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Abstract

Diversity plays an important role in various domains, including conservation, whether it

describes diversity within a population or diversity over a set of species. While various strat-

egies for measuring among-species diversity have emerged (e.g. Phylogenetic Diversity

(PD), Split System Diversity (SSD) and entropy-based methods), extensions to populations

are rare. An understudied problem is how to assess the diversity of a collection of popula-

tions where each has its own internal diversity. Relying solely on measures that treat each

population as a monomorphic lineage (like a species) can be misleading. To address this

problem, we present four population-level diversity assessment approaches: Pooling, Aver-

aging, Pairwise Differencing, and Fixing. These approaches can be used to extend any

diversity measure that is primarily defined for a group of individuals to a collection of popula-

tions. We then apply the approaches to two measures of diversity that have been used in

conservation—Heterozygosity (Het) and Split System Diversity (SSD)—across a dataset

comprising SNP data for 50 anadromous Atlantic salmon populations. We investigate

agreement and disagreement between these measures of diversity when used to identify

optimal sets of populations for conservation, on both the observed data, and randomized

and simulated datasets. The similarity and differences of the maximum-diversity sets as

well as the pairwise correlations among our proposed measures emphasize the need to

clearly define what aspects of biodiversity we aim to both measure and optimize, to ensure

meaningful and effective conservation decisions.

Author summary

Measuring diversity has several implications including conservation prioritization. How-

ever, accurately assessing genetic diversity across multiple populations while considering

both within and among population variations is often overlooked. Our study addresses

this gap by introducing four novel methods, allowing a better understanding of measuring

diversity across populations from different perspectives. We applied these methods to

simulated data and data from Atlantic salmon populations. The results sometimes dis-

agree on which populations are most important for conservation, highlighting the need

for clear biodiversity goals in conservation decisions. It’s important to note that there isn’t
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a single correct answer to the question of how to measure diversity, and the best approach

is likely to depend on the conservation priorities and criteria under consideration. By

understanding the reason behind these differences, we can make more informed choices

to protect our natural world. This research contributes to a broader understanding of

diversity and can help guide areas where measuring diversity is important.

Introduction

In today’s rapidly changing world, preserving biodiversity at multiple scales is a matter of

utmost importance [1]. In particular, there have been renewed calls by researchers and inter-

national entities to protect intra-specific genetic diversity [2–7]. An analysis by Ceballos et al.

reveals a severe and urgent mass extinction crisis, extending beyond species extinctions to

widespread anthropogenic-driven population declines, with potentially profound conse-

quences for ecosystem functioning and the services essential for humans [8, 9]. The assump-

tion is that the loss of genetically distinct populations represents the loss of genetic

information necessary for species to adapt and survive in changing environments [8]. While

measuring genetic diversity of sets of populations has many applications, including under-

standing evolutionary processes [10, 11], disease resistance [12, 13], and ecosystem functioning

[14], our focus here is on its key role in aiding conservation efforts amidst this pressing global

challenge.

Researchers have come up with many different ways to measure diversity that may be

applied at different levels (i.e. populations, species, higher taxa) [15–19]. One well-known task

is to measure the diversity of a group of entities, for example, a group of species. Typically in

such cases, each species is considered invariant, and so is represented by a single individual, a

sequence, or a genome. One approach measures the Phylogenetic Diversity (PD) of a group of

the species: a phylogenetic tree is constructed for all the species, and the diversity of a subset of

the species is defined as the total length of the minimal subtree connecting them [15, 20].

Another method that is distinct but related is Split System Diversity (SSD), where the diversity

of a subset of species is the fraction of measured traits (e.g. Single Nucleotide Polymorphisms

(SNPs)) where all observed states (e.g. 0 and 1 in SNPs) are represented [21–23]. These two

methods correspond closely in the case of the infinite sites model in population genetics. Split

system diversity has the advantage that it can sensibly be applied when a phylogeny is not an

appropriate model of the relationships among entities, e.g. if multiple populations within a

species are being assessed. SSD can be used for any collection of traits, e.g. a vector of SNP

sites, whether each collection represents a single species or each collection represents a single

individual from a population (or individuals across multiple populations) [18, 22, 23].

We note that none of these approaches consider the population sizes of the entities being

compared, nor do they consider any variation within them. This stands in contrast to studies

like that of Luck et al. [24], which assesses the diversity of sets of populations using population

size, number, distribution, and genetic composition of component populations. Another study

by Hoban et al. [3] proposes some indicators of within-population diversity, including the

effective population size. In this latter study, the authors suggest that for genetically distinct

populations (which they do not clearly define), a population needs immediate conservation

attention if its effective population size goes below 500.

A distinct perspective emphasizes species abundance as the primary datum of importance

[25]. In the most basic forms, only the proportion of all individuals in each group matters,

where a group could be genetically distinct individuals labelled as a single population. Entropy
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(and the exponential of entropy) is the main example here [26]; entropy is in the more general

class of Hill numbers [27]. Entropy measures the diversity in a system, based on the propor-

tions of individuals in different groups [26]. Hill numbers are a broader class of diversity indi-

ces that generalize entropy to account for different weights on rare versus common species or

groups [27]. In this kind of diversity measure, the dissimilarity between species does not factor

in except in the definitions of what the underlying groups are, though later work has found

ways to include it naturally [25, 28–30]. Kosman [29] reviews the problem of making infer-

ences about variation within and among populations, and explores measures of diversity that

are based on the frequencies of genotypes in a population as well as some measures based on

dissimilarity between operational units (e.g. individuals, or populations).

Although, in general, it has been difficult to develop a measure that includes both species

abundance and phylogenetic history, Chao et al. [27] proposed a diversity metric that is sensi-

tive to both. Their suggested metric calculates the “mean effective number of species” within a

specified time interval on a tree. The multiplication of this mean by the duration of the interval

provides a measure of the “branch diversity” exhibited by the phylogenetic tree throughout

that time frame. This study extends the conventional phylogenetic methodology, originally

centred on total phylogenetic length, by incorporating species abundances [27].

However, the diversity of a group of individuals, either individual organisms in a popula-

tion or individual species in a clade (with or without factoring in abundance) is just one

instance where we might want to assess diversity for e.g. conservation reasons. An understud-

ied problem is how to assess the diversity of a collection of populations, each of which is com-

posed of individuals. Several years ago, Petit et al. [31] introduced a method to measure the

contribution of individual populations to overall genetic diversity. They used Nei’s genetic

diversity [32] and compared diversity with and without each population. This method consid-

ered both population divergence and internal diversity. They proposed comparing each popu-

lation’s contribution to the mean contribution of all populations to identify those warranting

conservation attention due to their high genetic contributions. Later, Caballero and Toro [17]

also considered the contribution of individual populations to measure the global diversity of a

collection of populations. They highlighted that relying solely on individual-level diversity

measures in conservation prioritization can lead to misleading results. They emphasized the

importance of considering the global diversity of the collection of populations, which requires

incorporating both within-population and between-population variability into conservation

decisions.

Following this perspective, we present four approaches, Pooling, Averaging, Pairwise
Differencing, and Fixing, for assessing the diversity of a set of populations. While we focus on

two specific measures (heterozygosity and SSD, see below), our four approaches could be built

upon any measure of diversity defined on a set of individuals. Pooling involves taking a mea-

sure that is originally defined for a single population and applying it to a combined or pooled

set of populations. The averaging method applies the single-population measure to each of the

populations in the set and computes the average of the obtained results. The pairwise

differencing method applies the single-population measure to each of the populations and

then measures the variability of the measures over all the populations. Lastly, the fixing method

estimates the expected diversity after “fixation” (see below) has occurred in each of the popula-

tions at all sites.

These four approaches yield different results and may lead to different conservation deci-

sions. To illustrate the problem, suppose we want to assess diversity with respect to one single

locus with two alleles (denoted 0 and 1). Each population of such individuals can be character-

ized by the fraction of individuals that have the allele 1 (i.e. p). If we have two populations one
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of which has p = 0.1 and the other p = 0.5, and we have to prioritize just one for conservation,

then an excellent choice for maximizing diversity is to select the population with p = 0.5.

On the other hand, suppose now we have to prioritize the conservation of two islands, A

and B, each of which has two equally-sized populations of organisms. On the first island, the

fractions of allele 1 in the two populations are A = (0.1, 0.9). In the second island, the fractions

are B = (0.5, 0.5). Which island’s preservation should be prioritized in the interest of maintain-

ing within-species genetic diversity? One answer to the question is that the two islands are

equivalent: the total fraction of allele 1 is 0.5 on both islands. Another answer is to prioritize

island A as the populations there are actually different from each other, whereas, on island B,

they are all the same. From another perspective, we might prefer island B, if we thought that

only one population on the island we saved was likely to survive into the future. There are

some value judgments here on how to measure the biodiversity of a collection of populations,

even when we agree on how to measure the biodiversity of a single population.

To see how these issues play out on a data set of conservation importance, we applied our

four methods to Heterozygosity (Het), a widely used measure for evaluating genetic variation

within a single population. Our proposed Het-based population diversity measures were

applied on a dataset comprising SNPs across multiple loci from 50 distinct anadromous Atlan-

tic salmon populations [33]. We compared our population diversity measures using differ-

ently-sized subsets of salmon populations, and computed maximum-diversity set(s) using the

different diversity measures.

We also applied our proposed approaches to SSD, an alternative diversity metric closely

related to heterozygosity. The same comparisons were conducted between all four SSD-based

measures and between the SSD-based and Het-based measures. For both measures, we also

consider randomized and simulated data to explore the generality of our observations.

Methods

In what follows, we assume X is a finite set of n individuals (e.g. taxa/species), where each indi-

vidual is represented by a vector of 0s and 1s. Each element of the vector corresponds to a dis-

tinct site, which refers to a specific location or position within a DNA sequence, representing

two variations of an allele as either 0 or 1. For the clarity of the equations and our explanations,

we often focus on a single site. Later in the paper, we compute the summation across all sites

when reporting the correlation analysis results, using the Pearson Correlation Coefficient (r)
(See the S1 Text, where we show that the correlation between measures at a single locus is pre-

served when we sum over loci.). Moreover, we assume Y is a finite set of m populations, where

all populations have the same size. To maintain clarity, the notation 1E will be used to indicate

a value of 1 when condition E is true and 0 when E is false.

Heterozygosity: From individuals to populations

Traditionally, expected heterozygosity is the probability that a diploid individual carries two

distinct alleles at a particular genetic locus. We consider heterozygosity as the probability that

two random individuals in a population have different alleles at a given site, assuming uniform

draws (with replacement); this is motivated by the structure of the data that we use. We pro-

vide three different equivalent expressions for the heterozygosity of a single population, each

of which is useful in different contexts. We then apply the four proposed methods to extend

them to collections of populations, each of which captures diversity from a different

perspective.

Let X = {xi|xi 2 {0, 1}, i = 1, . . ., n} denote whether individual i has the 0 or 1 allele at a par-

ticular locus, so that p ¼ 1

n

Pn
i¼1

xi is the fraction of individuals with the 1 allele. Table 1 (Hetind
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in the first row) shows three equivalent expressions for heterozygosity at this locus. The first is

in terms of p and is the standard formulation for the probability of getting two different alleles

2p(1 − p). The second expression is obtained by observing that there are n2 ways of choosing xi
and xj, each with probability 1/n2, and they will be different if and only if (xi − xj)2 = 1, and the

same if and only if (xi − xj)2 = 0. In other words, ðxi � xjÞ
2
¼ 1xi 6¼xj

. The third follows similarly:

for each i and j, 1 � xixj � ð1 � xiÞð1 � xjÞ ¼ 1xi 6¼xj
, as can be checked by going through all the

cases.

Another interpretation of heterozygosity is that it is twice the variance of the xi over the

population. This can be obtained by considering the random variable xi where i is selected uni-

formly at random. This is a Bernoulli random variable with parameter p, which has variance p
(1 − p), or half our heterozygosity score (see Table 1).

Now we consider extending the heterozygosity score to a collection of populations. Let Y =

{Xi|i = 1, . . ., m} be a set of populations, such that for all i, |Xi| = n. We define pi to be the frac-

tion of 1s in population Xi at a given site and �p ¼ 1

m

Pm
i¼1

pi, the fraction of 1s over all the popu-

lations pooled together, assuming that all populations are of the same size. This assumption

could readily be changed to account for populations of different sizes, with the appropriate

weighting (see S2 Text).

Using the pooling approach (Hetpooling), the Het score of a collection of populations is

obtained by substituting p with �p in the first expression for Hetind in Table 1. It takes value 0

when �p is 0 or 1, and takes a maximum value of 0.5 when �p ¼ 0:5 (see Fig 1 and Table 2).

Effectively all population structure is ignored.

The Het score of a collection of populations in the averaging approach (Hetaveraging) is

obtained by substituting p with pi in the expression 2p(1 − p) and averaging over all popula-

tions i (see Table 2). We can consider this as the within-population heterozygosity averaged

over the collection of populations.

The Het score by the pairwise differencing approach (Hetdifferencing) is obtained by substi-

tuting xi in the second column of Table 1 with pi (see Table 2). This is the between-population

heterozygosity: if all the populations have the same value of pi, it is zero, regardless of that pi

Table 1. Different representations of Het score and SSD score for a set of individuals.

In terms of p In terms of (xi − xj) Linear in xi

Hetind 2p(1 − p) 1

n2 Si;jðxi � xjÞ
2

1

n2 S i;j
i≠j

1 � xixj � 1 � xið Þ 1 � xj
� �h i

SSDind 1p>01p<1 maxi,j(xi − xj)2 1 − ∏i xi − ∏i(1 − xi)

https://doi.org/10.1371/journal.pcbi.1012651.t001

Fig 1. The values of Hetpop and SSDpop as a function �p� in the pooling approach.

https://doi.org/10.1371/journal.pcbi.1012651.g001
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and so the heterozygosity within populations. This score is double the variance of the pi values

(see S3 Text for the proof).

Lastly, the Het score in the fixing approach (Hetfixing) is based on considering what happens

in the long term if populations in the collection remain isolated from each other. In an isolated

population with gene frequency pi, we expect over many generations the alleles will fix to either

0 or 1. Under simple models of neutral genetic drift, the probability of getting 1 is pi. After the

process of fixing has occurred, we can then assume taking an individual randomly from each

population to form a new population and applying our single-population measure of diversity

to that population, giving a score. Then, we calculate the expected value over the future evolu-

tion of all populations. This can be obtained by substituting xi with pi in an expression for

Hetind which is linear in terms of xi (shown in the last column of Table 1). The resulting

expression is in the last row of Table 2.

Interestingly, all measures in the Hetpop column of Table 2 coincide with quantities in

Caballero and Toro’s analysis [17] if we restrict their more general framework to the presence

or absence of single allele per site (e.g. the SNP data we consider here). In their study, GDT

refers to the total genetic diversity and corresponds to our Hetpooling. Their GDWS is within-

population genetic diversity and corresponds to our Hetaveraging, and their GDBS is between-

population genetic diversity which corresponds to our Hetdifferencing. From their work, we see

the relation GDT = GDWS + GDBS or in our terminology Hetpooling = Hetaveraging + Hetdifferencing.

Finally, Hetfixing ¼ Hetpooling �
1

m Hetaveraging, or equivalently GDT �
1

mGDWS (see S5 Text for

more details).

All the formulas we have provided so far apply to a single locus. To apply to multiple loci

we sum these formulas over all loci. Moreover, in the current formulations, we assume the

populations are the same size; we have also extended the formulations to include population

sizes (see S2 Text).

Split system diversity: From individuals to populations

For any set X of individuals, split system diversity is a measure of diversity that can be calcu-

lated for any collection of splits of X, where a split is defined as a bipartition of X into two non-

empty disjoint sets. When we have SNP data, we can define a collection of splits according to

the presence or absence of a SNP at each locus. We define the SSD score of X to be

SSDðXÞ ¼
1 ð9i s:t: xi ¼ 1Þ and ð9j s:t: xj ¼ 0Þ;

0 otherwise:

(

As with heterozygosity, we can express the SSD score in three equivalent expressions as

shown in Table 1, where we maintain the same assumptions for X and p as previously specified

Table 2. Het scores and SSD scores defined on a single locus for a collection of populations. The index i ranges over

the populations.

Hetpop SSDpop

Pooling 2�pð1 � �pÞ 1�p>01�p<1

Averaging 1

mSi2pið1 � piÞ 1

mSi1pi>01pi<1

Differencing 1

m2 Si;jðpi � pjÞ
2 maxi,j(pi − pj)2

Fixing 1

m2 Si;j
i≠j

½1 � pipj � ð1 � piÞð1 � pjÞ� 1 − ∏i pi − ∏i(1 − pi)

https://doi.org/10.1371/journal.pcbi.1012651.t002
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in Section. We can employ the four proposed methods to extend these definitions to

populations.

As before, we first consider the case of a single locus, and describe the four measures of

diversity for a collection of populations based on SSD. In the pooling approach, the SSD score

of a set of populations is 1 if there exists at least one population with an individual in state 1 at

the given locus and at least one population with an individual in state 0, and it is 0 otherwise

(see Fig 1). In the averaging approach, however, the SSD score is the fraction of populations

who have at least one individual in state 1 and one in state 0. The pairwise differencing measure

is the maximum difference between the pi squared. Finally, in the fixing approach the SSD

score is obtained by replacing xi with pi in the last column of Table 1. It is the probability of

obtaining both an individual with state 0 and an individual with state 1 if we select one individ-

ual from each population uniformly at random at some future time following fixation. See

Table 2 for all of these values, which all lie between 0 and 1 for a single locus. The data and

code used for the analyses in this study are publicly available at the following GitHub reposi-

tory: https://github.com/nabhari/population-diversity-tool.

Results

Allele frequency distribution

A total of 50 Canadian populations of Anadromous Atlantic salmon (Salmo salar), a species of

significant conservation and management concern in North America, have been identified by

Fisheries and Oceans Canada (DFO) [33]. A geographical representation of these populations

is available in Fig 2A, illustrating their respective locations. In a dataset presented by J.S.

Moore et al. [33, 34], 3192 SNPs were recorded, following standard filtering protocols, for

between 8–25 individual salmon from each of these 50 populations (note that only the variant

call format (VCF) files were available for the analysis in this paper). The principal objective of

Moore et al. [33] was to find distinct conservation units, denoting identifiable and separate

population clusters of the species to manage as independent entities, and to compare whether

different subsets of markers denoted similar entities.

We used the SNP data of these 50 Atlantic salmon populations to investigate the correla-

tions between our proposed population-level diversity measures. To apply our measures we

first converted the SNP entries to minority allele presence-absence data, scoring each individ-

ual as either having the majority SNP (0) or any minority SNP (1). We then calculated the

allele frequencies per population over all loci. This led to a 50 × 3192 matrix with each row rep-

resenting a population and each column a locus. Each entry, pij, in this matrix, is the minor

allele frequency of population i at locus j. In this paper, however, we only use pi to refer to the

allele frequency of population i at a single locus as all the equations in Table 2 are defined for a

single locus for simplicity. For most populations, the majority of sites have allele frequencies

close to 0. This is expected given the scarcity of SNP occurrences within each population. Fig 3

shows the distribution of pi values over all loci for each population with their respective

median points.

Correlation of Het-based diversity measures

The population level diversity measures based on heterozygosity in Table 2 were applied to all

subsets of Atlantic salmon populations with sizes k = 2, 3, and 4. For each subset, we calculated

the diversity per locus using the equations in Table 2. The diversity scores across all loci were

summed to obtain the total diversity score for the subset. This process was repeated for all sub-

sets of size k using each Het-based measure from Table 2. For each collection of k-size subsets,

the Pearson correlation (r) between each pair of the Het-based measures was calculated (see
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Fig 2. A. Map of Atlantic salmon populations. This map shows 50 sampling locations of Atlantic salmon in gray. The name of each population

shown in the table on the left is based on the population’s location. B. Maximum-Diversity Sets (k = 4). Comparison of Het-based measures on

the map. C. Maximum-Diversity Sets (k = 4). Comparison of SSD-based measures on the map. Note that there are two optimal sets by the pooling

approach, {26, 30, 32, 42} and {29, 30, 32, 42}. Map data is provided by the maps package in R (https://cran.r-project.org/package=maps), which

sources public domain data. The basemap is sourced from Natural Earth, public domain (https://www.naturalearthdata.com) and is compatible

with the CC BY 4.0 License.

https://doi.org/10.1371/journal.pcbi.1012651.g002
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Table 3). Here, we had to use a brute-force approach for the correlation analysis and for find-

ing maximum diversity sets and so we are constrained to small values of k due to computa-

tional limitations. Later, we do the same analysis for larger k values but for a smaller randomly

chosen sample of subsets.

As shown in Fig 4 and Table 3, Hetpooling, Hetaveraging, and Hetfixing are highly correlated

with each other. This makes sense because all tend to be increased by having pi values closer to

0.5. We see a different pattern with Hetdifferencing: it is positively correlated with Hetfixing, but

negatively correlated with Hetaveraging. This is also expected: Hetdifferencing increases when pi
values in different populations are different from each other, whereas Hetaveraging increases

when pi values are closer to 0.5.

Fig 3. Distribution of allele frequency. Box plots illustrating the distribution of allele frequency values (pi) across 50 populations of Atlantic salmon. Each

box corresponds to the variability of 3192 frequencies in one population, and the lines inside each plot indicate the median.

https://doi.org/10.1371/journal.pcbi.1012651.g003

Table 3. The Pearson correlation coefficients (r) of diversity measures based on heterozygosity and split system diversity applied on subsets of Atlantic salmon pop-

ulations with size k = 2, 3, and 4.

Diversity Measures based on Heterozygosity Het Pooling Het Averaging Het Pairwise Differencing

Subset size k = 2 k = 3 k = 4 k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

Het Averaging 0.88 0.83 0.80 - - - - - -

Het Pairwise Differencing 0.10 0.14 0.16 -0.39 -0.44 -0.46 - - -

Het Fixing 0.90 0.96 0.98 0.58 0.64 0.66 0.52 0.41 0.37

Diversity Measures based on Split System Diversity SSD Pooling SSD Averaging SSD Pairwise Differencing

Subset size k = 2 k = 3 k = 4 k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

SSD Averaging 0.89 0.81 0.75 - - - - - -

SSD Pairwise Differencing -0.10 -0.05 -0.01 -0.46 -0.52 -0.54 - - -

SSD Fixing 0.73 0.77 0.78 0.49 0.54 0.55 0.52 0.42 0.38

https://doi.org/10.1371/journal.pcbi.1012651.t003
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To investigate whether these correlations apply only to salmon SNP data or more broadly,

we performed the same analysis on two simulated data sets. First, we calculated the correla-

tions between all Het-based diversity measures on all collections of populations of size 3 for

the Atlantic salmon data. Then, we randomly permuted the elements of the matrix of pi values

across all populations and all loci (each row in the matrix corresponds to a population and

each column is the pi at a locus). We obtained the analogous correlation results for this artifi-

cial data set (see S2 Fig) for the correlation plots). We observe that qualitative features are the

same; if two measures are positively correlated in the salmon data, they are positively corre-

lated in the randomized data. With few exceptions, the magnitudes of correlation are similar.

This indicates that the patterns we observe are not due to any particular population structure

in the salmon data, but due to the nature of our measures, and possibly the fact that most of

our pi are close to zero.

To test this second possibility, we generated a similar set of synthetic data, but this time

selecting every pi uniformly from [0, 1]. Again, a similar pattern of correlation holds, support-

ing that we expect to see such correlations in a broad variety of biological examples (see S3

Fig) for the correlation plots).

We then used a brute-force search to compute the maximum diversity sets and scores for

salmon populations with sizes k = 2, 3, and 4. The results, presented in Table 4 (the optimal

population locations are shown on the map for k = 4 in Fig 2B), indicate that the measures gen-

erally disagree on the maximum diversity subset of a given size. The exception is that Hetpooling

and Hetfixing agree on maximum diversity subsets for k = 3 and k = 4. Given the correlations

we observed among the measures in the Atlantic salmon data, we might expect maximum

diversity sets to capture similar amounts of diversity even if the sets are different. For example,

if we consider the Hetpooling versus Hetaveraging correlation plot in Fig 4 (top left), the points on

the top right corner maximize both axes but could be two different sets. On the other hand, if

two measures are not highly correlated (e.g. Hetpooling and Hetdifferencing), we would expect

they lead to quite different maximum diversity sets because these maximize diversity measures

that are defined from two distinctly different points of view.

Fig 4. Correlation of diversity metrics based on heterozygosity in Atlantic salmon. Each subplot presents the correlation of two diversity functions

measured on sets of populations with size 3. Each blue dot is a set of 3 populations. The x and y axes are all choices of the population diversity measures

from Table 2.

https://doi.org/10.1371/journal.pcbi.1012651.g004
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Correlation of SSD-based diversity measures

We applied population-level diversity measures based on SSD, as outlined in Table 2, to all

subsets of Atlantic salmon populations, with sizes k = 2, 3, and 4. For each subset, we calculated

the diversity per locus using the equations in Table 2. The diversity scores across all loci were

summed to obtain the total diversity score for the subset. This process was repeated for all sub-

sets of size k using each SSD-based measure. Then for every pair of measures, we calculated

the Pearson correlation (r) among the SSD-based measures, and the results are summarized in

Table 3. Similar to the Het-based measures analysis, SSD-based analysis was also done for

larger k values across random subsets, which we discuss later. Additionally, we conducted an

exhaustive search to identify the maximum SSD set(s) of salmon populations for different val-

ues of k using each of the SSD-based metrics (Table 4). Similar to Het-based measures, here we

expect that highly correlated measures result in maximum diversity sets that are close in terms

of diversity but not necessarily equal, and measures that are poorly correlated are expected to

produce different maximum diversity sets.

Given the close relationship between SSD and heterozygosity, we expected these measures

to exhibit similar correlation patterns for salmon subsets with a size of k. Notably, in Fig 5, the

scatter plot illustrating SSDfixing and SSDdifferencing is very similar to the Het-based plot for the

same pair of measures with similar correlations. On the other hand, the maximum diversity

sets found by each of the SSD measures are moderately different from those found by Het mea-

sures, as expected, in the sense that was explained earlier about the maximum diversity sets of

highly correlated measures (see Table 4). To further understand the relationship between Het-

based and SSD measures in population diversity assessment, we conducted a correlation analy-

sis between these two categories of diversities.

Heterzygosity versus split system diversity

The results shown in Table 5 indicate that for each strategy (i.e. pooling, averaging, pairwise

differencing, or fixing), the Het version and the SSD version are highly correlated (Fig 6). Simi-

lar to the previous sections, all of our population-level diversity measures are a sum of a diver-

sity measure for a single locus over all loci. Assuming independence between loci, if we explain

a high correlation between two measures at one locus, we have explained it for the summation

over all loci (proof in S1 Text).

To explore the striking correlation between the SSD and Het measures, we permuted the pi
values from the salmon data to get a dataset with the same size and distribution of pi values but

no correlations between loci or populations. In this dataset, the correlations between

Table 4. Maximum diversity set(s) of size k = 2, 3, 4 and scores obtained by applying each of the Het-based and SSD-based measures on Atlantic salmon populations.

The numbers in each set correspond to the population locations as indicated in Fig 2A.

Diversity Measures based on Heterozygosity and Split System Diversity k = 2 k = 3 k = 4

Optimal solutions Set Score Set Score Set Score

Het Pooling {26, 37} 468.50 {27, 30, 37} 472.68 {26, 27, 30, 37} 476.75

Het Averaging {37, 44} 819.34 {4, 37, 44} 817.90 {4, 26, 37, 44} 816.10

Het Pairwise Differencing {16, 50} 81.14 {16, 27, 50} 105.39 {16, 21, 27, 50} 111.68

Het Fixing {27, 37} 532.84 {27, 30, 37} 677.01 {26, 27, 30, 37} 751.90

SSD Pooling {26, 37} 3001 {30, 32, 42} 3103 {26/29, 30, 32, 42} 3152

SSD Averaging {30, 37} 2641.5 {30, 37, 44} 2627 {30, 37, 42, 44} 2619.5

SSD Pairwise Differencing {16, 50} 324.57 {16, 27, 50} 554.02 {16, 21, 27, 50} 692.15

SSD Fixing {27, 37} 1065.69 {27, 30, 37} 1532.27 {27, 28, 30, 37} 1817.30

https://doi.org/10.1371/journal.pcbi.1012651.t004
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corresponding diversity measures (e.g. between Hetfixing and SSDfixing, or Hetdifferencing and

SSDdifferencing) were still high (see the Het versus SSD correlation plots in S2 Fig). Next, we

checked the correlation in a dataset with pi values selected independently and uniformly at

random in [0, 1]. The correlations were still very high. With these experiments, we can con-

clude that the correlations between Het-based and SSD-based measures of the same type are

likely to be high regardless of the distribution of allele frequencies. We conjecture that they

will be roughly interchangeable as measures of population diversity in many situations of con-

servation importance. Specifically, it can be proven that the correlation between Hetfixing and

SSDfixing for sets of populations with sizes k = 2, and 3 is exactly 1 and starts decreasing gradu-

ally for k� 4 (see S4 Text for the proof).

Correlation trends and larger k values

Given that
n

k

 !

rapidly grows for large k values (up to k ¼ n
2
), it is computationally expensive

to calculate all measures in Table 2 for every subset of size k of Atlantic salmon populations for

correlation analysis. To manage this, we randomly sampled 1000 subsets of size k for k = 10, 15

and 20, calculated the population-level diversity measures from Table 2 as previously

described, and computed pairwise correlations for those random samples. In Fig 7, we show

Fig 5. Correlation of diversity metrics based on SSD in Atlantic salmon. Each subplot presents the correlation of two diversity functions measured on

sets of populations with size 3. Each blue dot is a set of 3 populations. The x and y axes are all choices of the population diversity measures from Table 2.

https://doi.org/10.1371/journal.pcbi.1012651.g005

Table 5. The Pearson correlation coefficients (r) of Het-based and SSD-based diversity measures applied on subsets of Atlantic salmon populations with size k = 2,

3, and 4.

Diversity Measures SSD Pooling SSD Averaging SSD Pairwise Differencing SSD Fixing

Subset size k = 2 k = 3 k = 4 k = 2 k = 3 k = 4 k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

Het Pooling 0.90 0.86 0.83 0.81 0.74 0.71 0.10 0.14 0.17 0.90 0.96 0.98

Het Averaging 0.88 0.81 0.76 0.97 0.97 0.97 -0.39 -0.43 -0.45 0.58 0.64 0.65

Het Pairwise Differencing -0.10 -0.06 -0.02 -0.46 -0.52 -0.55 1.00 1.00 1.00 0.52 0.41 0.37

Het Fixing 0.73 0.77 0.77 0.49 0.54 0.55 0.52 0.42 0.37 1.00 1.00 1.00

https://doi.org/10.1371/journal.pcbi.1012651.t005
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the correlations for different values of k, for every pair of diversity measures. We find that the

correlations for smaller k values are indicative of the correlations for large k values.

To ensure the accuracy of the correlations we report for larger k values, which are based on

a sample, we calculate the standard error of each correlation (r) between pairs of measures for

a given k. We calculated the standard errors using the formula
ð1� r2Þffiffiffiffiffiffi
N� 3
p , as recommended in [35]

for computing the standard error of Pearson correlations, where r is the Pearson’s correlation

coefficient and N = 1000 is the number of observations. We found that all standard errors were

below 0.03. We repeated this experiment with another random sample of 1000 subsets of size

k = 10, 15 and 20 with a different seed, and the distributions of standard errors from the two

samples were very similar (See S4 Fig). From this experiment, we can conclude that the corre-

lations we observed for larger k values are reliable because of the low standard errors and con-

sistent results across two different random samples.

Dryad DOI

10.5061/dryad.sb601 [34].

Discussion

Given a diversity measure for a single population, we proposed four approaches for extending

it to measure the diversity of a collection of populations: pooling, averaging, pairwise

differencing, and fixing. These approaches provide distinct perspectives on diversity assess-

ment. While our focus remains on conservation, these methods can also be used in other

fields.

In the example of the islands (A and B) that we referred to in the introduction, each with

two populations with respective allele frequencies of A=(0.1, 0.9) and B=(0.5, 0.5), not all of

Fig 6. Correlation of diversity metrics based on SSD and Het in Atlantic salmon. Each subplot presents the correlation of two diversity functions

measured on sets of populations with size 3. Each blue dot is a set of 3 populations. The x and y axes are all combinations of the population diversity

measures from Table 2.

https://doi.org/10.1371/journal.pcbi.1012651.g006

PLOS COMPUTATIONAL BIOLOGY Measuring genetic diversity across populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012651 December 4, 2024 13 / 18

https://doi.org/10.5061/dryad.sb601
https://doi.org/10.1371/journal.pcbi.1012651.g006
https://doi.org/10.1371/journal.pcbi.1012651


Fig 7. Trends of correlations between diversity metrics based on SSD and Het in Atlantic salmon with respect to k.

Each subplot shows the correlation trends for k = 2, 3, 4, 10, 15, 20 for two diversity functions, as indicated in the legend.

The correlation trends for Het-based, SSD-based, and Het versus SSD measures are shown in blue, green, and red,

respectively. In the figure legend, ‘-p’, ‘-a’, ‘-d’, and ‘-f’ correspond to Pooling, Averaging, Differencing, and Fixing,

respectively.

https://doi.org/10.1371/journal.pcbi.1012651.g007
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our proposed measures agree on which island to preserve. If we use heterozygosity, the pooling

approach does not differentiate between the two islands and would give both the same score of

0.5—here we treat a collection of populations as one large population on each island. However,

in the averaging approach, island B would be accorded a higher priority (with a score of 0.5)

compared to island A (with a score of 0.18) as the allele frequencies in each population are

taken into account for measuring diversity. On the other hand, the pairwise differencing and

the fixing approaches would both agree that island A is more important for conservation. If we

change allele frequencies for islands A and B to (0.2, 0.2) and (0.1, 0), respectively, then a dif-

ferent pattern emerges. Now pooling, averaging, and fixing all rate island A as having higher

diversity, whereas pairwise differencing gives a higher score to island B.

This latter example is the pattern that we observe in the salmon data. Recall that we

observed Hetpooling, Hetfixing, and Hetaveraging to co-vary, though to varying degrees (with

Hetaveraging exhibiting a slightly lower degree of similarity with the others). However, Hetdiffer-

encing produces notably distinct results. As in the second version of our island example, this dif-

ference arises from the fact that the first three measures (Hetpooling, Hetfixing, and Hetaveraging)

aim for populations with pi values closer to 0.5 without considering differences between them,

while Hetdifferencing focuses on the differences between population-level pi values. This becomes

evident in the context of the salmon data where pis are close to 0, leading Hetdifferencing to yield

a distinct result. We conjecture that the observed pattern in the salmon data differs from that

in the first island example because the pi values used in that example (such as 0.5 and 0.9) are

uncommon in the allele frequencies of the Atlantic salmon data.

A substantial limitation of our work is that, especially for rare loci, the pi values may not be

well known from the sample (see [36]). We have not incorporated uncertainty in the pi values

here. We would expect that averaging the measures over many loci helps to overcome issues

related to this uncertainty but more work is warranted.

The salmon data and the toy examples demonstrate that the population diversity measures

capture diversity from varied perspectives but only sometimes agree on the optimal sets for

prioritization. This highlights the importance of the definition used to measure population-

level diversity for conservation purposes, or indeed any scenario where identifying optimal

sets is crucial. In our proposed approaches, we may opt for Hetpooling to conserve overall het-

erozygosity, particularly in scenarios where significant gene flow is expected in the future.

Alternatively, Hetaveraging could be employed if populations that are individually heterozygous

have a higher priority for conservation. For preserving populations with maximum divergence,

such as those in remote regions exhibiting local adaptation, Hetdifferencing would be suitable.

Finally, if the aim is to conserve total heterozygosity post-drift-induced fixation within each

population, Hetfixing would be an appropriate choice.
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S1 Text. Correlations and summation over all loci. This section explains how the correlation
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the formulas for heterozygosity (Het) to populations of varying sizes.
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correlations between Hetfixing and SSDfixing are almost perfect.
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how the formulations for Hetfixing, Hetpooling, and Hetaveraging are related.
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S1 Fig. Correlation of diversity metrics based on SSD and Het in Atlantic salmon. Each

subplot presents the correlation of two diversity functions measured on sets of populations

with size 3. Each blue dot is a set of 3 populations. The x and y axes are all combinations of the

population diversity measures based on Het and SSD.

(PDF)

S2 Fig. Correlation of diversity metrics based on Het and SSD on a randomly permuted

version of the Atlantic salmon data. Each subplot presents the correlation of two diversity

functions measured on sets of populations with size 3. Each orange dot is a set of 3 popula-

tions. The x and y axes are all combinations of the population diversity measures based on Het

and SSD.

(PDF)

S3 Fig. Correlation of diversity metrics based on SSD and Het in a randomly generated

dataset with 50 populations and 3192 loci, where pi values are uniformly sampled from

[0, 1]. Each subplot presents the correlation of two diversity functions measured on sets of

populations with size 3. Each purple dot is a set of 3 populations. The x and y axes are all com-

binations of the population diversity measures based on Het and SSD.

(PDF)

S4 Fig. Standard error of the correlations of diversity metrics for k = 10, 15 and 20. Each

subplot shows the distribution of the standard errors of the correlations between all pairs of

diversity measures in Table 2, which are computed for 1000 randomly selected subsets of size

k. The distribution in red and purple corresponds to two random samples of size 1000 with

different seeds.

(PDF)

S1 Codes. Python code for calculating diversity measures and correlations. This file con-

tains Python scripts, available in this repository, https://github.com/nabhari/population-

diversity-tool, used for calculating population-based diversity measures, including Het-based

and SSD-based metrics, as well as performing correlation analyses between them. The code

also includes modules for brut-force search and plotting correlation results.
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