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Abstract: This paper introduces a novel model for virtual machine (VM) requests with predefined
start and end times, referred to as scheduled virtual machine demands (SVMs). In cloud computing
environments, SVMs represent anticipated resource requirements derived from historical data, usage
trends, and predictive analytics, allowing cloud providers to optimize resource allocation for maxi-
mum efficiency. Unlike traditional VMs, SVMs are not active concurrently. This allows providers
to reuse physical resources such as CPU, RAM, and storage for time-disjoint requests, opening new
avenues for optimizing resource distribution in data centers. To leverage this opportunity, we propose
an advanced VM placement algorithm designed to maximize the number of hosted SVMs in cloud
data centers. We formulate the SVM placement problem (SVMPP) as a combinatorial optimization
challenge and introduce a tailored Tabu Search (TS) meta-heuristic to provide an effective solution.
Our algorithm demonstrates significant improvements over existing placement methods, achieving
up to a 15% increase in resource efficiency compared to baseline approaches. This advancement
highlights the TS algorithm’s potential to deliver substantial scalability and optimization benefits,
particularly for high-demand scenarios, albeit with a necessary consideration for computational cost.

Keywords: cloud computing; scheduled virtual machines requests; placement problem; combinatorial
optimization; integer linear programming; Tabu Search; Ant Colony Optimization; Particle Swarm
Optimization

1. Introduction

Cloud computing has revolutionized how organizations deploy and manage IT re-
sources, offering scalable, flexible, and cost-effective solutions via on-demand access to
shared computing infrastructures. This paradigm shift has enabled businesses to support a
wide range of applications, spanning traditional enterprise systems to cutting-edge cloud-
native, serverless, and edge computing environments [1]. The adaptability and breadth of
these applications are underpinned by distributed architectures and microservices, which
necessitate rapid provisioning and de-provisioning of virtual machines (VMs) to maintain
optimal service performance, responsiveness, and availability [2].

As cloud-native applications continue to gain traction, they bring about new chal-
lenges and demands in efficiently managing resources within cloud data centers. A key
challenge in this context is the virtual machine placement problem (VMPP), an essen-
tial optimization task that maps VMs onto physical machines (PMs) to achieve multiple
objectives: maximizing resource utilization, minimizing operational costs, and ensuring
compliance with strict service quality requirements [3,4]. Each VM comes with specific
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resource demands—such as CPU, memory, and storage—which must be allocated within
the capacity constraints of available PMs.

However, traditional approaches to solving the VMPP, often based on static or random
VM request patterns, fall short in addressing the complexities of modern cloud environments.
Today’s workloads are increasingly characterized by predictable and time-bound patterns
that necessitate dynamic and adaptive placement strategies to ensure both efficiency and
performance [5]. Addressing these evolving demands requires innovative solutions that
account for the temporal and operational intricacies of cloud-native ecosystems.

This paper introduces a novel VM request model, termed scheduled virtual machine
requests (SVMs). SVMs are a distinct class of VM requests defined by predictable start and
end times derived from historical usage data. This predictability allows cloud providers
to proactively allocate resources, reducing idle capacity and improving overall resource
utilization. Unlike conventional VM requests, SVMs enable operators to better antici-
pate demand, offering an optimized approach to managing resources for time-sensitive
applications—a dimension not fully explored in current models.

SVMs bring distinct benefits to time-sensitive cloud applications, especially in serverless
and edge computing environments. In serverless systems, where users are abstracted from
infrastructure management, SVM predictability enhances response times and reduces latency.
For edge computing, SVM-based resource allocation enables efficient handling of latency-
sensitive workloads across distributed locations, ensuring timely processing and resource
availability. The ability to forecast and allocate resources for SVMs aligns with service-level
agreements (SLAs) and supports dynamic applications with minimal idle resource costs.

To address the scheduled virtual machine placement problem (SVMPP), this paper
proposes a Tabu Search (TS)-based meta-heuristic specifically designed for SVM placement.
TS is an advanced optimization technique widely recognized for its effectiveness in solving
complex optimization problems [6]. It enhances local search methods through a memory-
based approach, enabling it to escape local optima. By systematically exploring the solution
space, it allows moves that may temporarily worsen the objective while maintaining
a tabu list—a short-term memory structure that prevents revisiting recently explored
solutions or moves. This ensures diversification and guides the search toward high-quality
solutions [7,8].

The primary contributions of this work are as follows:

1.  Formalization of the scheduled VM model:

*  The concept of SVMs is introduced and formalized, with each request defined by
its start and end times and specific resource requirements.

*  This model bridges a critical gap in VM scheduling research by enabling precise
resource allocation for time-bound and predictable workloads.

2. Development of a TS-based meta-heuristic for SVMPP:

* A novel Tabu Search algorithm is tailored to solve the SVMPP, leveraging its
adaptive local search capabilities and memory-based mechanisms to avoid
local optima.

¢  The algorithm incorporates temporal constraints and resource requirements,
demonstrating scalability and adaptability for dynamic cloud resource allocation.

*  The performance of the TS algorithm is rigorously evaluated through a com-
prehensive comparison with existing placement methods from the literature,
highlighting its efficiency and effectiveness.

3. Advancing optimization in VM placement:

*  The proposed TS-based approach demonstrates clear superiority over traditional
VM placement methods, particularly in terms of solution quality.

*  This work represents, to the best of our knowledge, one of the first applications
of TS in the context of VM placement, laying a strong foundation for future
research and positioning TS as a robust tool for tackling large-scale optimization
challenges in cloud computing.
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The remainder of this paper is organized as follows: Section 2 provides an in-depth
description of SVMPP. Section 3 reviews the relevant literature. Section 4 presents the
mathematical model for SVMPP. Section 5 details the TS-based solution, and Section 6
evaluates its effectiveness. Section 7 concludes the study and discusses future work.

2. Problem Description

The SVMPP involves efficiently assigning CPU, RAM, and storage resources on a set
of PMs to accommodate incoming SVM requests. Each SVM request has defined CPU,
memory, and storage needs as well as a specific start and end time, posing the challenge
of ensuring that PM resources are allocated without exceeding capacity and are available
precisely when required.

To maximize resource utilization and minimize operational costs, the goal of SVMPP
is to optimize the placement strategy so that the maximum number of SVMs can be
accommodated within the available resources. Each PM has finite capacities, requiring
careful allocation of CPU, memory, and storage for each SVM without overcommitting.
Moreover, each SVM'’s timing constraints must be respected, ensuring that resources are
available for each request only within its specified time window.

An SVM request is defined by a tuple (c, 7, s, , B), where c, r, and s represent the CPU,
memory, and storage requirements, respectively, and « and 8 denote the start and end
times. Table 1 provides an example set of SVMs, highlighting the timing constraints central
to this model. The SVMPP accounts for both simultaneous and time-disjoint SVM requests.
For instance, SVM v and SVM v; do not overlap and can share the same PM resources at
different times, whereas SVMs v; and v3 overlap in time, preventing them from using the
same PM resources concurrently.

Table 1. Example of four scheduled VM requests (SVMs).

CPU RAM Storage Start End P
SVM (Cores) (GB) (GB) Time Time SVMs with Time Overlap
4] 4 16 100 08:00 12:00 U3, U4
) 8 24 200 13:00 17:00 (N
v3 2 8 50 10:00 13:00 vy, U4
(N 16 64 300 09:00 17:00 vy, U2, U3

The time disjointness property of SVMs refers to their non-overlapping time windows,
enabling cloud providers to optimize PM usage by reusing resources across different time
slots. This strategy maximizes resource utilization and reduces the number of active PMs re-
quired, thereby improving data center (DC) efficiency. Figure 1 illustrates this optimization
through a comparison of two placement strategies for the set of SVMs described in Table 1.
In this example, three PMs in the DC are considered, with their characteristics summarized
in Table 2 (provided for illustration and not based on actual server configurations):

e  Strategy 1: Hosts SVM v4 on PM1, SVMs v; and v3 on PM2, and SVM v, on PM3. This
approach results in three active PMs.

e  Strategy 2: Enhances resource efficiency by hosting SVM v4 on PM1, while reusing
resources on PM2, initially used by SVMs v; and v3, to service SVM v,. Since SVMs v
and v3 are time-overlapping, they cannot share the same resources. However, SVM 05,
being time-disjoint from v; and v3, can use the resources released by these two SVMs
at different time slots. This approach leaves PM3 idle, demonstrating how resource
reuse across non-overlapping time-slot windows reduces the number of active PMs.

By leveraging time-disjoint SVM requests, the SVMPP allows cloud providers to meet
service demands with fewer resources, enhancing operational efficiency and enabling
better resource planning for scheduled requests. This approach optimizes the DC workload
by increasing the acceptance rate of SVM requests, and creating flexibility for handling
unpredictable demand spikes.
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Table 2. PM resource characteristics.

CPU (Cores) RAM (GB) Storage (GB)

PM1 16 64 1000

PM2 8 32 500

PM3 16 64 1000
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(b) Placement strategy 2: Exploiting SVMs’ time disjointness

Figure 1. Enhancing VM placement efficiency by exploiting SVMs’ time disjointness.

3. Related Work

In this section, we review related work to provide context and background for our
study, focusing first on the objectives of VM placement and the underlying workload
models, before addressing the methods employed to solve the VMPP.

The VMPP has been the subject of extensive research, with studies addressing diverse
objectives to meet the requirements of cloud providers:

*  Resource utilization: Maximizing the efficient use of physical resources such as CPU,
memory, storage, and network bandwidth while avoiding both under-utilization and
contention, which can lead to inefficiency and increased operational costs [9-14].

*  Energy efficiency: Reducing power consumption through strategies such as VM con-
solidation, which minimizes the number of active PMs by co-locating VMs, and switch-
ing off or putting idle PMs into low-power states, thereby lowering energy costs and
environmental impact [15-18].

*  Quality of service (QoS): Ensuring high QoS by minimizing latency, reducing perfor-
mance degradation, and avoiding SLA violations, all of which are critical for user
satisfaction [19-21].

*  Load balancing: Preventing resource bottlenecks by distributing workloads evenly across
PMs, thereby improving overall system performance and response times [22-25].
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¢ Costminimization: Optimizing resource allocation to reduce both capital (CAPEX) and
operational (OPEX) expenditures, including network overheads and VM migration
costs [26-28].

e Fault tolerance and reliability: Enhancing system robustness by accounting for PM fail-
ures, creating redundancy, and enabling seamless recovery mechanisms to minimize
service disruptions [29-31].

Achieving these objectives depends on the underlying workload models, which define
the nature and variability of VM requests. These models provide valuable insights into
resource demand patterns and inform the development of placement strategies:

¢  Static request models: These models involve requesting VMs with predetermined
and unchanging resource specifications, such as specific amounts of CPU, memory,
and storage. They simplify resource allocation but lack flexibility in handling varying
workload demands.

*  Dynamic request models: These models account for changes in VM requests over time,
reflecting the dynamic nature of workloads that fluctuate based on time, user activity,
or external factors. They require adaptability in resource management to respond to
varying demands effectively.

e  Probabilistic workloads: Requests are generated based on probabilistic distributions
(such as Poisson or Gaussian), capturing the uncertainty and variability inherent
in demand. This model enables more robust resource allocation strategies that can
withstand fluctuations in workload.

¢ Multi-tier request models: VM requests are made with specific performance and
availability requirements outlined in SLAs. This model ensures that resource allocation
aligns with contractual obligations to users, emphasizing the need for reliability and
quality of service.

These diverse objectives and workload models underscore the complexity and multi-
faceted nature of the VMPP, requiring advanced, often hybrid, approaches to achieve an
optimal balance between performance, cost, and reliability. Table 3 presents a summary of
the various methods, highlighting the specific findings and research gaps identified.

Table 3. VM placement methods, findings, and research gaps.

Method Specific Findings Research Gaps References
Technlques such as linear programming, High computational cost and scalability
e integer programming, and constraint N . .
Deterministic . . . . limitations make them impractical for
programming yield precise, optimal . AN [32-38]
methods . . large-scale DCs; require simplifications
solutions; effective for small-scale problems e . L
e or hybridization for broader applicability.
with limited resources.
Methods like best-fit, first-fit, and worst-fit ~ Solution quality varies widely based on
Heuristic methods offer fast, near-optimal solutions; practical ~ the problem instance; lacks adaptivity to [39-42]

for real-time deployment where speed is
prioritized over absolute optimality.

dynamic workloads, which limits their
flexibility.

Meta-heuristic

Approaches such as Genetic Algorithms,
Simulated Annealing, Particle Swarm
Optimization, and Ant Colony Optimization

Risk of local optimality and high
computational costs; scalability remains

[17,36,43-62]

methods . f challenging for extensive DCs due to

effectively explore large solution spaces, .

13 . prolonged runtime.

yielding near-optimal results.

Machine learning techniques (e.g., Dependence on large datasets and model
Machine reinforcement learning, clustering, generalization limits their effectiveness in
learning-based predictive modeling) enable adaptive heterogeneous and highly variable [14,63-67]
methods placement based on historical data, environments; can struggle with

improving allocation accuracy over time.

real-time adaptability.
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Table 3. Cont.
Method Specific Findings Research Gaps References
Game theorv and Game-theoretic approaches model VM High complexity and scalability issues in
auc tion-basg d placement as a resource allocation market,  dynamic cloud environments; may not be [20,68-71]
methods allowing structured bidding mechanisms flexible enough to adapt to fluctuating !
that optimize resource usage. resource demands in real time.
Hybrld' methods combme'mu'ltlp.le Increased complexity and computational
strategies to address multi-objective overhead hinder real-time practicality:
Hybrid methods optimization, resulting in robust, scalable P i [72-76]

solutions that handle complex VMPP
scenarios effectively.

tuning parameters for efficiency remains
challenging.

4. Formalization of the Problem
4.1. Formulating the Model

We formalize the considered SVM problem as a combinatorial optimization problem.

Below is the notation used in the model.

Set of PMs:
Let P = {P1,P>,...,Pu} denote the set of available PMs in the DC. Each PM P;is
defined by its resources:
Pj =1, R;, 5;}

where
- Cj: Initial CPU capacity of Pj;
- R;: Initial memory capacity of P;;
- §;: Initial storage capacity of P;.
Set of SVM requests:
Let V = {v1,0vy,...,0N} represent the set of all SVM requests received by the DC.
Each SVM v); is defined by

U = {Ci/ Yi, Si, &4, ﬁl}
where

- c¢;: CPU requirements of SVM v;;

- 1 Memory requirements of SVM v;;
- s;: Storage requirements of SVM v;;
—  a;: Start time of SVM v;;

— B End time of SVM v;.

Number of PMs and SVMs:

Let M = |P| be the number of PMs available in the DC and N = |V| be the number of
SVM requests.

Temporal relationship between SVMs:

Let 0 = (6;;) be a {0, 1}MxN Jower triangular matrix; 0;; indicates whether the SVMs
v; and v; overlap in time (6;; = 1) or not (6;; = 0). By defining 6;; = 1,1 <i < N, and
Gij =0 fori <j.

(P,V) is a pair representing an instance of the SVMPP.

P, 1< j < M, 1 <i < N represents the j-th PM in P hosting SVM v;.

ey = {Pe 1, Pey2r o PNt k€ {1,..., M}V is called an admissible SVM place-
ment solution for V. Here, x is an N-dimensional vector whose elements can take
values between 1 and M. An admissible SVM placement solution is fully characterized
by x. The x for the solution of Figure lais (2, 3, 2, 1) and (2, 2, 2, 1) for the solution of
Figure 1b.

Iy = {mcy,x € {1,...,M}N} is the set of admissible solutions for V. There are
ITTy| = MM possible admissible SVM placement solutions.
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e (C :IIy — Nis the cost function that computes the number of hosted SVMs by an
admissible SVM placement solution 77, ). In such a solution, each SVM in V is hosted
by at most one PM in P. The same resources on a PM can be used by two or more
SVMs that do not overlap in time.

Table 4 provides a summary of the notation used in the SVMPP model, offering
a quick reference for each parameter and its function within the optimization model.
The corresponding combinatorial optimization problem is as follows:

Maximize C(7m,y) 1)

subject to
Ty € Iy )

that is, we are interested in finding an admissible SVM placement solution of maximum
cost for the set of SVM requests V. To formalize the cost function C : ITp — N, we define
the following additional notation:

*  Let x; be a binary decision variable that indicates whether SVM v; is hosted. x; = 1 if
SVM v; is assigned to any PM P}, and x; = 0 otherwise.

*  Let ¢;; be a binary decision variable that indicates whether SVM v; is hosted on PM P;.
¢ji = 1if SVM v; is hosted by PM P;, and ¢;; = 0 otherwise.

The complete model can be summarized as
Objective

N
Maximize Z X; 3
i=1

Constraints

*  Single-host constraint: Ensure that each SVM v; is hosted by at most one PM, P; € P

or not hosted:
M

¢ji <xj, V1I<i<N 4)
=1

*  Resource capacity constraints: For each PM P;, the total resource demand of SVMs
hosted by that PM must not exceed its available resources. If two SVMs overlap in
time (0;x = 1), they cannot share resources on the same PM.

—  CPU constraint:
N i-1
Yolci-dpi+ Y Oik-ce-¢ix) <C, VI<j<M ®)
i=1 k=1

- Memory (RAM) constraint:
N i-1
Yo\rio¢iit Y Ok riodx | SR, VISi<M (6)
i=1 k=1

-  Storage constraint:

N i—1
)3 <Si "t ) O sk <Pf,k> <S5, Vi<j<M @)
i=1 k=1

*  Non-overlapping SVMs sharing resources: If two SVMs v; and vj, do not overlap in
time (6; , = 0), they can share resources on the same PM:

i djitox-pix <Cj, V1 <j< M, V1 <ik<Nsuchthatf; =0 (8)
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ri i+ 1k ik < R, V1 <j< M, V1 <ik<Nsuchthatf; =0 9)
S+ (P]l + sk - (P]k < S]', V1l < ] < M,V1 <ik < Nsuchthatf; =0 (10)
*  SVM hosting indicator: Ensure that if SVM v; is hosted by any PM, then x; = 1:

x; < - V1<i<N 11
l_vg?gM% SIS (11)

Table 4. Notation used in the SVMPP.

Notation Description
P Set of PMs in the DC
Pj A PM characterized by P; = {Cj, Rj, S]-}
Cj, Rj, S ; Initial CPU, memory, and storage capacities of PM ’P]-

M = |P| Number of available PMs

% Set of SVMs
v; An SVM request defined by v; = {c;, #;,s;, i, Bi}
Ci, 1i, Si CPU, memory, and storage requirements of SVM v;

i, Bi Start and end times of SVM v;
N =|V| Number of SVM requests

Py Indicates if PM P; is hosting SVM v;

0 = (0;;) Binary lower triangular matrix indicating temporal overlap of SVMs
X; Binary decision variable: 1 if SVM v; is hosted, 0 otherwise
Pji Binary decision variable: 1 if SVM v; is hosted on PM P;

4.2. Characterization of Problem Instances

We can characterize the problem instances according to their time correlation using a
normalized time correlation measure. The normalized time correlation 7()) for a set of
SVMs V is defined as

N i—1
2% p 0;
W= Rw-1 a2

The numerator YN ;;% tj counts the total number of overlapping SVM pairs.

The denominator N(I\é_l) represents the total number of possible pairs of SVMs, ensuring
that 7(V) is normalized to the interval [0, 1].

e 7(V) = 0 indicates no overlap (no time correlation).
e 7(V) = 1indicates complete overlap (all SVMs overlap in time).

Thus, 7(V) gives a measure of how time-correlated the SVMs are in terms of their execu-
tion periods.

5. Tabu Search Algorithm

Tabu search (TS) is an iterative meta-heuristic algorithm designed for solving combi-
natorial optimization problems. The algorithm explores the solution space until either a
predefined number of iterations is reached or a specific cost criterion is met. The process
begins with an initial solution, which can be generated by another algorithm (e.g., a ran-
dom solution if no better alternative is available). The initial solution becomes the current
solution at the start of the algorithm. At each iteration, TS computes a set of neighboring
solutions by applying perturbations to the current solution. The best solution from this
neighborhood with the best cost is selected as the new current solution. To avoid the
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algorithm revisiting the same solutions repeatedly, a tabu list is maintained. This list stores
a limited number of recently visited solutions, which are temporarily excluded from being
selected again as they belong to the list. Each new current solution is added to the tabu list
and remains there for a given number of iterations. This mechanism helps the algorithm
escape local minima during the search process. Although there are no mathematical proofs
guaranteeing that TS will converge to a global optimum, it is widely used in practice due
to its ability to find solutions that are often close to optimal. Additionally, TS is well suited
for handling combinatorial optimization problems of practical scale. For further details on
TS, refer to [77].

In order to design a TS algorithm, four problem-specific elements must be defined:
an initial solution, a cost function to evaluate the solutions produced by the algorithm,
a neighborhood exploration procedure to generate new solutions from the current one,
and a tabu list in order to prevent the algorithm from cycling.

Initial solution: The algorithm starts with an initial solution where no SVMs are placed
on any PMs. This is represented as an empty placement configuration, where each SVM
is unassigned.

Neighborhood exploration procedure: At each iteration, the algorithm explores a neigh-
borhood of the current solution by generating possible moves. A move consists of assigning
an SVM to a PM, subject to the resource constraints. Each potential assignment is evaluated
by checking if the CPU, memory, and storage capacities of the PM are sufficient to host
the SVM, considering other SVMs already placed on the same PM within overlapping
time periods.

Cost function: The cost function evaluates the quality of a solution based on the number of
successfully placed SVMs. The goal is to maximize the number of SVMs that are placed on
PMs while respecting resource constraints.

Tabu list and aspiration criterion: To prevent cycling and encourage exploration of the
search space, the algorithm maintains a tabu list, which records recently made moves
(i.e., assignments of SVMs to PMs). Moves stored in the tabu list are prohibited for a certain
number of iterations (referred to as the tabu tenure).

However, an aspiration criterion allows the algorithm to override the tabu status of a
move if it leads to a better solution than the current best-known solution. This flexibility
ensures that the algorithm does not miss promising solutions.

Solution update: At each iteration, the algorithm selects the best neighbor (the best possible
assignment of an SVM to a PM) from the neighborhood that is not tabu, or which satisfies
the aspiration criterion. The current solution is updated to this best neighbor, and the tabu
list is updated accordingly.

The proposed TS algorithm is capable of efficiently navigating the large and com-
plex solution space of the SVMPP. By maintaining a balance between exploration and
exploitation, the algorithm avoids becoming trapped in local optima and is able to find
high-quality solutions in a reasonable amount of time. The principle steps of the algorithm
are as follows:

1. Initialization

e  Start with an initial solution where no SVMs are placed.
* Initialize the best solution to the initial solution.
¢ Initialize an empty tabu list.

2. Neighborhood search
*  For each SVM, generate possible placements on each PM.
*  For each possible placement (neighbor), check resource feasibility (CPU, memory,
storage).
3. Cost evaluation

* Evaluate the cost of each neighbor by counting the number of successfully
placed SVMs.
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4.  Move selection

*  Select the best non-tabu neighbor, or select a tabu move if it improves the best
solution (aspiration criterion).

5. Tabu list update

* Add the current move to the tabu list and manage its size based on the
tabu tenure.

6.  Update solution

e  Update the current solution to the best selected neighbor.
¢ Update the best solution if the current solution improves it.

7. Termination
*  Repeat steps 2-6 for a predefined number of iterations.
8. Output

¢ Return the best solution found, which is the configuration that maximizes the
number of successfully placed SVMs.

The pseudo-code for the TS algorithm is provided in Algorithm 1. The TS relies on
several supporting functions to determine optimal SVM placement. Specifically, Cost-
Function evaluates each potential solution by counting the number of SVMs successfully
assigned to PMs, guiding the search toward maximizing the number of accepted SVMs.
The IsTimeOverlap function checks if two SVMs have overlapping active times, ensuring
that only time-disjoint SVMs share resources on the same PM, which is crucial for meeting
temporal constraints. Lastly, IsValidPlacement determines if a PM has sufficient resources
(CPU, memory, and storage) to host a particular SVM, accounting for any overlapping
SVMs already assigned to that PM.

Algorithm 1: Tabu Search Algorithm for SVM Placement

Input: Set of PMs, Set of SVMs, max_iterations, tabu_tenure

Output: Best placement of SVMs on PMs, Best cost

Initialize best_solution with no placements (all SVMs set to None);

current_solution < best_solution;

best_cost <— CostFunction(best_solution, SVMs);

tabu_list <— empty list;

for iteration < 1 to max_iterations do
neighborhood < empty list;
for each SVM in SVMs do
for each PM in PMs do

if IsValidPlacement(PM, overlapping SVMs on PM, SVM) then
Create neighbor by moving SVM to PM;
Add neighbor to neighborhood;
end
end
end
Select best_neighbor from neighborhood not in tabu_list or satisfying
aspiration criterion;

Update best_solution if best_neighbor improves the best cost;
Update tabu_list with new moves, remove oldest if list exceeds tabu_tenure;
end
return best_solution, best_cost;

6. Performance Evaluation

In the following, we present the simulation results used to evaluate the performance
of the TS algorithm in solving the SVMPP. First, we analyze the performance of the TS algo-
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rithm compared to an integer linear programming (ILP) model that considers permanent
VM (PVM) requests (i.e., VMs without specific start and end times) to highlight the gap
between the optimal solution obtained by the ILP and the sub-optimal solution produced
by the TS algorithm. After demonstrating the TS algorithm’s performance, we compare
it against two meta-heuristic methods from the literature: the Ant Colony Optimization
(ACO) approach described in [17] and the Particle Swarm Optimization (PSO) method
presented in [52].

6.1. Simulation Parameters

For benchmarking purposes, the evaluation tests were carried out in a heterogeneous
DC comprising two types of PMs. The detailed configurations of these PMs are presented
in Table 5. The DC is assumed to have M PMs in total, with an equal distribution between
type 1 and type 2 PMs.

Table 5. PM configurations.

PM Type CPU (Cores) RAM (GB) Storage (GB)
HPE ProLiant Gen 10 28 3000 48,000
HPE ProLiant Gen 11 96 8000 60,000

The SVM requests are generated based on four distinct types: small (S), medium (M),
large (L), and extra large (XL), with specifications detailed in Table 6. These types—S,
M, L, and XL—are crucial for accurately simulating a range of real-world workloads in
virtualized environments. Each type corresponds to a different level of resource demand,
from lightweight (S) to resource-intensive (XL), allowing the placement algorithm to handle
a broad spectrum of scenarios. The start and end times for each SVM are drawn from a
uniform random distribution over the interval [0, 1440], where 1440 represents the total
number of minutes in a day. Although the SVMs are known in advance, the random
generation of their start and end times helps simulate a realistic and diverse range of
temporal resource demands. For a given number of SVMs, N, to be hosted in the DC,
the distribution of SVM types is determined using a uniform random distribution, ensuring
an equal representation across the four types.

Table 6. SVM types and resource requirements.

SVM Type CPU (Cores) RAM (GB) Storage (GB)
S 2 4 40
M 8 16 100
L 32 64 500
XL 64 128 1000

The ILP model is implemented using OPL and solved with CPLEX. The TS, as
well as the comparative algorithms, are implemented in python and run on an Intel
Core i7 (2.6 GHz) processor with 16 GB of RAM.

6.2. Performance Comparison: ILP Model and TS

Figures 2 and 3 provide a comprehensive comparison of the ILP model and the TS
meta-heuristic in terms of the percentage of hosted PVMs and their relative performance
deviation as the number of arriving PVMs increases, for a DC size of M = 250 PMs.

Figure 2 shows that both approaches perform optimally at lower arrival rates (up
to around 569 PVMs), hosting nearly 100% of the incoming PVMs. However, beyond
569 PVMs, the performance of TS begins to decline, hosting a smaller percentage of PVMs
compared to ILP. This gap becomes more pronounced as the number of PVMs increases,
with ILP consistently outperforming TS, especially when the PVM count reaches 1000.
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At first glance, this difference arises because TS, being an approximate method, computes
sub-optimal solutions that become less efficient as the problem size grows. In contrast, ILP,
as an exact optimization method, consistently finds the optimal solution, enabling it to host
a higher percentage of PVMs, even under high-load conditions.

Percentage of hosted PVMs vs. the number of PVMs. (M=250)
T T

Percentage of hosted PVMs

250 363 454 513 569 681 734 800 871 947 1000
Number of PVMs, N

Figure 2. Percentage of accepted PVMs vs. the number of arriving PVMs.

To quantify this difference, Figure 3 illustrates the relative deviation between the ILP
and TS results. The relative deviation is defined as the percentage difference between the
number of accepted PVMs by the ILP and TS, relative to the number of accepted PVMs by
the ILP. The figure shows that this deviation remains minimal when the number of arriving
PVMs is below 500, indicating similar performance under lighter loads. However, as the
PVM count grows, the relative deviation becomes more noticeable, reaching approximately
7% for 1000 arriving PVMs.

Gapl k ILIP and TS Reslults

Gap (%)

0 I I I I I L I
200 300 400 500 600 700 800 900 1000
Number of PVMs, N

Figure 3. ILP model vs. TS: Relative deviation in hosted PVMs.

To further analyze the growing gap between the results computed by the ILP and
the TS algorithm, we present the number of hosted PVMs for the different types—S, M, L,
and XL—in the DC. Figures 4, 5, 6, and 7, respectively, display the results for each PVM
type. In these figures, each group of three bars represents the total number of arriving
PVMs to be hosted (first bar from the left), the number of PVMs of type T (T being S, M,



Computers 2024, 13, 321 13 of 25

L, or XL) hosted by the ILP (second bar), and the number of PVMs of the same type T
accepted by the TS algorithm (third bar).

250 Number of hosted PVMs of type S vs. the ber of PVMs. (M=250)
T T T T T T T T T T

[0 Generated
[ 1P
 m—

Number of hosted PVMs of type S

250 363 454 513 569 681 734 800 871 947 1000
Number of PVMs, N

Figure 4. Number of hosted PVMs of type S.

Number of hosted PVMs of type M vs. the number of PVMs. (M=250
250 T T T T T T T

[ Generated
1L
 m—

200

150

100

Number of hosted PVMs of type M

50

250 363 454 513 569 681 734 800 871 947 1000
Number of PVMs, N

Figure 5. Number of hosted PVMs of type M.

The figures indicate that all PVMs of types S and M are successfully hosted by the
PMs, regardless of the number of incoming PVMs. However, some PVMs of types L and
XL cannot be hosted (rejected), especially under heavy load (the DC capacity is insufficient
to accept all PVMs). The difference in the number of PVMs accepted by the ILP model
and the TS algorithm can be further elucidated by the results displayed in Figures 6 and 7.
The ILP model consistently accepts a larger number of PVMs of type L while rejecting more
PVMs of type XL. In contrast, the TS algorithm manages to accept a reasonable number of
both L and XL types, with a slight preference for type L. Since PVMs of type XL consume
more resources on the PMs than those of type L, this leads to a higher rejection rate in the
TS algorithm. Overall, these findings demonstrate that the TS performs comparably to the
ILP model.
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Number of hosted PVMs of type L vs. the of PVMs. (M=250)
T T T T T T T

250 T T
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Figure 6. Number of hosted PVMs of type L.

250 — , Numbelr of hosted PVMs ?f type XII. vs. the number olf PVMs. (I|\II=259) :
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Number of hosted PVMs of type XL

250 363 454 513 569 681 734 800 871 947 1000
Number of PVMs, N

Figure 7. Number of hosted PVMs of type XL.

In Figures 8-10, we compare the CPU, RAM, and storage normalized residual capacity,
respectively, for each PM, assuming N = 1000 PVMs arriving at the DC for the two
optimization approaches. The normalized residual capacity is computed as the ratio
between the total available capacity minus the consumed capacity and the total available
capacity. The ILP method shows high variance in CPU, RAM, and storage utilization,
with some PMs having almost full residual capacity while others are nearly fully utilized.
This suggests that ILP results in uneven workload distribution, leaving many machines
underutilized and potentially leading to inefficiencies in the DC. In contrast, the TS method
results in consistently low residual capacity across most PMs, indicating near-total resource
utilization and a more balanced workload allocation. TS appears to maximize resource
use, ensuring that almost all machines operate at or near full capacity, minimizing wasted
resources. Consequently, TS would be a more efficient approach when the goal is to
maximize resource utilization, while ILP may prioritize maximizing the number of hosted
PVMs, potentially at the cost of under-utilizing available resources.
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Figure 9. RAM normalized residual capacity.

Figure 11 draws the CPU execution time for the two methods. The execution time for
the ILP model starts at around 5 x 10° seconds for N = 250 PVMs and increases slightly
as the number of PVMs grows, showing that ILP is computationally expensive and does
not scale well as the number of PVMs increases. In contrast, TS remains near zero for the
entire range, indicating a much faster execution time regardless of the number of PVMs.
The graph demonstrates that TS vastly outperforms ILP in terms of CPU execution time
when handling increasing numbers of PVMs.
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6.3. Performance Comparison: Tabu Search, ACO, and PSO

In this section, we present a comparative performance analysis of the proposed TS
algorithm against two well-established meta-heuristic algorithms from the literature: ACO
and PSO. The goal of this comparison is to evaluate the effectiveness of the TS algorithm in
solving the SVMPDP, particularly in terms of solution quality, convergence speed, and ro-
bustness. By benchmarking TS against ACO and PSO, we can highlight its strengths and
advantages, as well as identify any potential limitations.
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Figure 12 shows the percentage of hosted SVMs computed by TS, ACO, and PSO as
the number of arriving SVMs, N, increases. The total number of available machines is kept
constant at M = 250. Key observations include the following:

e The TS algorithm consistently achieves the highest percentage of hosted SVMs, main-
taining nearly 100% across all scenarios. ACO performs slightly below TS, while PSO
shows the lowest performance, especially as the number of SVMs increases.

¢ Asthe number of arriving SVMs grows, PSO experiences a sharper decline in hosted
SVMs compared to TS and ACO. For instance, at N =250 arriving SVMs, all three
algorithms perform similarly (~100% hosted SVMs). However, as N increases further,
PSO hosts only around 60-70%, while TS and ACO maintain near-full capacity.

*  These results suggest that TS and ACO scale more effectively with increasing SVMs
than PSO, which struggles to maintain hosting percentages as N rises. TS and ACO are
better at exploiting the time disjointness of the SVMs to optimize resource utilization
on each PM, likely due to more efficient packing of multiple SVMs on the same PM
by considering their time windows. In contrast, PSO may not explore the solution
space as effectively, possibly leading to premature convergence or under-utilization of
available PM resources over time.

100 Percentage of hosted SVMs vs. the ber of SVMs (M=250)
T T T T T T T T

920 —

80

70

60

50

Percentage of hosted SVMs

30

20

0 | | | | || || |1 | | || || || ||

250 350 418 528 594 627 758 802 887 957 1000
Number of SVMs, N

Figure 12. Percentage of hosted SVMs vs. the number of arriving SVMs.

The percentage gain of the TS algorithm over ACO and PSO is given in Figure 13.
The gain of the TS over ACO remains relatively small but steadily increases as N grows,
suggesting that TS outperforms ACO by a modest margin. The gain appears to be most
significant for larger N values, reaching approximately 15%. This indicates that while both
algorithms handle smaller numbers of SVMs similarly, TS demonstrates a greater advantage as
the number of SVMs increases, suggesting better scalability and resource utilization under high
load conditions. The strength of TS in high-load scenarios lies in its local search mechanism,
which allows it to efficiently explore the neighborhood of the current solution and escape
local optima, even when faced with resource constraints. This local search capability is
crucial when resources are scarce, as TS is able to adapt to the specific constraints of the
problem through its memory structure (the tabu list), which prevents cycling and encourages
exploration of promising regions in the solution space. The achieved gain of TS over PSO is
significantly higher than the gain over ACO. The TS algorithm consistently outperforms PSO
by a substantial margin across all values of N. The gain starts at around 25% and increases
linearly with N, reaching over 45%. This sharp rise in performance differential highlights
PSO’s struggles to deal with the SVMPP efficiently.
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TS Gain: Percentage of accepted SVMs compared to ACO and PSO (M=250)
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Figure 13. TS gain in terms of percentage of accepted SVMs compared to ACO and PSO.

In Figures 14-17, we plot the number of accepted SVMs of types S, M, L, and XL,
respectively, with respect to the number of SVM requests to be hosted. Each group of
four bars represents the number of SVM requests of a particular type (S, M, L, or XL) to
be hosted (first bar from the left), followed by the number of SVMs of that type hosted
by the TS algorithm (second bar), the ACO algorithm (third bar), and the PSO algorithm
(fourth bar). These figures confirm the previous results, showing that TS consistently hosts
a number of SVMs very close to the generated optimal values, outperforming ACO and
PSO as N increases. ACO performs slightly below TS but still hosts a high number of SVMs,
while PSO consistently hosts the fewest, with the gap widening as N increases, indicating
poorer scalability compared to TS and ACO.

Number of hosted SVMs of type S vs. the number of SVMs (M=250)
T T T T T T T T T

250 T
== Generated
TS

Number of hosted SVMs of type S

250 350 418 528 594 627 758 802 887 957 1000
Number of SVMs, N

Figure 14. Number of hosted SVMs of type S.
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Number of hosted SVMs of type M vs. the number of SVMs (M=250
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Figure 15. Number of hosted SVMs of type M.
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Figure 16. Number of hosted SVMs of type L.

250 Number of hosted SVMs of type XL vs. the number of SVMs (M=250)
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Figure 17. Number of hosted SVMs of type XL.
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Figure 18, comparing CPU execution time versus the number of arriving SVMs,
illustrates a clear trade-off between computational efficiency and solution quality across the
three algorithms. The TS algorithm, while offering the best performance in terms of hosted
SVMs and scalability, incurs a significantly higher computational cost, with execution
time increasing steeply as the number of SVMs grows. In contrast, ACO maintains a
more moderate execution time, making it a balanced choice when both performance and
efficiency are important. PSO, although the fastest in terms of computation, sacrifices
solution quality, particularly under higher loads, making it suitable for time-sensitive
scenarios but less ideal for more demanding problems.
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Figure 18. CPU execution time.

6.4. Impact of the Normalized Time Correlation on the Percentage of Accepted SVMs

In Figure 19, we draw the relationship between the normalized time correlation and
the percentage of accepted SVMs for the three considered algorithms. The key findings
are that TS consistently outperforms the others, maintaining nearly 100% acceptance
of SVMs across all time correlations, demonstrating its stability and reliability. ACO
performs well, with acceptance rates generally between 85% and 100%, but shows some
variability as time correlation increases. PSO, however, performs the worst, with acceptance
percentages ranging from 50% to 75%, and exhibits significant performance degradation as
time correlation rises, particularly beyond 0.49. Overall, TS is the most stable and effective,
while PSO struggles most, especially at higher time correlations.
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Figure 19. Impact of time correlation.
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6.5. Discussion

The performance comparison of the proposed TS algorithm with ACO and PSO high-
lights both its strengths and limitations in solving the SVMPP. TS consistently outperforms
ACO and PSO, particularly as the number of SVMs increases, achieving up to 15% increase
in resource efficiency over ACO and more than 45% better performance than PSO. TS’s
success can be attributed to its effective local search mechanism, which avoids local optima
and ensures optimal resource utilization under increasing load, as well as its tabu list,
which prevents cycling and supports scalability.

However, TS incurs higher computational costs, especially in managing the frequently
accessed tabu list, as the number of SVMs grows [78]. It also faces challenges related to pa-
rameter tuning and computational complexity. Despite these issues, recent improvements,
including hybridization with other meta-heuristics and parallel computing, have enhanced
TS’s scalability and performance, offering valuable insights for further optimization in VM
placement problems [79].

7. Conclusions and Future Work

In this study, we introduced the concept of SVMs, a novel VM model that considers both
resource needs and specific time windows for each VM. This model allows for optimized
resource sharing by enabling multiple SVMs to occupy the same PM when their operational
times do not overlap, improving efficiency over traditional static resource models.

We developed a TS algorithm to solve the SVMPP and compared its performance to an
ILP model and two meta-heuristics, ACO and PSO. The TS algorithm consistently achieved
near-optimal solutions, outperforming ACO and PSO in scalability and the number of
hosted SVMs, though with higher computational costs. While ACO was competitive, PSO
lagged behind in both solution quality and scalability.

Future work will focus on adaptive, dynamic algorithms for real-time workload
variations, potentially leveraging machine learning for predictive management and decision
making. Further, we aim to address challenges in hybrid cloud environments and enhance
fault tolerance to ensure resilience in VM placement and resource allocation.
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