spatial distribution, heavy carbon emission areas are constantly spreading
to the periphery with the central urban areas and the development axis as the center, but
the area of heavy carbon emission areas within coastal regions has decreased.
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3.2. Future Land Use and Land-Use Carbon Emission Alterations in Various Scenarios
3.2.1. Future Land-Use Changes in Various Scenarios

The land-use requirements for the BAU and LCES scenarios are shown in Table 5.
Compared with 2020, cultivated land in both scenarios in 2030 shows a significant declining
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tendency (Figure 10), and forest land, grassland, water area, and urban land all show a
growing tendency. The BAU scenario exhibits the most prominent shift of cultivated land
toward urban land (Figure 11). The LCES scenario shows the most notable transfer of
cultivated land into forest land and grassland. The rise in forest land and the fall in the
transformation of cultivated land to urban land are the primary distinctions between the
LCES scenario and the BAU scenario. The interface between cultivated and urban land is
where the two scenarios’ spatial differences are most obvious.

Table 5. Estimated land-use area under muti-scenarios (hm2).

Types Scenarios Cultivated Land Forest Land Grassland Water Area Urban Land Unused Land

2020 9,975,226 4,554,327 3,403,514 640,302 2,738,883 165,952
BAU2030 9,625,256 4,603,168 3,406,428 734,306 2,913,388 195,658
LCES2030 9,675,938 4,801,338 3,437,635 646,706 2,766,297 150,290
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3.2.2. Future Land-Use Carbon Emission Changes in Various Scenarios

(1) Future land-use carbon emission changes at the urban agglomeration level
At the urban agglomeration scale, both land-use carbon emissions and growth rate

in 2030 in the LCES scenario are significantly smaller than those under the BAU scenario,
demonstrating the efficacy of the LCES scenario in reducing carbon emissions from land
utilization. According to the BAU scenario and the LCES scenario, the carbon emissions
from land utilization in 2030 will be 26,485.40 × 104 tons and 25,146.87 × 104 tons, respec-
tively. In the LCES scenario, Beijing, Tianjin, and Hebei have less carbon emissions from
land utilization and intensities compared to the BAU scenario (Figure 12).
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(2) Future land-use carbon emission changes at city, county, and grid levels
At the city level, in the LCES scenario, carbon emissions of land utilization are reduced

compared to the BAU scenario for all 11 cities except Chengde and Zhangjiakou (Figure 13).
The cities with larger carbon emission intensities (t/hm2) in both scenarios continue the
2020 trend and are concentrated in the central and southern cities (Figure 14). However,
both the carbon emission intensity and the range of higher intensities are larger in the BAU
scenario than in the LCES scenario. All cities, except Xingtai, have central urban areas with
higher carbon emission intensities than non-central urban areas in both scenarios.

At the county scale, under the LCES scenario, 158 of 199 counties exhibit reduced
carbon emissions from land utilization compared to the BAU scenario. Under both sce-
narios, the counties with larger carbon emission intensity (t/hm2) continue the distribu-
tion trend of 2020 and are concentrated near the development axes of “Beijing-Tianjin”,
“Beijing-Longfang-Baoding-Shijiazhuang-Handan”, and “Zhangjiakou-Beijing-Tangshan-
Qinhuangdao.” However, the BAU scenario exhibits greater carbon emission intensity and
higher intensity range than the LCES scenario (Figure 15). Compared to 2020, 51 counties
in the BAU scenario and 75 counties in the LCES scenario show decreasing or unchanged
trends in land-use carbon intensity. Most of the counties with decreasing or unchanged
intensity are concentrated in the northwest ecological conservation area. The LCES scenario
has a larger range of declining or unchanged counties than the BAU scenario.
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Figure 14. Carbon emission intensity of central and non-central urban areas of different cities under
muti-scenarios.

At the 3 × 3 km grid scale, land-use carbon emissions were similarly divided into four
types: carbon sequestration (≤0 tons), light carbon emissions (0–5,000 tons), medium carbon
emissions (5,000–20,000 tons), and heavy carbon emissions (≥20,000 tons) (Figure 16). In
terms of total area, both scenarios show an increase in heavy carbon emission zones in
2030 compared to 2020, but the area of light and medium carbon emission zones decreases,
and the area of carbon sequestration zones increases. In terms of conversion trends, the
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BAU scenario shows a clear substitution of heavy carbon sequestration zones for medium
carbon sequestration zones, and the LCES scenario shows a clear substitution of carbon
sequestration zones for light carbon emission zones. Regarding spatial allocation, the
LCES scenario has a smaller area of heavy carbon emission zones than the BAU scenario;
this difference is particularly noticeable near the development axis and a larger area of
carbon sequestration zones than the BAU scenario, which is particularly noticeable near
the northwestern ecological conservation region.
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We identified two representative counties in each of the four types of functional areas
of the BTH region—the central core functional area, the southern functional expansion
area, the eastern coastal development area, and the northwestern ecological conservation
area [65,66]—and analyzed the detailed differences in land-use carbon emissions between
2020 and 2030 under two scenarios (Figure 17). The representative counties in the southern
functional expansion area and the central core functional area have less heavy carbon
emission zones in the LCES scenario compared to the BAU scenario, as can be shown.
The representative counties in the eastern coastal development area show little difference
between the two scenarios. Relative to the BAU scenario, the representative counties in the
northwestern ecological conservation area have bigger carbon sequestration zones under
the LCES scenario. Land-use optimization by zoning can therefore be done concerning the
LCES scenario.
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4. Discussion
4.1. Factors Influencing Land-Use Carbon Emissions
4.1.1. Impact of Urbanization on Carbon Emissions from Land Use

The growth of urban land resulting from rapid urbanization, coupled with the de-
cline of cultivated and ecological land, will result in heightened regional land-use carbon
emissions. Since China acceded to the WTO, the nation has witnessed a significant in-
crease in industrialization and urbanization. Between 2000 and 2010, the population of
the BTH region rose from 91.27 to 104.55 million, while the GDP increased from 920.708
to 4373.23 billion yuan. This rapid growth drove a substantial increase in carbon emis-
sions from land utilization [67]. Other research has echoed these findings. For instance,
Li et al. (2023) observed a declining trend in carbon sequestration in Liaoning Province
from 2000 to 2020 due to extensive urban expansion [68]. Xiang et al. (2022) noted that
the swift urbanization and industrialization in the central urban area of Chongqing over
the past two decades resulted in the transformation of extensive farmland into urban land,
leading to a reduction in regional carbon sequestration [69]. Still, post-2010, the pace of
urban land expansion in the BTH region markedly slowed down due to the deceleration of
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urbanization and the implementation of the National Planning for Development Priority
Zones [70]. Consequently, the pace of growth in carbon emissions from urban land use also
has notably diminished.

4.1.2. Impact of Development Policies and Spatial Planning on Carbon Emissions from
Land Use

Socioeconomic development policies constitute a pivotal factor shaping the spatial
allocation of land-use carbon emissions. The three development axes outlined in the
Beijing-Tianjin-Hebei Cooperative Development Plan have a notable impact on the spatial
configuration of this region. Their objective is to foster the concentration of industrial
components along these axes, thereby fostering the creation of industrial development
corridors and urban-rural development belts. Consequently, counties exhibiting higher
carbon emission intensities also exhibit clustering along these development axes, a phe-
nomenon corroborated by the findings of other scholars. Fang et al., for instance, revealed
that post-2010, under the influence of strategies such as The Development of the Western
Region in China and The Rise of Central China, areas with significant carbon emissions in the
Yangtze River Economic Belt expanded into the central and upper segments of the Yangtze
River [71].

Active farmland conservation and ecological protection policies can markedly dimin-
ish the land-use carbon emission intensity. In Cangzhou City, land improvement initiatives
from 2000 to 2010 led to a reduction in non-essential urban land [72], ultimately leading to
a decline in land-use carbon emission intensity in 2010 compared to 2000. Furthermore,
the Bohai Sea Comprehensive Management Action Plan, introduced in 2018, advocates for a
halt to coastal reclamation and the rectification of illegally occupied ecological protection
zones [73]. Consequently, the intensity of land-use carbon emissions in the coastal areas of
Tianjin and Tangshan decreased from 2010 to 2020. Comparable findings have been found
in previous research. Gong et al. (2023), for instance, discovered that between 1990 and
2000, Hainan Province transferred the greatest amount of carbon storage from farmland
to forest land (2.59 × 105 tons) due to the enforcement of ecological policies, such as the
“return of grain plots to forestry” initiative [74].

4.2. Recommendations for Low-Carbon Development at Various Scales

According to the above research, it is proposed to implement low-carbon solutions in
land-use restructuring at multiple scales of urban agglomeration, city, county, and grid to
furnish a robust reference for carbon emission reduction and sink enhancement.

At the urban agglomeration scale, ecological protection and farmland conservation
policies should continue to be implemented. Beijing’s non-capital functions should be
relieved, and the coordinated development of Beijing-Tianjin-Hebei should be promoted.
The ecological security barrier in the northwestern part of the region should be strengthened,
and linked development should be carried out along the development axis. Exploring
a cross-regional compensation mechanism for carbon emissions to safeguard the high-
quality development of core functional regions such as Beijing and Tianjin and to encourage
the sustainable development of ecological conservation areas such as Chengde City and
Zhangjiakou City.

At the city scale, promote the progression of the BTH region from a single core to
dual and multiple cores. Strategies for optimizing land use in central urban areas and
non-central urban areas should be set up in zones. The entire quantity of urban land and
new increments should be controlled, the revival and usage of urban land inventory in
the central urban area should be promoted, and ecological land and cultivated land in
non-central urban areas should be protected. Quantitative restrictions and spatial allocation
of land-use categories can be made concerning the LCES scenarios. It can be combined
with energy emission reduction, industrial emission reduction, and other ways to reduce
unit urban land carbon emissions.
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At the county scale, land-use optimization plans for reducing carbon emissions should
be formulated differently based on the functional positioning of different counties, taking
into account elements like the level of development, resource endowment, and potential
for emission reduction. For example, for counties located in the vicinity of the development
axis, the policy of controlling their urban land is appropriately relaxed. For low-carbon
emission counties located in ecological conservation areas, their existing land-use structure
can be maintained, and the areas of forest land, grassland, and water area should be strictly
controlled. For high-carbon emission counties located in core functional and functional
expansion areas, the urban land-use policies can be reasonably tightened. For high-carbon
emission counties located in coastal development areas, coastal ecological protection and
restoration policies should be implemented. For counties located between the development
axis and the ecological conservation area, their land-use carbon emissions under the LCES
scenario have decreased compared to 2020, and they have a higher potential to mitigate
carbon emissions, which could be identified as a priority development area for carbon
reduction. It might also refer to the LCES scenario for improving land-use configuration
and executing land remediation policies.

At the grid scale, land-use control should be enhanced, and multiple land-use scales
and land-use carbon emission zone classifications should call for diverse approaches.
Particular attention should be paid to areas transformed from medium to heavy carbon
emission zones and from carbon sequestration to low carbon emission zones in the BAU
scenario, and the allocation of land-use categories can be made concerning the LCES
scenario. For carbon sequestration zones mostly constituted of forest land and grassland,
the existing ecological land should be strictly protected. For low-carbon emission zones
mostly constituted of cultivated land and secondarily composed of grassland and forest
land, the preservation of ecological land and cultivated land should be prioritized in
carbon emission reduction efforts. For medium-carbon emission zones mainly composed
of cultivated land and secondarily composed of urban land, the protection of cultivated
land should be prioritized. For heavy-carbon emission zones mainly composed of urban
land and secondarily composed of cultivated land, the increase of additional urban land
should be curtailed, and the utilization efficiency of urban land should be improved to
reduce unit urban land carbon emissions.

4.3. Limitations and Future Research

First, the LCES scenario is predicated on the objective function setting of land-use
requirements informed by spatial planning and other constraints. Due to the problem of
data accessibility, areas such as prime reserve farmland were not set as restricted conversion
areas, and more improvement is required for future LCES scenarios.

Secondly, this study employs the carbon emission coefficient approach to quantify
land-use carbon emissions. Owing to the scarcity of early energy statistics, the indirect
carbon emission coefficients utilized in this research were obtained from the average total
energy consumption and urban land area in the BTH region spanning from 2000 to 2020.
Future endeavors should account for variations in the temporal and regional scope of
indirect carbon emission coefficients. The direct carbon emission coefficients referenced
in this research are based on IPCC and existing studies conducted in comparable regions
of China. However, it should be noted that, due to the absence of a ground survey in
this study, the accuracy of these coefficients in the BTH region remains unverified. Future
research should endeavor to enhance estimation accuracy by integrating carbon emission
coefficients with ground survey methodologies.

Finally, this research offers valuable insights into achieving low-carbon development
through land-use management. However, efforts to combat climate change from the land
can partly solve the problem, but they also have limitations and do not completely solve
the problem [75]. Future research could explore carbon neutrality in conjunction with other
areas, such as energy reduction and industrial reduction.
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Notwithstanding the aforementioned limitations, our research advances the theory of
land-use optimization as well as land management. Our methodology and findings can
be applied to improve carbon reduction policies and spatial planning in the BTH urban
agglomeration and other places encountering analogous difficulties.

5. Conclusions

This research assesses and simulates alterations in land-use carbon emissions within
the BTH region under two distinct scenarios, utilizing the FLUS model alongside the carbon
emission coefficient approach. It examines the characteristics of land-use carbon emissions
across multiple spatial scales, including urban agglomerations, cities, counties, and grids.
Furthermore, it delves into the impact of urbanization, development strategies, and spatial
planning of land-use carbon emissions. The findings provide insights for policymakers to
formulate optimized land-use strategies in pursuit of carbon-neutrality goals.

The research findings indicate that the transformation of cultivated land to urban
land was most significant between 2000 and 2020. From 2000 to 2020, land-use carbon
emissions in the BTH region increased from 15,971.28 × 104 tons to 24,925.72 × 104 tons. The
land-use carbon emissions under the BAU and LCES scenarios in 2030 are 26,485.40 × 104

and 25,146.87 × 104 tons, respectively. City-wise, the central urban areas of most cities
exhibit higher carbon emission intensities. County-wise, counties with elevated carbon
emissions are found near the development axis. Urbanization significantly contributes to
the rise of carbon emissions from land use, while socioeconomic development policy is
a crucial determinant of the spatial distribution of land-use carbon emissions. Proactive
policies aimed at preserving cultivated and ecological lands can effectively mitigate the
land-use carbon emission intensity. Consequently, policymakers should strive to enhance
land use across various scales to improve the efficacy of land-use planning in attaining
carbon-neutrality targets.

This study introduces a methodology for estimating land-use carbon emissions within
the context of carbon-neutrality targets. The results of this research hold significant impli-
cations for optimizing land-use practices and reducing carbon emissions in the BTH region,
as well as in other comparable regions globally. Furthermore, the study offers insights for
advancing sustainable development goals and mitigating the impacts of climate change.
Future efforts should concentrate on improving the accuracy of carbon emission coefficients
to furnish more accurate predictions of land-use carbon emissions.
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