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ABSTRACT

We present the new ARTEMIS emulator suite of high-resolution (baryon mass of 2.23 x 10*42~! M) zoom-in simulations of
Milky Way-mass systems. Here, three haloes from the original ARTEMIS sample have been rerun multiple times, systematically
varying parameters for the stellar feedback model, the density threshold for star formation, the reionization redshift, and the
assumed warm dark matter (WDM) particle mass (assuming a thermal relic). From these simulations, emulators are trained for
a wide range of statistics that allow for fast predictions at combinations of parameters not originally sampled, running in ~1 ms
(a factor of ~10!! faster than the simulations). In this paper, we explore the dependence of the central haloes’ stellar mass on the
varied parameters, finding the stellar feedback parameters to be the most important. When constraining the parameters to match
the present-day stellar mass halo mass relation inferred from abundance matching we find that there is a strong degeneracy in
the stellar feedback parameters, corresponding to a freedom in formation time of the stellar component for a fixed halo assembly
history. We additionally explore the dependence of the satellite stellar mass function, where it is found that variations in stellar
feedback, the reionization redshift, and the WDM mass all have a significant effect. The presented emulators are a powerful
tool which allows for fundamentally new ways of analysing and interpreting cosmological hydrodynamic simulations. Crucially,

allowing their free (subgrid) parameters to be varied and marginalized, leading to more robust constraints and predictions.
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1 INTRODUCTION

Cosmological hydrodynamic simulations have become an invaluable
tool to model the formation and evolution of galaxies across a wide
range of spatial and temporal scales. These simulations are able
to follow the non-linear evolution of matter from the very early
universe through to today, self-consistently modelling the effects
of gravity, hydrodynamics and key astrophysical processes, such as
star formation and feedback, in a fully cosmological context (see
Vogelsberger et al. 2020 for a recent review of the key ingredients
in modern cosmological galaxy formation simulations). While early
simulations were in poor agreement with observations, producing
galaxies that were too massive, too compact and formed too early
(e.g. Scannapieco et al. 2012), it is now routine for many simulations
to create realistic populations of galaxies over a wide range of masses
and redshifts that match a diverse range of observed scaling relations.
A non-exhaustive list includes EAGLE (Crain et al. 2015; Schaye
etal. 2015), ustris(-TNG) (Vogelsberger et al. 2014; Pillepich et al.
2018), Simba (Davé et al. 2019), FIRE(-Box) (Hopkins et al. 2018;
Feldmann et al. 2023), Horizon-AGN (Kaviraj et al. 2017), and
Romulus (Tremmel et al. 2017).
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While current simulations have made great progress over the past
few decades, these successes are not derived from first principles.
Instead, due to the limited resolution of these types of simulations,
many key processes, such as stellar and active galactic nucleus (AGN)
feedback, are implemented through numerical routines that aim to
effectively mimic the impact of these physical processes. These
‘subgrid’ routines introduce a number of free parameters, with some
having clear physical analogues, and can therefore be constrained
by current observations, while others are numerical in nature with
no clear observable analogue. It is common to constrain these
parameters such that the simulated galaxy population matches arange
of chosen observables, a process often referred to as calibrating the
simulations. Thus, the success of a particular simulation is dependent
on both the model itself, as well as the calibration approach. Due to
the high computational expense of these simulations, calibration is
often performed by running arelatively small number of development
simulations used to explore the available parameter space, then
choosing a combination of parameters that gives a desired fit to a
set of observables. One limitation of this approach is that it is often
unclear if the chosen combination of parameters is optimal, or if there
are strong degeneracies within the parameter space, in turn limiting
the predictive power of the simulations.

While it is necessary to consider the uncertainties, and potential
freedoms, in the subgrid parametrization when studying their effect
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on galaxy formation and evolution, it is equally important to consider
when using such simulations to constrain different cosmological
models. This is particularly relevant at small scales, where there have
been tensions between the predictions of simulations that assume
the standard cold dark matter (CDM) model and observations of the
local Universe, such as the cusp-core problem (e.g. Flores & Primack
1994; Moore 1994), the missing satellites problem (e.g. Klypin et al.
1999; Moore et al. 1999), and the too big to fail problem (e.g. Boylan-
Kolchin, Bullock & Kaplinghat 2011; see Bullock & Boylan-Kolchin
2017 for a review). However, it is now well established that the
inclusion of baryonic processes, such as supernova, stellar winds,
and AGN feedback and reionization, plays a significant role on
small scales and is able to alleviate, and potentially resolve, these
tensions within the standard lambda-CDM (ACDM) cosmological
model (e.g. Sales, Wetzel & Fattahi 2022). However, many of these
conclusions are based on using subgrid models and parameters that
have been developed, and calibrated, assuming CDM. Therefore,
while such conclusions suggest CDM is one potential explanation
of the observations, it does not sufficiently show that CDM is a
unique solution, where it is possible that alternative cosmological
models, such as warm dark matter (WDM, e.g. Lovell et al. 2014),
self-interacting dark matter (e.g. Kaplinghat, Tulin & Yu 2016), or
fuzzy dark matter (e.g. Marsh 2016), may also be able to describe
the observed data, but with different choices of baryonic (subgrid)
parameters.

The key factor limiting a full exploration of the available param-
eters space, and the use of more statistically rigorous techniques
to do this, is the large computational expense of these types of
simulations (typically ~10°~10 cpu-hours). A promising alternative
is to instead develop emulators that allow for fast predictions without
having to directly run a simulation. Within large-scale structure
(LSS) cosmological analysis the use of such techniques is becoming
commonplace. Here, emulators have been developed to reproduce
the cosmological dependence predicted from N-body simulations
for a range of LSS statistics, such as the non-linear matter power
spectrum (e.g. Heitmann et al. 2014, 2016; Upadhye et al. 2014;
Giblin et al. 2019), or the halo mass function and galaxy clustering
(e.g. Nishimichi et al. 2019; Angulo et al. 2021). There are also a
number of works that have used emulation to explore the effect of
variations to the assumed galaxy formation parameters. As examples,
Bower et al. (2010) use emulation in the context of the GALFORM
semi-analytic model to explore the effect a range of galaxy formation
parameters have on the predicted luminosity functions, and both the
FLAMINGO (Kugel et al. 2023; Schaye et al. 2023) and Romulus
(Tremmel et al. 2017) hydrodynamic simulations use emulators (or
very similar methods) to calibrate their galaxy formation (subgrid-
)parameters. So far, few works have studied the joint effect of
varying the cosmological and baryonic (subgrid-) parameters, with
a notable exception being the CAMELS simulations (Villaescusa-
Navarro et al. 2021b) that vary some of the Friedmann parameters
alongside feedback (subgrid) parameters within the Illustris-TNG
model.

In this paper, we present a new suite of simulations developed to
explore joint variations in both the baryonic (subgrid) implemen-
tation and the assumed cosmological model. We present a suite
of high-resolution (~10* Mg, in particle mass) Milky Way-mass
zoom-in simulations, where a number of haloes (originally from the
Assembly of high-ResoluTion Eagle- simulations of MIlky Way-type
galaxieS (ARTEMIS) sample, Font et al. 2020; Font, McCarthy &
Belokurov 2021; Font et al. 2022) have been resimulated many times,
systematically varying the WDM mass alongside the stellar feedback
parameters, the star formation threshold, and the assumed redshift
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of reionization. These parameters have specifically been chosen as
they all have a notable effect on the formation and evolution of the
properties of the satellites to the Milky Way (i.e. dwarf galaxies).
From the simulations we construct machine learning emulators that
allow for fast (~1ms) predictions of a diverse range of statistics
for combinations of parameters that were not sampled originally.
The significant increase in computation speed, a factor of ~10'!,
fundamentally changes the type of analysis that is possible, allowing
a full exploration of the available parameter space and marginalizing
over the baryonic (subgrid) parameters when making cosmological
constraints and significantly improving the robustness and predictive
power of the simulations.

In this first paper, we present the new simulation suite and the
emulators, alongside our initial results and analysis. In Section 2,
we describe the technical details of the simulations, focusing on the
physical parameters of the model that are varied. In Section 3, we
describe how the parameters are systematically varied and sampled
with simulations, in total presenting 97 simulations that are used for
training and evaluation. We then describe how these simulations are
used to build emulators using Gaussian processes for a wide range of
statistics, for both the host and satellite populations, evaluating their
performance. In Section 4, we explore how the stellar mass of the host
galaxies (i.e. the Milky Way analogues) changes with variations to
the stellar feedback parameters, by fitting to the values inferred from
abundance matching. We find that there are significant degeneracies
in the stellar feedback parameters when constraining the present-
day stellar mass of the host, where the degeneracy corresponds to a
freedom in the formation time of the stellar component. Additionally,
at the end of Section 4, we present the dependence of the number
of luminous satellites on the variations in the stellar feedback,
reionization redshift, and WDM mass. Finally, in Section 5, we
summarize our results and conclude.

2 SIMULATION DETAILS

Here, we describe the key details of the simulations presented in
this work. We begin by describing the aspects of the simulations and
analysis that are constant throughout this work. This includes how
the initial conditions are generated (Section 2.1) and the details of the
halo finder and merger tree (Section 2.2). In Section 2.3, we focus on
the parameters and associated routines that are varied and emulated
in this work. This includes the stellar feedback, the star formation
model, the reionization redshift, and the WDM particle mass.

2.1 Initial conditions

All of the simulations share the same base ACDM cosmological
parameters, using the WMAP9 best-fitting values (Hinshaw et al.
2013). Specifically, Hy = 70kms‘]Mpc_l, Qn = 0.2793, Q, =
0.0463, oy = 0.8211, and ny = 0.972. The initial conditions are
generated at z = 127 using the CAMB (Lewis, Challinor & Lasenby
2000) predicted ACDM linear power spectrum, which is then
modified for the given WDM mass (see Section 2.3.1).

To generate the zoom-in initial conditions, we use MUSIC (Hahn &
Abel 2011), with separate transfer functions for the DM and baryons.
Systems in the original ARTEMIS sample were identified for
resimulation by first running 25 Mpc 2~ box with 256° collisionless
particles. From this, haloes were identified in the mass range 8 x 10'!
< My/Mg < 2 x 10'2, to bracket the current uncertainty in the
Milky Way’s mass from a variety of observations (e.g. Guo et al.
2010; Deason et al. 2012; McMillan 2017; Callingham et al. 2019;
Watkins et al. 2019; Wang et al. 2020). The Lagrangian regions to
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resimulate were identified to contain all particles within 2Ry at z =
0. The high-resolution zoom-in region uses a DM particle mass of
1.17 x 10°h~'Mg, and an initial gas mass of 2.23 x 10*2~'M,

The original ARTEMIS sample was selected solely on halo mass,
with no additional cuts based on isolation or formation history.
Therefore, the sample (now constituting 45 systems) is representative
of haloes that form at this mass scale, with the caveat that the
original simulation volume was 25 Mpc A~!. As such, particularly
rare environments, such as large galaxy clusters, are not sampled.

From the original sample we focus on resimulating three haloes.
These were again selected based on present-day halo mass (chosen
to cover the sampled mass range), with no explicit selection on
formation history or isolation. Using the naming convention from
the original paper, these are haloes G42, G19, and G44.! with halo
masses of M. = 5.68 x 10'1,9.18 x 10", and 1.32 x 1024~ 'My
in the DM-only simulation.

2.2 Halo finder, merger trees and mass definitions

Collapsed, bound structures are identified using the SUBFIND halo
finding algorithm, last described in Springel et al. (2001). Groups
of haloes are initially identified using the friend-of-friends (FOF)
algorithm, before individually bound structures within a given FOF
group are identified using the SUBFIND algorithm. The most massive
of these is then identified as the central, or host, while all other
subhaloes are considered to be satellites. SUBFIND uniquely identifies
individual particles as belonging to a given subhalo through an
iterative unbinding algorithm.

Merger trees are generated using the D-haloes algorithm, using
only the collisionless DM particles to track progenitors. The code
is based on the algorithms of Srisawat et al. (2013) and Jiang et al.
(2014). In general, the algorithm uses the most bound particles of
a given subhalo to track its progenitors and descendents. From this
initial linking between snapshots the merger trees are then built,
taking into account haloes missing in the SUBFIND catalogues at a
given snapshot and may be linked to multiple later snapshots. See
the previous references for details.

Throughout we will use various mass definitions. For total halo
mass, we use an overdensity definition such that the mean enclosed
density is some multiple of the background density. For comparison
with other works we primarily use the definition from Bryan &
Norman (1998), which for our assumed cosmology represents a
density contrast of A &~ 98 with respect to the critical density.
For stellar mass we either use a fixed spherical aperture (primarily
30kpc), or use all particles that are identified as being bound from
the SUBFIND algorithm. Throughout the paper, we will specify the
particular mass definition used and, where appropriate, motivate its
use.

2.3 Parameters for baryonic physics and dark matter

All of the simulations use the PGADGET-3 code (last described
in Springel et al. 2005) with the hydrodynamics implementation
and galaxy formation (subgrid) physics developed for the EAGLE
project (Crain et al. 2015; Schaye et al. 2015). The EAGLE model
includes prescriptions for metal-dependent cooling in the presence
of a photoionizing UV background, star formation, stellar evolution

1G44 was not part of the original sample of 42 haloes in Font et al. (2020),
but was subsequently added to the sample in Font et al. (2021).
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and chemical evolution, black hole formation and growth, along with
stellar and AGN feedback.

In this work, we are interested in exploring the joint effect of
baryonic (subgrid) processes and potential small-scale cosmological
extension on Milky Way-mass systems and their satellite populations.
Therefore, we restrict our analysis to variations of the baryonic
processes that are most important for these mass scales. Specifically,
we explore variations in the stellar feedback parameters, the density
threshold for star formation, and the reionization redshift. Here, we
describe how these processes are implemented in the EAGLE model,
along with the associated subgrid parameters. All other subgrid
routines and parameters use the fiducial values presented in the
original EAGLE simulation (see Crain et al. 2015; Schaye et al.
2015, for details).?

The simulations presented model the effects of AGN feedback,
however the associated parameters are held fixed throughout. In
general, it is expected that AGN feedback is the dominant for high-
mass haloes, while stellar feedback dominated at lower masses with
haloes of approximately Milky Way being the transition between
these two regimes and being the most efficient at forming stars
(e.g. Behroozi, Wechsler & Conroy 2013; Moster, Naab & White
2013). As such, it is expected that AGN play a subdominant role
in the formation and evolution of Milky Way-mass haloes for many
observables, with the gas fractions being a notable exception (e.g.
Croton et al. 2006; Bower, McCarthy & Benson 2008; Booth &
Schaye 2009; Davies et al. 2019). While it would be interesting to
explore potential changes to both stellar and AGN feedback, this
would necessitate a much larger number of simulations to maintain
the accuracy of the emulator. As such, we have chosen to focus on
the most important parameters for systems of Milky Way mass and
smaller (i.e. stellar feedback and reionization), and hope to explore
a joint variation of stellar and AGN feedback in the future.

2.3.1 Warm dark matter

In this work, we study WDM as an extension to the standard CDM
model. In general, WDM models assume that DM consists of a light,
as yet undiscovered, particle that is relativistic in the early universe.
These non-negligible initial velocities allow for DM to free stream,
leading to the suppression of density fluctuations and structures on
small scales. Assuming a given particle physics model, the physical
scale that these suppression occur on can be interpreted as a particle
mass. In practical terms within the simulations WDM results as a
change to the initial conditions, which can be described through the
linear power spectrum.

The linear power spectrum for a WDM cosmology can be written
as transfer function, Twpym, with respect to a (A)CDM power
spectrum counterpart,

Pwpm(k) = Tyypp (k) Peom(k). (1
Here, we use the fitting function of Bode, Ostriker & Turok (2001):
Twom(k) = [1 + (@k)>]7". )

Here, v represents the form of the cut-off and « the corresponding
scale of the cut-off. The values used correspond to the best-fitting
parameters from Viel et al. (2005). Specifically v = 1.12 and

m —1.11 Q 0.11 h 1.22
a=0049( M ) — ) h'Mpe. )
1keV 0.25 0.7

2Specifically the EAGLE Recal-L025N0752 simulation.
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It is then the assumed WDM particle mass, mpy, that is varied. Qpy
is the cosmic fraction of DM, which is held fixed in this work to
the WMAP9 best-fitting value, Qpy = 0.233 (Hinshaw et al. 2013).
The values used above, and relation to DM particle mass, assume
that WDM is made of thermal relics. However, as the key change to
the growth of structure in WDM simulations is the suppression in
the initial matter power spectrum, this can effectively mimic other
WDM models such as sterile neutrinos (e.g. Dodelson & Widrow
1994; Shi & Fuller 1999) and, to a more limited extent, cosmological
extensions with a similar suppression, such as fuzzy DM (e.g. Marsh
2016; Mocz et al. 2017). All other cosmological parameters, such
as Qn 0 and Hy, are fixed to the values presented in the previous
section.

The technical details of generating the zoom-in initial conditions
are the same as described in Section 2.1, with the ACDM initial
power spectrum generated using CAMB and modified according to
the above equations.

2.3.2 Star formation threshold

Star formation in the EAGLE model follows the pressure law scheme
introduced in Schaye & Dalla Vecchia (2008), where it was shown
that the observed Kennicutt—-Schmidt law (Kennicutt 1998) can be
converted to a relation between the star formation rate and the
pressure of the gas in the simulations, given an assumed equation of
state and under the approximation that the gas is self-gravitating.
The advantage of this scheme is that the observed parameters for
the Kennicutt—Schmidt law (i.e. the slope and normalization) can be
explicitly specified as input parameters to the simulations. In this
work, we use the same values presented in the original EAGLE
project.

Star formation only occurs in cold, dense gas. In EAGLE, star
formation is regulated by a density threshold, nj;, above which gas
follows the pressure law scheme described above. The EAGLE model
uses a metallicity-dependent threshold originally proposed by Schaye
(2004),

—0.64
n}, = min {n*}m(m> , 100m—3}. “4)

The general form of the metallicity dependence is motivated in
Schaye (2004), while the maximum value is specified to prevent
arbitrary large density thresholds in low-metallicity gas.

Both Schaye (2004) and the original EAGLE simulations use
njo = 0.lcm™?. Within the simulations the density threshold repre-
sents the transition at which the cold phase of gas (which simulations
typically cannot resolve directly), is expected form. Typically, this
threshold cannot be observed directly, and instead is indirectly
constrained from the observed star formation rates of nearby disc
galaxies. Due to the theoretical uncertainties in deriving such a
threshold, the diverse range used in current simulations as well as
the choice of density threshold having a significant effect on dwarf
galaxies (e.g. Benitez-Llambay et al. 2019), we choose to vary njj ;.

2.3.3 Stellar feedback

The EAGLE model uses the stochastic thermal feedback prescription
originally presented in Dalla Vecchia & Schaye (2012) to model the
effects of Type II supernovae. Each star particle has a chance of
undergoing a feedback event where neighbouring gas elements are
instantaneously heated by a fixed temperature increment, ATsg. The
probability of such a feedback event occurring can be calculated from

MNRAS 532, 1223-1240 (2024)
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Figure 1. The black dashed line shows the dependence of the stellar feedback
efficiency parameter, fi, on the stellar birth density. The plotted dependence
corresponds to the choice of parameters used for the original ARTEMIS suite,
Jmax = 3, fmin = 0.3, and pn,0 = 50 cm~! (see equation 5 for definitions).
Additionally plotted for reference is the present-day normalized distribution
of stellar birth densities for all bound star particles of halo G42, split into bins
according to their birth redshift (see the legend).

the given ATsr and available energy (see Dalla Vecchia & Schaye
2012 for details). Typically, the energy available for stellar feedback
from a Type II supernova is taken to be 1.736 x 10*°erg Mal,
assuming a Chabrier (Chabrier 2003) initial mass function. However,
there is freedom within the model to allow a certain fraction, fy,, of
this fiducial energy to couple to the surrounding gas. The freedom
in fi, was used to calibrate the original EAGLE and ARTEMIS
simulations, and is therefore a key focus in this work.

In the EAGLE model fy, is allowed to vary as function of the
star particle’s birth density, pu, virn, With the following parametric
relation,

f max f min

fth(pH,Binh) = fmin + W (5)

PH,0

The form of the above relation leads to more energy being coupled
gas in denser environments, that is, larger value of fi, at higher
values of pgin, and vice versa.’ The general behaviour of the relation
is designed to compensate for feedback events being numerically
inefficient at heating high density gas, for which the stellar birth
density is used as a proxy. The relation between fy, and oy, i 1S
shown in Fig. 1 as the dashed black line. In general, the relation
between fi, and py, virn resembles that of a smoothed step function.
fmin corresponds to the minimum efficiency at small densities, fi,.x the
maximum at high densities, while py ¢ controls the transition scale
between the two regimes and « controls how quickly the transition
occurs.

The values used in the original EAGLE simulation (specifically,
the EAGLE Recal-L025N0752 simulations) were fui, = 0.3, fon =
3, puo = 10 cm™!, and o = 1. In the ARTEMIS simulations,
which have a particle mass resolution 8 times higher than EAGLE
Recal-L025N752, the stellar feedback was recalibrated, using py, o =
50 cm™!, to better fit the present-day stellar mass halo mass (SMHM)

3The EAGLE simulations also implemented a metallicity dependence to fi,
that we do not include here. However, the dominant effect is due to the density
dependence, as shown in fig. 3 of Crain et al. (2015).
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relation at the Milky Way-mass scale. Fig. 1 shows the dependence
of the stellar feedback efficiency parameter, fi,, on the stellar birth
density with values assumed in ARTEMIS (black dashed line).

To further explore the freedom in matching the observables
within the stellar (subgrid) routine described above, we choose to
simultaneously vary fiin, fmax, and pp, 0. We find it more useful to
express fmin as a fraction of f,,y, specifically

fmin = Afma)u (6)

where A is then the emulated parameter (rather than fi;,). This mild
reformulation has a few distinct advantages. It is much easier to
ensure that fiax > fmin (corresponding to A < 1), as well as being
more intuitive to present the stellar feedback efficiencies in a relative
manner rather than as absolute values. Throughout this work, we fix
the slope of the transition « to a value of 1 (i.e. we do not emulate
this parameter). During the development of this project it was found
that « has a minimal effect on the results.*

In summary, we emulate the effects of three parameters associated
with stellar feedback in the EAGLE model, fiax, A, and py,o. This
allows for the relation between the stellar efficiency, fin, and the star
particle’s birth density to be systematically varied.

Additionally plotted in Fig. 1 is the distribution of stellar birth
densities for halo G42 from the fiducial (original) ARTEMIS simu-
lations, selecting all star particles identified as bound to the host at
z = 0. These are then split into three bins according to the formation
redshift of the star particles (see the legend). The overall form of the
relation is such that no stars are born in very low density environments
(log pvirtn S —2) due to the star formation threshold, while most
stars form at intermediate densities. It can also be observed that the
minimum birth density increases at higher redshifts. This is due to the
metallicity-dependent star formation threshold used (see the previous
subsection for details), which allows the gas to form in less dense
environments as gas becomes more enriched over time. The highest
densities are additionally suppressed, this being directly related to the
form of fy,. The increase in the stellar feedback efficiency at high birth
densities leads to a suppression of star formation in these regimes. If
a constant feedback efficiency were used instead, the sharp decrease
in the number of stars forming in high densities would not exist (see
e.g. fig. 7 of Crain et al. 2015).

The metallicity dependence for the star formation threshold de-
scribed above explains the redshift evolution in the low py_ pinn regime
in Fig. 1. In general, the metallicity of gas within the simulation will
increase over time. As such, the star formation threshold will be
comparably larger at high redshifts compared to today. It is therefore
expected that the observed minimum birth densities of the stars will
decrease with time, as shown in Fig. 1.

2.3.4 Reionization

Radiative processes are modelled as a function of gas density, tem-
perature, and redshift by interpolating pre-computed cooling tables
using the CLOUDY model (Ferland et al. 1998). Importantly for this
work, the effect of reionization is also implemented, following the
scheme presented in Wiersma, Schaye & Smith (2009). This includes
H1 reionization that occurs instantaneously at a specified redshift,
Zreion- The original EAGLE (and ARTEMIS) simulations used Zyejon =
11.5, consistent with Planck measurements at the time (Planck
Collaboration XVI 2014). Estimates for the reionization redshift

“In our analysis we only considered & > 0.5. It is likely that very small
choices of @ would result in noticeable differences.
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have since been re-evaluated, with most constraints suggesting a
lower value of Zyeion ~ 6-7 (e.g. Bouwens et al. 2015; Robertson
et al. 2015; Planck Collaboration VI 2020). While reionization is
modelled to be instantaneous in the simulations, in reality, it is likely
to happen over an extended time. This is supported by observations
using different probes that are sensitive to different phases of the
Universe’s reionization history. This provides further motivation
for us to explore variations in the redshift of reionization, Zreion-
By emulating this parameter, we can further understand the role
reionization plays on the formation of the smallest galaxies (in the
stellar mass regime My < 10°Mg), which are typically the most
affected by these changes.

3 EMULATION

As is common throughout the field, we will use the term ‘emulator’
to refer to a numerical scheme that allows for a fast prediction of the
results from a (hydrodynamical) N-body simulation as a function of
specified input parameters. In general, it is not possible to output an
exact replica of a cosmological simulation (i.e. a list of all particle
types and their properties). We aim instead to predict a range of
summary statistics, S. Examples of these include the stellar mass of
the main galaxy, the number of satellites of a given mass, or any
robust statistic that can be measured directly from the simulations.
The goal of the emulator is then to predict these summary statistics as
a function of the key input parameters, €. In this work, we use six key
input parameters, specifically 8 = (mpm, A, fmax, OH.0» 1. 0s Zreion)-
See Section 2.3 for definitions and descriptions of these parameters.

One limitation of the above ‘emulation’ approach is that the
summary statistics must first be specified. As such, the most powerful
way of constraining the simulations may be missed. While in this
work we focus on emulating a range of summary statistics, the
simulations are well suited to develop more advanced machine
learning methods such as deep learning, which has previously be
proven to efficiently extract significant information from a wide range
of astrophysical and cosmological data (e.g. Storrie-Lombardi et al.
1992; Lochner et al. 2016; Villaescusa-Navarro et al. 2021a; Nguyen
et al. 2024)

There are two key steps to build the emulator. First, the input
parameter space, #, must be sampled. From this initial sampling
the summary statistics are then measured and a regression model
is trained to make predictions at combinations of # that are not
directly sampled with simulations. Here, we sample 6 using a Latin
hypercube and then build the regression model (i.e. interpolate) by
using a Gaussian process. The accuracy of the emulator depends
strongly on both the sampling and regression model used, which we
discuss below.

3.1 Emulator parameters and sampling

To sample the parameter space we use a six-dimensional orthogonal
Latin hypercube consisting of 25 nodes (i.e. sampled points). A
Latin hypercube results in a uniform, homogeneous and space
filling sampling, minimizing the distance between nodes and in turn
maximizing the accuracy of the emulator for a given number of
sampled points. Standard convention is to define the Latin hypercube
such that all points are sampled on the range [0,1]. From this, each
dimension is then mapped to each of the emulated parameters. For
the baryonic parameters sampled here (A, fiax, £1, 0, n”{w, and Zreion),
this mapping is either done linearly or logarithmically, such that only
the desired range of parameters to be sampled needs to be specified.
The DM particle masses, mpy, are also sampled (this is described
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1228  S. T. Brown et al.

Table 1. Summary of the six emulated parameters varied in the simulations. The first column shows the given parameter,
the second the equations where they are defined, the third and fourth columns show the fiducial values and emulation
ranges for these parameters, and the final column shows the type of sampling used.

Parameter Equation Fiducial Emulator Sampling
value range scheme

mpwm [kev] Equations (1-3) 00 [1.0, o] Equation (7)

A Equations (5-6) 0.1 [0,0.6] Linear

10g fmax Equation (5) 0.48 [ — 0.30, 1.14] Log

log pH_o[cm‘3] Equation (5) 1.70 [ — 0.075, 4] Log

log njy y[em™3] Equation (4) -1 [ — 1.5,—0.52] Log.

Zreion - 115 [5.,20] Linear

below). The Latin hypercube coordinates are then multiplied and
translated by the appropriate factors to sample the entire range. A
summary of the chosen ranges is shown in Table 1, along with the
type of sampling (i.e. linear or logarithmic).

We note that it is difficult to know a priori the correct range to
sample for the variety of these parameters. For parameters with a clear
physical analogue that can be measured from other observations, the
choice is relatively clear, as the current (conservative) observational
constraints should be covered. However, for parameters that are
specific to the simulations, and which do not have a clear physical
analogue that can be measured, it is not so clear what a reasonable
sampled range should be. Ideally, the parameters should cover the
observational uncertainties for galaxy properties of interest, however
this range can often only be reliably derived by first having the
emulator.

In this work, the sampled ranges for the reionization redshift, Z ejon»
and the WDM mass, mpy;, were chosen to conservatively cover the
current observational constraints. The star formation threshold, nj
was chosen to sample up to a factor of 3 from the fiducial value used
in the EAGLE and original ARTEMIS simulations.

The ranges for A, fn.x, and py, o were chosen using an earlier
version of the emulator trained on a narrower range of parameters.
Here, the final ranges of these parameters were chosen to be
the estimated (and extrapolated) 3o constraint on each of these
parameters when fitting the host stellar mass to the fiducial case, using
only the emulator uncertainty. As discussed later (see Section 4.1,
Fig. 5) we do find constraints on A and py ¢ individually when
fitting to the stellar mass, which suggests that this original estimation
and extrapolation was driven by the earlier emulation range and the
corresponding prior.

While the baryonic parameters are sampled in a relatively simple
way, it is useful to sample mpy in a more complex manner.
Specifically we use the relation,

m —%x—{—g ,x>03
DM =
% ,x <0.3,

3 @)
2

where x is assumed to be some uniform sampling in the range [0,1]
(as given by a Latin hypercube). It is desirable that the emulator, and
in turn the chosen sampling, is able to reproduce the mass of the
CDM particle exactly, which in this work we take it to be m = c0.’
However, as any emulation range and its sampling must be finite, it

is not possible to sample CDM using either a linear or logarithmic

5In (A)CDM models, potential DM candidates are expected to be have particle
masses ~ GeV-TeV, where the suppression of the linear power spectrum
happens well below the resolution limit of our simulations. Thus, for practical
purposes, it is sufficient to treat m = oo for the (A)CDM case.

MNRAS 532, 1223-1240 (2024)

sampling of mpy. The above relation (equation 7) aims to address
this issue, while allowing control of the sampling and accuracy of
cosmologies close to the CDM case. The piecewise function consists
of a combination of a linear sampling at small particle masses with
a 1/x sampling for larger masses. This contraction at larger masses
allows for the mass of CDM particles to be exactly sampled, where
mppm = 0o corresponds to x = 0. The exact coefficients were chosen
with two key mass scales in mind; the minimum sampled particle
mass is mpyv = 1 keV, while mpy; = 5 keV represents the transition
from the two sampling, it was additionally chosen so that 30 per cent
of the sampled nodes correspond to mpy < 5 keV. The general
motivation for these specific coefficients was to identify a WDM
particle mass scale at which the effects of WDM begin to have a
limited impact on the resolved haloes in our simulations, chosen to
be mpy = 5 keV.

A summary for the six emulated parameters, along with the equa-
tions defining them, the fiducial values used in the original ARTEMIS
simulations and their range of values sampled is given in Table 1.
The left-hand panel of Fig. 2 shows all two-dimensional projections
of the Latin hypercube used in this work, where the smooth sampling
can be observed. For each combination of parameters a simulation is
then run for each of the three haloes. We additionally run four random
combinations of parameters as hold out tests to evaluate the accuracy
of the emulator. In total 3 x (25 4 4) = 87 separate simulations are
presented in the main suite, with an additional 10 used to evaluate
the stochasticity of the simulations and measured galaxy properties.

A visualization of the resulting 25 sampled simulations for halo
G42 is shown in Fig. 3. The image shows a composite of the gas and
DM density. DM patrticles from the central halo have been removed
to highlight the satellite population. The DM density is shown in
white, while the gas uses the purple colour map. The plot is ordered
so that the systems with the largest stellar mass are in the top left,
and the smallest stellar masses are in the bottom right (the difference
in stellar mass between the two most extreme simulations is ~2
dex). Each diagonal is additionally organized so that the bottom
left corresponds to the coldest DM models, and the top right the
warmest. While the stellar component is not shown in this image
there are clear systematic changes in the distribution of the gas, both
in density and morphology, that correlates with the stellar mass. For
large stellar masses (top left), that is, inefficient stellar feedback,
there exists a relatively small, dense star forming a disc of gas.
For smaller stellar masses (bottom right), corresponding to more
efficient stellar feedback, much of the gas has been blown from the
inner regions and is distributed within a gaseous halo, with little
corotating gas in the form of a disc. There are also clear systematic
differences in the number and mass distribution of satellites between
different WDM particle masses, with a stronger WDM model leading
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Figure 2. Schematic summary of how the emulators are built. First, the available parameter space is sampled with simulations (left-hand panel). From these,
many Gaussian processes are trained for a wide range of statistics (middle panel), then finally the emulator is used to predict these statistics at any combination
of parameters within the sampled space (right-hand panel). Additionally plotted above each panel are the approximate computing times for each of these steps,

with the emulator offering a ~10'! increase in computational speed.

to fewer satellites. This visualization demonstrates the diverse range
of scenarios that is sampled by these simulations, and can in turn be
sampled by the emulator.

3.2 Emulator prediction

Another key aspect of the emulator is the regression model used.
The aim is to effectively interpolate between the sampled points
so that a given statistic can be predicted for any combination of
emulated parameters, @, within the sampled range. Here, we choose
to use a Gaussian process regression model. There are a number
of key features provided by a Gaussian process that make it well
suited to build emulators. In addition to providing a prediction
for the value of the statistic at the choice of parameters, S(), a
Gaussian process also provides the uncertainty in this prediction,
which allows the uncertainty in the emulator to be incorporated in the
statistical analysis. Gaussian processes also perform well in accuracy
and scaling with sparsely sampled, high-dimensional data, therefore
they are ideal for emulating cosmological simulation outputs. For
example, in this work we sample a six-dimensional space with only
25 nodes (simulations), with a typical uncertainty and accuracy of
~ 10 per cent.

The Gaussian process used here consists of an anisotropic Matérn
kernel® and a white noise kernel. The associated hyperparameters
are then optimized to maximize the likelihood for each statistic. The
Matérn kernel models the covariances between data points, allowing
for predictions between nodes, while the white noise kernel accounts
for any intrinsic noise in the data.

The middle panel of Fig. 2 shows an example of a Gaussian process
regression model applied on a one-dimensional data set. Here the true
function is shown with the dashed line, while the uneven samples
(nodes) are shown as scatter points. A Gaussian process is then
trained on these data, with the predictions of the model being shown

SFor a Matérn kernel, a smoothness parameter of v = 2.5 corresponds to a
twice differentiable function (e.g. Rasmussen & Williams 2006).

with the solid line and with associated 1o errors. The prediction
of the Gaussian process resembles closely the true function, with
places of where it deviates still being within the quoted errors. The
behaviour of the uncertainties is generally intuitive; at locations that
are directly sampled (the nodes) the uncertainty is zero, and the
uncertainty remains small when close to these nodes, while the local
maxima in the uncertainties occur in between nodes.

The example in Fig. 2 shows the basics of a Gaussian
process regression model. The key differences for the emu-
lators developed here, are that these are applied to a six-
dimensional parameter space (i.e. the emulated parameters are
0 = [mpwm, A, fmax> MH,0, 1 0» Zreion]) and rather than predicting a
single statistic (observable), they can predict a wide range of
these. Throughout our analysis, we are using independently trained
Gaussian processes for each individual statistics. However, it is
often useful and more intuitive to group these individual Gaussian
processes into a single statistic. For example, to predict the stellar
mass of the host as a function of redshift, each redshift is trained
separately. However, it is useful to group all of these individual
predictions into a ‘stellar mass’ that can be predicted at any redshift.
Similarly, predictions for secondary statistics are also made by
training parameters separately. An example of these secondary
statistics is the cumulative stellar mass function of satellite galaxies,
where the number of satellites above each specified mass bin is
trained and predicted separately. In this case, it is more natural to
treat them collectively, as a single statistic. The total collection of
all trained Gaussian processes is what we refer from now on as ‘the
emulator’.

3.2.1 Parameter inference and likelihood specification

A key motivation to develop emulators is to use them to perform
parameter inference. However, to do this robustly the likelihood
must be specified, taking into account the uncertainties, and potential
covariances, of the observed data. This, of course, will depend on
the particular observations and data sets used. A relatively simple
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Weak feedback

Warm dark matter

Cold dark matter

Strong feedback

Figure 3. Visualization of halo G42 for the 25 sampled simulations, each with a different combination of stellar feedback parameters, star formation threshold,
reionization redshift, and WDM mass. These simulations are used to build the emulators, and can be effectively treated as the training data. The visualizations
represent a composite image of the gas and the DM projected densities, calculated using PY-SPH viewer (Benitez-Llambay 2015). For the DM density maps, the
central halo has been removed to highlight the satellite populations. The panels are organized so that the galaxy with the largest stellar masses are in the top left,
and the smallest in the bottom right. Each bottom left to top right diagonal is additionally sorted in terms of the WDM mass such that the top right panels are
the strongest WDM models (i.e. smallest particle masses, mpy), while the models closest to CDM are in the bottom left.

example of constructing the likelihood for the SMHM relation is
given in Section 4.1.

Due to the way the emulators are constructed, in particular that we
currently only predict statistics for three individual haloes, there are
a number of key assumptions that will likely need to be made. First,
that the three haloes represent random, independent samples from an
underlying distribution. While this distribution can in principle be as

MNRAS 532, 1223-1240 (2024)

complex as needed, many statistics will be well approximated by a
(multivariate) Gaussian, the mean and (co)variance of which can be
specified from the observations being compared to (e.g. the particular
galaxy catalogue). Alternatively, the original ARTEMIS sample, or
similar simulations such as EAGLE, could be used to motivate the
covariance of the data, and further test the ability of the simulations
to reproduce the observations.
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3.3 Emulator summary

Fig. 2 also includes a schematic summary of how the emulator is
built. Initially, the parameter space is sampled using 25 simulations
for each of the three haloes chosen from the ARTEMIS sample
(this step is shown in the left-hand panel). From these simulations,
Gaussian processes are trained for a wide range of different statistics
(see middle panel), including the properties of the hosts and of their
satellites. This then allows for these statistics to be predicted for any
combination of the emulated parameters, within the sampled range
(see right-hand panel). The top of each panel shows the approximate
running times for each of these steps. As it can be seen in this figure,
the emulator provides a significant improvement in the running time
compared to simulations. While a typical simulation runs by ¢ ~ 5
d ~ 10% s on a few hundred cores, the emulator takes ¢ ~ 1 ms on
a single core. The significant improvement in speed (by a factor of
~10"") underscores the importance of building and using emulators
for astrophysical problems. Specifically for studying the small-scale
structure tensions, the substantial reduction in the computational cost
allows for a fast and thorough exploration of the multidimensional
parameter space, in conjunction with the use of more sophisticated
statistical analysis methods, such as Markov-Chain-Monte-Carlo
(MCMC) sampling, which would not be possible by directly running
simulations.

In Appendix A, we present an analysis of the intrinsic scatter
within the simulations along with a test of the accuracy of our
model compared with simulations and choices of parameters not
used to develop the model. In general, we find that the emulators are
~10per cent—30 per cent accurate, depending on the statistics that
are being considered. It is observed that the intrinsic scatter within
the simulations is typically ~ 5 per cent (for the stellar mass of the
main halo) and mildly correlated with redshift.

4 INITIAL ANALYSIS AND RESULTS

In this section, we present initial results from the suite of simulations
and corresponding emulators. We begin by studying the host stellar
mass, a key property that is sensitive to the stellar feedback and the
main statistic that was used to re-calibrate the original ARTEMIS
simulations. We also explore what freedom there is in matching
other host properties, such as the metallicities, sizes, in situ fractions
(i.e. the fraction of stars formed in the most massive progenitor of
the host galaxy), and galaxy morphologies. Metallicities are studied
both as averaged values for each host and as metallicity distribution
functions of their stars. Finally, we study the effects that changes in
the stellar feedback, reionization redshift, and WDM particle mass
have on the stellar mass function of satellite galaxies.

4.1 Host stellar mass

In this subsection, we explore how the stellar mass of a Milky Way-
mass host system varies as a function of the emulated parameters. As
previously mentioned, this is the main statistic used to re-calibrate the
EAGLE model for the original ARTEMIS simulations. It is therefore
useful to explore what freedom there is within this initial calibration
step, and whether the choice of parameters was unique.

We start by studying how the stellar mass, computed within an
aperture of 30 kpc from the halo centre, changes when each parameter
is varied individually. This is shown in Fig. 4, where each emulated
parameter, 6, is varied individually over its respective range, while the
other parameters are held fixed to their fiducial values (see Table 1).
This allows us to study the effect of each parameter variation in

ARTEMIS emulator 1231

11.001 b

10.751 b

— 10.50 b

° e
=)

« 10.25} b
5

S 10.001 b

9.75f A —n b

9.50} — fmax === Zreion .l

PH0 et mwpm

-0.6 -04 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
6 — Biq

Figure4. The dependence of the host stellar mass, defined as the mass within
30 kpc, on the emulated parameters. Here each parameter is individually
varied (see the legend), with the other five parameters held fixed to their
fiducial values. The x-axis is in ‘emulator units’, normalized such that the
emulation range is from O to 1 and offset so that the fiducial choice is at the
origin. Where the prediction is outside the emulators range the lines are plotted
as transparent. The WDM mass and reionization redshift have essentially no
effect on the host stellar mass, while the star formation threshold has a mild
effect over the sampled range, with the most important parameters being the
three associated with stellar feedback, each able to affect the stellar mass by
roughly an order of magnitude. The specific relations are shown for halo G42,
with the other two systems showing very similar dependencies.

isolation. Later in this subsection, we will present an analysis where
all parameters are allowed to vary simultaneously.

It is clear from Fig. 4 that the host stellar mass is insensitive to
both the assumed WDM mass, mwpwm, and the reionization redshift,
Zreion (black dotted and dashed lines, respectively). This is consistent
with other works for a halo with mass comparable to that of the
Milky Way (Mag. ~ 10'2 M), where it is expected that haloes of
this mass should not be significantly affected by reionization (e.g.
Benson et al. 2002; Wiersma et al. 2009) or by the suppression in
density fluctuations for the range of WDM cosmologies with mwpm
> 1 keV (e.g. Lovell et al. 2014; Bose et al. 2016).

The host stellar mass is mildly dependent on the star formation
threshold, ";I,O’ shown with a red line in this figure. Variations in the
stellar mass are within & 30 per cent of the fiducial value, across
the entire range sampled in nf; . The relation here is positive, with
larger density thresholds leading to an increased stellar mass for the
host, which is consistent with results of other studies (e.g. Benitez-
Llambay et al. 2019).

The most important parameters for setting the host stellar mass
are found to be those associated with the stellar feedback efficiency,
namely A, funax, and py o (purple, blue and green lines). Each
parameter can, in isolation, increase or decrease the stellar mass
by roughly an order of magnitude from the fiducial case. The
actual range of stellar masses able to be sampled is much larger
(1083 < M, /Mg < 10"3) when the parameters are allowed to
jointly vary. The relations are monotonic, with increases in A and
fmax leading to a decrease in the stellar mass, and increases in py o
resulting in an increase in stellar mass. The behaviour with respect
to variations in A and fi,.x can be understood by these parameters
directly increasing (decreasing) the stellar feedback efficiency (see
Fig. 1 and equation 5), resulting in less (more) star formation. The
behaviour when py, ¢ is varied can be readily understood from Fig. 1.
Increasing py, o moves the transition from from low to high fi, values
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to a higher birth density, resulting in an overall decrease in the stellar
feedback efficiency and in turn an increased stellar mass.

While individually varying the free parameters, as done above, is
useful to build an intuition of the role of each parameter in isolation,
we ideally want to explore the behaviour when all parameters are
allowed to vary simultaneously, fitting to a given data set. We explore
this for the host stellar mass, fitting to the SMHM relation inferred
from abundance matching. We restrict the following analysis to a
CDM cosmology (mpy = o0) and a fixed reionization redshift of
Zreion = 11.5, with both parameters having a negligible effect on
the host stellar mass (see Fig. 4). We additionally only present the
posteriors for the three stellar feedback parameters that are the most
important for setting the stellar mass.

To fully explore the available parameter space, in this analysis four-
dimensions, we use an MCMC sampling. In a Bayesian framework,
the posterior on the parameters can be written, up to constant, as

p@]x) o p(#) x p(x|0), (8

where p(6|x) is the posterior on the free parameters, p() is the prior,
and p(x|0) is the likelihood. @ represents the model parameters, and
in this analysis there are only four free parameters: fimax, A, Pu, 0,
and njj o. x represents the given data being fit to. Throughout, a flat
prior with the same range as the emulator is used (see Section 3 for
details).

To perform the MCMC analysis, we use the publicly available
PYTHON package EMCEE (Foreman-Mackey et al. 2013). The MCMC
sampling uses 32 walkers with 50 000 steps, initialized at the fiducial
parameters used in the original ARTEMIS simulations (see Table 1),
with an additional random 1 per cent scatter.

Here, we fit the prediction from the emulator to the SMHM relation
from Behroozi et al. (2019). Assuming that the three haloes studied
represent random, independent samples from the underlying SMHM
relation, the likelihood can be written as

_1 [log M*,Ubs(Mvir,n) - 10g lu*,pred,n(o)]2
2 o2(0)

+1n[2702(0)], C)

Inp(M.10) =

n

where 0 = (finax, A, PHo, i), and the sum is over all three
haloes selected from the sample. Mg, is the observed average
stellar mass for the given halo mass (taken from Behroozi et al. 2019),
while Mpeq, n is the stellar mass predicted for the given halo from
the emulator. The halo mass, M,;, uses the overdensity definition
from Bryan & Norman (1998) and is measured from the DM-only
simulations, for consistency with how the SMHM relation is derived
in Behroozi et al. (2019). This has the additional benefit of making
the total halo mass, M,;, independent of the choice of feedback
parameters in this analysis. The error term, o, is a combination of
the intrinsic scatter in the SMHM relation, o ,, and the uncertainty
from the emulator, o ., (0). These are assumed to be uncorrelated and
added in quadrature,

Unz(o) = Uszcat + <7ezm,n(o)' (10)

We assume o 4, = 0.25 dex, which is a value obtained by Behroozi
et al. (2019) for the halo mass range sampled in our simulations. For
reference, o, ~ 0.1 dex, although the value depends on the position
in the emulator parameter space.

The results of this MCMC analysis are shown in Fig. 5. The
top right panel shows the SMHM relation that is fit to, with the
posterior of the MCMC chains shown as black error bars. As can
be seen, it is a good fit to the data, matching closely the SMHM
relation from Behroozi et al. (2019). For reference, the original 45
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Figure 5. Top right panel shows the SMHM relation, with M, being the
stellar mass with 30kpc, while M,;; is the total halo mass. The Behroozi
et al. (2019) relation is plotted as a dashed line, with the original ARTEMIS
and EAGLEsimualtions plotted as scatter point for reference (see legend).
The posterior of the MCMC analysis are shown with the 1o error bars. The
bottom left panels show the corner plot of the MCMC posterior for the 3
stellar feedback parameters, with the 1o and 20 contours plotted. The black
dashed lines show the fiducial combination of parameters. pg, o is quoted in
units of cm 3.

Milky Way-mass haloes from ARTEMIS are plotted in blue, and
the haloes from the EAGLE Recal simulation, shown in red. Both
of these simulations match the SMHM by construction, with the
ARTEMIS simulations having an additional recalibration for this
statistic (see Font et al. 2020). The posteriors for the three stellar
feedback parameters are shown as corner plots in the bottom left
panels, with added 1o and 20 contours. The dotted black lines in
these panels are the fiducial combinations of parameters used in
the original ARTEMIS simulations. Focusing initially on the one-
dimensional posteriors, we see that there is little constraint on most
of the parameters, with only fi,.x having a clearly preferred value.
Both A and py, o show a slight preference for choices at the edges
of the emulation range. This is primarily due to the errors on the
emulator being larger at the edge of the emulation range, rather than
these parts of the parameter space offering a better fit to the data.
We have explicitly verified this by evaluating the uncertainty of the
emulator, o (), at the edge of the sampled range. For parameters that
are near the edge (min(x) < 0.05 and max(x) < 0.95) the mean error
is 0 = 0.14 dex, while not near the edge (0.05 < max(x) < 0.95)
the mean error is 0 = 0.11 dex.

From the two-dimensional projections, it is clear that there are
strong degeneracies between the three stellar feedback parameters.
The existence of this degeneracy can be understood from the
behaviour of the individual parameters (i.e. Fig. 4); for example,
if a relatively large value of A is used, which in isolation lowers
the host stellar mass, then this can be compensated by decreasing
fmax Or by increasing pp o, both of these leading to an increase
in the stellar mass. The three stellar feedback parameters can then
work to compensate for each other. While strong degeneracies are
present, there are still significant constraints on the parameter space.
This is particularly clear where the parameters work in tandem to
suppress or enhance star formation, such as when both f,.x andA
have relatively large values. While this behaviour is intuitive, it is
so far only qualitative. To predict the exact, quantitative, form of the
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Figure 6. Left: evolution of the host stellar mass as a function of redshift for halo G42, normalized by the stellar mass today. All MCMC chains from Fig. 5 are
split into late, mid, and early formation (see the legend) according to being in the bottom, middle, or top mean terciles at z = 2 (see Section 4.1 for details of the
selection). Additionally plotted for comparison is the fiducial combination of parameters (dashed black line). Here, this combination of parameters would be
classed as late forming. Right: corner plot for the stellar feedback parameters (equivalent to Fig. 5) when split into the different formation scenarios. Here, the
1o contours are shown and the one-dimensional projections are normalized to their given maxima. There are clear systematic trends in the choice of parameters
as a function of formation time, with A showing the strongest correlation. The mean relation between the stellar feedback efficiency, fi, and stellar birth density,
PH, Birth, for the three selections is shown in the top right panel. py, o is quoted in units of cm 3.

degeneracy we need to resort to the MCMC analysis, which in turn
becomes possible from the results of the emulator.

We also find that the degeneracy between the three stellar feedback
parameters closely follows a surface in the three dimensions, as
opposed to a single line. The fix—A and finax—pw, 0 projections view
this surface relatively edge-on, while the A—py ¢ projection observes
it close to face-on, resulting in the projected contours shown in Fig. 5.
Using principal component analysis, the degeneracy surface can be
well approximated by

0.974 + 0.2510g fiax — 0.0210g o — 0.29 = 0, (11)

over the combined sampled ranges, subject to the condition ) < A <
1.

Having just seen that there are multiple combinations of the three
stellar feedback parameters that lead to the same present-day stellar
mass of the host, a natural next question is whether all of these
feedback scenarios form galaxies with their final stellar mass in the
same way. To answer this, we explore the redshift evolution of the
host stellar mass, sampling the feedback parameters from the MCMC
chains. We present this in the left-hand panel of Fig. 6, where we
present the stellar mass’ as a function of redshift, normalized by the
z =0 stellar mass. Here, we show the fiducial combination of parame-
ters (shown with black dashed lines) and the MCMC chains split into
late, mid, and early formation scenarios (which we describe shortly).

This figure indicates that there is significant freedom in the choice
of feedback parameters when constrained to the present-day stellar
mass. To further explore this, we choose to split the MCMC chains
which all share the same stellar mass at z = 0 (within the given
uncertainties) into different formation scenarios. This is achieved by
splitting the MCMC sample into terciles based on their stellar mass at
z =2, which we refer to as late (bottom third), mid (middle third), and
early (top third) scenarios. While this approach is straightforward on

"Instead of using a fixed aperture to define the stellar mass, as done for the
z = 0 analysis, here we use all particles identified as bound by SUBFIND.

a halo-by-halo basis, ideally, we want the definition of an early, mid,
or late formation scenario to be unique for each MCMC chain. It is
therefore necessary to average over all haloes. To do this, we calculate
the percentiles for each MCMC chain prediction of the stellar mass at
z = 2 for each halo, and then average the values over all three haloes.
This ‘mean percentile’, P, is then used to define a given MCMC
chain as being a late, mid, or early formation scenario, by applying
the criteria P > 66, 33 < P < 66, and P < 33, respectively.

In the left-hand panel of Fig. 6, the median stellar mass, with
lo scatter, is plotted for these three formation scenarios. There is
a clear separation between the three distributions. At z = 2, this
separation is by construction. However, the segregation appears at
all redshifts, demonstrating that this selection does indeed define
different formation times, and is not simply identifying noise within
the data or a behaviour which is system specific. For reference, the
stellar mass for the fiducial choice of parameters is also plotted as
the dashed black line. Under this definition of formation time, the
fiducial choice would be classed as ‘late’ forming.

The distribution of feedback parameters (fiax, A, and py, o) split
into the different formation times is shown in the right-hand panel of
Fig. 6, presented as a corner plot showing the 1o contours. As it can
be seen, the differences in formation times correspond to a systematic
difference in the feedback parameters. This suggests that the freedom
in the choice of parameters when constraining the present-day stellar
mass directly corresponds to a freedom in choosing the formation
time of the stellar component. Therefore, it is possible to choose
both the present-day stellar mass, and the formation time with
the appropriate combination of parameters. While all parameters
separate more in their one-dimensional posteriors, compared to the
total distribution, this most clearly happens for A. Generally, larger
values of A correspond to an earlier forming stellar component, and
vice versa. This behaviour, as well as A exhibiting the most direct
dependence on formation time, can be explained from Fig. 1. The
dominant redshift evolution of the birth densities of stars happens
at lower densities, with stars preferentially forming in lower density
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environments at later redshifts, while the number of stars that form at
high densities is only mildly redshift dependent. Therefore, a higher
value of A corresponds to more efficient feedback at late times, which
in turn would correspond to an early formation to result in the same
stellar mass by z = 0, as is enforced here. The redshift evolution
appears to be predominantly controlled by A, with the other two
parameters needed to be adjusted along the overall degeneracy to
ensure the same stellar mass by z = 0.

In the top right panel of the right-hand corner plot we show the
averaged relation between the feedback efficiency as a function of
birth density for the MCMC chains split by formation time. This more
clearly demonstrates the freedom that is allowed in this relation, and
follows from the posterior of the feedback parameters. Here, the
fiducial combination of parameters (black dashed line) corresponds
to the late formation scenario and represents a relatively large step
(i.e. comparably large A). The two early formation scenarios then
correspond to an overall smaller step between low and high fy,, that
is additionally shifted to higher birth densities. The three different
formation scenarios separate most clearly at low oy, pirn, Which di-
rectly corresponds to A being most clearly separated in the posterior.

4.2 Complementary statistics

In the previous section, it was observed that there is a strong
degeneracy in the stellar feedback parameters in setting the present-
day stellar mass of the host. The freedom in the choices of feedback
parameters corresponds to a freedom in the formation time of the
stellar component. It is therefore interesting to consider if there
are any other present-day galaxy properties that show systematic
differences with stellar formation time, and can potentially be used
to distinguish these choices of parameters. Here, we focus on
common statistics for the host galaxy, such as its size, metallicity
and morphology, and properties sensitive to its formation history,
such as the fraction of in situ and accreted stars.

In Fig. 7, we present the redshift evolution of the main progenitor’s
metallicity, in situ stellar fractions, stellar half-mass radius, and
morphology. All statistics are calculated from star particles identified
as bound to the main progenitor. The metallicity is presented as the
mass weighted mean metallicity, later we study the full metallicity
distribution within the host.

The stellar morphology is described through the eigenvalues of the
reduced moment of inertia tensor (calculated using the bound stellar
particles). The specific form of the reduced moment of inertia tensor
is

_ mnxi,nxj,n
Mij=>" e (12)

n

where the sum is over all bound stellar particles, m, is the particle’s
mass, and x,, its position. The major, intermediate, and minor axes
are then calculated from the square root of the eigenvalues. Here,
we present the ratio between the minor and major axes (c/a) and
the intermediate and major axes (b/a). In this definition, a disc
corresponds to c/a =~ 0 and bla ~ 1.

The final statistic we present here is the in situ versus ex situ
fractions for the host galaxy. Here, individual star particles are tagged
as either being formed in sifu or accreted. The procedure to make this
identification is as follows. For each star particle we identify the time
at which it was formed. We then track this particle in the snapshot
after its formation. If the star particle at this redshift is identified as
being bound to the main progenitor then it is tagged as forming in
situ, otherwise it is identified as ex situ. This method follows the same
procedure used in other papers using the ARTEMIS simulations (e.g.
Font et al. 2020). There are many alternative methods used elsewhere
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Figure 7. Redshift evolution of a range of statistics for the main progenitor
for halo G42. The top panel shows the mass weight mean metallicity, the
second panel the half-mass radius, the third the in situ fractions, and the
fourth the stellar morphology, described by the ratio of the intermediate
and/or minor to major eigenvalues of the moment of inertia tensor. The lines
are averaged for the MCMC chains, which are constrained to have similar
present-day stellar masses. These are then split into early, mid, and late stellar
formation scenarios (see Fig. 6).
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Figure 8. The mass weighted distribution of stellar metallicities for halo
G42, with the integral normalized to unity. The solid coloured lines show
the median average from the early, mid, and late formation scenarios (see
the legend). The transparent band shows the 1o scatter for the late scenario
selection, with the two formation scenarios showing comparable scatter. For
reference, weak and strong feedback cases are also plotted as dashed lines
(see the text for specific feedback parameters), that predict distinctly different
present-day stellar masses.

in the literature, such as a stars birth radius from the main progenitor
(e.g. Sanderson et al. 2018) or methods to capture endo-debri (e.g.
Cooper et al. 2015). However, in this work we are primarily interested
in relative effects when using a consistent definition.

Focusing initially on the metallicity (top panel of Fig. 7), we
see that, as with the stellar mass, the early, mid, and late forming
selections result in distinctly different redshift evolutions. The overall
trend is as expected, with early star formation corresponding to a
higher metallicity than late formation at higher redshifts, and vice
versa. Interestingly, while the high redshift (z 2 2) metallicities are
distinct, these differences do not persist until the present day, with
the different selections resulting in similar metallicities today. As
such, it does not appear that the present-day metallicity is a powerful
statistic in breaking the observed degeneracy in the stellar feedback
parameters at this mass scale (see Fig. 5). If the present-day stellar
mass is not controlled for then there can be strong differences in the
predicted metallicities, as shown shortly in Section 4.2.1 (Fig. 8). It
therefore appears that the dominant factor in setting the present-day
metallicity is the total amount of star formation, rather than when the
stars are formed.

The stellar half-mass radius (second from top of Fig. 7) in general
increases with redshift, as is expected for the galaxy, and halo, which
are increasing in mass over these redshifts. Interestingly, there are
clear trends (offsets) with formation time, which is relatively constant
across all redshifts and is also seen for the other two haloes. Here, we
see that a scenario where the stellar component forms late results in a
less concentrated distribution of stars than an early forming scenario.
The difference in the stellar size is relatively constant with redshift,
~0.3 dex (~2 kpc at z = 0), notably persisting through to today.

Focusing next on the in sifu fractions (third panel of Fig. 7),
all scenarios have the same general form; at high redshifts the in
situ fraction slowly increases with redshift, with the intrinsic star
formation dominating over accretion, while at z ~ 0.5, there is a sharp
decrease in the in sifu fraction, before continuing to increase from
z =0.5to 0. The particular form of the in situ evolution is unique to
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galaxy G42, that has a comparably high in situ fraction at early times
and undergoes a significant merger at z ~ 0.5 resulting in a sharp
decrease in the in situ fraction. The other two haloes. This can be seen
in the evolution of M, (Fig. 6). The other two haloes (G19 and G44)
do not show such a clear feature in the evolution of the in situ fraction
and have early values between &~ 50 per cent and & 70 per cent
Here, we also see a strong correlation with the formation time of the
galaxy, with an early formation scenario resulting in a decreased in
situ fraction, with a difference of &~ 10 per cent over all redshifts.
Significant differences in the in sifu star formation and accreted
populations offers a natural explanation of how there can be a
significant change to the stellar evolution while the accretion history,
in terms of DM haloes, is unchanged. However, the physical origin
of this difference is not clear and is likely linked to the evolution
of the SMHM relation in the dwarf regime. A full exploration of
this is beyond the scope of this paper and will be the focus of
future work.

Finally, we also explore the evolution of the morphology of the
stellar component (bottom panel of Fig. 7), expressed through the
eigenvalues of the moment of inertia tensor. Here, the minor to major
ratio, c/a, (solid lines) and the intermediate to major ratio, b/a, (dotted
lines) are plotted. Using this definition a thin disc corresponds to c/a
~ 0, bla =~ 1. Unlike the other statistics discussed here there is little
to no clear correlation with formation time over all redshifts, with
all lines broadly following each other. This particular galaxy has no
obvious disc component until z ~ 0.5, where the merger appears
to induce the formation of a stable disc. While the morphology is
quite similar between the different formation times, when described
through b/a and c/a, the physical size of the galaxy has changed,
meaning the disc height and size have in turn changed.

While Fig. 7 shows the various statistics for galaxy G42, the
other two systems show similar general trends. At high redshift,
the metallicities are distinguishable between the different formation
scenarios, however the z = 0 metallicities are indistinguishable, with
the other two galaxies in fact showing the late formation scenario
having a slightly higher metallicity than the early scenario. The
trends observed for ry,,, the in situ/ex situ fractions, Z, c/a, and bla
are qualitatively the same for all galaxies.

4.2.1 Metallicity distributions

In the previous section, it was shown that the z = 0 averaged
metallicity of the central galaxy was broadly insensitive to the
formation time of the stellar component. While the present-day
averaged metallicities do not correlate strongly with the formation
time (at fixed present-day stellar mass), it is possible that information
is contained in the full metallicity distributions.

In Fig. 8, we present the mass weighted distribution of stellar
metallicities, normalized such that the integral is unity. Here, we show
the distribution for halo G42, with the other systems showing similar
trends. Here, we again present the median lines of the MCMC chains,
split into early, mid, and late formations (see end of Section 4.1).
Additionally shown for reference is a ‘weak’ and ‘strong’ feedback
scenario. These use the stellar feedback parameters of f;,.,x = 10,
A = 0.5 (strong feedback), and f,x = 0.5, A = 0 (weak feedback),
all other parameters are fixed to their fiducial values (see Table 1).
These choices of stellar feedback parameters lead to very different
present-day stellar masses, with M, = 5.9 x 10% and 1.4 x 10!! Mg
for the strong and weak scenarios, respectively, whereas the different
formation scenarios are constrained to have M, ~ 10'© M. As such,
these are not realistic choices, but do show the possible effects of
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Figure 9. The cumulative satellite stellar mass function per halo, averaged over the three sampled systems. Each panel varies one (set of) parameters at a time,
with all other parameters fixed to their fiducial values. Left-hand panel changes the assumed WDM mass, mwpwm, the middle the reionization redshift and the
right-hand panel the stellar feedback. The stellar feedback is split into early, mid, and late stellar formation (see Fig. 6) that all have comparable z = 0 host
stellar masses, and plotted for comparison is a strong and weak feedback scenario. Throughout, the fiducial CDM result is plotted as a dotted—dashed black line.

changes to stellar feedback, as well as what can be sampled using the
emulator.

For the strong and weak feedback choices, there are clear
differences in the metallicity distributions, with strong feedback
suppressing star formation, leading to a lower total stellar mass that
overall has less enrichment and a lower metallicity. The opposite
is true for weak feedback. When considering the selection based
on stellar formation time, with a fixed present-day stellar mass,
the differences in the distributions are minimal. In particular, any
systematic changes are well within the scatter (grey band). This
suggests that the dominant factor in setting the metallicity, both
averaged and the overall distribution, is the total number of stars
that have formed, with the details of how these are formed being of
secondary importance.

In this analysis, we have only studied the total metallicity dis-
tribution. Notably, not splitting stellar particles into the different
components of the galaxy (i.e. bulge, disc, halo, etc.). It is therefore
likely that strong signals could be found with a more detailed analysis,
which we leave for future work.

4.3 Satellite stellar mass function

While it is important to understand the role of the different feedback
parameters in changing properties of the host galaxy, these are
generally not sensitive changes in the WDM mass, making them
poor probes to constrain the WDM particle mass (e.g. see Fig. 4),
or other similar small-scale deviations from ACDM. It is expected,
and indeed we find, that the properties of the satellite population
to be more sensitive to deviations from CDM (e.g. Lovell et al.
2014; Stafford et al. 2020; Forouhar Moreno et al. 2022). While
it is possible to study and emulate many different properties of
the satellites, here we focus on the satellite stellar mass function.
Where the host stellar mass is predominantly set by the three stellar
feedback parameters, the number of luminous satellites is sensitive
to both the stellar feedback, the reionization redshift and the WDM
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mass. It is therefore important to understand and quantify how the
freedom in the baryonic parameters impact the constraints on WDM.
Here, we present the effect of changing the different parameters
in isolation to help develop an intuition for the different roles of
feedback, reionization, and the suppression of the initial density
field on the luminous satellite population. In the future, we plan to
study joint changes to these parameters.

We define the satellite stellar mass function by selecting all
subhaloes within 300kpc of the host and use the stellar mass
identified by SUBFIND. We then present the cumulative stellar mass
function using 10 logarithmically spaced bins in the range M, =
2.23 x 10*-10%3 Mg, and excluding the host.

In Fig. 9, we present the cumulative stellar mass function averaged
over all three systems. The left-hand panel shows the effect of
varying the WDM mass and the middle panel shows the effect
of varying the redshift of reionization. In both cases, all the other
parameters are held fixed. The right-hand panel explores the effects
of varying the three stellar feedback parameters for the CDM case
and using the fiducial reionization redshift. Here, we show the
averaged stellar mass function when fitting to the host stellar mass
(i.e. Fig. 5) with 1o uncertainty, as well as the average when split
into early and late forming hosts (as defined previously). Additionally
plotted for reference are a ‘strong’ and ‘weak’ feedback scenarios
(see section for specific values). These choices of parameters
predict significantly different stellar masses for the host, that are
not consistent with the SMHM relation inferred from abundance
matching.

Focusing initially on the effect of changes to the assumed WDM
mass, mwpwm (left-hand panel of Fig. 9), we see that a smaller particle
mass results in a suppression of number of observed satellites at
low stellar masses, with the mass scale that these differences occur
being sensitive to mwpm. This suppression is expected, as WDM
leads to a suppression in the initial power spectrum (see equation
2) leading to a suppression in the number of DM (sub)haloes and
in turn a suppression in the luminous satellites. In general, WDM
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can have a measurable effect across a wide range of mass scales,
assuming a small enough WDM particle mass. However, with current
conservative constraints suggesting mwpy 2 2 keV (e.g. Newton
et al. 2021), the effects of WDM are only significant in the mass
range M, < x10°Me.

We now focus on the role of reionization in changing the stellar
mass function (middle panel Fig. 9). The first important thing to
note is that reionization only affects the smallest galaxies, with the
mass range being similar to that of WDM (M, < IOSM@)‘ Massive
haloes offer a large enough gravitational potential to retain their
gas after reionization, while smaller haloes lose most of their gas
once heated (e.g. Benitez-Llambay & Frenk 2020). The exact mass
scale is debated but is roughly M. ~ 107 My, corresponding to
a stellar mass of M, ~ 10° Mg.® The observed trend is that a later
reionization leads to the formation of more dwarf galaxies at low
masses (M, < 10°My,), and vice versa. This dependence is readily
explained by assuming that before reionization these systems are
actively star forming and that reionization directly quenches them.
Therefore, if reionization happens later these systems have more
time to form stars prior to reionization, resulting in larger stellar
masses and an increased number of galaxies at these mass scales. The
magnitude of the effect over the sampled redshift and mass ranges is
relatively small, only a few per system on the total number counts.

In the right-hand panel of Fig. 9 we explore how the satellite
stellar mass function is affected by variations to stellar feedback. We
consider choices of parameters that give a consistent host stellar mass,
shown as solid lines, split into late and early formation scenarios, as
described in Section 4.1. Finally, for comparison we also plot a
strong and weak feedback model (see Section 4.2.1 for the specific
combination of parameters).

Focusing initially on the lines where the host stellar masses are
fixed (solid line), we see that there is little dependence on formation
time, with any deviations well within the intrinsic scatter and
uncertainty on the emulator. Additionally, we find that there is almost
no strong correlation with the formation time of the stellar component
of the host. If we now ignore the host stellar mass and just consider
the strong and weak feedback scenarios (dashed lines) as examples
of what is possible then we see that stellar feedback is able to
significantly change the stellar masses of the satellites. And in general
effects the whole stellar mass range, where it is not possible to make
changes to isolated mass scales. At high masses (M, = 10° M), the
effect is as expected, where stronger feedback leads to a reduction
in the number of satellites, and vice versa. However, at small masses
(M, < 10° Mp), we see this trend reverse so that strong feedback
leads to an increase in the total number of luminous satellites. This
behaviour appears to be driven by interactions with the host; in a
strong feedback scenario the host system forms comparatively fewer
stars, hence reducing the tidal stripping of satellites, leading to an
increase in the number of satellites with small stellar mass. The
reverse of this applies to the weak feedback scenario, where the host
forms considerably more stars, increasing the disruptive effects from
the host, such as tidal stripping. We have verified this hypothesis by
also studying the satellite DM mass function that shows a decrease in
the number of subhaloes over all mass scales in the strong feedback
scenario, and an increase in the weak feedback scenario, relative
to the fiducial case. Clearly showing that the overall amount of
substructure is affected, not just how those haloes are populated
with luminous galaxies. However, to conclusively show that it is

8In general, stellar mass will depend on the assumed SMHM relation for
dwarf haloes, which itself will depend on the assumed feedback efficiencies.
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the effects of interactions with the host would involve matching
(sub)haloes across the different runs and studying their evolution
after accretion, which is beyond the scope of this work.

Itis clear that all three processes play a role in setting the observed
satellite populations. It is therefore important to consider potential
degeneracies between the baryonic processes modelled here and
changes to the nature of DM. WDM and reionization, both affect
the satellite stellar mass function over the same mass scales and
the form of the effect is similar. The key difference is that WDM
can only suppress the number of satellites, while changes to the
reionization redshift can either relatively enhance or suppress satellite
growth. However, the magnitude of their effects are significantly
different. There is therefore only a mild degeneracy between the
reionization redshift and WDM. Stellar feedback is able to have the
same magnitude of an effect as WDM, though the form of the change
is distinct, with changes to stellar feedback tending to affect the whole
stellar mass function while the effects of WDM free-streaming tend to
only be important below a mass scale that is determined by the WDM
particle mass. While the total number of luminous satellites above
a given mass threshold is degenerate between the two processes,
this degeneracy can be broken by studying the full stellar mass
function where the effects of WDM and stellar feedback are distinct.
Additionally, if the host stellar mass is also constrained, there is
significantly less freedom in changing the luminosity function.

5 SUMMARY

In this work, we have presented a new suite of high-resolution
cosmological zoom-in simulations of Milky Way-mass haloes where
key model parameters are systematically and simultaneously varied.
Three haloes from the existing ARTEMIS simulations have been
resimulated many times, with different assumptions about the WDM
mass and the baryonic physics parameters (Fig. 3). In total, six param-
eters are simultaneously and systematically varied: the WDM mass,
the reionization redshift, the star formation gas density threshold,
and three parameters associated with stellar feedback. From these
simulations, emulators have been built (Section 3, Fig. 2) for a wide
range of statistics from the simulations (currently there are approx-
imately 250 unique summary statistics trained), such as the host
stellar mass or the number of satellites, to be predicted as a function
of the six varied parameters, 6 = (mpm, A, fmaxs OH,05 11 o+ Zreion)-
In this first paper, we have primarily focused on emulating a range of
summary statistics, however the new simulation suite is well suited
for developing more advanced machine learning techniques, such as
deep learning and likelihood free inference.

The emulators allow for both the cosmological and baryonic
parameters to be simultaneously varied. The significant increase in
computational speed offered by the emulator compared to directly
running the simulations, roughly a factor of 10'!, allows for a full
exploration of the six-dimensional space, as opposed to being fixed
to pre-calibrated values as is typical in the literature.

In this paper, we focused on presenting the simulations and emu-
lators, along with demonstrating some of the possible applications of
this new approach and exploring the role of feedback and cosmology
on a handful of common statistics. The analysis and results can be
summarized as follows:

(i) We study how the stellar mass of the host (i.e. the Milky Way
analogue) varies as a function of the emulated parameters (Fig. 4).
It is found that the stellar mass is most sensitive to the three stellar
feedback parameters, with possible changes of an order of magnitude
from the fiducial case, while the assumed reionization redshift and
warm darker matter mass have a negligible effect.
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(ii) We additionally perform an MCMC analysis, fitting the stellar
mass of the host to the SMHM relation from Behroozi et al. (2019).
Strong degeneracies in the stellar feedback parameters are identified
(Fig. 5). We further explore the physical origin of these degeneracies
by studying the redshift evolution of the progenitor. Here, it is found
that the degeneracy in the feedback parameters corresponds to a
freedom in the formation time of the stellar component (Fig. 5). We
additionally split the MCMC chains into three formation scenarios
(early, mid, and late), corresponding to systematic changes to the
input parameters.

(iii) Additional statistics beyond the stellar mass are explored,
including the mean metallicity, the half-mass radius, ry., the in situ
fractions, and the stellar morphology (Fig. 7). It is found that present-
day metallicity and stellar morphology are broadly insensitive to the
stellar formation time, while the host size (i.e. stellar half mass
radius) and in situ fractions demonstrate clear systematic trends with
formation time. A late formation scenario corresponds to an increased
stellar half-mass radius and an increased in situ fraction.

(v) Finally, we explore the isolated effect of changes in the stellar
feedback, reionization redshift and WDM mass on the satellite
stellar mass function (Fig. 9). Here, it is found that changes to the
reionization redshift (over the range ziejon = 5—20) has a minimal
effect on the number of luminous satellites above M, ~ 10* Mg,
with deviations ~2 per system. Variations in the WDM mass lead to
a suppression in the number of satellites at small stellar masses, M, <
10°Mg, compared to CDM. Variations in stellar feedback parameters
are able to suppress or enhance the total number of satellites, with
changes of a similar magnitude to that of WDM, but are not isolated to
a particular mass scale. This analysis suggests that stellar feedback
and WDM are not strongly degenerate with each other, and the
satellite luminosity function of the Milky Way and similar systems
can be a powerful probe of both galaxy formation and cosmology.
We plan to explore this further in future work.

In summary, the emulators allow for fast (~1 ms) predictions for
a diverse range of statistics as a function of both cosmological
and baryonic (feedback) parameters. The significant increase in
computation speed (a factor of ~10'°) alleviated one of the key
limitations of standard cosmological hydrodynamic simulations;
the high computational expense. This fundamentally changes the
type of analysis that can be performed. In particular, it is now
possible to fully explore the available parameter space, and perform
Bayesian inference analysis using MCMC analysis, and similar
methods. While this significantly increases the predictive power of
these simulations, allowing for their model (subgrid) parameters to
be marginalized, it also allows for a deeper understanding of the
link between the models used and the resulting galaxy properties.
We hope that these emulators will become an invaluable tool to
further understand the role of baryonic process and cosmology in the
formation and evolution of galaxies.
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APPENDIX: ACCURACY AND STOCHASTICITY
TEST

Modern cosmological hydrodynamic simulations make extensive use
of probabilistic, Monte-Carlo-based algorithms to model star forma-
tion and feedback processes. This inherent randomness, coupled with
the chaotic orbits of individual particles, means that the simulations
are not fully deterministic, with their outputs depending both on the
choice of input parameters and the particular run. For statistics that
average over a large number of individual systems, such as the stellar
mass function, the impact of this inherent stochasticity is minimal.
However, for individual systems the variation from different runs can
be significant (e.g. Keller et al. 2019; Borrow et al. 2023; Davies,
Pontzen & Crain 2024), depending on the quantity being compared
between runs, the nature of the subgrid modelling, the resolution,
and the formation history of a given system.

To explore this inherent stochasticity in our simulations and the
effect it has on both their predictive power and the ability to train
emulators from individual runs, we have rerun G42 10 times with
the fiducial choice of parameters (see Table 1 for values), each time
changing the random seed used. We present the results for this in
Fig. Al for the stellar mass of the host at z = 0. The histogram of
the stellar masses is shown in blue, where it can be well fit by a
lognormal distribution, with the best fit Gaussian shown in the solid
blue line. The standard deviation is o = 0.02 dex (& 5 per cent),
showing that the present-day stellar mass is robustly determined in
these simulations. This is notably smaller than found in other works
(e.g. Borrow et al. 2023), and is likely due to these simulations being
of significantly higher resolution (a factor of ~60 in particle mass).

Additionally plotted in Fig. A1 is the emulator’s prediction for the
stellar mass at the fiducial choice of parameters (not used to train the
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Figure Al. The distribution of z = 0 stellar masses for G42 using the fiducial
combination of parameters but changing the random seed used for the star
formation and feedback models. The histogram shows the distribution of
values, which closely follows a lognormal distribution. The blue line shows
the Gaussian, with the same mean and standard deviation as the data. For
comparison the emulator prediction for the mean is shown as the black solid
line, and the inferred intrinsic scatter as the dashed black line. Note that the
distributions have been normalized so that their maxima are unity for easier
comparison.
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Figure A2. The redshift evolution of the host stellar mass, taken to be the
mass within 30 kpc. The simulation outputs are shown as dashed lines with
the emulator prediction as the solid lines and the shaded regions showing
the corresponding uncertainty in the prediction (top and bottom panels).
Additionally plotted are the reruns with the varied random seed (top and
middle panels).

emulator). The emulator is constructed such that the data are assumed
to have some intrinsic scatter. The prediction for the emulator is
then the mean of the distribution at the given choice of parameters,
along with an error on predicting that mean. The solid black line
shows the emulator prediction, assumed to be Gaussian in form, and
accurately recovers the mean of the distribution. The uncertainty in
making the prediction (= 20 per cent) is significantly larger than the
intrinsic scatter in the simulations (= 5 per cent). As such, we are
currently limited by the uncertainty in making the prediction, and
not yet the intrinsic scatter in the simulations. The accuracy of the
emulator could be improved by increasing the number of nodes used
to sample the space, or alternatively using a similar number but using
an alternative coordinate system for the input parameters so that we
do not sample as extreme variations in the properties of the simulated
galaxies.

As well as making a prediction for the mean with a corresponding
uncertainty, the emulator aims to infer the intrinsic scatter in the data.
This prediction is shown in the dashed black line (o ~ 0.5 per cent),
which under predicts the true value. This is likely due to the
uncertainty on making the prediction being significantly larger than
the intrinsic scatter. Additionally, this has no impact on any analysis
using the emulator, as the emulator is the dominant uncertainty and
will therefore dominate any likelihood analysis.

To further study the accuracy of the emulator we compare the
predictions for the stellar mass as a function of redshift. This is shown
in the top panel of Fig. A2, where we present the simulation results for
both the fiducial combination of parameters with all 10 realizations
alongside the four hold out tests that represent random combinations

of parameters within the emulation range. The simulation results are
shown as dashed lines, with the colours showing the different choices
of parameters (see the legend). The prediction for the emulator, along
with the uncertainty, is shown in the solid lines. The two bottom
panels show the ratio between the predicting and the simulations,
split into the multiple realizations of the fiducial run and the four
hold out tests.

In general, the agreement between the simulations and the emu-
lator is good. The absolute error from the emulator and hold out

tests is ~0.l1dex, and importantly any deviations are within the
predicted uncertainty. Over the majority of the redshift range sampled

deviations are within 1o, with a few deviations by approximately
20. To quantify the agreement we calculate the reduced x2 which
is found to be x? = 0.68, showing an excellent fit to the data.
Generally, it is expected that x>~ 1 for a good fit to the data,
with x* < 1 normally suggesting an overfit to the data. However,
here we are comparing choices of parameters not used to develop the
model, and therefore are independent. Therefore, the good agreement
between the simulation and emulator suggests overfitting is not an
issue in this case. Instead, it appears that the predicted uncertainties
are larger than the true values. Therefore, using the uncertainties
from the emulator in any statistics analysis places a conservative
constraint on the predictive power of the model and emulator, and
crucially prevents over interpreting the results of the emulator due to
underpredicting the uncertainty.

In Fig. A2 (middle panel), it is also observed that the intrinsic
scatter in the simulations is correlated, where realizations that have
formed more stars by today also tended to have higher stellar masses
at early times. However, the fractional scatter tends to decrease with
time, such that there is a much larger scatter at z ~ 2 than today. This
suggested that, while these systems are affected by the butterfly
effect, they tend to become self-regulating, leading to a similar
present-day stellar mass (at least within & 5 per cent). Currently,
these correlated errors are not taken into account when training the
emulator. However, as discussed in the previous paragraph we are
currently not limited by the intrinsic scatter of the simulations, so this
should not have a significant effect on the accuracy of the emulator.

In conclusion, the emulator offers an accurate prediction for the
outputs of the simulations, including the intrinsic variation to the
simulations. For the host stellar mass, it is found that the intrinsic
scatter between various simulation runs is & 5 per cent, the absolute
error on the emulator is ~0.1dex and provides reliable uncertainties.
While we have only shown this analysis for the host stellar mass, we
find that same conclusions for a wide range of other properties, such
as the host metallicity, size, and even satellite counts. However, the
exact values for the intrinsic simulation scatter and absolute errors on
the emulator vary depending on the given statistic, with the deviations
always within the predicted errors.
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