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Abstract

The popularity of cloud computing (CC) has increased significantly in recent years due to its

cost-effectiveness and simplified resource allocation. Owing to the exponential rise of cloud

computing in the past decade, many corporations and businesses have moved to the cloud

to ensure accessibility, scalability, and transparency. The proposed research involves com-

paring the accuracy and fault prediction of five machine learning algorithms: AdaBoostM1,

Bagging, Decision Tree (J48), Deep Learning (Dl4jMLP), and Naive Bayes Tree (NB Tree).

The results from secondary data analysis indicate that the Central Processing Unit CPU-

Mem Multi classifier has the highest accuracy percentage and the least amount of fault pre-

diction. This holds for the Decision Tree (J48) classifier with an accuracy rate of 89.71% for

80/20, 90.28% for 70/30, and 92.82% for 10-fold cross-validation. Additionally, the Hard

Disk Drive HDD-Mono classifier has an accuracy rate of 90.35% for 80/20, 92.35% for 70/

30, and 90.49% for 10-fold cross-validation. The AdaBoostM1 classifier was found to have

the highest accuracy percentage and the least amount of fault prediction for the HDD Multi

classifier with an accuracy rate of 93.63% for 80/20, 90.09% for 70/30, and 88.92% for 10-

fold cross-validation. Finally, the CPU-Mem Mono classifier has an accuracy rate of 77.87%

for 80/20, 77.01% for 70/30, and 77.06% for 10-fold cross-validation. Based on the primary

data results, the Naive Bayes Tree (NB Tree) classifier is found to have the highest accuracy

rate with less fault prediction of 97.05% for 80/20, 96.09% for 70/30, and 96.78% for 10 folds

cross-validation. However, the algorithm complexity is not good, taking 1.01 seconds. On

the other hand, the Decision Tree (J48) has the second-highest accuracy rate of 96.78%,

95.95%, and 96.78% for 80/20, 70/30, and 10-fold cross-validation, respectively. J48 also

has less fault prediction but with a good algorithm complexity of 0.11 seconds. The differ-

ence in accuracy and less fault prediction between NB Tree and J48 is only 0.9%, but the dif-

ference in time complexity is 9 seconds. Based on the results, we have decided to make

modifications to the Decision Tree (J48) algorithm. This method has been proposed as it

offers the highest accuracy and less fault prediction errors, with 97.05% accuracy for the 80/

20 split, 96.42% for the 70/30 split, and 97.07% for the 10-fold cross-validation.
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Introduction

Research background & motivation

Over the last decade, many corporations & business sectors have shifted to cloud computing to

ensure transparency, scalability, & accessibility due to its exponential growth. Due to cost sav-

ings & complex resource distribution, many people switch to the cloud where the infrastruc-

ture is managed by cloud providers [1]. Cloud service providers such as International Business

Machines (IBM), Amazon, Yahoo, & Google offer cloud computing services to consumers

worldwide [2]. Cloud architectures refer to the transfer of computational services amongst

multiple users. In such architectures, apps, hardware, & software systems are shared resources.

Typically, cloud architectures are composed of three main layers: Infrastructure as a Service

(IaaS), Software as a Service (SaaS), & Platform as a Service (PaaS). Cloud infrastructure defi-

ciencies can significantly affect the reliability of resources. To enhance the reliability & effec-

tiveness of cloud computing, it is important to identify & fix any defects that may arise [3].

Users can access cloud computing resources over the internet & pay for them based on usage.

The cloud provider responsible for cloud processing outsources every resource that belongs to

the customer [4]. Smart gadgets have proven to be beneficial due to their improved functional-

ity, offering tools that are always available to suit a user’s needs, no matter where they are [5].

The Antarex secondary dataset is a collection of trace data gathered during fault injection

experiments on the Eidgenössische Technische Hochschule Zurich (ETH) experimental High

Performance Computing (HPC) system. Its purpose is to enable Machine Learning (ML)

based HPC system fault detection research. The dataset is split into two sections: one for

benchmark applications & fault programs related to CPU & Random Access Memory (RAM),

& another for applications & fault programs linked to hard drives. There are four folders in the

Antarex dataset, one corresponding to each dataset block (CPU/Memory & HDD), & both in

single-core & multi-core versions [6]. The Weibull distribution technique is used to create the

fundamental dataset. In the field of dependability, the Weibull distribution is commonly used

as a model for time-to-failure. It allows for non-constant failure rate functions, which expands

the capabilities of the exponential model. This model can be used to describe both early burn-

ing & wear-out failures, & it includes both increasing & decreasing failure rate curves [7].

Thanks to the growth of machine learning (ML) & increased accessibility of building data,

there is immense potential to apply ML to model & analyze building energy systems. Situated

at the intersection of computer science & statistics, ML is a rapidly growing data-driven field

that plays a crucial role in artificial intelligence (AI) & data science [8]. Computers can learn

from supplied data & ML techniques, without requiring explicit programming for each prob-

lem. By identifying deep connections within data inputs, it tries to reconstruct a knowledge

structure. The learning outcomes can be utilized for categorization, prediction, & estimation

purposes [9]. There are two main types of ML techniques: supervised & unsupervised. In

supervised learning, an AI network is trained to create a mapping function that maps input

data to output using a dataset of input & target values. Unsupervised learning is a type of ML

that involves the use of an input dataset that is neither labeled nor classified. The AI network is

trained to discover hidden patterns, solutions, & distributions without any guidance. Unsuper-

vised learning challenges come in several forms, such as association & clustering [10].

Research gaps

Identifying research gaps in previous studies is essential to broaden the article’s impact. After

reviewing the relevant body of knowledge, the literature evaluation uncovered the following

research gaps.
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• The decision tree model does not consider reliability [10].

• One of the most critical research gaps faced by scholars and practitioners in the cloud com-

puting environment within decision tree frameworks is reliability [10].

• Based on the literature review, researchers should develop an algorithm using machine

learning methods to enhance the reliability of cloud nodes [11].

• The machine learning of cloud systems has garnered significant attention for its creative

applications. Few studies have explored using machine learning to enhance the reliability of

cloud systems [11].

• A new approach is required for machine learning in cloud environments to provide maxi-

mum stability across virtual machines, minimum failure prediction, and high accuracy [12].

Research objectives

This research aims to improve the quality of service (QoS) in CC by using ML to reduce fault

prediction errors & increase accuracy. To achieve this goal, the following objectives must be

met:

• Find out how decision trees can enhance the reliability measures of cloud computing

systems.

• Determine the main factors that influence the reliability of cloud computing systems and

assess the accuracy of decision trees in representing and predicting these factors.

• Compare and contrast multiple machine learning algorithms (e.g. Deep Learning, Bagging,

Decision Tree, AdaBoost M1, and Naive Bayes Tree) to determine the most effective in pre-

dicting and addressing reliability issues in cloud systems.

Research scope

The following research scope has been strictly adhered to:

Data gathering. The secondary dataset consists of trace data from the same experimental

HPC system at ETH, Zurich, while the primary dataset provides repair and failure Virtual

Machines (VMs) data to support an ML-based strategy for Fault Tolerance (FT) dependability

in cloud computing.

Machine learning algorithms. Supervised machine learning techniques are utilized in

this study to enhance accuracy and reduce fault prediction errors. It involves the use of labeled

datasets to train algorithms for proper data identification and outcome prediction.

Reliability

Reliability in the context of cloud computing refers to a system’s ability to perform its intended

function or provide the required service for a specific duration under predefined conditions.

In this study, we achieved reliability through the use of machine learning. The ability of each

virtual machine to operate continuously is what we define as reliability.

Contribution of the study

We have made significant progress in our efforts. Firstly, we acquired the HPC fault dataset &

tested a fault classification technique based on supervised ML. We are pleased to share that the
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dataset & all test environment details are publicly available for the community to use. Addi-

tionally, we will be utilizing trace data from the Antarex experimental HPC system at ETH

Zurich to create a secondary dataset for ML-based failure prediction studies. The Antarex

dataset will be divided into two parts: benchmark apps & fault programs connected to CPU &

RAM, & applications & fault programs linked to hard drives. To make it more organized, we

have categorized the dataset into four folders, one for each dataset block (CPU/Memory &

HDD) in both single-core & multi-core versions. This will help researchers & academics in

their studies & experiments [11].

We utilized the Weibull distribution technique to create a primary dataset. The Weibull dis-

tribution is another commonly used model to predict the time-to-failure in reliability. Unlike

the exponential model, it incorporates failure rate functions that are not constant, thus provid-

ing a more comprehensive understanding of wear-out failures, early burnings, & both rising &

declining failure rate curves [38]. Various Java platform settings were programmed to generate

primary data using the Weibull distribution technique.

We utilized two types of datasets for our study: Antarex Secondary Datasets & Primary

Datasets. The secondary dataset was obtained from the ZONODO website & the primary data

was produced using the Weibull distribution technique [11, 12]. We conducted tests to identify

the most effective ML algorithms in terms of high accuracy & less fault prediction, & we pres-

ent our findings in this regard.

The J48 decision tree classifier has proven to be highly accurate & effective in reducing fault

prediction errors, making it a valuable tool for CC users. This marks the fourth & final

contribution.

Materials and methods

Literature review

Shahid et al. [2] suggested that CC has become a prominent trend in recent times. This has led

to the development of large-scale computer networks from previously dispersed systems.

Globally, companies such as IBM, Amazon, Yahoo, & Google provide cloud services to their

clients. This new paradigm enables software & services to be provided to end-users on

demand, doing away with the need for them to install programs on their local computers.

Shahid et al. [3] investigate that cloud architectures are designed to enable the exchange of

computing resources among different users. These shared resources include software, hard-

ware, & applications. IaaS, SaaS, & PaaS are the three primary layers that make up most cloud

infrastructures. Although errors can occur at any of these levels, recovery techniques are iden-

tified & applied at the software level to ensure smooth operation.

Mishra et al. [13] researchers have developed various load-balancing techniques to optimize

different performance metrics in CC. They have categorized these cloud-based load-balancing

algorithms & explored their impact on the literature. To examine the performance of heuris-

tic-based algorithms, a simulation was run using the CloudSim simulator. The outcomes of

the simulation have been provided in detail.

Feng et al. [14] this research presents a smart approach to predict the compressive strength

of concrete using ML technology. The method combines multiple weaker learners through an

adaptive boosting technique to create a robust learner that can effectively establish the correla-

tion between the input & output data.

Butt et al. [15] in this review paper, an analysis of security threats, issues, & solutions related

to CC that utilize one or several ML algorithms is presented. They discuss various ML algo-

rithms that are used to tackle cloud security issues, including supervised, unsupervised, semi-

supervised, & reinforcement learning. Then, we compare the performance of each strategy
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based on their features, advantages, & downsides. Additionally, we highlight possible research

directions to ensure the security of CC models.

Pei et al. [16] a new fault prediction model called multidimensional fusion (CNN-BiLSTA-

M-Attention) (CBA)-net has been proposed. The model is based on Hierarchical Density-

Based Spatial Clustering of Applications with Nois (HDBSCAN) clustering preprocessing clas-

sification data & can effectively extract & learn spatial & temporal features from the predeces-

sor fault log. It can extract local features & is highly sensitive to time series features. The

experiments conducted on the model demonstrated that it has an Root Mean Square Error

(RMSE) of 0.031 for fault occurrence time prediction & an average prediction accuracy of 93%

for node location during fault occurrence. The model can improve the fine-grained & accurate

fault prediction of large supercomputers by achieving fast convergence.

Shrestha & Mahmood [17] in this study, various optimization techniques are examined,

which can be used to reduce the duration of training while simultaneously enhancing the accu-

racy of training. The research delves into the mathematical principles behind the training tech-

niques that are commonly used in modern deep networks. The paper outlines the current

shortcomings, improvements, & practical applications of these techniques. In addition, the

paper covers a range of deep architectures, such as variation autoencoders, recurrent neural

networks, deep residual networks, reinforcement learning, & deep convolution networks.

Lang et al. [18] suggested that Deep learning is a specific area of ML that employs artificial

neural networks to produce multi-layered data representations. This technology has signifi-

cantly improved the performance of various ML tasks, such as document classification, object

detection, speech recognition, & image classification. Introducing WekaDeeplearning4j - a

Weka module that provides a graphical user interface (GUI) for easy access to deep learning.

This software allows for the GUI-based training of deep neural networks, including convolu-

tional & recurrent neural networks, & it utilizes Deeplearning4j as its backend. It also supports

Graphics Processing Unit (GPUs) & includes pre-processing tools for text & image data.

Wang et al. [19] proposed a novel approach known as the multinomial naive Bayes tree

(MNBTree) has been proposed by implementing a multinomial naive Bayes text classifier on

each leaf node of the decision tree. Unlike NBTree, MNBTree creates a binary tree where the

split attributes are divided into zero & nonzero values. MNBTree builds the tree faster by using

the information gain metric instead of the classification accuracy measure. To further improve

the classification performance of MNBTree, the multiclass multinomial naive Bayes tree

(MMNBTree) is suggested, which uses the multiclass approach. The experimental findings on

various popular text categorization benchmark datasets have validated the effectiveness of our

proposed methods, MNBTree & MMNBTree.

Bildosola et al. [20] this study outlines a practical & proven tool that can be used as a deci-

sion-making resource for adopting CC. The tool involves a diagnosis process based on prede-

termined questions to collect the necessary data & provide the user with useful information to

launch their business in the cloud, specifically through the use of Software as a Service (SaaS)

solutions. With this information, decision-makers can create their own customized Cloud

Roadmap. The pilot research involved local businesses & had two objectives: firstly, to deter-

mine the level of knowledge people had about CC; & secondly, to identify the most promising

industries & the tools that are best suited for them.

Jaiganesh et al. [21] suggested using a priority-based queuing model to evaluate the leased

services provided by cloud service providers. This model takes into account the overall service

time & reaction time for incoming requests & uses a queue to hold waiting requests. The ser-

vices offered by providers are classified as Platform as a Service (PaaS), Infrastructure as a Ser-

vice (IaaS), & Software as a Service (SaaS). The queuing model we build includes a buffer of

size ’r’, a priority queue discipline, a Markovian arrival rate, a general service rate, & ’m
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number of servers. The benefit of using this analytical model is that the cloud service provider

can arrange their services to maximize profit within a given time frame.

Batista et al. [22] this study evaluated the performance of a cloud resource management

module. The module manages available resources during execution time & ensures the service

quality specified in the service level agreement. To determine which aspect of resource scaling

affects client requests, various resource configurations were analyzed. The study’s outcomes

were used to create a model & implement a simulated cloud system. The allotted resource can

be modified at any time & a different cost. The suggested module aims to satisfy both the sup-

plier & the customer by guaranteeing the highest level of service quality & the most economical

use of resources.

Qiu et al. [23] present a survey of the latest research advances in ML for big data processing.

Firstly, the paper reviews various ML techniques that have been developed & discusses some

promising learning methods from recent studies like representation, deep, distributed, parallel,

transfer, active, & kernel-based learning. Next, the paper delves into the challenges & potential

solutions of ML for big data, & provides a detailed analysis of the same.

Zhang et al. [24] this study explores different strategies for weighting features in text classifi-

ers that use the naive Bayes algorithm. Most existing feature weighting methods for such classi-

fiers have some drawbacks, such as making the models more complex & slower, or only

providing marginal improvements in classification performance. However, the ML commu-

nity has a long history of research into feature weighting, & many scholars have made impor-

tant contributions to this field. In addition, discusses a few straightforward & effective feature

weighting techniques that were created for naive Bayes classifiers in general & modified for use

with naive Bayes text classifiers.

Liu et al. [25] suggested that failure detectors are an important part of high-availability dis-

tributed systems. Accrual failure detectors, in particular, have been extensively studied to meet

the needs of complex, multi-application distributed systems. However, some implementations

of accrual failure detectors face challenges in adapting to the context of cloud services. A new

accrual failure detector called the Weibull Distribution Failure Detector has been designed

specifically for CC. This solution is based on the Weibull Distribution & can adapt to the

unpredictable & changing network conditions often seen in CC. The performance of the Wei-

bull Distribution Failure Detector has been evaluated & compared to data from both CC &

public classical experiments. The results show that the Weibull Distribution Failure Detector is

faster & more accurate in unstable conditions, particularly in CC.

Navimipour & Vakili [26] suggested that CC typically involves the deployment of virtualized

resources that are dynamically scalable as services over the Internet. Depending on the user’s

needs, various services can be provided in the cloud environment, which may need to be com-

bined to meet the user’s expectations. As a result, service composition has become a widely used

technique for integrating different services in the cloud environment to aggregate & consolidate

them. This approach focuses on creating a new cloud service that combines existing services to

reduce costs, save time, & increase efficiency. This paper aims to provide an overview of the

methods & approaches currently utilized in the field of cloud service composition. In summary,

this paper makes three contributions: Firstly, it offers a general overview of the challenges that

exist in various problem domains related to cloud service composition. Secondly, it describes

some key techniques used within the scope of cloud service composition. And finally, it identi-

fies important areas for future research to enhance service composition methods.

Madni et al. [27] investigated that CC infrastructure is suitable for managing large process-

ing tasks. However, scheduling jobs in CC environments presents an NP-complete problem

that requires heuristic solutions. A variety of heuristic algorithms have been developed & used

to address this issue. However, selecting the most appropriate algorithm to solve a particular
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job assignment problem can be challenging because the approaches were developed based on

different assumptions. Six rule-based heuristic algorithms have been developed to schedule

autonomous activities in both homogeneous & heterogeneous contexts. These algorithms are

used to compare the performance of task scheduling in CC in terms of cost, degree of imbal-

ance, makespan, & throughput. The heuristic methods considered for this analysis include

First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution

Time (MET), Maxmin, Min-min, & Sufferage.

Tanha et al. [28] suggested that in ML, some methods consider both labeled & unlabeled

data for learning tasks. One such method is semi-supervised learning, which involves self-

training using decision tree learners as the base learners. However, we have demonstrated that

ordinary decision tree learning cannot be used as a basic learner for self-training in semi-

supervised learning. The primary reason for this is that the fundamental decision tree learner

is unable to provide accurate probability estimates for its predictions. The researchers consid-

ered various techniques such as Naive Bayes Tree, grafting, distance-based metric, & a combi-

nation of no-pruning & Laplace correction to improve decision tree algorithms. They also

extended this enhancement to decision tree ensembles & showed that the ensemble learner

performs better than the modified decision tree learners, resulting in additional improvement.

Portugal et al. [29] this work aims to comprehensively evaluate the literature that examines

the application of ML algorithms in recommender systems, to identify new research possibili-

ties. The investigation has the following objectives: (i) recognize patterns in the application or

investigation of ML algorithms in recommender systems; (ii) pinpoint unresolved issues in the

application or investigation of ML algorithms; and (iii) support novice investigators in appro-

priately situating novel research endeavors within this field. The study’s findings describe the

different types of recommender systems currently in use, the ML approaches that have been

adopted, the use of big data technologies, & the identification of ML algorithm types & their

application domains, & the analysis of both primary & secondary performance metrics.

Varghese & Buyya [30] the article discusses the evolution of cloud infrastructure & the benefits

of shifting computing away from data centers. It also highlights the potential of new computer

architectures that are expected to influence data-intensive computing, self-learning systems, link-

ing people & things, & the service sector. The article concludes with a roadmap of obstacles that

need to be addressed to fully utilize the potential of next-generation cloud systems.

Patel & Prajapati [31] suggested that ML is the process of teaching a computer to learn from

different datasets, allowing it to determine its outcomes without explicit programming. One of the

methods used in ML is Decision Trees. Decision Tree algorithms have a wide range of applications

in various industries, such as search engines, medical fields, text extraction, & statistical analysis.

Different decision tree algorithms have been developed based on their accuracy & effectiveness. It

is crucial to know the optimal algorithm to use in different scenarios where a choice has to be

made. This study focuses on three distinct decision tree algorithms: ID3, C4.5, & CART.

Mesbahi et al. [32] introduced WekaDeeplearning4j- a Weka package with a graphical user

interface (GUI) that helps in deep learning. The software is capable of GUI-based training of

deep neural networks, including convolutional & recurrent neural networks, & uses Deeplear-

ning4j as its backend. It also supports GPUs & has pre-processing tools for text & picture data.

Table 1 presents a summary of the literature review from an important methodological

perspective.

Problem statement

Although decision trees are becoming more and more common in cloud computing, there is

limited knowledge about their potential to improve system reliability. Currently, there is
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limited data available in the literature on the capacity of decision trees to enhance reliability

metrics in cloud infrastructures. This study aims to bridge this gap by examining the advan-

tages and challenges of using decision trees for reliability in cloud computing. The goal of this

study is to provide practical suggestions for cloud service providers to enhance system reliabil-

ity and effectively reduce operational risks through case studies and real-world scenarios [32].

Research methodology

The current section provides detailed explanations of the research approach including classifi-

cation, study design, data collection, exploratory data analysis, data pre-processing, data analy-

sis approaches, & suggested algorithms.

Research design. The following study design has been followed diligently:

Proposed model. In this section, we present our model for fault classification & prediction.

The overall research procedure is illustrated in Fig 1. To train our model, we will make use of

both main & secondary datasets, while the target datasets will be used for fault classification &

prediction. By adopting this approach, we aim to identify the ML classifiers that yield the best

outcomes in terms of accuracy, prediction, & data validation by classes, with the minimum

possible error in fault prediction.

Furthermore, this section provides a detailed description of the data collection & generation

techniques used in the study. The implementation view of the research framework is illustrated

in Fig 1.

A solution has been developed to improve accuracy & reduce fault prediction errors in CC

using both the primary & secondary datasets Fig 1.

Classification. Classification is an ML technique that helps in identifying the condition of

a system more accurately & with a lower error rate. It is a supervised learning method to pre-

dict a class label for a given sample. The class label (Y) is the category or group that an input

variable (X) is transformed into by the output variable (f). For example, determining whether

Table 1. An overview of the literature review.

Ref Author Name Year Pros Cons

[2] Muhammad Asim

Shahid et al.

2020 One of the main challenges in cloud systems is the need for efficient

fault tolerance measures in algorithms, as emphasized in this study.

Their services are not reliable and of high quality.

[3] Muhammad Asim

Shahid et al.

2021 This review offers a comprehensive and detailed explanation of the

different types of defects, variables, and fault tolerance techniques

used in cloud computing.

Such traditional methods have disadvantages; they are often

based on fixed principles and handle problems in a

predetermined way, as indicated by their deployment.

[13] Sambit Kumar

et al.

2018 A detailed explanation is provided on how the system’s makespan and

energy usage are calculated.

They have not tested the suggested algorithms in an actual

cloud deployment.

[14] De-Cheng Feng

et al.

2019 Given the input variables, the AdaBoost model can effectively and

accurately estimate the compressive strength of concrete.

The average MAPE is 11.39% and the average R2 of the

10-fold cross-validation is 0.952, indicating a poor

prediction error.

[15] Umer Ahmed Butt

et al.

2020 In this review study, the researchers analyze cybersecurity threats,

issues, and solutions involving one or more machine learning

algorithms.

There is a need for a proposed approach to ensure

dependability in the event of a virtual machine failure.

[16] Xiangdong Pei

et al.

2023 This study introduces a multi-dimensional fusion CBA-net

(CNN-BiLSTAM-Attention) fault prediction model. It efficiently

extracts and learns spatial and temporal characteristics from previous

fault logs based on HDBSCAN clustering preprocessing classification

data.

We will speed up pre-processing and data collection,

improve the fault analysis and prediction mechanism and

apply it to the system’s fault-tolerant recovery.

[17] Ajay Shrestha and

Ausif Mahmood

2019 This study explores various optimization techniques to reduce

training times while improving accuracy.

Currently, overfitting, training duration, and the significant

risk of becoming trapped in local minima limit training.

[18] Steven Lang et al. 2019 They introduce WekaDeeplearning4j, a Weka package that provides a

graphical user interface (GUI) for deep learning.

This extension does not enable the integration of deep

learning models into users’ existing Weka workflows.

https://doi.org/10.1371/journal.pone.0311089.t001
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an email is spam or not can be a challenging task for email service providers [15]. Various

techniques can be used to obtain the best possible outcome among the four directories of the

secondary dataset for classification. We will use a single CSV file to categorize several algo-

rithms for the primary dataset & determine which approach works best for modification.

Obtained secondary data. We collected secondary data from the ZENODO website, spe-

cifically the Antarex HPC Fault Dataset, which has been used in various studies. This dataset &

all details of the testing environment are available to the community for use. Researchers are

welcome to utilize the Antarex secondary dataset for ML-based fault prediction studies. The

dataset is based on trace data from the Antarex experimental HPC system at ETH Zurich dur-

ing fault injection [33].

The details of four datasets, namely HDD Mono (3244 instances), HDD Multicores (2493

instances), CPU-Mem Mono (4005 instances), & CPU-Mem Multi (4380 instances) Each

instance in these datasets contains eight properties & several occurrences, including time-

stamp, type, args, seqNum, duration, cores, error, & isFault. These instance types are com-

prised of numerical & nominal bases. Table 2 provides a summary of the structure of the

Antarex dataset.

Preparing the data for the secondary dataset. Before applying machine learning algo-

rithms to secondary datasets, data pre-processing is required. Three characteristics in this

dataset args, seqNum, and duration have duplicate values. Additionally, there are some empty

rows and missing values in this collection. Excel’s "Remove Duplicates" function eliminates all

duplicate values, as well as empty rows and missing values. After implementing data pre-pro-

cessing, the secondary dataset displays the information for the following: HDD Mono

Fig 1. Visualization of the research framework’s implementation view.

https://doi.org/10.1371/journal.pone.0311089.g001
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(Instances: 568), HDD Multicores (Instances: 551), CPU-Mem Mono (Instances: 1740), and

CPU-Mem Multi (Instances: 1408).

Produced primary data. We used the Weibull distribution technique to construct a pri-

mary dataset. The Weibull distribution is another commonly used model for predicting the

time-to-failure of reliability. It is an extension of the exponential model that allows for non-

constant failure rate functions. The Weibull distribution has proven to be effective in explain-

ing both early burnouts & wear-out failures. It is capable of displaying both rising & declining

failure rate curves [12]. Different Java platform settings were utilized to generate the primary

data using the Weibull distribution method. The parameters used for creating the primary

dataset have been summarized in Table 3, whereas Table 4 displays the main dataset.

Machine learning classifiers. This study uses a variety of machine learning-based

approaches to anticipate and classify faults. Several classifiers from AdaBoostM1, Bagging,

Decision Tree, Deep Learning, and Naive Bayes Tree are used for fault classification and

prediction.

Why is it necessary to compare these machine learning algorithms (AdaBoostM1, Bag-

ging, decision tree (J48), deep learning (DL4JMLP), and naive Bayes).

• These algorithms have different underlying mechanisms, and they perform differently on

the same dataset [33].

• AdaBoostM1 combines weak learners in a manner that corrects errors made by previous

models, thereby enhancing their accuracy. This iterative process typically results in an overall

model with higher accuracy [34].

• Naturally, AdaBoostM1 gives more consideration to harder-to-classify instances, which fre-

quently belong to minority classes in unbalanced datasets. This concentration may enhance

the model’s performance on under-represented classes [34].

• By combining predictions from multiple models, bagging reduces the sensitivity of the final

prediction to noise in the training set, resulting in more dependable and consistent results

[6].

• Neural networks and decision trees are just two examples of the numerous base learners to

which bagging can be applied. Its flexibility makes it suitable for a wide variety of machine-

learning applications [7].

Table 2. Presents an overview of the Antarex dataset structure.

Dataset Directories Attributes Attributes Names Attributes Types Instances

CPU-Mem Mono 8 1. timestamp 2. type Numeric & Nominal 4005

CPU- Mem Multi 8 3. args 4. seqNum 4380

HDD Mono 8 5. duration 6. cores 3244

HDD Multi 8 7. error 8. isFault 2493

https://doi.org/10.1371/journal.pone.0311089.t002

Table 3. A summary of the key parameters responsible for generating the data.

User Port

No

Host

No

Network Host Distribution

1 16 192 Ram, Storage, Bandwidth,

and Mips

The Weibull distribution is a probability distribution that models the failure rate of a system over time, and it

can represent both increasing and decreasing failure rates.

https://doi.org/10.1371/journal.pone.0311089.t003
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• J48 is a versatile option for various applications as it can handle both numerical and categori-

cal data, as well as a variety of data formats without requiring further conversion or prepara-

tion [7].

• Even with large datasets, J48 can be trained and predicted quickly in most cases because of

its efficiency. This makes it suitable for real-time applications or situations requiring a

speedy turnaround [6].

• Large datasets can be effectively scaled with DL4JMLP. It can handle massive data volumes

and take advantage of parallel processing, both of which are beneficial for big data applica-

tions [7].

• Even with large datasets, Naive Bayes is quite efficient in terms of training and prediction

times. Due to its simplicity, it can effectively scale to handle larger datasets, making it appro-

priate for real-time applications [7].

AdaBoostM1. One of the most well-known algorithms designed to carry out the general

boosting technique is adaptive boosting, which is meant to address binary classification issues.

AdaBoostM1 is an expansion of AdaBoost designed to enable it to be used for issues involving

more than two classes. Eq 1 illustrates one of its primary features: every poor learner must

have an error rate that is equal to or less than 1/2 [34].

Pri�w1½hf ðxi 6¼ yiÞ� �
XT

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4Y2

t

p
ð1Þ

Bagging. Using several iterations of a predictor to create an aggregated predictor is

known as "bagging predictors." When predicting a numerical result, the aggregate averages

over the versions; when predicting a class, it uses a plurality vote. By creating multiple boot-

strap samples of the training set and using them as new training sets, numerous versions are

generated. Bagging has been shown to significantly improve accuracy, as evidenced by tests

conducted on real and simulated datasets using regression trees for classification and subset

selection in linear regression. The instability of the prediction method is a key factor to con-

sider. In Eq 2 a classification predictor φ(x, L) and predict a class label j2{1,. . .. . .. . .,J} [35].

QðjjxÞ ¼ Pð;ðx; LÞ ¼ j ð2Þ

Table 4. A brief synopsis of the main dataset.

FHID HFTIME LFT DIS DISHT FTIME/RTIME STATUS

328 1 -74003 Weibull 0.75:20 11965 Failure

328 1 -74003 Weibull 0.75:20 22765 Repair

453 2 -280036 Weibull 0.75:20 16299 Failure

453 2 -280036 Weibull 0.75:20 27099 Repair

227 1 -133119 Weibull 0.75:20 8498 Failure

227 1 -133119 Weibull 0.75:20 19298 Repair

190 1 -18201 Weibull 0.75:20 7236 Failure

190 1 -18201 Weibull 0.75:20 18036 Repair

The details of the main dataset are displayed in Table 3. The failure host ID (FHID), host failure time (HFT), last failure time (LFT), distribution (Dis), distribution

happen time (DHT), failure time/repair time (FTime/RTime), & status are the seven attributes in this core dataset, with a total of 1400 cases. Numerical & nominal bases

make up these instance types.

https://doi.org/10.1371/journal.pone.0311089.t004
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Decision tree (J48). One of the commonly used techniques in various fields such as

machine learning, image processing, and pattern recognition is the decision tree. A decision

tree is a sequential model that combines a series of basic tests. In each test, a numerical feature

is compared to a threshold value. The conceptual principles of decision trees are simpler to

establish compared to the numerical weights in the neural network connections between

nodes. The primary use of decision trees is for classification. In data mining, the decision tree

is a commonly used classification model. Each tree consists of nodes and branches. Each

branch specifies a value that can be derived from the node, and each node represents features

within a category that require classification [35]. Eqs 3 and 4 show the entropy and informa-

tion gain [36].

EntropyðSÞ ¼
Xc

i¼1
Pi log 2Pi ð3Þ

Gain S;Að Þ ¼
X

v2

Sv

S VðAÞ
Entropy Svð Þ ð4Þ

Deep learning (Dl4jMLP). Deep learning techniques, which rely on deep neural net-

works, have recently made significant advancements as a representation of data-driven

approaches. Deep neural networks have demonstrated impressive effectiveness in solving a

wide range of scientific and technical problems, such as image classification, natural language

processing, and defect detection. They are also adept at extracting implicit information of vari-

ous kinds. According to the universal approximation theorem, a multilayer feedforward net-

work with a sufficient number of hidden layer neurons can approximate any continuous

function with arbitrary precision [37].

J 0ð Þ ¼
1

m

Xm

i¼1
Lðyyi ; yiÞ ð5Þ

Naïve bayes tree. The Naive Bayes algorithm is a supervised machine learning technique

that utilizes the conditional probability-based Bayes theorem. It is commonly used for senti-

ment analysis. This algorithm predicts the text tag and calculates the probability for each tag in

a given text, outputting the highest probability [38].

Step 1: Combine a portion of the documents in each class with the probability distribution

of P. Word n for class m at word frequency w [38].

pðmÞ1pm

Yjvj

n¼1
pðnjmÞwn ð6Þ

Configuring the machine learning classifier parameters. Table 5 displays the various

ML classifier parameters with their corresponding values that have been applied to configure

ML classifiers to achieve fault prediction by accuracy & class.

Modified decision tree (J48). The original J48 method suffers from poor accuracy & a

high rate of fault prediction errors. To address these issues, this research aims to use a modified

decision tree (J48), which achieves higher accuracy while making fewer prediction errors. The

block diagram of the modified decision tree (J48) classifier is shown in Fig 2. High accuracy &

less fault prediction errors are predicated on the created primary dataset. Using an objective

function, high accuracy & low fault prediction error have been assessed for GF2
� 2

GF2
GF2
þ 2 and GF� 2 GF GFþ 2. High precision & reduced error in fault prediction has
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Table 5. Configuring the ML classifier parameters.

Machine Learning Classifiers Setting up Parameters Values

AdaBoostM1 Batch size 100

Classifier Decision stump

Debug False

Do not check capabilities False

Num decimal places 2

Num iterations 10

Resume False

Seed 1

Use resampling False

Weight threshold 100

Bagging Bag size percentage 100

Batch size 100

Calc out of bag False

Classifier Rap tree

Debug False

Do not check capabilities False

Num decimal places 2

Num execution slots 1

Num iterations 10

Output out of bag complexity statistics False

Print classifiers False

Represent copies using weights False

Seed 1

Store out of bag predictions False

Decision Tree (J48) Batch size 100

Binary splits False

Collapse tree True

Confidence factor 0.25

Debug False

Do not check capabilities False

Do not make split point actual value False

Min num obj 2

Num decimal places 2

Num folds 3

Reduced error pruning False

Save instance data False

Seed 1

Sub tree raising True

Unpruned False

Use la place False

Use MDL correction True

(Continued)
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been achieved by utilizing objective functions via algorithm parameters. The confidence factor

parameter ranges from 0.25 to 0.1, and do not make the split point actual value (true).

The mathematical formula for modified decision tree (J48) classifiers is displayed in Eqs 7–

9 below.

ðx1; y1
Þ and ðx2; y2

Þ ð7Þ

Eq 7 defines the terms training, testing, and cross-validation.

GF2
� 2 GF2

GF2
þ 2 ＆GF� 2 GF GFþ 2 ð8Þ

The objective function is defined by Eq 8.

CI ¼ �x � Z:
s
ffiffiffi
n
p ð9Þ

The confidence factor and do not make split point actual value in Eq 9 are defined as above.

Experiments and results

This section showcases the data analysis & classification results obtained from various ML

techniques including AdaBoostM1, Bagging, J48, Dl4jMLP, & NBTree with a confusion

matrix. The primary focus of this investigation is the Modified Decision Tree (J48), and its

Table 5. (Continued)

Machine Learning Classifiers Setting up Parameters Values

Deep Learning (Dl4jMLP) Log config Log configuration

Layer specification 1 weka.dl4j.layers.layer

Preview zoo model layer spec in GUI False

Number of epochs 10

Instance iterator Default instance iterator

Early stopping Early stopping

Network configuration Neural net configuration

Set the iteration listener Epoch listener

Zoo model Custom net

Attribute normalization Standardize training data

Set the cache mode Memory

Data queue size 0

Resume False

Preserve file system cache False

Number of GPUs 1

Size of per fetch buffer for multiple GPUs 24

Model parameter averaging frequency 10

Batch size 100

Debug False

Do not check capabilities False

Num decimal places 2

Seed 1

Naïve Bayes Tree (NBTree) Batch size 100

Debug False

Do not check capabilities False

Num decimal places 2

https://doi.org/10.1371/journal.pone.0311089.t005
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findings are presented below. This research aims to utilize traditional ML techniques to mini-

mize fault prediction errors & achieve high levels of accuracy.

The secondary dataset archive contains four folders, each for a different dataset block:

CPU/Memory & HDD in both single-core & multi-core versions [11]. The analysis of the

results indicates a significant difference between the four directories of the secondary dataset.

The CPU-Mem Multi cores folder outperforms the other directories, which include CPU-

Mem Mono, HDD Mono, & HDD Multi.

The primary dataset performs better than the secondary dataset, based on the comparisons,

therefore in this study, the primary dataset results were enough to take into account when

adjusting the ML algorithm.

The data was trained using AdaBoostM1, Bagging, J48, Dl4jMLP, & NBTree classifiers with

80/20, 70/30, & 10-fold cross-validation, & successfully obtained the necessary classification

results for both Secondary & Primary categories. Eqs 10 through 20 were used to measure data

validation, fault prediction error, & accuracy by class to evaluate the performance of these clas-

sifiers. The results from a secondary dataset (CPU-Mem Multi) indicated that J48 outper-

formed AdaBoostM1, Bagging, Dl4jMLP, & NBTree. On the other hand, the primary dataset’s

results showed that NBTree performed better, although it had poor time complexity. Based on

Fig 2. Shows the block diagram of the modified decision tree (J48) classifier.

https://doi.org/10.1371/journal.pone.0311089.g002
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the primary dataset, we found that there are some minor differences in point values between

NBTree & J48. However, J48 has a good temporal complexity. We performed our analysis

using WEKA 3.8.6 software environment, with the Remove Percentage Filter enabled.

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
ð10Þ

In Eq 10 the accuracy is defined as above.

Recall or True � Positive Rate ¼
TP

TPþ FN
ð11Þ

In Eq 11 the recall or true positive rate is defined as above.

True� Negative Rate ¼
TN

TNþ FP
ð12Þ

In Eq 12 the true negative rate is defined as above.

Precision ¼
TP

TPþ FP
ð13Þ

In Eq 13 the precision is defined as above.

False� Positive Rate ¼
FP

TNþ FP
ð14Þ

In Eq 14 the false positive rate is defined as above.

MCC ¼
TP:TN � FP:FN

p
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

ð15Þ

In Eq 15 the Matthews correlation coefficient is defined as above.

F� Measure ¼
2PPV� TPR
PPVþ TPR

ð16Þ

In Eq 16 the F-measure is defined as above.

• A commonly used method to compare predicted & observed values of a model or estimator

is the root mean square error (RMSE) [39].

• Two different continuous variables are being measured using the Mean Absolute Error

(MAE) method [39].

• Normalizing the total absolute error, relative absolute error is obtained by dividing the total

absolute error by the total absolute error of the simple predictor [40].

• Normalizing the total squared error, the relative squared error (RSE) is obtained by dividing

the former by the total squared error of the simple predictor [40].

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ

s

ð17Þ

In Eq 17 the RMSE is defined as above.

MAE ¼
1

n

Xn

i¼1

jyi � ŷi j ð18Þ
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In Eq 18 the MAE is defined as above.

Ei ¼

Pn
j¼1
jPðijÞ � Tjj

Pn
j¼1
jTj �

�T j
ð19Þ

In Eq 19 the RAE is defined as above.

Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1
ðPðijÞ � TjÞ

2

Pn
j¼1
ðTj �

�TÞ2

v
u
u
t ð20Þ

In Eq 20 the RSE is defined as above.

1. Comparing various classification methods using a secondary dataset

We evaluated various classifiers using ISFAULT with secondary data & STATUS with main

data. Our models included AdaBoostM1, Bagging, J48, Dl4jMLP, & NBTree.

The results of each classifier’s secondary & primary data using different cross-validation

techniques are shown in Figs 3–50. The results demonstrate excellent accuracy & low fault pre-

diction. 60% of the data is used for training, 20% for testing, & 20% for validation. Among the

secondary data results, CPU-Mem Multi has the highest accuracy & the least amount of fault

prediction on the J48 classifier using 80/20 (89.71%), 70/30 (90.28%), & 10-fold cross-valida-

tion (92.82%). Similarly, HDD-Mono yields 80/20 (90.35%), 70/30 (92.35%), & 10-fold cross-

validation (90.49%). Based on the results of 80/20 (93.63%), 70/30 (90.09%), & 10 folds cross-

validation (88.92%) on HDD Multi, the AdaBoostM1 classifier provides the highest level of

accuracy & the least amount of fault prediction. Similarly, on CPU-Mem Mono, the Ada-

BoostM1 classifier has shown the highest accuracy percentage of 77.87% for 80/20, 77.01% for

70/30, & 77.06% for 10-fold cross-validation.

Secondary dataset CPU-mem mono block-I. The study compared the performance of

AdaBoostM1, Bagging, J48, Dl4jMLP, & NBTree using Test Split Additional Data Validation

& CPU-Mem Mono-related detailed accuracy by class (True/False), as shown in Figs 3 & 4.

The confusion matrix is a useful method for classifying qualities based on qualitative

response categories. It is used to compute Accuracy, Precision, Recall, & F-Measure. The con-

fusion matrix for accuracy & fault prediction was obtained using AdaBoostM1, Bagging, J48,

Dl4jMLP, & NBTree, & is displayed in Figs 5–9. According to the displayed confusion matrix,

the AdaBoostM1 classification model provides the highest accuracy percentage & less fault

prediction on CPU-Mem Mono.

The Figs 10–14 show the classifier’s errors, including true positives, true negatives, false

positives, & false negatives. The square box indicates the differences between predicted &

actual classes.

Secondary dataset CPU-mem multi block-II. In this study, we compare the detailed

accuracy by class (True/False) & prediction on the test split extra data validation of five differ-

ent models used in CPU-Mem Multi: AdaBoostM1, Bagging, J48, Dl4jMLP, & NBTree. The

comparisons are shown in Figs 15 and 16.

The confusion matrix is a useful method for categorizing qualities according to qualitative

response categories & is used to compute Accuracy, Precision, Recall, & F-Measure. The con-

fusion matrix for accuracy & fault prediction, obtained using AdaBoostM1, Bagging, J48,

Dl4jMLP, & NBTree is displayed in Figs 17–21. According to the confusion matrix that fol-

lows, the J48 classification model provides the maximum percentage of accuracy & less fault

prediction on CPU-Mem Multi.
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The Figs 22–26 display true positive, true negative, false positive, & false negative values for

the classifier’s error. The square box shows discrepancies between the actual & anticipated

classes.

Secondary dataset HDD mono block-III. A comparison of the AdaBoostM1, Bagging,

J48, Dl4jMLP, & NBTree outcomes in HDD Mono for detailed accuracy by class (True/False)

& prediction on test split further data validation is shown in Figs 27 and 28.

The confusion matrix is a helpful approach for categorizing qualities based on qualitative

response categories. It is used for computing Accuracy, Precision, Recall, & F-Measure. The

confusion matrix for accuracy & fault prediction is achieved by AdaBoostM1, Bagging, J48,

Dl4jMLP, & NBTree, & it is displayed in Figs 29–33. According to the corresponding confu-

sion matrix, the J48 classification model provides the maximum percentage of accuracy &

minimum defect prediction on HDD Mono.

Fig 3. Shows the accuracy of CPU-mem mono on ML classifiers for each class (true/false).

https://doi.org/10.1371/journal.pone.0311089.g003

Fig 4. Shows CPU-mem mono class (true/false) ML classifiers’ accuracy regarding data validation outcomes.

https://doi.org/10.1371/journal.pone.0311089.g004
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Fig 5. AdaBoostM1 classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.

https://doi.org/10.1371/journal.pone.0311089.g005

Fig 6. Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.

https://doi.org/10.1371/journal.pone.0311089.g006
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Fig 7. J48 classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.

https://doi.org/10.1371/journal.pone.0311089.g007

Fig 8. Dl4jMLP classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.

https://doi.org/10.1371/journal.pone.0311089.g008
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Figs 34–38 display the classifier’s error, including true positive, true negative, false positive,

& false negative values. The square box in the figures illustrates the differences between the

actual & anticipated classes.

Fig 9. NBTree classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem mono.

https://doi.org/10.1371/journal.pone.0311089.g009

Fig 10. Classifier errors of AdaBoostM1 based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g010
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Secondary dataset HDD multi block-IV. In this section, we compare the results of Ada-

BoostM1, Bagging, J48, Dl4jMLP, & NBTree in HDD Multi-related detailed accuracy by class

(True/False) & prediction on test split additional data validation. The results are presented in

Figs 39 and 40.

Fig 11. Classifier errors of Bagging based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g011

Fig 12. Classifier errors of J48 based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g012
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To analyze the accuracy, precision, recall, & F-measure, we rely on the confusion matrix.

This approach helps categorize qualities based on qualitative response categories. The confu-

sion matrix, obtained using AdaBoostM1, Bagging, J48, Dl4jMLP, & NBTree, for accuracy &

fault prediction is displayed in Figs 41–45. According to the confusion matrix, the

Fig 14. Classifier errors of NBTree based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g014

Fig 13. Classifier errors of Dl4jMLP based on CPU-mem mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g013
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AdaBoostM1 classification model has the highest percentage of accuracy & the least fault pre-

diction on HDD Multi.

The charts Figs 46–50 illustrate the classifier’s error, including true positive, true negative,

false positive, & false negative values. The square box depicts the discrepancies between the

actual & predicted classes.

2. Models comparison for classification using a primary dataset

Presenting outcomes of classifiers using AdaBoostM1, Bagging, J48, Dl4jMLP, & NBTree

based on the STATUS class from the primary dataset.

Based on the primary data findings, the NBTree classifier has the highest accuracy & lower

fault prediction percentage among 80/20 (97.05%), 70/30 (96.09%), & 10-fold cross-validation

(96.78%) techniques. However, the method complexity of NBTree (1.01 seconds) is not

Fig 15. Shows the accuracy of CPU-mem multi on ML classifiers for each class (true/false).

https://doi.org/10.1371/journal.pone.0311089.g015

Fig 16. Shows CPU-mem multi-class (true/false) ML classifiers’ accuracy regarding data validation outcomes.

https://doi.org/10.1371/journal.pone.0311089.g016
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Fig 17. AdaBoostM1 classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem multi.

https://doi.org/10.1371/journal.pone.0311089.g017

Fig 18. Bagging classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem multi.

https://doi.org/10.1371/journal.pone.0311089.g018
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Fig 20. Dl4jMLP classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem multi.

https://doi.org/10.1371/journal.pone.0311089.g020

Fig 19. J48 classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem multi.

https://doi.org/10.1371/journal.pone.0311089.g019
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satisfactory. The J48 comes second in terms of accuracy & fault prediction with 80/20

(96.78%), 70/30 (95.95%), & 10-fold cross-validation (96.78%). Moreover, the method com-

plexity of J48 (0.11 seconds) is good. The difference between NBTree & J48 in accuracy & fault

prediction is only 0.9%, but there is a 9-second difference in time complexity.

Fig 21. NBTree classifier’s confusion matrix for accuracy & fault prediction based on CPU-mem multi.

https://doi.org/10.1371/journal.pone.0311089.g021

Fig 22. Classifier errors of AdaBoostM1 based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g022
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Please find a detailed comparison of the accuracy results for AdaBoostM1, Bagging, J48,

Dl4jMLP, & NBTree models. The comparison includes accuracy by class (Repair/Failure) &

prediction on the test split. For further data validation, please refer to Figs 51 and 52 of the Pri-

mary Dataset.

Fig 23. Classifier errors of Bagging based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g023

Fig 24. Classifier errors of J48 based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g024
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The confusion matrix is used to calculate Accuracy, Precision, Recall, & F-Measure. It is

used as an efficient technique for the classification of attributes based on qualitative response

categories. Figs 53–57 show the confusion matrix related to accuracy & fault prediction,

achieved through AdaBoostM1, Bagging, J48, Dl4jMLP, & NBTree. The following confusion

Fig 26. Classifier errors of NBTree based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g026

Fig 25. Classifier errors of Dl4jMLP based on CPU-mem multi in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g025
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matrix indicates that the NBTree classification model gives the highest percentage of accuracy

& less fault prediction on the primary dataset, but the algorithm complexity (1.01 seconds) is

not good.

The J48 algorithm has the second-highest accuracy & predicts less defects. Its complexity is

reasonable, taking only 0.11 seconds. Comparing it with NBTree, the difference in accuracy &

fault prediction is just 0.9%. However, the difference in time complexity is significant, taking 9

seconds longer. The classifier’s error is shown by Figs 58–62, which display values for true pos-

itive, true negative, false positive, & false negative. The square box in Figs 58–62 shows the dis-

crepancies between the actual & anticipated classes.

Fig 27. Shows the accuracy of HDD Mono on ML classifiers for each class (true/false).

https://doi.org/10.1371/journal.pone.0311089.g027

Fig 28. Shows HDD Mono class (true/false) ML classifiers’ accuracy regarding data validation outcomes.

https://doi.org/10.1371/journal.pone.0311089.g028
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Fig 29. AdaBoostM1 classifier’s confusion matrix for accuracy & fault prediction based on HDD mono.

https://doi.org/10.1371/journal.pone.0311089.g029

Fig 30. Bagging classifier’s confusion matrix for accuracy & fault prediction based on HDD mono.

https://doi.org/10.1371/journal.pone.0311089.g030
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Fig 31. J48 classifier’s confusion matrix for accuracy & fault prediction based on HDD mono.

https://doi.org/10.1371/journal.pone.0311089.g031

Fig 32. Dl4jMLP classifier’s confusion matrix for accuracy & fault prediction based on HDD mono.

https://doi.org/10.1371/journal.pone.0311089.g032
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Fig 33. NBTree classifier’s confusion matrix for accuracy & fault prediction based on HDD mono.

https://doi.org/10.1371/journal.pone.0311089.g033

Fig 34. Classifier errors of AdaBoostM1 based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g034

PLOS ONE A fact based analysis of decision trees for improving reliability

PLOS ONE | https://doi.org/10.1371/journal.pone.0311089 December 3, 2024 33 / 53

https://doi.org/10.1371/journal.pone.0311089.g033
https://doi.org/10.1371/journal.pone.0311089.g034
https://doi.org/10.1371/journal.pone.0311089


3. Modified decision tree (J48) results

In this subsection, you can see the results of the primary dataset classification in Figs 63 and

64. These results demonstrate that the modified J48 classification model provides the highest

Fig 35. Classifier errors of Bagging based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g035

Fig 36. Classifier errors of J48 based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g036
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accuracy & fewer fault prediction errors when compared to other models. The accuracy of this

model is 97.05% for 80/20, 96.42% for 70/30, & 97.07% for 10-fold cross-validation. After the

modification, the time complexity of the J48 algorithm has been reduced to 0.02 seconds.

Figs 63 and 64 depicts a comparison of the results of AdaBoostM1, Bagging, J48, Dl4jMLP,

& NBTree in the Primary Dataset in terms of detailed accuracy by class (Repair/Failure) & pre-

diction on test split additional data validation.

Fig 37. Classifier errors of Dl4jMLP based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g037

Fig 38. Classifier errors of NBTree based on HDD mono in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g038
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To calculate Accuracy, Precision, Recall, & F-Measure, the confusion matrix is employed.

This is a useful technique for classifying qualities based on qualitative response categories. The

confusion matrix for accuracy & fault prediction, produced using a modified J48, is shown in

Fig 65. According to the confusion matrix, the modified J48 classification model performs bet-

ter than AdaBoostM1, Bagging, J48, Dl4jMLP, & NBTree in terms of accuracy % & fault pre-

diction error on the primary dataset.

Fig 66 shows the classifier’s error, indicating the true positives, true negatives, false posi-

tives, & false negatives. It also highlights the differences between the predicted & actual classes.

Discussion

This study aimed to achieve high accuracy & reliability with minimized error rates. To ensure

a smooth implementation of the research, we developed a modified version of the decision

tree classifier, J48.

Fig 39. Shows the accuracy of HDD multi on ML classifiers for each class (true/false).

https://doi.org/10.1371/journal.pone.0311089.g039

Fig 40. Shows HDD multiclass (true/false) ML classifiers’ accuracy regarding data validation outcomes.

https://doi.org/10.1371/journal.pone.0311089.g040
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Fig 41. AdaBoostM1 classifier’s confusion matrix for accuracy & fault prediction based on HDD multi.

https://doi.org/10.1371/journal.pone.0311089.g041

Fig 42. Bagging classifier’s confusion matrix for accuracy & fault prediction based on HDD multi.

https://doi.org/10.1371/journal.pone.0311089.g042
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Fig 43. J48 classifier’s confusion matrix for accuracy & fault prediction based on HDD multi.

https://doi.org/10.1371/journal.pone.0311089.g043

Fig 44. Dl4jMLP classifier’s confusion matrix for accuracy & fault prediction based on HDD multi.

https://doi.org/10.1371/journal.pone.0311089.g044
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A modified J48 classifier was used to analyze the primary data. The results showed that the

suggested approach outperforms the current classifier in terms of accuracy & fault prediction.

The acquired results were compared with those of the current AdaBoostM1, Bagging, J48,

Fig 45. NBTree classifier’s confusion matrix for accuracy & fault prediction based on HDD multi.

https://doi.org/10.1371/journal.pone.0311089.g045

Fig 46. Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g046
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Dl4jMLP, & NBTree classifiers. To evaluate the classifier’s performance, high accuracy with

low fault prediction is considered the most crucial criterion.

The proposed classifier was compared to AdaBoostM1, Bagging, J48, Dl4jMLP, & NBTree

classifiers, & it was found that the proposed classifier outperformed the existing classifiers in

Fig 47. Classifier errors of Bagging based on HDD multi-in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g047

Fig 48. Classifier errors of J48 based on HDD multi-in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g048
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terms of accuracy & speed. The proposed classifier was successful in classifying 97.07% of

instances correctly. The novelty of the proposed research lies in its unique set of methods that

have been associated with reduced fault prediction & high accuracy to ensure dependability. A

modified J48 was suggested using parameter tweaking, which is considered to be a distinct

strategy.

Fig 49. Classifier errors of Dl4jMLP based on HDD multi-in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g049

Fig 50. Classifier errors of NBTree based on HDD multi-in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g050
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Using the WEKA tool, the experiment is being simulated. A group of machine learning

algorithms is known as WEKA. WEKA provides tools for preprocessing, classifying, regress-

ing, clustering, generating association rules, and visualizing data. Weka is distributed under

the General Public License (GNU), making it open-source software. It works well for creating

new machine-learning systems. The algorithms can be invoked from your own Java code or

applied directly to a dataset [31].

Conclusions and future work

The study’s findings were associated with several classifiers that accurately identified errors

using "STATUS" in primary data and "ISFAULT" in secondary data.

In the study, the AdaBoostM1 classifier found that the secondary data findings (CPU-Mem

Mono) had the highest accuracy rate with the fewest fault predictions. The accuracy rate for

Fig 51. Accuracy of the primary dataset on ML classifiers by class (failure/repair).

https://doi.org/10.1371/journal.pone.0311089.g051

Fig 52. Shows the accuracy by class (failure/repair) of the primary dataset on ML classifiers associated with DV

outcomes.

https://doi.org/10.1371/journal.pone.0311089.g052
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Fig 53. AdaBoostM1 classifier’s confusion matrix for accuracy & fault prediction based on primary dataset.

https://doi.org/10.1371/journal.pone.0311089.g053

Fig 54. Bagging classifier’s confusion matrix for accuracy & fault prediction based on primary dataset.

https://doi.org/10.1371/journal.pone.0311089.g054
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Fig 55. J48 classifier’s confusion matrix for accuracy & fault prediction based on primary dataset.

https://doi.org/10.1371/journal.pone.0311089.g055

Fig 56. Dl4jMLP classifier’s confusion matrix for accuracy & fault prediction based on primary dataset.

https://doi.org/10.1371/journal.pone.0311089.g056
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Fig 57. NBTree classifier’s confusion matrix for accuracy & fault prediction based on primary dataset.

https://doi.org/10.1371/journal.pone.0311089.g057

Fig 58. Classifier errors of AdaBoostM1 based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g058
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CPU-Mem Mono was 77.87% for 80/20, 77.01% for 70/30, and 77.06% for 10-fold cross-vali-

dation. On the other hand, the J48 classifier indicated that the secondary data findings (CPU-

Mem Multi) had the best accuracy rate while predicting fewer faults. CPU-Mem Multi’s accu-

racy rate was 89.71% for 80/20, 90.28% for 70/30, and 92.82% for 10-fold cross-validation. It

Fig 59. Classifier errors of Bagging based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g059

Fig 60. Classifier errors of J48 based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g060
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was observed that the AdaBoostM1 classifier had the highest accuracy and the lowest fault pre-

diction among the HDD multi-classifiers. The accuracy rates were as follows: 93.63% for 80/

20, 90.09% for 70/30, and 88.92% for 10-fold cross-validation. The J48 classifier performed the

Fig 61. Classifier errors of Dl4jMLP based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g061

Fig 62. Classifier errors of NBTree based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g062
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best, achieving the highest accuracy and lowest fault prediction rates for (HDD Mono) at 80/

20 (90.35%), 70/30 (92.35%), and 10-fold cross-validation (90.49%).

The NBTree classifier has the lowest fault prediction rate and the highest accuracy percent-

ages in the primary data findings (80/20–97.05%, 70/30–96.09%, and 10-fold cross-validation

—96.78%). However, its technique complexity is modest, taking 1.01 seconds to execute. On

the other hand, J48 has the second-highest accuracy in terms of 80/20 (96.78%), 70/30

(94.95%), and 10-fold cross-validation (96.78%). It also has the least amount of fault prediction

and a decent technique complexity of 0.9 seconds. The difference between NBTree and J48 is

only 0.9% in terms of accuracy and fault prediction, and 0.9 seconds in time complexity.

Fig 63. Shows a comparison of ML classifiers with modified decision tree (J48) accuracy based on the primary

dataset’s class, (failure/repair).

https://doi.org/10.1371/journal.pone.0311089.g063

Fig 64. Comparing ML classifiers with modified decision tree (J48) accuracy by primary dataset class about DV

findings.

https://doi.org/10.1371/journal.pone.0311089.g064
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Fig 65. Modified decision tree (J48) classifier’s confusion matrix for accuracy & fault prediction based on primary

dataset.

https://doi.org/10.1371/journal.pone.0311089.g065

Fig 66. Classifier errors of modified decision tree (J48) based on primary data in accuracy & fault prediction.

https://doi.org/10.1371/journal.pone.0311089.g066
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Accomplishment of the objectives

With the assistance of the literature review & research objectives presented in Table 6, we have

achieved high accuracy & less errors in predicting faults in CC.

Contribution to cloud computing

A recent update has been made to the J48 classifier. This update is particularly beneficial for

CC applications, as it significantly improves accuracy & reduces the number of failure predic-

tion errors for consumers. Achieving this high level of accuracy & fault prediction reliability

was a challenging task. However, we were able to accomplish this by adjusting the confidence

factor parameter & do not making split point actual value, which resulted in improved accu-

racy, mean square error, & fitness.

This study demonstrates how ML can improve CC by reducing prediction errors & achiev-

ing high accuracy for consumers.

Restrictions

1. As this is an HPC fault dataset, we can collect Antarex secondary data, however, it will

require additional processing power. Alternatively, we can obtain this dataset through the

ZONODO website.

2. To produce a fault dataset for primary data production, the Weibull distribution was not

utilized.

3. An attempt was made to obtain the primary dataset using the Weibull distribution.

Future directions

1. The CloudSim primary dataset can be generated through a graphical user interface that

uses the Weibull distribution technique.

2. Code can be automatically modified to tune parameters, but should not be stopped to dis-

cover optimal values.

3. Using NBTree can achieve high accuracy & low fault prediction errors, but further study on

the algorithm’s complexity is necessary. This study can also be used for comparative

analysis.

Table 6. Achievement of research aims.

S.

No

Objective Input & Output Achievements

1 Find the best ML classifiers to improve

the accuracy of predicting failures.

We have conducted a comprehensive review of existing

literature. To search for articles, we used the following

keywords in databases like Google Scholar, Web of Science,

& Science Direct: popular ML techniques that can help

achieve high accuracy & reduce fault prediction errors, ML

classifiers, & ML approaches for fault classification &

prediction in CC, among others.

After conducting a thorough analysis, we have identified

the most effective ML classifiers that result in reduced

fault prediction errors & high accuracy.

2 To mitigate low accuracy & high errors

in failure prediction, an ML algorithm

is recommended.

To achieve optimal results, select a precise ML classifier that

delivers high accuracy rates with minimal error predictions

& then make any necessary adjustments.

After identifying the J48 classifier that provided high

accuracy & fewer fault prediction errors, we modified it

to achieve optimal results.

https://doi.org/10.1371/journal.pone.0311089.t006
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4. Deep learning algorithms can be used to predict fewer errors with high accuracy. However,

to achieve more accurate & reliable results, a larger sample size is required. Deep learning

techniques outperform ML methods when the dataset is huge.

Acknowledgments

The authors would like to express their gratitude to their mentors for their invaluable help and

guidance throughout this research project.

Author Contributions

Data curation: Muhammad Mansoor Alam.

Investigation: Muhammad Mansoor Alam.

Methodology: Muhammad Asim Shahid.

Software: Mazliham Mohd Su’ud.

Supervision: Mazliham Mohd Su’ud.

References
1. Shahid MA, Alam MM, Su’ud MM. Performance Evaluation of Load-Balancing Algorithms with Different

Service Broker Policies for Cloud Computing. Applied Sciences. 2023; 13: 1586. https://doi.org/10.

3390/app13031586

2. Shahid MA, Islam N, Alam MM, Su’ud MM, Musa S. A Comprehensive Study of Load Balancing

Approaches in the Cloud Computing Environment and a Novel Fault Tolerance Approach. IEEE

Access. 2020; 8: 130500–130526. https://doi.org/10.1109/ACCESS.2020.3009184

3. Shahid MA, Islam N, Alam MM, Mazliham MS, Musa S. Towards Resilient Method: An exhaustive sur-

vey of fault tolerance methods in the cloud computing environment. Computer Science Review. 2021;

40: 100398. https://doi.org/10.1016/j.cosrev.2021.100398

4. Applied Sciences | Free Full-Text | A Systematic Parameter Analysis of Cloud Simulation Tools in

Cloud Computing Environments. [cited 22 Feb 2024]. Available: https://www.mdpi.com/2076-3417/13/

15/8785

5. Sir Syed University of Engineering and Technology Karachi, Pakistan, Shahid MA, Faiz RB, Riphah

International University Islamabad, Pakistan, Alam MMRiphah International University Islamabad, Paki-

stan, et al. A Systematic Survey of Simulation Tools for Cloud and Mobile Cloud Computing Paradigm.

JISR-C. 2022;20. https://doi.org/10.31645/JISRC.22.20.1.10

6. Asim Shahid M, Alam MM, Mohd Su’ud M. Improved accuracy and less fault prediction errors via modi-

fied sequential minimal optimization algorithm. Srinivasan K, editor. PLoS ONE. 2023; 18: e0284209.

https://doi.org/10.1371/journal.pone.0284209 PMID: 37053173

7. Shahid MA, Alam MM, Su’ud MM. Achieving Reliability in Cloud Computing by a Novel Hybrid

Approach. Sensors. 2023; 23: 1965. https://doi.org/10.3390/s23041965 PMID: 36850563

8. Zhang L, Wen J, Li Y, Chen J, Ye Y, Fu Y, et al. A review of machine learning in building load prediction.

Applied Energy. 2021; 285: 116452. https://doi.org/10.1016/j.apenergy.2021.116452

9. Meng T, Jing X, Yan Z, Pedrycz W. A survey on machine learning for data fusion. Information Fusion.

2020; 57: 115–129. https://doi.org/10.1016/j.inffus.2019.12.001

10. Ullah Z, Al-Turjman F, Mostarda L, Gagliardi R. Applications of Artificial Intelligence and Machine learn-

ing in smart cities. Computer Communications. 2020; 154: 313–323. https://doi.org/10.1016/j.comcom.

2020.02.069

11. Antarex HPC Fault Dataset. [cited 22 Feb 2024]. Available: https://zenodo.org/records/1453949#.

Y0Qt1HVByM8

12. Weibull Distribution—an overview | ScienceDirect Topics. [cited 22 Feb 2024]. Available: https://www.

sciencedirect.com/topics/physics-and-astronomy/weibull-distribution

PLOS ONE A fact based analysis of decision trees for improving reliability

PLOS ONE | https://doi.org/10.1371/journal.pone.0311089 December 3, 2024 51 / 53

https://doi.org/10.3390/app13031586
https://doi.org/10.3390/app13031586
https://doi.org/10.1109/ACCESS.2020.3009184
https://doi.org/10.1016/j.cosrev.2021.100398
https://www.mdpi.com/2076-3417/13/15/8785
https://www.mdpi.com/2076-3417/13/15/8785
https://doi.org/10.31645/JISRC.22.20.1.10
https://doi.org/10.1371/journal.pone.0284209
http://www.ncbi.nlm.nih.gov/pubmed/37053173
https://doi.org/10.3390/s23041965
http://www.ncbi.nlm.nih.gov/pubmed/36850563
https://doi.org/10.1016/j.apenergy.2021.116452
https://doi.org/10.1016/j.inffus.2019.12.001
https://doi.org/10.1016/j.comcom.2020.02.069
https://doi.org/10.1016/j.comcom.2020.02.069
https://zenodo.org/records/1453949#.Y0Qt1HVByM8
https://zenodo.org/records/1453949#.Y0Qt1HVByM8
https://www.sciencedirect.com/topics/physics-and-astronomy/weibull-distribution
https://www.sciencedirect.com/topics/physics-and-astronomy/weibull-distribution
https://doi.org/10.1371/journal.pone.0311089


13. Mishra SK, Sahoo B, Parida PP. Load balancing in cloud computing: A big picture. Journal of King Saud

University—Computer and Information Sciences. 2020; 32: 149–158. https://doi.org/10.1016/j.jksuci.

2018.01.003

14. Feng D-C, Liu Z-T, Wang X-D, Chen Y, Chang J-Q, Wei D-F, et al. Machine learning-based compres-

sive strength prediction for concrete: An adaptive boosting approach. Construction and Building Materi-

als. 2020; 230: 117000. https://doi.org/10.1016/j.conbuildmat.2019.117000

15. Butt UA, Mehmood M, Shah SBH, Amin R, Shaukat MW, Raza SM, et al. A Review of Machine Learning

Algorithms for Cloud Computing Security. Electronics. 2020; 9: 1379. https://doi.org/10.3390/

electronics9091379

16. Pei X, Yuan M, Mao G, Pang Z. Application of multivariate time-series model for high performance com-

puting (HPC) fault prediction. Ijaz MF, editor. PLoS ONE. 2023; 18: e0281519. https://doi.org/10.1371/

journal.pone.0281519 PMID: 37847694

17. Shrestha A, Mahmood A. Review of Deep Learning Algorithms and Architectures. IEEE Access. 2019;

7: 53040–53065. https://doi.org/10.1109/ACCESS.2019.2912200

18. Lang S, Bravo-Marquez F, Beckham C, Hall M, Frank E. WekaDeeplearning4j: A deep learning pack-

age for Weka based on Deeplearning4j. Knowledge-Based Systems. 2019; 178: 48–50. https://doi.org/

10.1016/j.knosys.2019.04.013

19. Wang S, Jiang L, Li C. Adapting naive Bayes tree for text classification. Knowl Inf Syst. 2015; 44: 77–

89. https://doi.org/10.1007/s10115-014-0746-y

20. Bildosola I, Rı́o-Belver R, Cilleruelo E, Garechana G. Design and Implementation of a Cloud Computing

Adoption Decision Tool: Generating a Cloud Road. Suleman Heditor. PLoS ONE. 2015; 10: e0134563.

https://doi.org/10.1371/journal.pone.0134563 PMID: 26230400

21. Jaiganesh M, Ramadoss B, Kumar AVA, Mercy S. Performance Evaluation of Cloud Services with

Profit Optimization. Procedia Computer Science. 2015; 54: 24–30. https://doi.org/10.1016/j.procs.2015.

06.003

22. Batista BG, Estrella JC, Ferreira CHG, Filho DML, Nakamura LHV, Reiff-Marganiec S, et al. Perfor-

mance Evaluation of Resource Management in Cloud Computing Environments. Shi Y, editor. PLoS

ONE. 2015; 10: e0141914. https://doi.org/10.1371/journal.pone.0141914 PMID: 26555730

23. Qiu J, Wu Q, Ding G, Xu Y, Feng S. A survey of machine learning for big data processing. EURASIP J

Adv Signal Process. 2016; 2016: 67. https://doi.org/10.1186/s13634-016-0355-x

24. Zhang L, Jiang L, Li C, Kong G. Two feature weighting approaches for naive Bayes text classifiers.

Knowledge-Based Systems. 2016; 100: 137–144. https://doi.org/10.1016/j.knosys.2016.02.017

25. Liu J, Wu Z, Wu J, Dong J, Zhao Y, Wen D. A Weibull distribution accrual failure detector for cloud com-

puting. Song H, editor. PLoS ONE. 2017; 12: e0173666. https://doi.org/10.1371/journal.pone.0173666

PMID: 28278229

26. Vakili A, Navimipour NJ. Comprehensive and systematic review of the service composition mechanisms

in the cloud environments. Journal of Network and Computer Applications. 2017; 81: 24–36. https://doi.

org/10.1016/j.jnca.2017.01.005

27. Madni SHH, Abd Latiff MS, Abdullahi M, Abdulhamid SM, Usman MJ. Performance comparison of heu-

ristic algorithms for task scheduling in IaaS cloud computing environment. Choo K-KR, editor. PLoS

ONE. 2017; 12: e0176321. https://doi.org/10.1371/journal.pone.0176321 PMID: 28467505

28. Tanha J, Van Someren M, Afsarmanesh H. Semi-supervised self-training for decision tree classifiers.

Int J Mach Learn & Cyber. 2017; 8: 355–370. https://doi.org/10.1007/s13042-015-0328-7

29. Portugal I, Alencar P, Cowan D. The use of machine learning algorithms in recommender systems: A

systematic review. Expert Systems with Applications. 2018; 97: 205–227. https://doi.org/10.1016/j.

eswa.2017.12.020

30. Varghese B, Buyya R. Next generation cloud computing: New trends and research directions. Future

Generation Computer Systems. 2018; 79: 849–861. https://doi.org/10.1016/j.future.2017.09.020

31. Patel HH, Prajapati P. Study and Analysis of Decision Tree Based Classification Algorithms. ijcse.

2018; 6: 74–78. https://doi.org/10.26438/ijcse/v6i10.7478

32. Reliability and high availability in cloud computing environments: a reference roadmap | Human-centric

Computing and Information Sciences | Full Text. [cited 22 Feb 2024]. Available: https://hcis-journal.

springeropen.com/articles/10.1186/s13673-018-0143-8

33. Netti A, Kiziltan Z, Babaoglu O, Sı̂rbu A, Bartolini A, Borghesi A. A machine learning approach to online

fault classification in HPC systems. Future Generation Computer Systems. 2020; 110: 1009–1022.

https://doi.org/10.1016/j.future.2019.11.029

34. Santos SGTDC, De Barros RSM. Online AdaBoost-based methods for multiclass problems. Artif Intell

Rev. 2020; 53: 1293–1322. https://doi.org/10.1007/s10462-019-09696-6

PLOS ONE A fact based analysis of decision trees for improving reliability

PLOS ONE | https://doi.org/10.1371/journal.pone.0311089 December 3, 2024 52 / 53

https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/10.1016/j.conbuildmat.2019.117000
https://doi.org/10.3390/electronics9091379
https://doi.org/10.3390/electronics9091379
https://doi.org/10.1371/journal.pone.0281519
https://doi.org/10.1371/journal.pone.0281519
http://www.ncbi.nlm.nih.gov/pubmed/37847694
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1016/j.knosys.2019.04.013
https://doi.org/10.1016/j.knosys.2019.04.013
https://doi.org/10.1007/s10115-014-0746-y
https://doi.org/10.1371/journal.pone.0134563
http://www.ncbi.nlm.nih.gov/pubmed/26230400
https://doi.org/10.1016/j.procs.2015.06.003
https://doi.org/10.1016/j.procs.2015.06.003
https://doi.org/10.1371/journal.pone.0141914
http://www.ncbi.nlm.nih.gov/pubmed/26555730
https://doi.org/10.1186/s13634-016-0355-x
https://doi.org/10.1016/j.knosys.2016.02.017
https://doi.org/10.1371/journal.pone.0173666
http://www.ncbi.nlm.nih.gov/pubmed/28278229
https://doi.org/10.1016/j.jnca.2017.01.005
https://doi.org/10.1016/j.jnca.2017.01.005
https://doi.org/10.1371/journal.pone.0176321
http://www.ncbi.nlm.nih.gov/pubmed/28467505
https://doi.org/10.1007/s13042-015-0328-7
https://doi.org/10.1016/j.eswa.2017.12.020
https://doi.org/10.1016/j.eswa.2017.12.020
https://doi.org/10.1016/j.future.2017.09.020
https://doi.org/10.26438/ijcse/v6i10.7478
https://hcis-journal.springeropen.com/articles/10.1186/s13673-018-0143-8
https://hcis-journal.springeropen.com/articles/10.1186/s13673-018-0143-8
https://doi.org/10.1016/j.future.2019.11.029
https://doi.org/10.1007/s10462-019-09696-6
https://doi.org/10.1371/journal.pone.0311089


35. Breiman L. Bagging predictors. Mach Learn. 1996; 24: 123–140. https://doi.org/10.1007/BF00058655

36. Charbuty B, Abdulazeez A. Classification Based on Decision Tree Algorithm for Machine Learning.

JASTT. 2021; 2: 20–28. https://doi.org/10.38094/jastt20165

37. Guo Y, Cao X, Liu B, Gao M. Solving Partial Differential Equations Using Deep Learning and Physical

Constraints. Applied Sciences. 2020; 10: 5917. https://doi.org/10.3390/app10175917

38. Department of Mathematics and Computer Science, University of Missouri-St. Louis, Missouri, USA.,

Vangara* RVB, Thirupathur K, Department of Computer Science, University of Bridgeport, Connecticut,

USA., Vangara SP, Department of Information Systems, Indiana Tech University, Indianapolis, USA.

Opinion Mining Classification u sing Naive Bayes Algorithm. IJITEE. 2020;9: 495–498. https://doi.org/

10.35940/ijitee.E2402.039520

39. Hodson TO. Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not.

Geosci Model Dev. 2022; 15: 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022

40. Relative Absolute Error. [cited 22 Feb 2024]. Available: https://www.gepsoft.com/GeneXproTools/

AnalysesAndComputations/MeasuresOfFit/RelativeAbsoluteError.htm.

PLOS ONE A fact based analysis of decision trees for improving reliability

PLOS ONE | https://doi.org/10.1371/journal.pone.0311089 December 3, 2024 53 / 53

https://doi.org/10.1007/BF00058655
https://doi.org/10.38094/jastt20165
https://doi.org/10.3390/app10175917
https://doi.org/10.35940/ijitee.E2402.039520
https://doi.org/10.35940/ijitee.E2402.039520
https://doi.org/10.5194/gmd-15-5481-2022
https://www.gepsoft.com/GeneXproTools/AnalysesAndComputations/MeasuresOfFit/RelativeAbsoluteError.htm
https://www.gepsoft.com/GeneXproTools/AnalysesAndComputations/MeasuresOfFit/RelativeAbsoluteError.htm
https://doi.org/10.1371/journal.pone.0311089

