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A B S T R A C T 

We present the new ARTEMIS emulator suite of high-resolution (baryon mass of 2.23 × 10 

4 h 

−1 M �) zoom-in simulations of 
Milky Way-mass systems. Here, three haloes from the original ARTEMIS sample have been rerun multiple times, systematically 

varying parameters for the stellar feedback model, the density threshold for star formation, the reionization redshift, and the 
assumed warm dark matter (WDM) particle mass (assuming a thermal relic). From these simulations, emulators are trained for 
a wide range of statistics that allow for fast predictions at combinations of parameters not originally sampled, running in ∼1 ms 
(a factor of ∼10 

11 faster than the simulations). In this paper, we explore the dependence of the central haloes’ stellar mass on the 
varied parameters, finding the stellar feedback parameters to be the most important. When constraining the parameters to match 

the present-day stellar mass halo mass relation inferred from abundance matching we find that there is a strong de generac y in 

the stellar feedback parameters, corresponding to a freedom in formation time of the stellar component for a fixed halo assembly 

history. We additionally explore the dependence of the satellite stellar mass function, where it is found that variations in stellar 
feedback, the reionization redshift, and the WDM mass all have a significant effect. The presented emulators are a powerful 
tool which allows for fundamentally new ways of analysing and interpreting cosmological hydrodynamic simulations. Crucially, 
allowing their free (subgrid) parameters to be varied and marginalized, leading to more robust constraints and predictions. 

Key words: methods: numerical – galaxies: formation – dark matter – cosmology: theory. 
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 I N T RO D U C T I O N  

osmological hydrodynamic simulations have become an invaluable 
ool to model the formation and evolution of galaxies across a wide
ange of spatial and temporal scales. These simulations are able 
o follow the non-linear evolution of matter from the very early 
niverse through to today, self-consistently modelling the effects 
f gravity, hydrodynamics and key astrophysical processes, such as 
tar formation and feedback, in a fully cosmological context (see 
ogelsberger et al. 2020 for a recent re vie w of the key ingredients

n modern cosmological galaxy formation simulations). While early 
imulations were in poor agreement with observations, producing 
alaxies that were too massive, too compact and formed too early 
e.g. Scannapieco et al. 2012 ), it is now routine for many simulations
o create realistic populations of galaxies o v er a wide range of masses
nd redshifts that match a diverse range of observed scaling relations. 
 non-e xhaustiv e list includes EAGLE (Crain et al. 2015 ; Schaye

t al. 2015 ), Illustris(-TNG) (Vogelsberger et al. 2014 ; Pillepich et al.
018 ), Simba (Dav ́e et al. 2019 ), FIRE(-Box) (Hopkins et al. 2018 ;
eldmann et al. 2023 ), Horizon-AGN (Kaviraj et al. 2017 ), and
omulus (Tremmel et al. 2017 ). 
 E-mail: shaun.t.brown@durham.ac.uk 

t

f

2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whic
rovided the original work is properly cited. 
While current simulations have made great progress over the past 
ew decades, these successes are not derived from first principles. 
nstead, due to the limited resolution of these types of simulations,
an y ke y processes, such as stellar and active galactic nucleus (AGN) 

eedback, are implemented through numerical routines that aim to 
f fecti vely mimic the impact of these physical processes. These
subgrid’ routines introduce a number of free parameters, with some 
aving clear physical analogues, and can therefore be constrained 
y current observations, while others are numerical in nature with 
o clear observable analogue. It is common to constrain these 
arameters such that the simulated galaxy population matches a range 
f chosen observables, a process often referred to as calibrating the
imulations. Thus, the success of a particular simulation is dependent 
n both the model itself, as well as the calibration approach. Due to
he high computational expense of these simulations, calibration is 
ften performed by running a relatively small number of development 
imulations used to explore the available parameter space, then 
hoosing a combination of parameters that gives a desired fit to a
et of observables. One limitation of this approach is that it is often
nclear if the chosen combination of parameters is optimal, or if there
re strong degeneracies within the parameter space, in turn limiting 
he predictive power of the simulations. 

While it is necessary to consider the uncertainties, and potential 
reedoms, in the subgrid parametrization when studying their effect 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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n galaxy formation and evolution, it is equally important to consider
hen using such simulations to constrain different cosmological
odels. This is particularly rele v ant at small scales, where there have

een tensions between the predictions of simulations that assume
he standard cold dark matter (CDM) model and observations of the
ocal Universe, such as the cusp-core problem (e.g. Flores & Primack
994 ; Moore 1994 ), the missing satellites problem (e.g. Klypin et al.
999 ; Moore et al. 1999 ), and the too big to fail problem (e.g. Boylan-
olchin, Bullock & Kaplinghat 2011 ; see Bullock & Boylan-Kolchin
017 for a re vie w). Ho we ver, it is now well established that the
nclusion of baryonic processes, such as supernova, stellar winds,
nd AGN feedback and reionization, plays a significant role on
mall scales and is able to alleviate, and potentially resolve, these
ensions within the standard lambda-CDM ( � CDM) cosmological
odel (e.g. Sales, Wetzel & Fattahi 2022 ). Ho we v er, man y of these

onclusions are based on using subgrid models and parameters that
ave been developed, and calibrated, assuming CDM. Therefore,
hile such conclusions suggest CDM is one potential explanation
f the observations, it does not sufficiently show that CDM is a
nique solution, where it is possible that alternative cosmological
odels, such as warm dark matter (WDM, e.g. Lo v ell et al. 2014 ),

elf-interacting dark matter (e.g. Kaplinghat, Tulin & Yu 2016 ), or
uzzy dark matter (e.g. Marsh 2016 ), may also be able to describe
he observed data, but with different choices of baryonic (subgrid)
arameters. 
The k ey f actor limiting a full exploration of the available param-

ters space, and the use of more statistically rigorous techniques
o do this, is the large computational expense of these types of
imulations (typically ∼10 3 –10 6 cpu-hours). A promising alternative
s to instead develop emulators that allow for fast predictions without
aving to directly run a simulation. Within large-scale structure
LSS) cosmological analysis the use of such techniques is becoming
ommonplace. Here, emulators have been developed to reproduce
he cosmological dependence predicted from N -body simulations
or a range of LSS statistics, such as the non-linear matter power
pectrum (e.g. Heitmann et al. 2014 , 2016 ; Upadhye et al. 2014 ;
iblin et al. 2019 ), or the halo mass function and galaxy clustering

e.g. Nishimichi et al. 2019 ; Angulo et al. 2021 ). There are also a
umber of works that have used emulation to explore the effect of
ariations to the assumed galaxy formation parameters. As examples,
ower et al. ( 2010 ) use emulation in the context of the GALFORM

emi-analytic model to explore the effect a range of galaxy formation
arameters have on the predicted luminosity functions, and both the
LAMINGO (Kugel et al. 2023 ; Schaye et al. 2023 ) and Romulus
Tremmel et al. 2017 ) hydrodynamic simulations use emulators (or
ery similar methods) to calibrate their galaxy formation (subgrid-
parameters. So far, few works have studied the joint effect of
arying the cosmological and baryonic (subgrid-) parameters, with
 notable exception being the CAMELS simulations (Villaescusa-
avarro et al. 2021b ) that vary some of the Friedmann parameters

longside feedback (subgrid) parameters within the Illustris-TNG
odel. 
In this paper, we present a new suite of simulations developed to

xplore joint variations in both the baryonic (subgrid) implemen-
ation and the assumed cosmological model. We present a suite
f high-resolution ( ∼10 4 M � in particle mass) Milky Way-mass
oom-in simulations, where a number of haloes (originally from the
ssembly of high-ResoluTion Eagle- simulations of MIlky Way-type
alaxieS (ARTEMIS) sample, Font et al. 2020 ; Font, McCarthy &
elokuro v 2021 ; F ont et al. 2022 ) hav e been resimulated man y times,

ystematically varying the WDM mass alongside the stellar feedback
arameters, the star formation threshold, and the assumed redshift
NRAS 532, 1223–1240 (2024) 
f reionization. These parameters have specifically been chosen as
hey all have a notable effect on the formation and evolution of the
roperties of the satellites to the Milky Way (i.e. dwarf galaxies).
rom the simulations we construct machine learning emulators that
llow for fast ( ∼1 ms) predictions of a diverse range of statistics
or combinations of parameters that were not sampled originally.
he significant increase in computation speed, a factor of ∼10 11 ,

undamentally changes the type of analysis that is possible, allowing
 full exploration of the available parameter space and marginalizing
 v er the baryonic (subgrid) parameters when making cosmological
onstraints and significantly improving the robustness and predictive
ower of the simulations. 
In this first paper, we present the new simulation suite and the

mulators, alongside our initial results and analysis. In Section 2 ,
e describe the technical details of the simulations, focusing on the
hysical parameters of the model that are varied. In Section 3 , we
escribe how the parameters are systematically varied and sampled
ith simulations, in total presenting 97 simulations that are used for

raining and e v aluation. We then describe ho w these simulations are
sed to build emulators using Gaussian processes for a wide range of
tatistics, for both the host and satellite populations, e v aluating their
erformance. In Section 4 , we explore how the stellar mass of the host
alaxies (i.e. the Milky Way analogues) changes with variations to
he stellar feedback parameters, by fitting to the values inferred from
bundance matching. We find that there are significant degeneracies
n the stellar feedback parameters when constraining the present-
ay stellar mass of the host, where the de generac y corresponds to a
reedom in the formation time of the stellar component. Additionally,
t the end of Section 4 , we present the dependence of the number
f luminous satellites on the variations in the stellar feedback,
eionization redshift, and WDM mass. Finally, in Section 5 , we
ummarize our results and conclude. 

 SI MULATI ON  DETA I LS  

ere, we describe the key details of the simulations presented in
his work. We begin by describing the aspects of the simulations and
nalysis that are constant throughout this work. This includes how
he initial conditions are generated (Section 2.1 ) and the details of the
alo finder and merger tree (Section 2.2 ). In Section 2.3 , we focus on
he parameters and associated routines that are varied and emulated
n this work. This includes the stellar feedback, the star formation
odel, the reionization redshift, and the WDM particle mass. 

.1 Initial conditions 

ll of the simulations share the same base � CDM cosmological
arameters, using the WMAP9 best-fitting values (Hinshaw et al.
013 ). Specifically, H 0 = 70 kms −1 Mpc −1 , �m 

= 0.2793, �b =
.0463, σ 8 = 0.8211, and n s = 0.972. The initial conditions are
enerated at z = 127 using the CAMB (Lewis, Challinor & Lasenby
000 ) predicted � CDM linear power spectrum, which is then
odified for the given WDM mass (see Section 2.3.1 ). 
To generate the zoom-in initial conditions, we use MUSIC (Hahn &

bel 2011 ), with separate transfer functions for the DM and baryons.
ystems in the original ARTEMIS sample were identified for
esimulation by first running 25 Mpc h −1 box with 256 3 collisionless
articles. From this, haloes were identified in the mass range 8 × 10 11 

 M 200c /M � < 2 × 10 12 , to bracket the current uncertainty in the
ilky Way’s mass from a variety of observations (e.g. Guo et al.

010 ; Deason et al. 2012 ; McMillan 2017 ; Callingham et al. 2019 ;
 atkins et al. 2019 ; W ang et al. 2020 ). The Lagrangian regions to
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esimulate were identified to contain all particles within 2 R 200c at z =
. The high-resolution zoom-in region uses a DM particle mass of
.17 × 10 5 h −1 M � and an initial gas mass of 2.23 × 10 4 h −1 M �. 
The original ARTEMIS sample was selected solely on halo mass, 

ith no additional cuts based on isolation or formation history. 
herefore, the sample (now constituting 45 systems) is representative 
f haloes that form at this mass scale, with the caveat that the
riginal simulation volume was 25 Mpc h −1 . As such, particularly 
are environments, such as large galaxy clusters, are not sampled. 

From the original sample we focus on resimulating three haloes. 
hese were again selected based on present-day halo mass (chosen 

o co v er the sampled mass range), with no e xplicit selection on
ormation history or isolation. Using the naming convention from 

he original paper, these are haloes G42, G19, and G44. 1 with halo
asses of M 200c = 5.68 × 10 11 , 9.18 × 10 11 , and 1.32 × 10 12 h −1 M �

n the DM-only simulation. 

.2 Halo finder, merger trees and mass definitions 

ollapsed, bound structures are identified using the SUBFIND halo 
nding algorithm, last described in Springel et al. ( 2001 ). Groups
f haloes are initially identified using the friend-of-friends (FOF) 
lgorithm, before individually bound structures within a given FOF 

roup are identified using the SUBFIND algorithm. The most massive 
f these is then identified as the central, or host, while all other
ubhaloes are considered to be satellites. SUBFIND uniquely identifies 
ndividual particles as belonging to a given subhalo through an 
terative unbinding algorithm. 

Merger trees are generated using the D-haloes algorithm, using 
nly the collisionless DM particles to track progenitors. The code 
s based on the algorithms of Srisawat et al. ( 2013 ) and Jiang et al.
 2014 ). In general, the algorithm uses the most bound particles of
 given subhalo to track its progenitors and descendents. From this
nitial linking between snapshots the merger trees are then built, 
aking into account haloes missing in the SUBFIND catalogues at a 
iven snapshot and may be linked to multiple later snapshots. See 
he previous references for details. 

Throughout we will use various mass definitions. For total halo 
ass, we use an o v erdensity definition such that the mean enclosed

ensity is some multiple of the background density. For comparison 
ith other works we primarily use the definition from Bryan & 

orman ( 1998 ), which for our assumed cosmology represents a 
ensity contrast of � ≈ 98 with respect to the critical density. 
or stellar mass we either use a fixed spherical aperture (primarily
0 kpc), or use all particles that are identified as being bound from
he SUBFIND algorithm. Throughout the paper, we will specify the 
articular mass definition used and, where appropriate, moti v ate its
se. 

.3 Parameters for baryonic physics and dark matter 

ll of the simulations use the PGADGET -3 code (last described 
n Springel et al. 2005 ) with the hydrodynamics implementation 
nd galaxy formation (subgrid) physics developed for the EAGLE 

roject (Crain et al. 2015 ; Schaye et al. 2015 ). The EAGLE model
ncludes prescriptions for metal-dependent cooling in the presence 
f a photoionizing UV background, star formation, stellar evolution 
 G44 was not part of the original sample of 42 haloes in Font et al. ( 2020 ), 
ut was subsequently added to the sample in Font et al. ( 2021 ). 

α

2

nd chemical evolution, black hole formation and growth, along with 
tellar and AGN feedback. 

In this work, we are interested in exploring the joint effect of
aryonic (subgrid) processes and potential small-scale cosmological 
xtension on Milky Way-mass systems and their satellite populations. 
herefore, we restrict our analysis to variations of the baryonic 
rocesses that are most important for these mass scales. Specifically, 
e explore variations in the stellar feedback parameters, the density 

hreshold for star formation, and the reionization redshift. Here, we 
escribe how these processes are implemented in the EAGLE model, 
long with the associated subgrid parameters. All other subgrid 
outines and parameters use the fiducial values presented in the 
riginal EAGLE simulation (see Crain et al. 2015 ; Schaye et al.
015 , for details). 2 

The simulations presented model the effects of AGN feedback, 
o we ver the associated parameters are held fixed throughout. In
eneral, it is expected that AGN feedback is the dominant for high-
ass haloes, while stellar feedback dominated at lower masses with 

aloes of approximately Milky Way being the transition between 
hese two regimes and being the most efficient at forming stars
e.g. Behroozi, Wechsler & Conroy 2013 ; Moster, Naab & White
013 ). As such, it is expected that AGN play a subdominant role
n the formation and evolution of Milky Way-mass haloes for many
bservables, with the gas fractions being a notable exception (e.g. 
roton et al. 2006 ; Bower, McCarthy & Benson 2008 ; Booth &
chaye 2009 ; Davies et al. 2019 ). While it would be interesting to
xplore potential changes to both stellar and AGN feedback, this 
ould necessitate a much larger number of simulations to maintain 

he accuracy of the emulator. As such, we have chosen to focus on
he most important parameters for systems of Milky Way mass and
maller (i.e. stellar feedback and reionization), and hope to explore 
 joint variation of stellar and AGN feedback in the future. 

.3.1 Warm dark matter 

n this work, we study WDM as an extension to the standard CDM
odel. In general, WDM models assume that DM consists of a light,

s yet undisco v ered, particle that is relativistic in the early universe.
hese non-negligible initial velocities allow for DM to free stream, 

eading to the suppression of density fluctuations and structures on 
mall scales. Assuming a given particle physics model, the physical 
cale that these suppression occur on can be interpreted as a particle
ass. In practical terms within the simulations WDM results as a

hange to the initial conditions, which can be described through the
inear power spectrum. 

The linear power spectrum for a WDM cosmology can be written
s transfer function, T WDM 

, with respect to a ( � )CDM power
pectrum counterpart, 

 WDM 

( k) = T 2 WDM 

( k ) P CDM 

( k ) . (1) 

ere, we use the fitting function of Bode, Ostriker & Turok ( 2001 ): 

 WDM 

( k) = [1 + ( αk) 2 ν] −5 /ν . (2) 

ere, ν represents the form of the cut-off and α the corresponding 
cale of the cut-off. The values used correspond to the best-fitting
arameters from Viel et al. ( 2005 ). Specifically ν = 1.12 and 

= 0 . 049 

(
m DM 

1 keV 

)−1 . 11 (
�DM 

0 . 25 

)0 . 11 (
h 

0 . 7 

)1 . 22 

h 

−1 Mpc . (3) 
MNRAS 532, 1223–1240 (2024) 

 Specifically the EAGLE Recal-L025N0752 simulation. 
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Figure 1. The black dashed line shows the dependence of the stellar feedback 
efficiency parameter, f th , on the stellar birth density. The plotted dependence 
corresponds to the choice of parameters used for the original ARTEMIS suite, 
f max = 3, f min = 0.3, and ρH , 0 = 50 cm 

−1 (see equation 5 for definitions). 
Additionally plotted for reference is the present-day normalized distribution 
of stellar birth densities for all bound star particles of halo G42, split into bins 
according to their birth redshift (see the legend). 
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t is then the assumed WDM particle mass, m DM 

, that is varied. �DM 

s the cosmic fraction of DM, which is held fixed in this work to
he WMAP9 best-fitting value, �DM 

= 0.233 (Hinshaw et al. 2013 ).
he values used abo v e, and relation to DM particle mass, assume

hat WDM is made of thermal relics. Ho we ver, as the key change to
he growth of structure in WDM simulations is the suppression in
he initial matter power spectrum, this can ef fecti vely mimic other

DM models such as sterile neutrinos (e.g. Dodelson & Widrow
994 ; Shi & Fuller 1999 ) and, to a more limited extent, cosmological
xtensions with a similar suppression, such as fuzzy DM (e.g. Marsh
016 ; Mocz et al. 2017 ). All other cosmological parameters, such
s �m, 0 and H 0 , are fixed to the values presented in the previous
ection. 

The technical details of generating the zoom-in initial conditions
re the same as described in Section 2.1 , with the � CDM initial
ower spectrum generated using CAMB and modified according to
he abo v e equations. 

.3.2 Star formation threshold 

tar formation in the EAGLE model follows the pressure law scheme
ntroduced in Schaye & Dalla Vecchia ( 2008 ), where it was shown
hat the observed Kennicutt–Schmidt law (Kennicutt 1998 ) can be
onverted to a relation between the star formation rate and the
ressure of the gas in the simulations, given an assumed equation of
tate and under the approximation that the gas is self-gravitating.
he advantage of this scheme is that the observed parameters for

he Kennicutt–Schmidt law (i.e. the slope and normalization) can be
xplicitly specified as input parameters to the simulations. In this
ork, we use the same values presented in the original EAGLE
roject. 
Star formation only occurs in cold, dense gas. In EAGLE, star

ormation is regulated by a density threshold, n ∗H , abo v e which gas
ollows the pressure law scheme described abo v e. The EAGLE model
ses a metallicity-dependent threshold originally proposed by Schaye
 2004 ), 

 

∗
H = min 

[
n ∗H , 0 

(
Z 

0 . 002 

)−0 . 64 

, 10 cm 

−3 

]
. (4) 

he general form of the metallicity dependence is moti v ated in
chaye ( 2004 ), while the maximum value is specified to prevent
rbitrary large density thresholds in low-metallicity gas. 

Both Schaye ( 2004 ) and the original EAGLE simulations use
 

∗
H , 0 = 0 . 1 cm 

−3 . Within the simulations the density threshold repre-
ents the transition at which the cold phase of gas (which simulations
ypically cannot resolve directly), is expected form. Typically, this
hreshold cannot be observed directly, and instead is indirectly
onstrained from the observed star formation rates of nearby disc
alaxies. Due to the theoretical uncertainties in deriving such a
hreshold, the diverse range used in current simulations as well as
he choice of density threshold having a significant effect on dwarf
alaxies (e.g. Ben ́ıtez-Llambay et al. 2019 ), we choose to vary n ∗H , 0 .

.3.3 Stellar feedback 

he EAGLE model uses the stochastic thermal feedback prescription
riginally presented in Dalla Vecchia & Schaye ( 2012 ) to model the
ffects of Type II supernovae. Each star particle has a chance of
ndergoing a feedback event where neighbouring gas elements are
nstantaneously heated by a fixed temperature increment, � T SF . The
robability of such a feedback event occurring can be calculated from
NRAS 532, 1223–1240 (2024) 
he given � T SF and available energy (see Dalla Vecchia & Schaye
012 for details). Typically, the energy available for stellar feedback
rom a Type II supernova is taken to be 1.736 × 10 49 erg M 

−1 
� ,

ssuming a Chabrier (Chabrier 2003 ) initial mass function. Ho we ver,
here is freedom within the model to allow a certain fraction, f th , of
his fiducial energy to couple to the surrounding gas. The freedom
n f th was used to calibrate the original EAGLE and ARTEMIS
imulations, and is therefore a key focus in this work. 

In the EAGLE model f th is allowed to vary as function of the
tar particle’s birth density, ρH, birth , with the following parametric
elation, 

 th ( ρH , Birth ) = f min + 

f max − f min 

1 + 

( ρH , birth 
ρH , 0 

)−α . (5) 

he form of the abo v e relation leads to more energy being coupled
as in denser environments, that is, larger value of f th at higher
alues of ρBirth , and vice versa. 3 The general behaviour of the relation
s designed to compensate for feedback events being numerically
nefficient at heating high density gas, for which the stellar birth
ensity is used as a proxy. The relation between f th and ρH, Birth is
hown in Fig. 1 as the dashed black line. In general, the relation
etween f th and ρH, birth resembles that of a smoothed step function.
 min corresponds to the minimum efficiency at small densities, f max the
aximum at high densities, while ρH, 0 controls the transition scale

etween the two regimes and α controls how quickly the transition
ccurs. 
The values used in the original EAGLE simulation (specifically,

he EAGLE Recal-L025N0752 simulations) were f min = 0.3, f min =
, ρH, 0 = 10 cm 

−1 , and α = 1. In the ARTEMIS simulations,
hich have a particle mass resolution 8 times higher than EAGLE
ecal-L025N752, the stellar feedback was recalibrated, using ρH, 0 =
0 cm 

−1 , to better fit the present-day stellar mass halo mass (SMHM)
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elation at the Milky Way-mass scale. Fig. 1 shows the dependence 
f the stellar feedback efficiency parameter, f th , on the stellar birth
ensity with values assumed in ARTEMIS (black dashed line). 
To further explore the freedom in matching the observables 

ithin the stellar (subgrid) routine described abo v e, we choose to
imultaneously vary f min , f max , and ρH, 0 . We find it more useful to
xpress f min as a fraction of f max , specifically 

 min = Af max , (6) 

here A is then the emulated parameter (rather than f min ). This mild
eformulation has a few distinct advantages. It is much easier to 
nsure that f max > f min (corresponding to A < 1), as well as being
ore intuitive to present the stellar feedback efficiencies in a relative 
anner rather than as absolute values. Throughout this work, we fix 

he slope of the transition α to a value of 1 (i.e. we do not emulate
his parameter). During the development of this project it was found 
hat α has a minimal effect on the results. 4 

In summary, we emulate the effects of three parameters associated 
ith stellar feedback in the EAGLE model, f max , A , and ρH, 0 . This

llows for the relation between the stellar efficiency, f th , and the star
article’s birth density to be systematically varied. 
Additionally plotted in Fig. 1 is the distribution of stellar birth

ensities for halo G42 from the fiducial (original) ARTEMIS simu- 
ations, selecting all star particles identified as bound to the host at
 = 0. These are then split into three bins according to the formation
edshift of the star particles (see the le gend). The o v erall form of the
elation is such that no stars are born in very low density environments
log ρbirth � −2) due to the star formation threshold, while most
tars form at intermediate densities. It can also be observed that the
inimum birth density increases at higher redshifts. This is due to the
etallicity-dependent star formation threshold used (see the previous 

ubsection for details), which allows the gas to form in less dense
nvironments as gas becomes more enriched o v er time. The highest
ensities are additionally suppressed, this being directly related to the 
orm of f th . The increase in the stellar feedback efficiency at high birth
ensities leads to a suppression of star formation in these regimes. If
 constant feedback efficiency were used instead, the sharp decrease 
n the number of stars forming in high densities would not exist (see
.g. fig. 7 of Crain et al. 2015 ). 

The metallicity dependence for the star formation threshold de- 
cribed abo v e e xplains the redshift e volution in the lo w ρH, birth regime
n Fig. 1 . In general, the metallicity of gas within the simulation will
ncrease o v er time. As such, the star formation threshold will be
omparably larger at high redshifts compared to today. It is therefore 
xpected that the observed minimum birth densities of the stars will 
ecrease with time, as shown in Fig. 1 . 

.3.4 Reionization 

adiative processes are modelled as a function of gas density, tem- 
erature, and redshift by interpolating pre-computed cooling tables 
sing the CLOUDY model (Ferland et al. 1998 ). Importantly for this
ork, the effect of reionization is also implemented, following the 

cheme presented in Wiersma, Schaye & Smith ( 2009 ). This includes
 I reionization that occurs instantaneously at a specified redshift, 
 reion . The original EAGLE (and ARTEMIS) simulations used z reion = 

1.5, consistent with Planck measurements at the time (Planck 
ollaboration XVI 2014 ). Estimates for the reionization redshift 
 In our analysis we only considered α > 0.5. It is likely that very small 
hoices of α would result in noticeable differences. 

t  

t  

t  

T  
ave since been re-e v aluated, with most constraints suggesting a
o wer v alue of z reion ∼ 6–7 (e.g. Bouwens et al. 2015 ; Robertson
t al. 2015 ; Planck Collaboration VI 2020 ). While reionization is
odelled to be instantaneous in the simulations, in reality, it is likely

o happen o v er an extended time. This is supported by observations
sing different probes that are sensitive to different phases of the
niverse’s reionization history. This provides further moti v ation 

or us to explore variations in the redshift of reionization, z reion .
y emulating this parameter, we can further understand the role 

eionization plays on the formation of the smallest galaxies (in the
tellar mass regime M stel � 10 5 M �), which are typically the most
ffected by these changes. 

 EMULATI ON  

s is common throughout the field, we will use the term ‘emulator’
o refer to a numerical scheme that allows for a fast prediction of the
esults from a (hydrodynamical) N -body simulation as a function of
pecified input parameters. In general, it is not possible to output an
xact replica of a cosmological simulation (i.e. a list of all particle
ypes and their properties). We aim instead to predict a range of
ummary statistics, S . Examples of these include the stellar mass of
he main galaxy, the number of satellites of a given mass, or any
obust statistic that can be measured directly from the simulations. 
he goal of the emulator is then to predict these summary statistics as
 function of the key input parameters, θ . In this work, we use six key
nput parameters, specifically θ = ( m DM 

, A, f max , ρH , 0 , n 
∗
H , 0 , z reion ) . 

ee Section 2.3 for definitions and descriptions of these parameters. 
One limitation of the abo v e ‘emulation’ approach is that the

ummary statistics must first be specified. As such, the most powerful
ay of constraining the simulations may be missed. While in this
ork we focus on emulating a range of summary statistics, the

imulations are well suited to develop more advanced machine 
earning methods such as deep learning, which has previously be 
ro v en to efficiently extract significant information from a wide range
f astrophysical and cosmological data (e.g. Storrie-Lombardi et al. 
992 ; Lochner et al. 2016 ; Villaescusa-Navarro et al. 2021a ; Nguyen
t al. 2024 ) 

There are tw o k ey steps to build the emulator. First, the input
arameter space, θ , must be sampled. From this initial sampling 
he summary statistics are then measured and a regression model 
s trained to make predictions at combinations of θ that are not
irectly sampled with simulations. Here, we sample θ using a Latin 
ypercube and then build the regression model (i.e. interpolate) by 
sing a Gaussian process. The accuracy of the emulator depends 
trongly on both the sampling and regression model used, which we
iscuss below. 

.1 Emulator parameters and sampling 

o sample the parameter space we use a six-dimensional orthogonal 
atin hypercube consisting of 25 nodes (i.e. sampled points). A 

atin hypercube results in a uniform, homogeneous and space 
lling sampling, minimizing the distance between nodes and in turn 
aximizing the accuracy of the emulator for a given number of

ampled points. Standard convention is to define the Latin hypercube 
uch that all points are sampled on the range [0,1]. From this, each
imension is then mapped to each of the emulated parameters. For
he baryonic parameters sampled here ( A , f max , ρH, 0 , n ∗H , 0 , and z reion ),
his mapping is either done linearly or logarithmically, such that only
he desired range of parameters to be sampled needs to be specified.
he DM particle masses, m DM 

, are also sampled (this is described
MNRAS 532, 1223–1240 (2024) 
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M

Table 1. Summary of the six emulated parameters varied in the simulations. The first column shows the given parameter, 
the second the equations where they are defined, the third and fourth columns show the fiducial values and emulation 
ranges for these parameters, and the final column shows the type of sampling used. 

Parameter Equation Fiducial Emulator Sampling 
value range scheme 

m DM 

[kev] Equations ( 1 –3 ) ∞ [1 .0, ∞ ] Equation ( 7 ) 
A Equations ( 5 –6 ) 0 .1 [0,0 .6] Linear 
log f max Equation ( 5 ) 0 .48 [ − 0 .30, 1.14] Log 
log ρH , 0 [ cm 

−3 ] Equation ( 5 ) 1 .70 [ − 0 .075, 4] Log 
log n ∗H , 0 [ cm 

−3 ] Equation ( 4 ) −1 [ − 1 .5, −0.52] Log. 
z reion – 11 .5 [5,20] Linear 
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elow). The Latin hypercube coordinates are then multiplied and
ranslated by the appropriate factors to sample the entire range. A
ummary of the chosen ranges is shown in Table 1 , along with the
ype of sampling (i.e. linear or logarithmic). 

We note that it is difficult to know a priori the correct range to
ample for the variety of these parameters. For parameters with a clear
hysical analogue that can be measured from other observations, the
hoice is relatively clear, as the current (conservative) observational
onstraints should be co v ered. Ho we ver, for parameters that are
pecific to the simulations, and which do not have a clear physical
nalogue that can be measured, it is not so clear what a reasonable
ampled range should be. Ideally, the parameters should co v er the
bservational uncertainties for galaxy properties of interest, however
his range can often only be reliably derived by first having the
mulator. 

In this work, the sampled ranges for the reionization redshift, z reion ,
nd the WDM mass, m DM 

, were chosen to conserv ati v ely co v er the
urrent observational constraints. The star formation threshold, n ∗H 
as chosen to sample up to a factor of 3 from the fiducial value used

n the EAGLE and original ARTEMIS simulations. 
The ranges for A , f max , and ρH, 0 were chosen using an earlier

ersion of the emulator trained on a narrower range of parameters.
ere, the final ranges of these parameters were chosen to be

he estimated (and extrapolated) 3 σ constraint on each of these
arameters when fitting the host stellar mass to the fiducial case, using
nly the emulator uncertainty. As discussed later (see Section 4.1 ,
ig. 5 ) we do find constraints on A and ρH, 0 individually when
tting to the stellar mass, which suggests that this original estimation
nd extrapolation was driven by the earlier emulation range and the
orresponding prior. 

While the baryonic parameters are sampled in a relatively simple
ay, it is useful to sample m DM 

in a more complex manner.
pecifically we use the relation, 

 DM 

= 

{− 40 
7 x + 

47 
7 , x > 0 . 3 

3 
2 

1 
x 

, x ≤ 0 . 3 , 
(7) 

here x is assumed to be some uniform sampling in the range [0,1]
as given by a Latin hypercube). It is desirable that the emulator, and
n turn the chosen sampling, is able to reproduce the mass of the
DM particle exactly, which in this work we take it to be m = ∞ . 5 

o we v er, as an y emulation range and its sampling must be finite, it
s not possible to sample CDM using either a linear or logarithmic
NRAS 532, 1223–1240 (2024) 

 In ( � )CDM models, potential DM candidates are expected to be have particle 
asses ∼ GeV–TeV, where the suppression of the linear power spectrum 

appens well below the resolution limit of our simulations. Thus, for practical 
urposes, it is sufficient to treat m = ∞ for the ( � )CDM case. 

e  

i  

c  

d  

d  
ampling of m DM 

. The abo v e relation (equation 7 ) aims to address
his issue, while allowing control of the sampling and accuracy of
osmologies close to the CDM case. The piecewise function consists
f a combination of a linear sampling at small particle masses with
 1/ x sampling for larger masses. This contraction at larger masses
llows for the mass of CDM particles to be exactly sampled, where
 DM 

= ∞ corresponds to x = 0. The exact coefficients were chosen
ith tw o k ey mass scales in mind; the minimum sampled particle
ass is m DM 

= 1 keV, while m DM 

= 5 keV represents the transition
rom the two sampling, it was additionally chosen so that 30 per cent
f the sampled nodes correspond to m DM 

< 5 keV. The general
oti v ation for these specific coefficients was to identify a WDM

article mass scale at which the effects of WDM begin to have a
imited impact on the resolved haloes in our simulations, chosen to
e m DM 

= 5 keV. 
A summary for the six emulated parameters, along with the equa-

ions defining them, the fiducial values used in the original ARTEMIS
imulations and their range of values sampled is given in Table 1 .
he left-hand panel of Fig. 2 shows all two-dimensional projections
f the Latin hypercube used in this work, where the smooth sampling
an be observ ed. F or each combination of parameters a simulation is
hen run for each of the three haloes. We additionally run four random
ombinations of parameters as hold out tests to e v aluate the accuracy
f the emulator. In total 3 × (25 + 4) = 87 separate simulations are
resented in the main suite, with an additional 10 used to e v aluate
he stochasticity of the simulations and measured galaxy properties. 

A visualization of the resulting 25 sampled simulations for halo
42 is shown in Fig. 3 . The image shows a composite of the gas and
M density. DM particles from the central halo have been remo v ed

o highlight the satellite population. The DM density is shown in
hite, while the gas uses the purple colour map. The plot is ordered

o that the systems with the largest stellar mass are in the top left,
nd the smallest stellar masses are in the bottom right (the difference
n stellar mass between the two most extreme simulations is ∼2
ex). Each diagonal is additionally organized so that the bottom
eft corresponds to the coldest DM models, and the top right the
armest. While the stellar component is not shown in this image

here are clear systematic changes in the distribution of the gas, both
n density and morphology, that correlates with the stellar mass. For
arge stellar masses (top left), that is, inefficient stellar feedback,
here exists a relatively small, dense star forming a disc of gas.
or smaller stellar masses (bottom right), corresponding to more
fficient stellar feedback, much of the gas has been blown from the
nner regions and is distributed within a gaseous halo, with little
orotating gas in the form of a disc. There are also clear systematic
ifferences in the number and mass distribution of satellites between
ifferent WDM particle masses, with a stronger WDM model leading
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Figure 2. Schematic summary of how the emulators are b uilt. First, the a vailable parameter space is sampled with simulations (left-hand panel). From these, 
many Gaussian processes are trained for a wide range of statistics (middle panel), then finally the emulator is used to predict these statistics at any combination 
of parameters within the sampled space (right-hand panel). Additionally plotted abo v e each panel are the approximate computing times for each of these steps, 
with the emulator offering a ∼10 11 increase in computational speed. 
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o fewer satellites. This visualization demonstrates the diverse range 
f scenarios that is sampled by these simulations, and can in turn be
ampled by the emulator. 

.2 Emulator prediction 

nother key aspect of the emulator is the regression model used. 
he aim is to ef fecti vely interpolate between the sampled points
o that a given statistic can be predicted for any combination of
mulated parameters, θ , within the sampled range. Here, we choose 
o use a Gaussian process regression model. There are a number 
f key features provided by a Gaussian process that make it well
uited to build emulators. In addition to providing a prediction 
or the value of the statistic at the choice of parameters, S( θ), a
aussian process also provides the uncertainty in this prediction, 
hich allows the uncertainty in the emulator to be incorporated in the

tatistical analysis. Gaussian processes also perform well in accuracy 
nd scaling with sparsely sampled, high-dimensional data, therefore 
hey are ideal for emulating cosmological simulation outputs. For 
xample, in this work we sample a six-dimensional space with only 
5 nodes (simulations), with a typical uncertainty and accuracy of 

10 per cent . 
The Gaussian process used here consists of an anisotropic Mat ́ern 

ernel 6 and a white noise kernel. The associated hyperparameters 
re then optimized to maximize the likelihood for each statistic. The 
at ́ern kernel models the covariances between data points, allowing 

or predictions between nodes, while the white noise kernel accounts 
or any intrinsic noise in the data. 

The middle panel of Fig. 2 shows an example of a Gaussian process
egression model applied on a one-dimensional data set. Here the true 
unction is shown with the dashed line, while the uneven samples 
nodes) are shown as scatter points. A Gaussian process is then 
rained on these data, with the predictions of the model being shown
 For a Mat ́ern kernel, a smoothness parameter of ν = 2.5 corresponds to a 
wice differentiable function (e.g. Rasmussen & Williams 2006 ). 

p  

m
c  

t

ith the solid line and with associated 1 σ errors. The prediction
f the Gaussian process resembles closely the true function, with 
laces of where it deviates still being within the quoted errors. The
ehaviour of the uncertainties is generally intuitive; at locations that 
re directly sampled (the nodes) the uncertainty is zero, and the
ncertainty remains small when close to these nodes, while the local
axima in the uncertainties occur in between nodes. 
The example in Fig. 2 shows the basics of a Gaussian

rocess regression model. The key differences for the emu- 
ators developed here, are that these are applied to a six-
imensional parameter space (i.e. the emulated parameters are 
= [ m DM 

, A, f max , n H , 0 , n 
∗
H , 0 , z reion ]) and rather than predicting a

ingle statistic (observable), they can predict a wide range of 
hese. Throughout our analysis, we are using independently trained 
aussian processes for each individual statistics. However, it is 
ften useful and more intuitive to group these individual Gaussian 
rocesses into a single statistic. For example, to predict the stellar
ass of the host as a function of redshift, each redshift is trained

eparately. Ho we ver, it is useful to group all of these individual
redictions into a ‘stellar mass’ that can be predicted at any redshift.
imilarly, predictions for secondary statistics are also made by 

raining parameters separately. An example of these secondary 
tatistics is the cumulative stellar mass function of satellite galaxies, 
here the number of satellites abo v e each specified mass bin is

rained and predicted separately. In this case, it is more natural to
reat them collectively, as a single statistic. The total collection of
ll trained Gaussian processes is what we refer from now on as ‘the
mulator’. 

.2.1 Parameter inference and likelihood specification 

 key moti v ation to de velop emulators is to use them to perform
arameter inference. Ho we ver, to do this robustly the likelihood
ust be specified, taking into account the uncertainties, and potential 

ovariances, of the observed data. This, of course, will depend on
he particular observations and data sets used. A relatively simple 
MNRAS 532, 1223–1240 (2024) 
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Figure 3. Visualization of halo G42 for the 25 sampled simulations, each with a different combination of stellar feedback parameters, star formation threshold, 
reionization redshift, and WDM mass. These simulations are used to build the emulators, and can be ef fecti vely treated as the training data. The visualizations 
represent a composite image of the gas and the DM projected densities, calculated using PY-SPH viewer (Benitez-Llambay 2015 ). For the DM density maps, the 
central halo has been remo v ed to highlight the satellite populations. The panels are organized so that the galaxy with the largest stellar masses are in the top left, 
and the smallest in the bottom right. Each bottom left to top right diagonal is additionally sorted in terms of the WDM mass such that the top right panels are 
the strongest WDM models (i.e. smallest particle masses, m DM 

), while the models closest to CDM are in the bottom left. 
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xample of constructing the likelihood for the SMHM relation is
iven in Section 4.1 . 
Due to the way the emulators are constructed, in particular that we

urrently only predict statistics for three individual haloes, there are
 number of key assumptions that will likely need to be made. First,
hat the three haloes represent random, independent samples from an
nderlying distribution. While this distribution can in principle be as
NRAS 532, 1223–1240 (2024) 
omple x as needed, man y statistics will be well approximated by a
multi v ariate) Gaussian, the mean and (co)variance of which can be
pecified from the observations being compared to (e.g. the particular
alaxy catalogue). Alternatively, the original ARTEMIS sample, or
imilar simulations such as EAGLE, could be used to moti v ate the
ovariance of the data, and further test the ability of the simulations
o reproduce the observations. 
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Figure 4. The dependence of the host stellar mass, defined as the mass within 
30 kpc, on the emulated parameters. Here each parameter is individually 
varied (see the legend), with the other five parameters held fixed to their 
fiducial values. The x -axis is in ‘emulator units’, normalized such that the 
emulation range is from 0 to 1 and offset so that the fiducial choice is at the 
origin. Where the prediction is outside the emulators range the lines are plotted 
as transparent. The WDM mass and reionization redshift have essentially no 
effect on the host stellar mass, while the star formation threshold has a mild 
effect o v er the sampled range, with the most important parameters being the 
three associated with stellar feedback, each able to affect the stellar mass by 
roughly an order of magnitude. The specific relations are shown for halo G42, 
with the other two systems showing very similar dependencies. 
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.3 Emulator summary 

ig. 2 also includes a schematic summary of how the emulator is
uilt. Initially, the parameter space is sampled using 25 simulations 
or each of the three haloes chosen from the ARTEMIS sample 
this step is shown in the left-hand panel). From these simulations,
aussian processes are trained for a wide range of different statistics

see middle panel), including the properties of the hosts and of their
atellites. This then allows for these statistics to be predicted for any
ombination of the emulated parameters, within the sampled range 
see right-hand panel). The top of each panel shows the approximate 
unning times for each of these steps. As it can be seen in this figure,
he emulator provides a significant impro v ement in the running time
ompared to simulations. While a typical simulation runs by t ∼ 5 
 ∼ 10 5 s on a few hundred cores, the emulator takes t ∼ 1 ms on
 single core. The significant impro v ement in speed (by a factor of
10 11 ) underscores the importance of building and using emulators 

or astrophysical problems. Specifically for studying the small-scale 
tructure tensions, the substantial reduction in the computational cost 
llows for a fast and thorough exploration of the multidimensional 
arameter space, in conjunction with the use of more sophisticated 
tatistical analysis methods, such as Markov-Chain-Monte-Carlo 
MCMC) sampling, which would not be possible by directly running 
imulations. 

In Appendix A , we present an analysis of the intrinsic scatter
ithin the simulations along with a test of the accuracy of our
odel compared with simulations and choices of parameters not 

sed to develop the model. In general, we find that the emulators are
10 per cent–30 per cent accurate, depending on the statistics that 

re being considered. It is observed that the intrinsic scatter within 
he simulations is typically ∼ 5 per cent (for the stellar mass of the 

ain halo) and mildly correlated with redshift. 

 INITIAL  ANALYSIS  A N D  RESULTS  

n this section, we present initial results from the suite of simulations
nd corresponding emulators. We begin by studying the host stellar 
ass, a key property that is sensitive to the stellar feedback and the
ain statistic that was used to re-calibrate the original ARTEMIS 

imulations. We also explore what freedom there is in matching 
ther host properties, such as the metallicities, sizes, in situ fractions
i.e. the fraction of stars formed in the most massive progenitor of
he host galaxy), and galaxy morphologies. Metallicities are studied 
oth as averaged values for each host and as metallicity distribution
unctions of their stars. Finally, we study the effects that changes in
he stellar feedback, reionization redshift, and WDM particle mass 
ave on the stellar mass function of satellite galaxies. 

.1 Host stellar mass 

n this subsection, we explore how the stellar mass of a Milky Way-
ass host system varies as a function of the emulated parameters. As

reviously mentioned, this is the main statistic used to re-calibrate the 
AGLE model for the original ARTEMIS simulations. It is therefore 
seful to explore what freedom there is within this initial calibration 
tep, and whether the choice of parameters was unique. 

We start by studying how the stellar mass, computed within an 
perture of 30 kpc from the halo centre, changes when each parameter 
s v aried indi vidually. This is sho wn in Fig. 4 , where each emulated
arameter, θ , is v aried indi vidually o v er its respectiv e range, while the
ther parameters are held fixed to their fiducial values (see Table 1 ).
his allows us to study the effect of each parameter variation in
solation. Later in this subsection, we will present an analysis where
ll parameters are allowed to vary simultaneously. 

It is clear from Fig. 4 that the host stellar mass is insensitive to
oth the assumed WDM mass, m WDM 

, and the reionization redshift,
 reion (black dotted and dashed lines, respectively). This is consistent 
ith other works for a halo with mass comparable to that of the
ilky Way ( M 200c ∼ 10 12 M �), where it is expected that haloes of

his mass should not be significantly affected by reionization (e.g. 
enson et al. 2002 ; Wiersma et al. 2009 ) or by the suppression in
ensity fluctuations for the range of WDM cosmologies with m WDM 

 1 keV (e.g. Lo v ell et al. 2014 ; Bose et al. 2016 ). 
The host stellar mass is mildly dependent on the star formation

hreshold, n ∗H , 0 , shown with a red line in this figure. Variations in the
tellar mass are within ≈ 30 per cent of the fiducial value, across 
he entire range sampled in n ∗H , 0 . The relation here is positive, with
arger density thresholds leading to an increased stellar mass for the
ost, which is consistent with results of other studies (e.g. Ben ́ıtez-
lambay et al. 2019 ). 
The most important parameters for setting the host stellar mass 

re found to be those associated with the stellar feedback efficiency, 
amely A , f max , and ρH, 0 (purple, blue and green lines). Each
arameter can, in isolation, increase or decrease the stellar mass 
y roughly an order of magnitude from the fiducial case. The
ctual range of stellar masses able to be sampled is much larger
10 8 . 3 < M ∗/ M � < 10 11 . 3 ) when the parameters are allowed to
ointly vary. The relations are monotonic, with increases in A and
 max leading to a decrease in the stellar mass, and increases in ρH, 0 

esulting in an increase in stellar mass. The behaviour with respect
o variations in A and f max can be understood by these parameters
irectly increasing (decreasing) the stellar feedback efficiency (see 
ig. 1 and equation 5 ), resulting in less (more) star formation. The
ehaviour when ρH, 0 is varied can be readily understood from Fig. 1 .
ncreasing ρH, 0 mo v es the transition from from low to high f th values
MNRAS 532, 1223–1240 (2024) 



1232 S. T. Brown et al. 

M

t  

f
 

u  

w  

a  

t  

f  

C  

z  

t  

p  

i
 

d  

t

p

w  

a  

i  

a  

p  

d
 

P  

s  

p  

w
 

f  

r  

r

w  

h  

s  

w  

t  

f  

s  

i  

t  

p  

t  

f  

a

σ

W  

e  

r  

i
 

t  

p  

b  

r  

Figure 5. Top right panel shows the SMHM relation, with M ∗ being the 
stellar mass with 30 kpc, while M vir is the total halo mass. The Behroozi 
et al. ( 2019 ) relation is plotted as a dashed line, with the original ARTEMIS 
and EAGLEsimualtions plotted as scatter point for reference (see legend). 
The posterior of the MCMC analysis are shown with the 1 σ error bars. The 
bottom left panels show the corner plot of the MCMC posterior for the 3 
stellar feedback parameters, with the 1 σ and 2 σ contours plotted. The black 
dashed lines show the fiducial combination of parameters. ρH, 0 is quoted in 
units of cm 

−3 . 

M  

t  

o  

A  

s  

f  

p  

t  

t  

d  

o  

B  

o  

e  

t  

W  

e  

a  

i  

t
 

s  

T  

b  

i  

t  

f  

i  

w  

p  

T  

s  

h  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/2/1223/7686124 by guest on 26 N
ovem

ber 2024
o a higher birth density, resulting in an o v erall decrease in the stellar
eedback efficiency and in turn an increased stellar mass. 

While indi vidually v arying the free parameters, as done abo v e, is
seful to build an intuition of the role of each parameter in isolation,
e ideally want to explore the behaviour when all parameters are

llowed to vary simultaneously, fitting to a given data set. We explore
his for the host stellar mass, fitting to the SMHM relation inferred
rom abundance matching. We restrict the following analysis to a
DM cosmology ( m DM 

= ∞ ) and a fixed reionization redshift of
 reion = 11.5, with both parameters having a negligible effect on
he host stellar mass (see Fig. 4 ). We additionally only present the
osteriors for the three stellar feedback parameters that are the most
mportant for setting the stellar mass. 

To fully explore the available parameter space, in this analysis four-
imensions, we use an MCMC sampling. In a Bayesian framework,
he posterior on the parameters can be written, up to constant, as 

( θ | x ) ∝ p( θ ) × p( x | θ ) , (8) 

here p( θ | x ) is the posterior on the free parameters, p( θ ) is the prior,
nd p( x | θ ) is the likelihood. θ represents the model parameters, and
n this analysis there are only four free parameters: f max , A , ρH, 0 ,
nd n ∗H , 0 . x represents the given data being fit to. Throughout, a flat
rior with the same range as the emulator is used (see Section 3 for
etails). 
To perform the MCMC analysis, we use the publicly available

YTHON package EMCEE (F oreman-Macke y et al. 2013 ). The MCMC
ampling uses 32 w alk ers with 50 000 steps, initialized at the fiducial
arameters used in the original ARTEMIS simulations (see Table 1 ),
ith an additional random 1 per cent scatter. 
Here, we fit the prediction from the emulator to the SMHM relation

rom Behroozi et al. ( 2019 ). Assuming that the three haloes studied
epresent random, independent samples from the underlying SMHM
elation, the likelihood can be written as 

ln p( M ∗| θ ) = 

∑ 

n 

−1 

2 

[ log M ∗, obs ( M vir, n ) − log M ∗, pred , n ( θ )] 2 

σ 2 
n ( θ) 

+ ln [2 πσ 2 
n ( θ)] , (9) 

here θ = ( f max , A, ρH , 0 , n ∗H . 0 ), and the sum is o v er all three
aloes selected from the sample. M obs, n is the observed average
tellar mass for the given halo mass (taken from Behroozi et al. 2019 ),
hile M pred, n is the stellar mass predicted for the given halo from

he emulator. The halo mass, M vir , uses the o v erdensity definition
rom Bryan & Norman ( 1998 ) and is measured from the DM-only
imulations, for consistency with how the SMHM relation is derived
n Behroozi et al. ( 2019 ). This has the additional benefit of making
he total halo mass, M vir , independent of the choice of feedback
arameters in this analysis. The error term, σ n , is a combination of
he intrinsic scatter in the SMHM relation, σ scat , and the uncertainty
rom the emulator, σ em 

( θ ). These are assumed to be uncorrelated and
dded in quadrature, 

2 
n ( θ ) = σ 2 

scat + σ 2 
em , n ( θ) . (10) 

e assume σ scat = 0.25 dex, which is a value obtained by Behroozi
t al. ( 2019 ) for the halo mass range sampled in our simulations. For
eference, σ n ∼ 0.1 dex, although the value depends on the position
n the emulator parameter space. 

The results of this MCMC analysis are shown in Fig. 5 . The
op right panel shows the SMHM relation that is fit to, with the
osterior of the MCMC chains shown as black error bars. As can
e seen, it is a good fit to the data, matching closely the SMHM
elation from Behroozi et al. ( 2019 ). For reference, the original 45
NRAS 532, 1223–1240 (2024) 
ilky Way-mass haloes from ARTEMIS are plotted in blue, and
he haloes from the EAGLE Recal simulation, shown in red. Both
f these simulations match the SMHM by construction, with the
RTEMIS simulations having an additional recalibration for this

tatistic (see Font et al. 2020 ). The posteriors for the three stellar
eedback parameters are shown as corner plots in the bottom left
anels, with added 1 σ and 2 σ contours. The dotted black lines in
hese panels are the fiducial combinations of parameters used in
he original ARTEMIS simulations. Focusing initially on the one-
imensional posteriors, we see that there is little constraint on most
f the parameters, with only f max having a clearly preferred value.
oth A and ρH, 0 show a slight preference for choices at the edges
f the emulation range. This is primarily due to the errors on the
mulator being larger at the edge of the emulation range, rather than
hese parts of the parameter space offering a better fit to the data.

e hav e e xplicitly v erified this by e v aluating the uncertainty of the
mulator, σ ( θ), at the edge of the sampled range. For parameters that
re near the edge ( min ( x ) < 0 . 05 and max ( x ) < 0 . 95) the mean error
s σ = 0.14 dex, while not near the edge (0 . 05 < max ( x ) < 0 . 95)
he mean error is σ = 0.11 dex. 

From the two-dimensional projections, it is clear that there are
trong degeneracies between the three stellar feedback parameters.
he existence of this degeneracy can be understood from the
ehaviour of the individual parameters (i.e. Fig. 4 ); for example,
f a relatively large value of A is used, which in isolation lowers
he host stellar mass, then this can be compensated by decreasing
 max or by increasing ρH , 0 , both of these leading to an increase
n the stellar mass. The three stellar feedback parameters can then
ork to compensate for each other. While strong degeneracies are
resent, there are still significant constraints on the parameter space.
his is particularly clear where the parameters work in tandem to
uppress or enhance star formation, such as when both f max and A
av e relativ ely large v alues. While this behaviour is intuiti ve, it is
o far only qualitative. To predict the e xact, quantitativ e, form of the
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Figure 6. Left: evolution of the host stellar mass as a function of redshift for halo G42, normalized by the stellar mass today. All MCMC chains from Fig. 5 are 
split into late, mid, and early formation (see the legend) according to being in the bottom, middle, or top mean terciles at z = 2 (see Section 4.1 for details of the 
selection). Additionally plotted for comparison is the fiducial combination of parameters (dashed black line). Here, this combination of parameters would be 
classed as late forming. Right: corner plot for the stellar feedback parameters (equi v alent to Fig. 5 ) when split into the different formation scenarios. Here, the 
1 σ contours are shown and the one-dimensional projections are normalized to their given maxima. There are clear systematic trends in the choice of parameters 
as a function of formation time, with A showing the strongest correlation. The mean relation between the stellar feedback efficiency, f th , and stellar birth density, 
ρH, Birth , for the three selections is shown in the top right panel. ρH, 0 is quoted in units of cm 
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e generac y we need to resort to the MCMC analysis, which in turn
ecomes possible from the results of the emulator. 
We also find that the de generac y between the three stellar feedback

arameters closely follows a surface in the three dimensions, as 
pposed to a single line. The f max –A and f max –ρH, 0 projections view
his surface relatively edge-on, while the A –ρH, 0 projection observes 
t close to face-on, resulting in the projected contours shown in Fig. 5 .
sing principal component analysis, the de generac y surface can be 
ell approximated by 

 . 97 A + 0 . 25 log f max − 0 . 02 log ρH , 0 − 0 . 29 = 0 , (11) 

 v er the combined sampled ranges, subject to the condition 0 ≤ A ≤
. 
Having just seen that there are multiple combinations of the three 

tellar feedback parameters that lead to the same present-day stellar 
ass of the host, a natural next question is whether all of these

eedback scenarios form galaxies with their final stellar mass in the 
ame way. To answer this, we explore the redshift evolution of the
ost stellar mass, sampling the feedback parameters from the MCMC 

hains. We present this in the left-hand panel of Fig. 6 , where we
resent the stellar mass 7 as a function of redshift, normalized by the
 = 0 stellar mass. Here, we show the fiducial combination of parame- 
ers (shown with black dashed lines) and the MCMC chains split into
ate, mid, and early formation scenarios (which we describe shortly). 

This figure indicates that there is significant freedom in the choice 
f feedback parameters when constrained to the present-day stellar 
ass. To further explore this, we choose to split the MCMC chains
hich all share the same stellar mass at z = 0 (within the given
ncertainties) into different formation scenarios. This is achieved by 
plitting the MCMC sample into terciles based on their stellar mass at
 = 2, which we refer to as late (bottom third), mid (middle third), and
arly (top third) scenarios. While this approach is straightforward on 
 Instead of using a fixed aperture to define the stellar mass, as done for the 
 = 0 analysis, here we use all particles identified as bound by SUBFIND . 

d  

d
a

 halo-by-halo basis, ideally, we want the definition of an early, mid,
r late formation scenario to be unique for each MCMC chain. It is
herefore necessary to average over all haloes. To do this, we calculate
he percentiles for each MCMC chain prediction of the stellar mass at
 = 2 for each halo, and then average the values o v er all three haloes.
his ‘mean percentile’, P , is then used to define a given MCMC
hain as being a late, mid, or early formation scenario, by applying
he criteria P > 66, 33 < P < 66, and P < 33, respectively. 

In the left-hand panel of Fig. 6 , the median stellar mass, with
 σ scatter, is plotted for these three formation scenarios. There is
 clear separation between the three distributions. At z = 2, this
eparation is by construction. Ho we v er, the se gre gation appears at
ll redshifts, demonstrating that this selection does indeed define 
ifferent formation times, and is not simply identifying noise within 
he data or a behaviour which is system specific. For reference, the
tellar mass for the fiducial choice of parameters is also plotted as
he dashed black line. Under this definition of formation time, the
ducial choice would be classed as ‘late’ forming. 
The distribution of feedback parameters ( f max , A , and ρH, 0 ) split

nto the different formation times is shown in the right-hand panel of
ig. 6 , presented as a corner plot showing the 1 σ contours. As it can
e seen, the differences in formation times correspond to a systematic
ifference in the feedback parameters. This suggests that the freedom 

n the choice of parameters when constraining the present-day stellar 
ass directly corresponds to a freedom in choosing the formation 

ime of the stellar component. Therefore, it is possible to choose
oth the present-day stellar mass, and the formation time with 
he appropriate combination of parameters. While all parameters 
eparate more in their one-dimensional posteriors, compared to the 
otal distribution, this most clearly happens for A . Generally, larger
alues of A correspond to an earlier forming stellar component, and
ice versa. This behaviour, as well as A exhibiting the most direct
ependence on formation time, can be explained from Fig. 1 . The
ominant redshift evolution of the birth densities of stars happens 
t lower densities, with stars preferentially forming in lower density 
MNRAS 532, 1223–1240 (2024) 
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nvironments at later redshifts, while the number of stars that form at
igh densities is only mildly redshift dependent. Therefore, a higher
alue of A corresponds to more efficient feedback at late times, which
n turn would correspond to an early formation to result in the same
tellar mass by z = 0, as is enforced here. The redshift evolution
ppears to be predominantly controlled by A , with the other two
arameters needed to be adjusted along the o v erall de generac y to
nsure the same stellar mass by z = 0. 

In the top right panel of the right-hand corner plot we show the
veraged relation between the feedback efficiency as a function of
irth density for the MCMC chains split by formation time. This more
learly demonstrates the freedom that is allowed in this relation, and
ollows from the posterior of the feedback parameters. Here, the
ducial combination of parameters (black dashed line) corresponds

o the late formation scenario and represents a relatively large step
i.e. comparably large A ). The two early formation scenarios then
orrespond to an o v erall smaller step between low and high f th , that
s additionally shifted to higher birth densities. The three different
ormation scenarios separate most clearly at low ρH, birth , which di-
ectly corresponds to A being most clearly separated in the posterior.

.2 Complementary statistics 

n the previous section, it was observed that there is a strong
e generac y in the stellar feedback parameters in setting the present-
ay stellar mass of the host. The freedom in the choices of feedback
arameters corresponds to a freedom in the formation time of the
tellar component. It is therefore interesting to consider if there
re any other present-day galaxy properties that show systematic
ifferences with stellar formation time, and can potentially be used
o distinguish these choices of parameters. Here, we focus on
ommon statistics for the host galaxy, such as its size, metallicity
nd morphology, and properties sensitive to its formation history,
uch as the fraction of in situ and accreted stars. 

In Fig. 7 , we present the redshift evolution of the main progenitor’s
etallicity, in situ stellar fractions, stellar half-mass radius, and
orphology. All statistics are calculated from star particles identified

s bound to the main progenitor. The metallicity is presented as the
ass weighted mean metallicity, later we study the full metallicity

istribution within the host. 
The stellar morphology is described through the eigenvalues of the

educed moment of inertia tensor (calculated using the bound stellar
articles). The specific form of the reduced moment of inertia tensor
s 

 i,j = 

∑ 

n 

m n x i,n x j,n 

| x n | 2 , (12) 

here the sum is o v er all bound stellar particles, m n is the particle’s
ass, and x n its position. The major, intermediate, and minor axes

re then calculated from the square root of the eigenvalues. Here,
e present the ratio between the minor and major axes ( c / a ) and

he intermediate and major axes ( b / a ). In this definition, a disc
orresponds to c / a ≈ 0 and b / a ≈ 1. 

The final statistic we present here is the in situ versus ex situ
ractions for the host galaxy. Here, individual star particles are tagged
s either being formed in situ or accreted. The procedure to make this
dentification is as follows. For each star particle we identify the time
t which it was formed. We then track this particle in the snapshot
fter its formation. If the star particle at this redshift is identified as
eing bound to the main progenitor then it is tagged as forming in
itu , otherwise it is identified as ex situ . This method follows the same
rocedure used in other papers using the ARTEMIS simulations (e.g.
ont et al. 2020 ). There are many alternative methods used elsewhere
NRAS 532, 1223–1240 (2024) 
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Figure 8. The mass weighted distribution of stellar metallicities for halo 
G42, with the integral normalized to unity. The solid coloured lines show 

the median average from the early, mid, and late formation scenarios (see 
the legend). The transparent band shows the 1 σ scatter for the late scenario 
selection, with the two formation scenarios showing comparable scatter. For 
reference, weak and strong feedback cases are also plotted as dashed lines 
(see the text for specific feedback parameters), that predict distinctly different 
present-day stellar masses. 
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n the literature, such as a stars birth radius from the main progenitor
e.g. Sanderson et al. 2018 ) or methods to capture endo-debri (e.g.
ooper et al. 2015 ). Ho we ver, in this work we are primarily interested

n relative effects when using a consistent definition. 
Focusing initially on the metallicity (top panel of Fig. 7 ), we

ee that, as with the stellar mass, the early, mid, and late forming
elections result in distinctly different redshift evolutions. The o v erall 
rend is as expected, with early star formation corresponding to a 
igher metallicity than late formation at higher redshifts, and vice 
ersa. Interestingly, while the high redshift ( z � 2) metallicities are
istinct, these differences do not persist until the present day, with 
he different selections resulting in similar metallicities today. As 
uch, it does not appear that the present-day metallicity is a powerful
tatistic in breaking the observ ed de generac y in the stellar feedback
arameters at this mass scale (see Fig. 5 ). If the present-day stellar
ass is not controlled for then there can be strong differences in the

redicted metallicities, as shown shortly in Section 4.2.1 (Fig. 8 ). It
herefore appears that the dominant factor in setting the present-day 
etallicity is the total amount of star formation, rather than when the

tars are formed. 
The stellar half-mass radius (second from top of Fig. 7 ) in general

ncreases with redshift, as is expected for the galaxy, and halo, which
re increasing in mass o v er these redshifts. Interestingly, there are
lear trends (offsets) with formation time, which is relatively constant 
cross all redshifts and is also seen for the other two haloes. Here, we
ee that a scenario where the stellar component forms late results in a
ess concentrated distribution of stars than an early forming scenario. 
he difference in the stellar size is relatively constant with redshift,
0.3 dex ( ∼2 kpc at z = 0), notably persisting through to today. 
F ocusing ne xt on the in situ fractions (third panel of Fig. 7 ),

ll scenarios have the same general form; at high redshifts the in
itu fraction slowly increases with redshift, with the intrinsic star 
ormation dominating o v er accretion, while at z ∼ 0.5, there is a sharp
ecrease in the in situ fraction, before continuing to increase from
 = 0.5 to 0. The particular form of the in situ evolution is unique to
alaxy G42, that has a comparably high in situ fraction at early times
nd undergoes a significant merger at z ∼ 0.5 resulting in a sharp
ecrease in the in situ fraction. The other two haloes. This can be seen
n the evolution of M ∗ (Fig. 6 ). The other two haloes (G19 and G44)
o not show such a clear feature in the evolution of the in situ fraction
nd have early values between ≈ 50 per cent and ≈ 70 per cent 
ere, we also see a strong correlation with the formation time of the
alaxy, with an early formation scenario resulting in a decreased in
itu fraction, with a difference of ≈ 10 per cent o v er all redshifts.
ignificant differences in the in situ star formation and accreted 
opulations offers a natural explanation of how there can be a
ignificant change to the stellar evolution while the accretion history, 
n terms of DM haloes, is unchanged. Ho we ver, the physical origin
f this difference is not clear and is likely linked to the evolution
f the SMHM relation in the dwarf regime. A full exploration of
his is beyond the scope of this paper and will be the focus of
uture work. 

Finally, we also explore the evolution of the morphology of the
tellar component (bottom panel of Fig. 7 ), expressed through the
igenvalues of the moment of inertia tensor. Here, the minor to major
atio, c / a , (solid lines) and the intermediate to major ratio, b / a , (dotted
ines) are plotted. Using this definition a thin disc corresponds to c / a

0, b / a ≈ 1. Unlike the other statistics discussed here there is little
o no clear correlation with formation time o v er all redshifts, with
ll lines broadly following each other. This particular galaxy has no
bvious disc component until z ∼ 0.5, where the merger appears 
o induce the formation of a stable disc. While the morphology is
uite similar between the different formation times, when described 
hrough b / a and c / a , the physical size of the galaxy has changed,
eaning the disc height and size have in turn changed. 
While Fig. 7 shows the various statistics for galaxy G42, the

ther two systems show similar general trends. At high redshift, 
he metallicities are distinguishable between the different formation 
cenarios, ho we ver the z = 0 metallicities are indistinguishable, with
he other two galaxies in fact showing the late formation scenario
aving a slightly higher metallicity than the early scenario. The 
rends observed for r 1/2 , the in situ / ex situ fractions, Z , c / a , and b / a
re qualitatively the same for all galaxies. 

.2.1 Metallicity distributions 

n the previous section, it was shown that the z = 0 averaged
etallicity of the central galaxy was broadly insensitive to the 

ormation time of the stellar component. While the present-day 
veraged metallicities do not correlate strongly with the formation 
ime (at fixed present-day stellar mass), it is possible that information
s contained in the full metallicity distributions. 

In Fig. 8 , we present the mass weighted distribution of stellar
etallicities, normalized such that the integral is unity. Here, we show 

he distribution for halo G42, with the other systems showing similar
rends. Here, we again present the median lines of the MCMC chains,
plit into early, mid, and late formations (see end of Section 4.1 ).
dditionally shown for reference is a ‘weak’ and ‘strong’ feedback 

cenario. These use the stellar feedback parameters of f max = 10,
 = 0.5 (strong feedback), and f max = 0.5, A = 0 (weak feedback),
ll other parameters are fixed to their fiducial values (see Table 1 ).
hese choices of stellar feedback parameters lead to very different 
resent-day stellar masses, with M ∗ = 5.9 × 10 8 and 1.4 × 10 11 M �
or the strong and weak scenarios, respectively, whereas the different 
ormation scenarios are constrained to have M ∗ ∼ 10 10 M �. As such,
hese are not realistic choices, but do show the possible effects of
MNRAS 532, 1223–1240 (2024) 
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M

Figure 9. The cumulative satellite stellar mass function per halo, av eraged o v er the three sampled systems. Each panel varies one (set of) parameters at a time, 
with all other parameters fixed to their fiducial values. Left-hand panel changes the assumed WDM mass, m WDM 

, the middle the reionization redshift and the 
right-hand panel the stellar feedback. The stellar feedback is split into early, mid, and late stellar formation (see Fig. 6 ) that all have comparable z = 0 host 
stellar masses, and plotted for comparison is a strong and weak feedback scenario. Throughout, the fiducial CDM result is plotted as a dotted–dashed black line. 
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hanges to stellar feedback, as well as what can be sampled using the
mulator. 

For the strong and weak feedback choices, there are clear
ifferences in the metallicity distributions, with strong feedback
uppressing star formation, leading to a lower total stellar mass that
 v erall has less enrichment and a lower metallicity. The opposite
s true for weak feedback. When considering the selection based
n stellar formation time, with a fixed present-day stellar mass,
he differences in the distributions are minimal. In particular, any
ystematic changes are well within the scatter (grey band). This
uggests that the dominant factor in setting the metallicity, both
veraged and the overall distribution, is the total number of stars
hat have formed, with the details of how these are formed being of
econdary importance. 

In this analysis, we have only studied the total metallicity dis-
ribution. Notably, not splitting stellar particles into the different
omponents of the galaxy (i.e. bulge, disc, halo, etc.). It is therefore
ikely that strong signals could be found with a more detailed analysis,
hich we leave for future work. 

.3 Satellite stellar mass function 

hile it is important to understand the role of the different feedback
arameters in changing properties of the host galaxy, these are
enerally not sensitive changes in the WDM mass, making them
oor probes to constrain the WDM particle mass (e.g. see Fig. 4 ),
r other similar small-scale deviations from � CDM. It is expected,
nd indeed we find, that the properties of the satellite population
o be more sensitive to deviations from CDM (e.g. Lo v ell et al.
014 ; Stafford et al. 2020 ; Forouhar Moreno et al. 2022 ). While
t is possible to study and emulate many different properties of
he satellites, here we focus on the satellite stellar mass function.

here the host stellar mass is predominantly set by the three stellar
eedback parameters, the number of luminous satellites is sensitive
o both the stellar feedback, the reionization redshift and the WDM
NRAS 532, 1223–1240 (2024) 
ass. It is therefore important to understand and quantify how the
reedom in the baryonic parameters impact the constraints on WDM.
ere, we present the effect of changing the different parameters

n isolation to help develop an intuition for the different roles of
eedback, reionization, and the suppression of the initial density
eld on the luminous satellite population. In the future, we plan to
tudy joint changes to these parameters. 

We define the satellite stellar mass function by selecting all
ubhaloes within 300 kpc of the host and use the stellar mass
dentified by SUBFIND . We then present the cumulative stellar mass
unction using 10 logarithmically spaced bins in the range M ∗ =
.23 × 10 4 –10 9.5 M � and excluding the host. 
In Fig. 9 , we present the cumulative stellar mass function averaged

 v er all three systems. The left-hand panel shows the effect of
arying the WDM mass and the middle panel shows the effect
f varying the redshift of reionization. In both cases, all the other
arameters are held fixed. The right-hand panel explores the effects
f varying the three stellar feedback parameters for the CDM case
nd using the fiducial reionization redshift. Here, we show the
veraged stellar mass function when fitting to the host stellar mass
i.e. Fig. 5 ) with 1 σ uncertainty, as well as the average when split
nto early and late forming hosts (as defined previously). Additionally
lotted for reference are a ‘strong’ and ‘weak’ feedback scenarios
see section for specific values). These choices of parameters
redict significantly different stellar masses for the host, that are
ot consistent with the SMHM relation inferred from abundance
atching. 
Focusing initially on the effect of changes to the assumed WDM
ass, m WDM 

(left-hand panel of Fig. 9 ), we see that a smaller particle
ass results in a suppression of number of observed satellites at

ow stellar masses, with the mass scale that these differences occur
eing sensitive to m WDM 

. This suppression is expected, as WDM
eads to a suppression in the initial power spectrum (see equation
 ) leading to a suppression in the number of DM (sub)haloes and
n turn a suppression in the luminous satellites. In general, WDM



ARTEMIS emulator 1237 

c  

a  

c
e  

r
 

m  

n
m  

h
g
o  

s  

a  

r
m  

e
a
T
t  

m  

m  

r
 

s
c
s  

d  

s
c

fi  

t
u
n
o  

t
o  

s
e  

c  

e
i  

(  

l  

b  

s
s
i
r  

f
t  

a  

t  

s
t  

s
w  

8

d

t
(
a

 

s
d
c  

t  

t  

c  

r
g  

d  

r  

s  

i
s  

o  

p  

a
t  

f  

A  

s

5

I  

c
k
T
r
m  

e
t
a
s  

r
i
s  

o  

I  

s  

f
d

p
c
r  

e
t

 

l
t  

o  

s
 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/2/1223/7686124 by guest on 26 N
ovem

ber 2024
an have a measurable effect across a wide range of mass scales,
ssuming a small enough WDM particle mass. Ho we ver, with current
onserv ati ve constraints suggesting m WDM 

� 2 keV (e.g. Newton 
t al. 2021 ), the effects of WDM are only significant in the mass
ange M ∗ � ×10 6 M �. 

We now focus on the role of reionization in changing the stellar
ass function (middle panel Fig. 9 ). The first important thing to

ote is that reionization only affects the smallest galaxies, with the 
ass range being similar to that of WDM ( M star � 10 5 M �). Massive

aloes offer a large enough gravitational potential to retain their 
as after reionization, while smaller haloes lose most of their gas 
nce heated (e.g. Benitez-Llambay & Frenk 2020 ). The exact mass
cale is debated but is roughly M 200 c ∼ 10 7 M �, corresponding to
 stellar mass of M ∗ ∼ 10 5 M �. 8 The observed trend is that a later
eionization leads to the formation of more dwarf galaxies at low 

asses ( M ∗ � 10 5 M �), and vice versa. This dependence is readily
xplained by assuming that before reionization these systems are 
ctively star forming and that reionization directly quenches them. 
herefore, if reionization happens later these systems have more 

ime to form stars prior to reionization, resulting in larger stellar
asses and an increased number of galaxies at these mass scales. The
agnitude of the effect o v er the sampled redshift and mass ranges is

elatively small, only a few per system on the total number counts. 
In the right-hand panel of Fig. 9 we explore how the satellite

tellar mass function is affected by variations to stellar feedback. We 
onsider choices of parameters that give a consistent host stellar mass, 
hown as solid lines, split into late and early formation scenarios, as
escribed in Section 4.1 . Finally, for comparison we also plot a
trong and weak feedback model (see Section 4.2.1 for the specific 
ombination of parameters). 

Focusing initially on the lines where the host stellar masses are 
xed (solid line), we see that there is little dependence on formation

ime, with any deviations well within the intrinsic scatter and 
ncertainty on the emulator. Additionally, we find that there is almost 
o strong correlation with the formation time of the stellar component 
f the host. If we now ignore the host stellar mass and just consider
he strong and weak feedback scenarios (dashed lines) as examples 
f what is possible then we see that stellar feedback is able to
ignificantly change the stellar masses of the satellites. And in general 
ffects the whole stellar mass range, where it is not possible to make
hanges to isolated mass scales. At high masses ( M ∗ � 10 5 M �), the
ffect is as expected, where stronger feedback leads to a reduction 
n the number of satellites, and vice versa. Ho we ver, at small masses
 M ∗ � 10 5 M �), we see this trend reverse so that strong feedback
eads to an increase in the total number of luminous satellites. This
ehaviour appears to be driven by interactions with the host; in a
trong feedback scenario the host system forms comparatively fewer 
tars, hence reducing the tidal stripping of satellites, leading to an 
ncrease in the number of satellites with small stellar mass. The 
everse of this applies to the weak feedback scenario, where the host
orms considerably more stars, increasing the disruptive effects from 

he host, such as tidal stripping. We have verified this hypothesis by
lso studying the satellite DM mass function that shows a decrease in
he number of subhaloes o v er all mass scales in the strong feedback
cenario, and an increase in the weak feedback scenario, relative 
o the fiducial case. Clearly showing that the o v erall amount of
ubstructure is affected, not just how those haloes are populated 
ith luminous galaxies. Ho we ver, to conclusi vely sho w that it is
 In general, stellar mass will depend on the assumed SMHM relation for 
warf haloes, which itself will depend on the assumed feedback efficiencies. 

a  

I  

f
f
w

he effects of interactions with the host would involve matching 
sub)haloes across the different runs and studying their evolution 
fter accretion, which is beyond the scope of this work. 

It is clear that all three processes play a role in setting the observed
atellite populations. It is therefore important to consider potential 
egeneracies between the baryonic processes modelled here and 
hanges to the nature of DM. WDM and reionization, both affect
he satellite stellar mass function o v er the same mass scales and
he form of the effect is similar. The key difference is that WDM
an only suppress the number of satellites, while changes to the
eionization redshift can either relatively enhance or suppress satellite 
ro wth. Ho we ver, the magnitude of their effects are significantly
ifferent. There is therefore only a mild de generac y between the
eionization redshift and WDM. Stellar feedback is able to have the
ame magnitude of an effect as WDM, though the form of the change
s distinct, with changes to stellar feedback tending to affect the whole 
tellar mass function while the effects of WDM free-streaming tend to
nly be important below a mass scale that is determined by the WDM
article mass. While the total number of luminous satellites abo v e
 given mass threshold is degenerate between the two processes, 
his de generac y can be broken by studying the full stellar mass
unction where the effects of WDM and stellar feedback are distinct.
dditionally, if the host stellar mass is also constrained, there is

ignificantly less freedom in changing the luminosity function. 

 SUMMARY  

n this work, we have presented a new suite of high-resolution
osmological zoom-in simulations of Milky Way-mass haloes where 
ey model parameters are systematically and simultaneously varied. 
hree haloes from the existing ARTEMIS simulations have been 

esimulated many times, with different assumptions about the WDM 

ass and the baryonic physics parameters (Fig. 3 ). In total, six param-
ters are simultaneously and systematically varied: the WDM mass, 
he reionization redshift, the star formation gas density threshold, 
nd three parameters associated with stellar feedback. From these 
imulations, emulators have been built (Section 3 , Fig. 2 ) for a wide
ange of statistics from the simulations (currently there are approx- 
mately 250 unique summary statistics trained), such as the host 
tellar mass or the number of satellites, to be predicted as a function
f the six varied parameters, θ = ( m DM 

, A, f max , ρH , 0 , n 
∗
H , 0 , z reion ).

n this first paper, we have primarily focused on emulating a range of
ummary statistics, ho we ver the ne w simulation suite is well suited
or developing more advanced machine learning techniques, such as 
eep learning and likelihood free inference. 

The emulators allow for both the cosmological and baryonic 
arameters to be simultaneously varied. The significant increase in 
omputational speed offered by the emulator compared to directly 
unning the simulations, roughly a factor of 10 11 , allows for a full
xploration of the six-dimensional space, as opposed to being fixed 
o pre-calibrated values as is typical in the literature. 

In this paper, we focused on presenting the simulations and emu-
ators, along with demonstrating some of the possible applications of 
his new approach and exploring the role of feedback and cosmology
n a handful of common statistics. The analysis and results can be
ummarized as follows: 

(i) We study how the stellar mass of the host (i.e. the Milky Way
nalogue) varies as a function of the emulated parameters (Fig. 4 ).
t is found that the stellar mass is most sensitive to the three stellar
eedback parameters, with possible changes of an order of magnitude 
rom the fiducial case, while the assumed reionization redshift and 
 arm dark er matter mass hav e a ne gligible effect. 
MNRAS 532, 1223–1240 (2024) 
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(ii) We additionally perform an MCMC analysis, fitting the stellar
ass of the host to the SMHM relation from Behroozi et al. ( 2019 ).
trong degeneracies in the stellar feedback parameters are identified
Fig. 5 ). We further explore the physical origin of these degeneracies
y studying the redshift evolution of the progenitor. Here, it is found
hat the de generac y in the feedback parameters corresponds to a
reedom in the formation time of the stellar component (Fig. 5 ). We
dditionally split the MCMC chains into three formation scenarios
early, mid, and late), corresponding to systematic changes to the
nput parameters. 

(iii) Additional statistics beyond the stellar mass are explored,
ncluding the mean metallicity, the half-mass radius, r 1/2 , the in situ
ractions, and the stellar morphology (Fig. 7 ). It is found that present-
ay metallicity and stellar morphology are broadly insensitive to the
tellar formation time, while the host size (i.e. stellar half mass
adius) and in situ fractions demonstrate clear systematic trends with
ormation time. A late formation scenario corresponds to an increased
tellar half-mass radius and an increased in situ fraction. 

(v) Finally, we explore the isolated effect of changes in the stellar
eedback, reionization redshift and WDM mass on the satellite
tellar mass function (Fig. 9 ). Here, it is found that changes to the
eionization redshift (o v er the range z reion = 5–20) has a minimal
ffect on the number of luminous satellites abo v e M ∗ ∼ 10 4 M �,
ith deviations ∼2 per system. Variations in the WDM mass lead to
 suppression in the number of satellites at small stellar masses, M ∗ �
0 6 M � compared to CDM. Variations in stellar feedback parameters
re able to suppress or enhance the total number of satellites, with
hanges of a similar magnitude to that of WDM, but are not isolated to
 particular mass scale. This analysis suggests that stellar feedback
nd WDM are not strongly degenerate with each other, and the
atellite luminosity function of the Milky Way and similar systems
an be a powerful probe of both galaxy formation and cosmology.
e plan to explore this further in future work. 
In summary, the emulators allow for fast ( ∼1 ms) predictions for

 diverse range of statistics as a function of both cosmological
nd baryonic (feedback) parameters. The significant increase in
omputation speed (a factor of ∼10 10 ) alleviated one of the key
imitations of standard cosmological hydrodynamic simulations;
he high computational expense. This fundamentally changes the
ype of analysis that can be performed. In particular, it is now
ossible to fully explore the available parameter space, and perform
ayesian inference analysis using MCMC analysis, and similar
ethods. While this significantly increases the predictive power of

hese simulations, allowing for their model (subgrid) parameters to
e marginalized, it also allows for a deeper understanding of the
ink between the models used and the resulting galaxy properties.

e hope that these emulators will become an invaluable tool to
urther understand the role of baryonic process and cosmology in the
ormation and evolution of galaxies. 
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Figure A1. The distribution of z = 0 stellar masses for G42 using the fiducial 
combination of parameters but changing the random seed used for the star 
formation and feedback models. The histogram shows the distribution of 
values, which closely follows a lognormal distribution. The blue line shows 
the Gaussian, with the same mean and standard deviation as the data. For 
comparison the emulator prediction for the mean is shown as the black solid 
line, and the inferred intrinsic scatter as the dashed black line. Note that the 
distrib utions ha ve been normalized so that their maxima are unity for easier 
comparison. 
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PPENDI X:  A  C C U R A  C Y  A N D  STOCHASTICITY  

EST  

odern cosmological hydrodynamic simulations make e xtensiv e use 
f probabilistic, Monte-Carlo-based algorithms to model star forma- 
ion and feedback processes. This inherent randomness, coupled with 
he chaotic orbits of individual particles, means that the simulations 
re not fully deterministic, with their outputs depending both on the
hoice of input parameters and the particular run. For statistics that
v erage o v er a large number of individual systems, such as the stellar
ass function, the impact of this inherent stochasticity is minimal. 
o we ver, for indi vidual systems the v ariation from dif ferent runs can
e significant (e.g. Keller et al. 2019 ; Borrow et al. 2023 ; Davies,
ontzen & Crain 2024 ), depending on the quantity being compared
etween runs, the nature of the subgrid modelling, the resolution, 
nd the formation history of a given system. 

To explore this inherent stochasticity in our simulations and the 
ffect it has on both their predictive power and the ability to train
mulators from individual runs, we have rerun G42 10 times with
he fiducial choice of parameters (see Table 1 for values), each time
hanging the random seed used. We present the results for this in
ig. A1 for the stellar mass of the host at z = 0. The histogram of

he stellar masses is shown in blue, where it can be well fit by a
ognormal distribution, with the best fit Gaussian shown in the solid
lue line. The standard deviation is σ = 0.02 dex ( ≈ 5 per cent ),
howing that the present-day stellar mass is robustly determined in 
hese simulations. This is notably smaller than found in other works
e.g. Borrow et al. 2023 ), and is likely due to these simulations being
f significantly higher resolution (a factor of ≈60 in particle mass). 
Additionally plotted in Fig. A1 is the emulator’s prediction for the

tellar mass at the fiducial choice of parameters (not used to train the
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igure A2. The redshift evolution of the host stellar mass, taken to be the
ass within 30 kpc. The simulation outputs are shown as dashed lines with

he emulator prediction as the solid lines and the shaded regions showing
he corresponding uncertainty in the prediction (top and bottom panels).
dditionally plotted are the reruns with the varied random seed (top and
iddle panels). 

mulator). The emulator is constructed such that the data are assumed
o have some intrinsic scatter. The prediction for the emulator is
hen the mean of the distribution at the given choice of parameters,
long with an error on predicting that mean. The solid black line
hows the emulator prediction, assumed to be Gaussian in form, and
ccurately reco v ers the mean of the distribution. The uncertainty in
aking the prediction ( ≈ 20 per cent ) is significantly larger than the

ntrinsic scatter in the simulations ( ≈ 5 per cent ). As such, we are
urrently limited by the uncertainty in making the prediction, and
ot yet the intrinsic scatter in the simulations. The accuracy of the
mulator could be impro v ed by increasing the number of nodes used
o sample the space, or alternatively using a similar number but using
n alternative coordinate system for the input parameters so that we
o not sample as extreme variations in the properties of the simulated
alaxies. 

As well as making a prediction for the mean with a corresponding
ncertainty, the emulator aims to infer the intrinsic scatter in the data.
his prediction is shown in the dashed black line ( σ ≈ 0 . 5 per cent ),
hich under predicts the true value. This is likely due to the
ncertainty on making the prediction being significantly larger than
he intrinsic scatter. Additionally, this has no impact on any analysis
sing the emulator, as the emulator is the dominant uncertainty and
ill therefore dominate any likelihood analysis. 
To further study the accuracy of the emulator we compare the

redictions for the stellar mass as a function of redshift. This is shown
n the top panel of Fig. A2 , where we present the simulation results for
oth the fiducial combination of parameters with all 10 realizations
longside the four hold out tests that represent random combinations
NRAS 532, 1223–1240 (2024) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
f parameters within the emulation range. The simulation results are
hown as dashed lines, with the colours showing the different choices
f parameters (see the legend). The prediction for the emulator, along
ith the uncertainty, is shown in the solid lines. The two bottom
anels show the ratio between the predicting and the simulations,
plit into the multiple realizations of the fiducial run and the four
old out tests. 
In general, the agreement between the simulations and the emu-

ator is good. The absolute error from the emulator and hold out
ests is ≈0.1dex, and importantly any deviations are within the
redicted uncertainty. Over the majority of the redshift range sampled
eviations are within 1 σ , with a few deviations by approximately
 σ . To quantify the agreement we calculate the reduced χ2 which
s found to be χ2 

r = 0 . 68, showing an excellent fit to the data.
enerally, it is expected that χ2 

r ≈ 1 for a good fit to the data,
ith χ2 

r < 1 normally suggesting an o v erfit to the data. Ho we ver,
ere we are comparing choices of parameters not used to develop the
odel, and therefore are independent. Therefore, the good agreement

etween the simulation and emulator suggests o v erfitting is not an
ssue in this case. Instead, it appears that the predicted uncertainties
re larger than the true values. Therefore, using the uncertainties
rom the emulator in any statistics analysis places a conserv ati ve
onstraint on the predictive power of the model and emulator, and
rucially prev ents o v er interpreting the results of the emulator due to
nderpredicting the uncertainty. 
In Fig. A2 (middle panel), it is also observed that the intrinsic

catter in the simulations is correlated, where realizations that have
ormed more stars by today also tended to have higher stellar masses
t early times. Ho we ver, the fractional scatter tends to decrease with
ime, such that there is a much larger scatter at z ∼ 2 than today. This
uggested that, while these systems are affected by the butterfly
ffect, they tend to become self-regulating, leading to a similar
resent-day stellar mass (at least within ≈ 5 per cent ). Currently,
hese correlated errors are not taken into account when training the
mulator. Ho we ver, as discussed in the previous paragraph we are
urrently not limited by the intrinsic scatter of the simulations, so this
hould not have a significant effect on the accuracy of the emulator. 

In conclusion, the emulator offers an accurate prediction for the
utputs of the simulations, including the intrinsic variation to the
imulations. For the host stellar mass, it is found that the intrinsic
catter between various simulation runs is ≈ 5 per cent , the absolute
rror on the emulator is ≈0.1dex and provides reliable uncertainties.
hile we have only shown this analysis for the host stellar mass, we

nd that same conclusions for a wide range of other properties, such
s the host metallicity, size, and even satellite counts. However, the
xact values for the intrinsic simulation scatter and absolute errors on
he emulator vary depending on the given statistic, with the deviations
l w ays within the predicted errors. 
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